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ABSTRACT 

Rapid development in informatics enables optimization of hybrid electric vehicle (HEV) 

systems with a fusion of external dynamics, e.g. driver and traffic.  This thesis studies the 

driver-oriented energy management problem of a series-parallel HEV for promoting a 

paradigm shift to more sustainable mobility.  The objective of this research is to characterize 

human driving behaviour and maximize personalized energy economy for real-world driving. 

Driver-oriented intelligent control methodology is proposed to tailor a family of control 

strategies for minimizing energy consumption of HEVs. The research uses emerging ‘mediums’ 

computational intelligence and Internet of the Things to create an accessible human-machine 

interaction system for energy management personalization. The research work is carried out 

in four parts with distinctive contributions. 

Firstly, a novel approach that uses personalized non-stationary inference is proposed to 

increase the robustness of the rule-based vehicle control system through real-time driving 

behaviour monitoring for vehicle energy economy improvement. On the basis of the 

personalized non-stationary inference, the author aims to transfer driving style classification 

methods from continuous indexing towards discrete classes and expand the human-related 

factors from velocity and acceleration only towards velocity, gas pedal, brake pedal, and 

steering wheel angle. Secondly, the concept of the driver-identified supervisory control 

system is introduced, which forms a novel architecture of adaptive energy management for 

HEVs. As a man-machine system, the proposed system can accurately identify the human 

driver from natural operating signals and provides driver-identified globally optimal control 

policies as opposed to mere control actions. To better acclimate to stochastic driving condition, 



 

ii 

 

the author considers elevating HEV energy management into an online level. Thirdly, a novel 

back-to-back competitive learning mechanism is proposed for a fuzzy logic supervisory control 

system for HEVs. This mechanism allows continuous competition between two fuzzy logic 

controllers during real-world driving. Not only the optimizer, but also the predictor is 

considered to promote for synchronous online update. Fourthly, an online predictive control 

strategy for series-parallel plug-in HEVs is investigated, resulting in a novel online optimization 

methodology named the dual-loop online intelligent programming that is proposed for 

velocity prediction and energy-flow control. 

All work is demonstrated via customized experimental plans which are designed based on a 

hardware-in-the-loop testing bench and a driving simulator platform. This allows a deeper 

insight into each control strategy in the driver-oriented intelligent control methodology, 

exposing strengths and drawbacks that have not been noticeable from past work. 
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CHAPTER 1 

INTRODUCTION 

Optimal energy management strategies are critical for hybrid electric vehicles (HEVs) to 

achieve the best performance and greatest energy efficiency through power-split control. The 

human driver is another primary element that affects the energy consumption, emissions, and 

driving safety of a road vehicle. They have a large impact on electrified vehicles’ fuel 

consumption; however, the driver is often ignored during the development of control 

strategies due to uncertainty and complexity. This thesis provides a systematic computational-

intelligence methodology for supervisory controlling of hybrid electric vehicles, where the 

system is composed of vehicle dynamics and driver behaviours. In this chapter, the 

background section introduces: 1) the current progress in vehicle electrification; 2) driving 

behaviour in modern energy management; and 3) government thrust. This is followed by the 

scope and objectives of the thesis, and then the outline is presented in the final section. 

 

1.1. BACKGROUND 

Persistent environmental issues and periodic energy crises are major concerns for the 

automobile industry. [1] As an emerging trend, vehicle electrification aims to investigate 

alternative powertrain technologies and offer potentially fuel-efficient solutions in propulsion 

systems, traffic strategies and urban studies. [2] Hybrid technology is a good transition 

solution to environmental pollution that makes it possible to both improve the fuel economy 

and reduce the exhaust emissions of vehicles. [3, 4] For hybrid and electric vehicles, 



 

- 2 - 

 

developing optimal energy management strategies is critical to achieving the best 

performance and energy efficiency through power-split control. As another primary element, 

the driver plays a significant role in safety and eco-driving. [5] Most of the literature in 

developing control strategies currently ignores the effect of human drivers on errors in eco-

driving, leading to further errors in tracking the recommended velocity profiles. Also, the 

industry thinks the application of such control strategies in real-world driving is extremely 

limited due to implementation complexity and the demand for large computational resources. 

Thus, the author was able to see there may be a beneficial way to organically integrate the 

vehicle and the driver into a whole system to achieve a highly optimized performance. 

 

1.1.1. CURRENT PROGRESS IN VEHICLE ELECTRIFICATION 

HEVs have inherited the benefits of conventional internal combustion engine (ICE) vehicles 

and battery electric vehicles. From the perspective of energy-flow, these two power machines, 

ICEs and motor machines, can be combined in series, parallel or series-parallel layouts. In 

series drivetrains, a motor machine provides the mechanical energy required for the wheels. 

In parallel drivetrains, both a motor machine and an ICE provide the mechanical energy  

required for the wheels.  

 

Liquid fuel is still the energy resource for HEVs. The ICEs are the main energy converter and 

supply all the energy required for a whole vehicle. Using ICEs to extend the mileage of vehicles 

can effectively overcome the mileage inadequacy of pure electric vehicles. The duty of motor 

machines is to improve the efficiency of HEV systems and reduce energy consumption. During 
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real-world driving, motor machines help optimize operation points of ICEs by coordinating the 

torque and rotation speed of the ICEs. They also enable the recovery of kinetic energy through 

regenerative braking.  

 

Degree of hybridization - Currently, a new concept concerning the degree of hybridization has 

entered the public perspective. It is regarded as an effective assessment to reflect the power 

level of the main traction motor in HEVs. From the aspect of the degree of hybridization, HEVs 

can be assigned into four categories: micro hybrid, mild hybrid, full hybrid, and plug-in hybrid. 

The vehicles classed as micro hybrid operate at about 12 volts and can automatically stop/start 

the engine in stop-and-go traffic. The mild hybrid vehicles, operating normally above 48 volts, 

use regenerative braking and an electric motor to aid a combustion engine. Inheriting the 

functionalities of mild hybrid vehicles, the full hybrid vehicles also drive at times using only 

the electric motor. To increase the pure electric range, the plug-in vehicles were eventually 

designed to encompass an electric drivetrain as the primary source of energy and traction. 

 

Fig. 1-1. Various mild hybrid architectures and the associated functionalities [6] 
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Fig. 1-1 summarises various paths for incorporating the electric motor in the powertrain. All 

architectures can be used to achieve the basic functions of boost and recovery when the ICE 

is engaged, and navigation when disengaged; to disengage operation here, an automatic 

launch clutch is mandatory. The arrangements of P2 to P5 have the following in common: 

when the ICE is disengaged, they allow the recovery of braking energy (different from the 

arrangement of P0 and P1 related to crankshaft speed), and the performance of the 48-volt 

system makes pure electric driving possible. The P4 and P5 architectures also make available 

a 48V-based all-wheel drive.  

 

Series hybrid drivetrains - Series hybrids are also referred to as extended-range electric 

vehicles [7] or range-extended electric vehicles. Initially, it was common for diesel-electric 

locomotives and ships to be connected in series (the Russian inland vessel Vandal launched in 

1903 was the world's first diesel-powered ship). Ferdinand Porsche effectively invented this 

arrangement in speed-record-setting racing cars in the early 20th century, for example in  the 

Lohner-Porsche Mixed Hybrid. There is an ideal distributed platform to utilize various energy 

sources pointed out by Wu and Wang [8] that allows the use of renewable energy (e.g. proton 

exchange membrane fuel cell) and also advanced power machines (e.g. Linear Joule Engine 

Generator [9]). Products in this arrangement could be found in most international automotive 

companies, such as BMW i3, Audi A1e-tron, Chevrolet VOLT, etc. 
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Fig. 1-2. Configuration of a series hybrid electric drivetrain [10] 

Fig. 1-2 shows the powertrain of the layout of typical series HEVs, wherein the ICE is the central 

energy converter to transfer the primary energy in fuel to mechanical energy. Then the 

mechanical energy drives an electric generator to generate electricity. The motor machine 

drives the main reducer by using the electricity generated from the ICE or battery packages. 

As the ICE and the vehicle wheels are decoupled, there is no effect from the vehicle speed in 

controlling the rotation speed of ICEs. In fact, the series arrangement necessitates a heavier, 

more complicated battery and motor to meet its power demands. The supplement of a 

generator often makes them more costly than a parallel arrangement. Because the ICE is not 

mechanically coupled to the wheels, the series arrangement is not as economical as the 

parallel arrangement for high-speed driving. The plug-in hybrid is available in both series and 

parallel that enables electricity from the grid for pure electric operation and zero exhaust 

emissions on short distance trips. The plug-in element, however, also enhances the cost [11]. 
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Parallel hybrid drivetrains – A parallel hybrid system is the most popular hybrid arrangement 

as of 2016 [12] that has both an ICE and an electric motor. It allows both to individually drive 

the vehicle or to be coupled up together to assist the driving. The parallel arrangement relies 

more on recovery of braking energy and the ICE can also act as a generator for supplementary 

recharging. They usually use a smaller battery pack than other hybrid arrangements, so this 

lets them be more efficient in city 'stop-and-go' circumstances. Honda's early Insight and Civic 

are examples of parallel hybrid productions. General Motors’ parallel hybrid truck, BAS hybrids 

such as the Saturn VUE and Aura Greenline, and Chevrolet’s Malibu hybrids also adopt a 

parallel hybrid architecture. 

 

Fig. 1-3. Configuration of a parallel hybrid electric drivetrain [10] 

A parallel hybrid arrangement is a drivetrain wherein the engine can mechanically provide 

power to the wheels like a traditional ICE-powered vehicle. It is supported by an electric motor 

mechanically coupled to a gearbox. The powers of the engine and electric motor are 

connected together by mechanical coupling, as shown in Fig. 1-3. The main drawback for a 
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parallel hybrid drivetrain is the engine and the driving wheels are mechanically coupled, so an 

automatic transmission is required, and the engine efficiency still cannot be fully exerted. 

 

Fig. 1-4. The ‘through the road type’ of a parallel hybrid electric drivetrain [10] 

An alternative parallel hybrid is the "through the road" type. [13] In this arrangement (as 

shown in Fig. 1-4) traditional drivetrain systems provide power for one axle, with an electric 

motor or motors driving another. The earliest "off-track" trolleybuses used this arrangement, 

in fact, it affords a complete backup powertrain. In modern electric motors, the battery is able 

to be charged by regenerative braking or loading electric drive wheels during cruising. This 

layout also has the benefit of supplying four-wheel drive in some cases. A practical instance 

of this principle is an electric bicycle equipped with a front-wheel hub motor that can assist 

the cyclist with pedal power on the rear wheels. Relevant commercial products include the 

Audi 100 Duo II and Subaru VIZIV concept cars, the PSA Group vehicles Peugeot 3008, Peugeot 

508, 508 RXH, Citroen DS5 all using the HYbrid4 system, the Volvo V60 plug-in hybrid, the 

BMW 2 Series Active Tourer, BMW i8, and the second generation, Honda NSX. 

 



 

- 8 - 

 

Power-split hybrid drivetrains - A power-split hybrid is a parallel hybrid that combines power-

split devices to allow power flow from an ICE to the wheels, in either a mechanical or electrical 

way. The main principle is to separate the power given by the primary source from the power 

demanded by the driver. Electric motors deliver full torque at a standstill, which is very 

suitable for making up for the problem of insufficient ICE torque at low RPM. In such a power-

split arrangement, a smaller, less flexible, and more efficient engine is suggested. Inspired by 

the drivetrain layout of the well-known Toyota Prius, interesting variations can be found in 

the following vehicle models and their variants: Lexus CT 200h, Lexus RX400h, Lexus GS450h, 

Mercedes ML 450 hybrid, BMW X6 Active Hybrid, Chevrolet Tahoe Hybrid, BYD F3DM.  

 

Fig. 1-5. Nissan-Tino series-parallel drivetrain [14] 

In Fig. 1-5, a continuously variable transmission is introduced after the electric motors to 

transfer the energy from both the electric motors and the ICE to the wheels. A motor is used 

to generate power and start the ICE. An electromagnetic clutch is employed to shift the 

operation mode via locking and unlocking. [15] Such a system is more appropriate for light-

duty cars because the transmission is expensive and unviable for a heavy-duty vehicle. 

 

https://en.wikipedia.org/wiki/Toyota_Prius


 

- 9 - 

 

1.1.2. MODERN ENERGY MANAGEMENT AND DRIVING BEHAVIOUR 

Modern energy management is needed for connected automatic vehicles and intelligent 

transportation systems that require a superior understanding of human driving behaviour. 

This is not only necessary to guarantee a safe and satisfactory performance, but also to 

acclimatise to the drivers’ desires, and ultimately meet the drivers’ preferences in a safe 

environment [16]. Consequently, it is critical to develop recognition of driving behaviour and 

driver intention inference. 

 

Significance of driving behaviour in modern energy management - Fuel efficiency is mainly 

affected by (but not limited to) the following factors: vehicle dynamics, road features, traffic 

conditions and driving style. [17, 18] Although it is well known that driving behaviour seriously 

influences fuel efficiency, knowledge of the direct relationship is still limited. [19] Moreover, 

fuel consumption can be applied to simplify the relationship between driving behaviour and 

vehicle efficiency, [20] and to assist in portraying drivers’ behaviour. [21] In a rare publication 

efforts in this direction by Bolovinou et al. [22] developed an algorithm capable of calculating 

the remaining range in a battery electric vehicle. Recent publications emphasized a potential 

margin of 20-40% for fuel consumption, [23] which is consistent with the margin of 5-40% 

claimed by the work of Manzoni et al. in a simulated environment. Nevertheless, this benefit 

is closely related to the road features. [24] Mudgal et al. reduced fuel consumption by 33% 

through correcting offensive driving on highways, but only by 5% on city roads. [25] Vagg et 

al. developed an embedded driver advisory tool that demonstrated real-world fuel savings of 
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7.6%, through changing driver behaviour by audible feedback. [26] Thus, modern energy 

management urgently needs to take into account the diversity of driving behaviours. 

 

Driving behaviour classification and recognition - The signal selection for driving behaviour is 

closely related to the classification criteria and recognition algorithm used. There are two main 

approaches for categorizing driving behaviour via unique labelling. Usually, to categorize 

driving behaviours into classes the distribution information of the selected driving parameters 

and extracted features is used. [23] Before the classification algorithm design, these classes 

need to be carefully defined for all influencing parameters in a multi-factor cognition task. The 

trade-off between classification fineness and complexity should be considered to ensure the 

robustness of the algorithm, and interpretability for the end-user. [27] Another way to classify 

driving behaviour is through continuous indexing. The final classification into a large number 

of clusters includes consideration of a continuous index, which can eventually be used in a 

threshold-based algorithm to convert it into finite classes. [28, 29]  

 

Once the classification method and the signals used are selected, driving behaviour 

recognition algorithms are expected to be developed. Driving behaviour recognition 

algorithms are generally realized through rule inference, models or using machine learning. A 

rule-based, also known as a threshold-based algorithm, is the most intuitive way to recognize 

driving behaviour. Inference rules are characterized using predetermined thresholds of 

monitoring variables that categorize driving behaviour into classes. Model-based algorithms 

include a set of equations with predefined features to describe driving style. The threshold 
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definition in the rule-based algorithm limits the robustness of the results and requires a lot of 

statistical analysis. Data-driven algorithms (using machine learning) are suitable for processing 

large amounts of data, consistently derive thresholds, and even completely develop other 

improved algorithms. Besides, they have adaptive functions that can serve for drivers whose 

data is not pre-trained. Such beneficial features have facilitated study on data-driven methods 

and regulate upcoming trends in driving behaviour recognition. 

 

1.1.3. GOVERNMENT THRUST 

Motivated by rising prosperity in the developing world, the demand for energy has increased 

significantly. As the BP Energy Outlook: 2019 edition reported, [30] the shifting to a low-

carbon energy system continues, and the importance of renewable energy and natural gas 

relative to oil and coal is increasing. The report points out that with the increase in vehicle 

efficiency, the growth of the transportation demand has dropped sharply compared to the 

past. By 2040, the proportion of passenger vehicle kilometres driven by electric vehicles will 

increase to about 25%, thanks to the increasing significance of fully autonomous vehicles and 

shared travel services. Fig. 1-6 indicates that oil consumption has risen (0.3% p.a.) for the first 

half of the period considered in the BP Energy Outlook, [30] although much slower than in the 

past, before plateauing in the 2030s. 
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Fig. 1-6. Primary energy consumption by fuel [30] 

Meanwhile, in 2017, the International Council on Clean Transportation updated the ‘Light-

duty vehicle greenhouse gas and fuel economy standards’. [31] Fig. 1-7 shows the EU CO2 

passenger car standards relative to similar global regulations. The graph converts all 

regulatory plans to the NEDC to make them comparable. Under the new regulation, the EU 

becomes the only market in the world that has set mandatory CO2 emissions’ targets for new 

vehicles by 2030. By 2025, the EU's CO2 emissions’ target is about 81 g/km, while the US and 

Canada have similar targets (99 g/km).  
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Fig. 1-7. Comparison of global CO2 regulations for brand-new passenger cars [31] 

Overall, governments are increasingly willing to implement and reinforce vehicle greenhouse 

gas emissions and fuel economy standards; which mirrors their growing recognition that 

decreasing greenhouse gas emissions and fuel consumption will improve environmental 

health (including fulfilling global climate change commitments), to ensure energy security, 

shield consumers from oil price fluctuations and promote technological revolution. 

 

In October 2009, the European Council established applicable emission reduction targets for 

Europe and other advanced economies. By 2050, the emissions will be 80-95% lower than the 

1990 level. To support this goal, the European Climate Foundation (ECF) launched a survey to 

establish the factual foundation behind the goal and discover its impact on European industry, 

especially the power industry. 
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Fig. 1-8. The decarbonized pathways assume a mix of electric vehicles, biofuels and fuel cell vehicles 

[32] 

As illustrated in Fig. 1-8, the electrification began with hybrid and plug-in hybrid powertrain 

systems for urban vehicles (approximately 20% penetration by 2020). Up to 2020, the 

penetration of full electric vehicles is still very small. As the pioneers of electrification, plug-in 

and HEVs take the lead in replacing fossil fuel vehicles. To ensure the smooth entry of battery 

electric and other renewable vehicles into the market, hybrid and plug-in hybrid play an 

irreplaceable role in prior technical reserve and market expansion. In addition, human drivers 

(or their behaviour) as primary decision makers greatly affect energy consumption and driving 

safety. To build a safe and energy-saving intelligent transportation system, driver’s 

information fusion gradually becomes a research focus that promotes the development of 

future connected and autonomous vehicles with all types. 
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In the ‘Europe on the Move’, a road transport strategy for Europe, the Commission proposed 

in May 2017 to reward the most environmentally friendly vehicles with reduced road charges. 

 

Fig. 1-9. Key actions proposed since May 2017 [33] 

Fig. 1-9 displays some key actions taken by the European Commission. To enable this, the 

Commission put forward new CO2 standards for light vehicles in November 2017, followed in 

May 2018 by the first-ever CO2 standards for trucks. In parallel, the Commission took actions 

to strengthen the internal road freight market and to better protect drivers. Put together, all 

these initiatives will offer safe, clean, and competitive mobility to Europeans by 2025. 

 

1.2. SCOPE AND OBJECTIVES 

This work builds on previous study in a centre for Connected and Autonomous Systems for 

Electrified Vehicles (CASE-V) that has involved developing a modular HEV architecture [34]. 

The architecture has been demonstrated by an industrial partner, Douglas Motors Ltd, and 

can be engaged in testing and analysing the existing control strategies from the state of the 

art, as well as for designing a series of new control strategies. The richness of this version is 
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not only expected to obtain more reliable results, but will also reveal dynamic characteristics 

of each component that result in new control requirements. In addition, because this version 

belongs to a series architecture, it is possible to conduct fundamental research on series HEVs 

and extend it to parallel or power split architectures. 

 

The research performed as challenging work in the centre for CASE-V has implicated a wide 

range of interdisciplinary topics being investigated. A substantial portion of my research 

activity is instigated in engineering, but enlarges to include human and computational 

intelligence, which extends to methodology development of driver-oriented supervisory 

control strategies. However, studying HEVs, with a driver-oriented architecture, the research 

topic faces a very different control problem e.g. extra degrees of freedom in vehicle design 

and new uncertainties from human drivers. The vehicle used for the research based on the 

developed HEV architecture is a hybridized medium passenger car with series-parallel 

drivetrain, where its underlying component models are partially simplified. The system-level 

suitability has been established and proved by BYD Auto Co. Ltd. As such, it was considered 

best to limit the scope of the thesis to my work only on supervisory control systems of the 

series-parallel drivetrain for energy management personalization. 

 

For the work on HEVs, an additional four projects have been pursued together with final year 

undergraduate and postgraduate students. These consist of one project on an adaptive 

controlling series hybrid aircraft trailer; one project on modelling and analysing fuel 

consumptions and emissions; one project on equivalent consumption minimization strategy; 
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and one project on Markov-chain-based model predictive control. Over the past four years, 

the work on each research path has been greatly developed, mainly by the students 

themselves, but under my indispensable guidance. These additional projects could have been 

formed as a chapter, but there is still much room for improving them. This work needs to be 

perfected and consolidated at a later stage. 

 

The PhD research aims to develop driver-oriented intelligent control methodology for energy 

management personalization of series-parallel hybrid electric vehicles, by using 

computational intelligence techniques. The key objectives of the thesis are as follows: 

a) To develop a system-level series-parallel HEV model that is suitable to test control 

strategies 

b) To study and learn from existing work on control strategies and driving behaviour 

c) To establish a driver-oriented supervisory control framework with accessible 

communication between human drivers and intelligent hybrid vehicles 

d) To design personalized non-stationary inference for robustness enhancement of the 

vehicle system 

e) To propose the method of spectrum-guided fuzzy feature extraction for global 

optimum enhancement of the vehicle system 

f) To create a back-to-back competitive learning mechanism for synergy enhancement 

of the vehicle system 

g) To propose dual-loop online intelligent programming for predictability enhancement 

of the vehicle system 
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h) To expose and understand the characteristics of each proposed control strategy 

i) To analyse and evaluate the vehicle system’s performance in each phase 

These objectives can in a loose order be associated with each of the chapters from Chapter 2 

to Chapter 8. 

 

1.3. THESIS OUTLINE 

This thesis will begin with a comprehensive literature study. Thereafter, the research 

methodology and experimental facilities will be described; wherein the vehicle model will be 

presented, and it will be used throughout the rest of the thesis. This will be followed by 

delivering the driver-oriented intelligent control methodology and the design of a family of 

power-split control strategies to maximize powertrain efficiency. In addition, each control 

strategy will be designed with a specific targeted goal. The remarkable performance of these 

goal-oriented strategies will lead to a discussion about the nature of a synthesized optimal 

solution for HEVs and their reliability. Each chapter is briefly described below. 

 

CHAPTER 2 The literature review exhaustively elaborates three sections, which are offline 

optimization approaches, online optimization approaches, and driver-oriented optimization 

approaches. Overall, the narrative sequence follows the complexity of implementation and 

the degree of information fusion. 
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CHAPTER 3 This chapter, for the first time, introduces interaction topology in HEV energy 

management; where a system composed of human drivers and a hybrid vehicle, along with 

the corresponding research technical route are illustrated. Then, modelling of the powertrain 

components is explained collectively with their interconnection. This focuses on core 

operating behaviours related to component efficiency and performance. Finally, experimental 

facilities, including the driving simulation platform and hardware-in-the-loop (HiL) test bench 

are presented for experimental validation. 

 

CHAPTER 4 Heuristic supervisory control systems have been favoured by industry due to 

easy implementation and strong robustness. However, their limitations remain obvious due 

to (i) computational burden (ii) the poor adaptability of its control system to various driving 

styles. To systematically address the identified technical challenges, this paper aims to 

establish an online driver-oriented energy management methodology which incorporates the 

factor of driving styles into vehicle controller optimization. The difference of the current 

system to the previous ones in the literature is that it introduces real-time monitoring driving 

behaviour to increase robustness of HEV energy management systems. In this chapter 

establishment of a connected driver-oriented control framework will be carried out; wherein 

a novel approach of using personalized non-stationary inference is proposed. The outcome of 

this chapter has been submitted with IEEE Transactions on SMC: Systems.  

 

CHAPTER 5 Most of the existing research on the division of driver behaviour is using 

continuous indexing. Such treatment, however, results in the consequence that the control 
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policy optimized for a single style may lose the global optimal advantage during mode 

switching. This chapter introduces the concept of the driver-identified supervisory control 

system, which forms a novel architecture of adaptive energy management for HEVs. As a man–

machine system, the proposed system can accurately identify the human driver from natural 

operating signals and provides driver-identified globally optimal control policies as opposed 

to mere control actions. The outcome of this chapter has been published with IEEE 

Transactions on Fuzzy Systems. [35]  

 

CHAPTER 6 Online energy management intends to real-time evaluate the HEV system 

effectiveness to acclimate to stochastic driving conditions over real-world driving. Due to 

computational burden, however, robustness and efficiency of HEV systems are hard to 

guarantee simultaneously during real-time optimization. For synergistic promotion of 

robustness and efficiency of HEV systems, this chapter introduces a novel back-to-back 

competitive learning mechanism. This mechanism allows continuous competition between 

two fuzzy logic controllers during real-world driving. The leading controller will have the 

regulatory function of the supervisory control system. Its technology core has been published 

with IEEE Transactions on Industrial Electronics. [36] 

 

CHAPTER 7 The accuracy of the predictor is a prerequisite condition for implementing 

online predictive energy management of HEVs. This chapter introduces dual-loop online 

intelligent programming to ensure the effectiveness of an optimal control sequence for HEV 

systems. By re-considering the change of driving behaviours at each look-ahead step, the new 
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methodology with higher precision of predicted velocity trajectories involves two online 

iteration loops to simultaneously update the predictive model and optimize the control 

sequence. The outcome of the chapter has been published with Applied Energy. [37]  

 

CHAPTER 8 Conclusions and highlights are presented in this chapter for the whole thesis 

and then the innovations and impacts are summarized. This is followed by an outline of future 

directions for the PhD research. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter presents a wide-ranging literature review for energy management optimization 

approaches of hybrid electric vehicles (HEVs) concerning: 1) offline optimization approaches; 

2) online optimization approaches; 3) driver-oriented optimization approaches and 4) a 

summary and some future trends. The section of the driver-oriented optimization approaches 

for HEV energy management also studies the online co-optimization approaches for energy 

management and driver dynamics. In addition, there will be a discussion on how to develop 

the system composed of a vehicle and drivers. 

 

2.1. OFFLINE OPTIMIZATION APPROACHES FOR HEV ENERGY 

MANAGEMENT 

The purpose of offline (route previewed) optimization is to exploit the static data (e.g. road 

gradient, speed limit) to obtain a longer field of view when inventing the energy management 

system, for a well-defined trip which enhances the energy efficiency of HEVs. Knowing the 

forthcoming terrain and traffic conditions helps to ensure a wiser use of the electricity by 

enlarging the planning scope. [1] In industry-level optimization of vehicle systems, the testing 

vehicle usually operates to track a given standard driving cycle (e.g. NEDC, WLTP) within 

restricted range errors. The optimization variables should be strictly calibrated or corrected 

for achieving the best performance of vehicle systems in that standard cycle. From the aspect 

of objects to be optimized, the author divides the literature concerning offline optimization 
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into two categories: 1) supervisory controller calibration; and 2) action decision optimization. 

Then a comprehensive elaboration will be carried out. 

 

2.1.1. SUPERVISORY CONTROLLER CALIBRATION 

A supervisory controller is used to schedule many separate controllers or control loops in the 

HEV system, such as the engine control unit, motor control unit, and battery control unit. It 

refers to a high level of comprehensive monitoring of single process controllers, which is not 

necessary for the operation of each controller, but provides the operator with a view of the 

entire plant process and allows operation integration between controllers. [2] Therefore, 

accurate calibration of supervisory controllers is critical to ensure safety and efficiency of their 

system operation. The existing calibration methods of supervisory controllers used in HEVs 

are normally categorized into heuristic strategy and data-driven optimization.  

 

In heuristic strategies, expert experience dominates the rules of the controller, producing 

deterministic and non-deterministic rule-based strategies. The thermostat (on/off) strategy is 

simple, robust, and easy to implement. [3, 4] Because of the stationary rules, it lacks the ability 

to treat the uncertainty caused by inaccurate models. The power follower control strategy is 

widespread and has been widely used in commercial HEVs, e.g. the Honda Insight and Toyota 

Prius. [5] Phillips et al. and Wang et al. proposed the state machine-based approach for HEVs. 

[6, 7] This strategy allows the switch between operating modes, such as ENGINE, BOOST, 

CHARGING, etc., to be governed by a state machine. [8] However, these strategies are overly 
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dependent on expert experience and are not friendly to newcomers. Here, fuzzy logic provides 

a good solution for them to transfer human knowledge to non-deterministic rules. Tian et al. 

developed an adaptive fuzzy-logic-based control strategy to follow the trend of the SoC 

reference curve for a plug-in hybrid electric bus. [9] Martinez et al. tried to use interval type-

2 fuzzy rule in an energy management system [10, 11]; wherein type-2 MFs impose extra 

constraints on fuzzy rules for minimizing the effects of uncertainties in such heuristic systems. 

From the result of case studies, a fuzzy energy management system is able to give decision 

support for both managing system uncertainty, and explicitly representing the inference 

processes of its decision [12]; however, this relies heavily on expert experience. 

 

To avoid bias from human knowledge during controller calibration, data-driven optimization 

ensures global optimality of the control model by using real-world feedback. Its performance 

relies upon the quality of the dataset that can be collected from the development of the 

experiment. Therefore, controller performance using conventional calibration methods can 

be further improved by machine learning algorithms. Khayyam et al. developed an adaptive 

intelligent system for HEVs, applying a hierarchical neuro-fuzzy inference system through 

genetic algorithm optimization [13]; in which a genetic algorithm is employed to directly 

calibrate fuzzy rule base (RB) and scalar parameters of the membership functions. A similarity 

in the work of [14], employing an improved genetic algorithm, solves the constrained bi-

objective optimization problem for the fuzzy energy management system (EMS). Kamal et al. 

addressed the fuzzy energy management problem with hybrid algorithm optimization that 

synergistically enhances the robustness and efficiency of HEV systems, especially for ensuring 
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a better battery life. [15] Actually, the structure of these rules may be an obstacle to increasing 

global optimality and also their adaptability to the new scenarios is debatable. Lv et al. 

proposed a joint design optimization scheme for a vehicle system and controller parameters, 

in which Gaussian mixture models are adopted to differentiate driving styles. [16] For 

computational reasons, if the dimension of the clustering problem is too large, it may not work 

in practice. Chen et al. developed an intelligent power-split controller that treats the optimal 

solutions as a training material of artificial neural networks, for improving the adaptability and 

fuel economy of a HEV system. [17] In the work of Kong et al., recurrent neural networks have 

been applied to discover the distribution of the optimal torque in rule-based energy 

management systems. [18] However, it is hard to determine the network structure for 

achieving the best vehicle performance. 

 

2.1.2. ACTION DECISION OPTIMIZATION 

Action decision optimization aims to minimize the cost function through the power-split, 

which reflects energy economy and/or exhaust emissions over a permanent and known drive 

cycle. [19] These approaches break through the constraints of the fixed rules on the 

optimization performance of the HEV system, increasing the possibility of finding a global 

optimum solution. A global optimization algorithm on the powertrain flows has been 

developed because of the Bellman optimality principle, and widely applied to HEVs. [20] 

Overall, they are practical and beneficial for benchmark design or comparison purposes, such 

as deterministic/stochastic dynamic programming (DP), game theory, and nature-inspired 
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optimization algorithms e.g., the Genetic Algorithm, Particle Swarm Optimization, and Bees 

Algorithm. 

 

DP, an industry-recognized global optimization algorithm, can efficiently deal with the 

constraints and nonlinearities of a Markov decision process problem and find a global optimal 

solution. [21] In 2006, DP was first launched in HEV energy management by Perez et al. [22], 

wherein two different sources are simplified and formulated into a finite horizon dynamic 

optimization problem. After that, Ansarey et al. improved an HEV model with a dual-storage 

fuel-cell. [23] The model had more degrees of freedom to enable multi-dimensional DP. Peng 

et al. and Chen et al. employed it for detecting the optimal actions of the engine in plug-in 

HEVs; and then re-calibrated them into control rules [24] and a neural network [25] 

respectively. Although it is an intelligent solution to recompile an optimal control policy into 

a vehicle controller, degree of state discretization in DP problems would affect the 

performance of the vehicle controller. For the same problem, Vagg et al. found the main 

reason was in minimizing battery stress during HEV control design; [26] which is control 

bifurcations caused by using different interpolation methods in DP implementation. 

Considering the strict environment of the algorithm application, Johannesson et al. assessed 

the potential for reduced fuel consumption of HEVs by the use of powertrain predictive 

control [27]; wherein stochastic DP to combine DP and a Markov chain model has been 

adopted for achieving the minimal attainable energy consumption. Learning from his previous 

work [26], Vagg et al. deployed a controller using stochastic DP for HEVs, to enhance 

adaptability in the real world. [28] This approach yielded a 13% reduction in electrical 
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powertrain stress without sacrificing any fuel savings. Dextreit et al. implemented one energy 

management controller for HEVs based on the application of game theory. [29] They 

demonstrated a better performance with a slight effort of calibration than the present 

benchmark controller that is calibrated from the deterministic or stochastic DP solutions over 

the NEDC cycle.  

 

Nature-inspired optimization algorithms are the so-called metaheuristic algorithms. In a book 

of Nature-inspired Optimization Algorithms, the author Yang points out here Meta means 

“beyond” or “higher level,” and these algorithms normally behave better than simple 

heuristics. [30] In 1995, Kennedy et al. developed an evolutionary computation technique, 

namely, the particle swarm optimization (PSO), which is derived from a simulation of a 

simplified social model. [31] Relying on a simple algorithm structure and good convergence, 

the PSO has been widely used in automotive industrial practice. Soares et al. presented a 

modified PSO to schedule energy resources considering vehicle-to-grid. This allows it to be 

used to solve large-scale problems in the real world (2000 gridable vehicles), and to provide 

system operators with sufficient decision assistance and effective resource planning. [32] 

Rahman et al. compared HEV performance when using a standard PSO and an accelerated (A)-

PSO, and the simulation results suggested using APSO for improvements in optimal 

adaptability and computing time. [33] Offline optimization approaches continue to play an 

essential role in industrial practice for supporting the development of vehicle subsystem 

calibration and optimization. In fact, the outcomes of offline optimization are finding it 

difficult to meet the increasing driver acceptance and regulation constraints. 
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2.2. ONLINE OPTIMIZATION APPROACHES FOR HEV ENERGY 

MANAGEMENT 

Recently, new opportunities brought by the development of computer science to the 

automotive industry emerged as promising methods for breaking the bottleneck caused by 

conventional energy management in HEVs. [34] Contrary to offline optimization, online 

optimization is dedicated to further improving the dynamic characteristics of the HEV system, 

to adapt to the unknown driving environment with real-time evaluation. [35] It requires an 

extra module of real-time evaluation, and a reliable structure of new applied algorithms. 

Generally, these approaches contain an equivalent consumption minimization strategy 

(ECMS), model and model-free predictive control. 

 

2.2.1. EQUIVALENT CONSUMPTION MINIMIZATION STRATEGY 

The concept of the ECMS was first proposed by Paganelli et al. This is a method to transform 

a global minimization problem into an instantaneous minimization problem that has been 

solved at each time step. [36] The idea behind it is that the total fuel consumption is the sum 

of the actual fuel consumption of the ICE and the equivalent fuel consumption of the motor. 

In their subsequent work, experimental and simulation results are presented, demonstrating 

that this approach provides an improvement of fuel efficiency (up to 6% from the baseline), 

along with robustness and ease of implementation. [37] Chasse and Sciarretta proved 

accessibility when the ECMS is used for an engine-in-the-loop test bench, and pointed out 

there is no adaptation to future driving circumstances. [38] Thereupon, Musardo et al. 
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presented an improved control strategy, namely adaptive ECMS (A-ECMS), where an on-the-

fly algorithm is added to the ECMS framework to estimate an equivalence factor based on 

driving patterns. [39] Similarly, Amir Rezaei et al. proposed an A-ECMS that is designed with 

an estimated equivalent factor, to catch energy-saving opportunities without the need for 

predicting power demand. [40] To further assess the optimal value of the co-state for the A-

ECMS, they found upper and lower boundaries of the equivalent factor could be restricted by 

HEV architecture and were independent of the driving cycle. [41] The simulation results 

displayed that the optimal equivalent factor is always inside or close to the edge of the 

proposed range. Sciarretta et al. comprehensively studied a control benchmark on the energy 

management of a plug-in HEV; wherein the ECMS implementation was analysed. [42] From a 

comparison among several applications of the ECMS, map-based ECMS takes less computing 

effort but has a higher memory use; whilst the opposite is true for vector-based ECMS. This 

adaptive-enhanced algorithm exploits an instantaneous ECMS-like minimization of the fuel 

consumption, where the equivalent cost is evaluated on the basis of past and predicted data 

of the driving conditions. [43]  

 

2.2.2. MODEL-BASED AND MODEL-FREE PREDICTIVE CONTROL 

Model-based predictive control (MPC) is an advanced method used to control a process while 

satisfying a set of constraints. [44] Kachroudi et al. designed a predictive decision support 

system to optimally manage energy flow between the instantaneous power demand 

requested by the driver. [45] This methodology utilizes an online PSO algorithm to search for 

a global optimum relative to specific objective functions, which consider driving comfort 
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indexes, battery autonomy, and travel time. In the work of Banvait et al., the frozen-time MPC 

implements the same amount of power demand as that of the current step in the entire 

forecast range, but its performance depends largely on the drive cycle and length of the 

prediction horizon. [46] Wang et al. first employed an MPC to address the energy 

management problem in a hybrid electric tracked bulldozer, which reached over 98% of the 

fuel optimality of DP in standard working conditions. [47] Santucci et al. dealt with the 

coupling of a battery and a super capacitor for reducing battery ageing when the system was 

working in harsh climate conditions. [48] Similar to the work of Zhang et al. [49] and 

Golchoubian et al. [50], this MPC assumes it accurately knows all the future information, so it 

is challenging to operate it in real-time due to this unrealistic assumption. Recently, a 

considerable amount of successful cases emerged, indicating a type of modern optimization 

method to integrate artificial intelligence (AI) into the MPC frame. Liu et al. proposed a velocity 

predictor with fuzzy encoding to improve its prediction accuracy. [51] Nevertheless, such 

learning-based prediction methods rely on historical driving data, wherein once it has finished 

the training, the structure and weight of the prediction model cannot be changed. Other types 

of AI-based predictive model contain Bayesian algorithms, [52] fuzzy cognitive maps, [53] and 

auto-regressive models [54, 55]: they have a strong ability in modelling, learning, and 

predicting.  

 

Unlike the MPC, the model-free control method i.e. reinforcement learning with model-free 

prediction uses the following steps: 1) what to do; 2) how to map situations to actions; 3) so 

as to maximize a numerical reward signal, estimate the value function of an unknown Markov 
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decision process. The learner will not be told what actions to take, but must try to discover 

which actions will get the most reward. [56] In 2012, Hsu et al. introduced a Q-learning 

algorithm to assist the power management of hybrid bicycles. [57] They quantify safety and 

comfort goals as an improvement in riding quality and battery energy utilization. Simulation 

results show that the quality-of-riding and energy-related objectives can be improved by 24% 

and 50%, respectively. Furthermore, Yue et al. proposed a temporal difference TD(𝜆)-learning-

based online strategy to optimally control the energy flow in the ultracapacitor and battery of 

HEVs [58]. In the work of Fang et al., a TD(𝜆) learning algorithm is applied for training and 

learning the optimal Q-function using collected historical driving data. [59] The reinforcement 

learning based control implemented on hybrid electric buses aims to improve fuel economy 

and reduce emissions. Similarly, Lin et al. constructed a power management system in an 

advanced vehicle simulator (ADVISOR). [60] The deduced strategy is compared with the rule-

based policy over various driving cycles and achieves up to 60.8% fuel reduction. However, 

how to achieve a series of operations that senses the states from the environment, taking 

particular actions, and acquiring goal-directed rewards, those are huge challenges. [56] 

 

2.3. DRIVER-ORIENTED OPTIMIZATION APPROACHES FOR HEV 

ENERGY MANAGEMENT 

Today, benefiting from informatics’ expansion, plenty of optimization methods via 

information fusion for hybrid vehicles are appearing. As the primary decision-maker of 

modern vehicles, the human driver plays an important role in driving safety as well as in eco-

driving. Therefore, a vehicle control strategy that seeks a highly optimized performance which 
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requires optimizing the system composed of the vehicle and the driver, needs to explicitly 

consider driver behaviour. [61] The main challenge is how to exploit driver-related data to 

precisely describe driving behaviour and establish a relationship with the vehicle’s system. 

Therefore, a relevant literature survey is carried out from two categories: 1) driving behaviour 

modelling and 2) driver-oriented energy management. The summary and future trends will be 

listed at the end. 

 

2.3.1. DRIVING BEHAVIOUR MODELLING 

Driving behaviours differ among drivers. They differ in the way they press the gas and brake 

pedals; the way they turn the steering wheel; and how far away they keep when following a 

vehicle. [62] Consequently, energy management is anticipated to be tailored for each driver 

according to individual driving behaviours. To realise this goal, one way is to assist each driver 

by controlling a vehicle based on a driver model representing the typical driving patterns of 

the target driver. [63] Driver models for individual drivers or a subset of drivers classified 

based on their driving behaviours can be trained in offline or online mode. A vehicle controller 

needs to choose an appropriate driver model for supporting the target driver, by 

distinguishing the driver or assigning the model that fits his/her driving behaviours. 
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Fig. 2-1. Influencing factors on driving style [61] 

Various definitions of a driver's driving style are caused by many influencing factors and 

possible explanations for the driver's reaction. Martinez et al. summarized some of these 

variables listed in Fig. 2-1. Given the large numbers and most factors that are difficult to 

measure, it is unreasonable to expect control over all factors. A simplified method of actual 

diving style identification focuses on its effect on a single number, for example: fuel 

consumption, [64, 65] average speed or range. However, these indicators may be 

oversimplified to assess different levels of traffic congestion and cannot represent a complete 

driving situation.  

 

In contrast to previously, Augustynowicz classified driving behaviour in a range within (−1, 1); 

with −1, 0 and 1 being mild, normal and aggressive respectively. [66] This criterion is usually 

formulated based on the relative fuel consumption or overall efficiency rather than the 
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driver’s level of aggressiveness. Manzoni et al. [67] used an estimated value of the fuel 

consumed during the trip and compared it with a benchmarked value, to calculate the 

percentage of excessive consumption, indicating additional costs. Neubauer and Wood [68] 

used fuel consumption to obtain vehicle efficiency as an indicator of driving behaviour. 

Similarly, Corti et al. [69] used an energy-oriented cost function to evaluate the driver's driving 

style, which estimated the excessive consumption of power. However, such classification 

methods based on whether discrete classes or continuous indexing are suitable for HEV 

energy management need to be further investigated. 

 

In terms of driving style recognition algorithms, Murphey et al. [70] presented a similar 

approach based on counting aggressive manoeuvres. The final score is based on a percentage, 

where ‘stays calm’ is in the range below 50%, and ‘stays aggressive’ is in the range above 100%, 

otherwise between 50% and 100% the score is classed as normal. [70] Alternatively, for the 

classification of driving events, driving style can be grouped according to the fuel already 

contained or the total energy consumption. [67, 69] The use of the RB algorithm unifies 

simplicity, is easy to explain and implement, but limits the number of parameters that can be 

managed. Larger sets of variables generate unnecessarily complex rules that can be 

substituted by fuzzy logic (FL) maps. Syed et al. proposed an FL algorithm to evaluate optimal 

operation of the pedals in HEVs. [71] The algorithm can monitor the operation of the gas pedal 

and brake pedal, and then can calculate the appropriate correction value and produce tactile 

feedback to the driver. The author claims that fuel consumption can be reduced by at least 

3.5% with the mildest driving in the simulated environment without compromising vehicle 
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performance. [71] Although the RB and FL algorithms unify the acceptable results by achieving 

simplicity, the quality of the classification is closely related to the choice of threshold. 

 

The threshold definition in the RB algorithm decides the robustness of the results and requires 

a lot of data analysis. Unsupervised algorithms do not need to understand the underlying 

process. In the work of Miyajima et al., a Gaussian mixture model was implemented based on 

the analysis of car-following behaviour and pedal operation spectrum. [63] The car-following 

identifiability of the model is 69%, and the classification rate of the pedal spectrum analysis in 

the simulated environment is 89.6%, and in the field test is 76.8%. [63] Mudgal et al. 

implemented a multi-layer Bayesian regression model to characterize driving style at a 

roundabout. [72] The unsupervised algorithm has proved its applicability to driving style 

identification. However, the output needs to be guided based on the number of 

interpretations and clusters. In addition, the classification performance may be worse than 

the supervised algorithm. Supervised algorithms represent understanding the driving style of 

the data used for training. Augustynowicz applied an Elman neural network (NN) to identify 

driving behaviour by speed and accelerator pedal position. [66] The Markov model has also 

successfully achieved driving style recognition. Guardiola et al. defended the advantages of 

combining the Markov model with the Monte Carlo application, [73] thereby generating 

random patterns based on previous data in the driving style representation. Pentland and Liu 

defended the adaptability of the dynamic Markov model to driving style, which was supported 

by the fact that it is best to capture human movements through a series of control steps. [74]  
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2.3.2. DRIVER-ORIENTED ENERGY MANAGEMENT 

Driver information is not easily exploited by classical control strategies, but a new framework 

for a driver-machine system appears to be appropriate for this purpose. Most of the literature 

assumes that the optimal velocity at a higher level can be accurately followed and then 

determines the corresponding power split. In fact, the driver may not follow the optimal 

velocity precisely, since the uncertainty of driver behaviour (e.g. lane changing, disposition) 

may affect the velocity tracking performance and further contribute to fuel consumption. 

 

In the work of Zhang et al., a novel method for driving blocks’ classification is proposed to 

classify the driving pattern into different groups, as opposed to using the existing unbroken 

driving cycles. [75] One concern is that as the driving cycle grows, more driving blocks need to 

be classified. Langari et al. designed a driving condition recognition component which uses 

long-term and short-term numerical characteristics of the driving cycle, to evaluate the driving 

conditions, the driving style of the driver and the operation mode of HEVs. [76] Another 

alternative method involves a self-reporting driving behaviour questionnaire designed by 

Zhang et al. for offline cluster analysis. [77] Martinelli et al. proposed a machine-learning-

based method to continuously characterize the driver by data analysis for built-in vehicle 

sensors. They found with the features such as cold start-up, cruising down the motorway and 

idling in heavy traffic they were able to discriminate the car owner by an impostor. [78] 

Adaptability can be also added into the ECMS in another form, which is the driving style 

recognition employed by Yang et al. [79] and Tian et al. [80] Differing from the work of Yang, 

the nearest neighbour method needs labelled learning materials for training purposes, as 
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opposed to statistical classification. An interesting piece of work by Gu et al. proposed a 

pedestrian-aware engine management strategy that considers the environmental effects of 

the vehicles on pedestrians outside of the vehicles. [81] The strategy helps EMSs switch to EV 

mode when a cloud server informs them that the density of pedestrians has become higher. 

As applied in [82], an accelerator pedal opening and its change rate are considered as inputs 

of a driving style recognizer, to define a driving style factor for optimal control of plug-in HEVs. 

Driver models using fuzzy sets can be well integrated with energy management. However, 

how to establish the mapped relationship between driving style and control actions is still a 

big challenge. 

 

A highly dynamic driver model is not only dependent on historical driving data, but also must 

consider the current driving data. It utilizes up-to-date driving segments of the driver to model, 

thus ensuring an accurate judgment of prediction trends. Through real-time or regularly 

updating driver models, their reliability can be relatively guaranteed. The Markov decision 

process, also called stochastic DP is mainly used to model and solve dynamic decision-making 

problems. [83] In the work of Liu et al. [84, 85] an on-board learning algorithm for Markov 

chain models is engaged to produce transition probability matrices of power requirements. 

Differing from the work of [85] fuzzy encoding technology is applied for Markov chain models 

to add in ports of continuous intervals in reinforcement-learning-based energy management. 

[84] Cairano et al. [86] developed a self-learning stochastic MPC for driver-oriented predictive 

control of an HEV; where using quadratic programming, larger state dimension models than 

in stochastic DP can be reconfigured in real-time to adapt to changes in driving behaviours. 
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Bichi et al. used a linear filtering algorithm to estimate a transformation possibility matrix. [87] 

The driver model is learned in real-time, hence permitting the control algorithm to adapt to 

various drivers and drivers’ behaviours. Gomozov et al. introduced the non-uniform sampling 

time concept in MPC strategies that accepts a mixture of both conditions: fast dynamics 

control and the long-term prediction of power demand. [88] From the results, the proposed 

MPC strategy is able to more effectively balance the power and energy of the dual energy 

storage system and lessen the pressure on the battery. Obviously, the price of the 

improvement is mainly to sacrifice computing resources in exchange for high-precision state 

information. As indicated by Moore's Law, it is anticipated this relation can be gradually 

improved and perform on the actual on-board controller of HEVs for real-time energy saving 

in the near future. 

 

2.4. SUMMARY 

According to this exhaustive analysis, great efforts have been made in the field of EMS 

optimization for HEVs, following the three aspects of: 1) offline optimization approaches; 2) 

online optimization approaches; and 3) driver-oriented optimization approaches. To further 

improve mobility, fuel economy, driving performance, and safety, the author summarises a 

series of future directions based on the state of the art. Thus, future trends and challenges are 

recommended from the following four perspectives to encourage more innovative ideas. 

1) The MPC fashion combining a velocity trajectory predictor and an energy-flow splitter 

has great potential for HEV energy management. However, its performance is mainly 

restricted by the accuracy of the predictive models, the length of the predictive horizon, 
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and the optimization ability of control algorithms. It still takes a lot of effort to promote 

them. 

2) The human factor has long been ignored in the development of control strategies. At 

present, it has become one of the core issues hindering the performance of hybrid 

vehicles. A driver-oriented supervisory control framework with a driver-machine 

accessible communication channel is worth exploring. There is an opportunity to reveal 

the interaction process between human drivers and hybrid powertrains and then to 

create a personalized energy-saving control strategy. 

3) Computational intelligence (CI), i.e. fuzzy systems, neural networks, and evolutionary 

computation is a promising technology for driver-machine systems. Since the driver 

can feedback into the learning loop of the vehicle controller, this technology can help 

further improve the robustness and global optimality. Although recent advances in CI 

in the computer industry are giving momentum to human-in-the-loop, academia 

awareness of such a new direction is still limited, and its application is even more 

limited. 
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CHAPTER 3 

RESEARCH METHODOLOGY AND EXPERIMENTAL FACILITIES 

This PhD thesis focuses on the development of driver-oriented intelligent control 

methodology for a medium passenger vehicle with a series-parallel hybrid drivetrain. The 

methodology attempts to incorporate driver dynamics into the supervisory control system; 

which offers an additional possibility for further improving mobility, fuel economy, driving 

performance, and safety. This chapter starts with introducing interaction topology in energy 

management of hybrid electric vehicles (HEVs). This is followed by the research technical 

route, indicating research modules and the development process in the PhD research. Then, 

a system-level control-oriented model of the target vehicle including vehicle dynamics and 

powertrain components is analysed. Finally, experimental facilities for driving simulation and 

hardware-in-the-loop tests are presented. 

 

3.1.  RESEARCH METHODOLOGY 

The research methodology for this PhD study is determined from investigating interaction 

topology in HEV energy management. Here, conventional and driver-oriented interaction 

forms will be described, followed by their characteristics and drawbacks. According to these 

drawbacks, a series of goals are formulated, resulting in a technical route intending to lead to 

their achievement. 
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3.1.1. INTERACTION TOPOLOGY IN HEV ENERGY MANAGEMENT 

Due to the shortage of computing power in the past, the ECU can only provide a limited 

development platform for vehicles, resulting in energy management systems (EMSs) with 

simple control logic. Fig. 3-1 shows an interactive process of conventional EMSs, in which state 

information is environment condition and driver's response to the environment that will be 

mixed and sent to a conventional EMS for operating energy management. However, 

conventional EMSs do not have the ability to extract valuable references from a large amount 

of unknown information. Due to having no reliable information to support, predictivity and 

adaptability of the system will be seriously restricted. This could be one reason why vehicles 

with conventional EMSs pass the laboratory test but still give a poor performance during real-

world driving. 

 

Fig. 3-1. Interactive process of conventional EMSs 

In the past decade, their interactive processes have started to change. The industry realized 

that at this stage uncertainties about the environment and the driver have been the main 

reason hindering the overall performance of vehicles. For clean and safe driving, these 
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external uncertainties need to be defined and quantified. However, HEVs designed with extra 

degrees of freedom could increase the difficulty of quantifying external uncertainties and then 

magnify the effect on energy consumption. In this case, there is an urgent need for modern 

energy management schemes for HEVs that can effectively deal with uncertainty. In this work 

the author has investigated if there is a feasible way to improve energy management 

efficiency by considering the impact of human drivers on state-of-the-art EMSs. 

 

Fig. 3-2. Interactive process of driver-oriented EMSs 

Differing from the conventional EMSs, the uncertainty of drivers is considered in the design of 

these EMSs. As independent sub-models, they work in parallel with the vehicle powertrain. As 

shown in Fig. 3-2, a driver model has been moved from a conventional EMS to make a new 

driver-oriented EMS i.e. a man-machine system. Uncertainty about drivers can be quantified 

in the new system and state information becomes more abundant. Thus, this form of 

interaction makes it possible to reduce external uncertainties. Although the transfer of a 

driver model may bring new design problems into the EMS, its significance is to break the 

structural framework of the conventional system and disclose driving behaviour 
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characteristics’ effects on HEV energy management; finally working towards a new level of 

human-machine fusion. 

 

3.1.2. RESEARCH TECHNICAL ROUTES 

To guide the development of the driver-oriented supervisory control methodology, research 

technical routes are designed to clarify work contents and the development process. As 

illustrated in Fig. 3-3, the driver-oriented EMS with additional driver dynamics delivers new 

opportunities to improve the performance of four critical elements of the vehicle system. They 

are adaptability (ability to adapt to unknown driving conditions), global optimality (ability to 

find the global optimal solution), synergy (synergistic promotion for multiple evaluation 

indexes), and predictability (accuracy and length of prediction). For the new driver-oriented 

EMS, the author plans to break them off from the following four phases individually. 

 

Fig. 3-3. Roadmap for enhancing driver-oriented EMS performance in four elements 
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In Phase 1: control rule design optimization, a new approach of using personalized non-

stationary inference is proposed to increase robustness of the rule-based control system. The 

difference of the current system to the previous ones in the literature is that it introduces real-

time driving behaviour monitoring to increase the robustness of HEV energy management 

systems. In Phase 2: control frame design optimization, the concept of the driver-identified 

supervisory control system is introduced, which forms a novel architecture of adaptive energy 

management for HEVs. As a man-machine system, the proposed system can accurately 

identify the human driver from natural operating signals and provides driver-identified 

globally optimal control policies as opposed to mere control actions. Starting from the work 

in Phase 3, all work is upgraded to an online level, which means the process of optimization 

and control will be simultaneously carried out during real-world driving. In Phase 3: controller 

real-time optimization, a novel back-to-back competitive learning mechanism is proposed. 

This mechanism allows continuous competition between two fuzzy logic controllers during 

real-world driving. In Phase 4: predictor real-time optimization, an online predictive control 

strategy is investigated; resulting in a novel online optimization methodology named the dual-

loop online intelligent programming, that is proposed for velocity prediction and energy-flow 

control. 

 

3.2. TARGET VEHICLE 

The target vehicle, a medium passenger car, is a virtual computing model based on 

MATLAB/Simulink. Its series-parallel hybrid drivetrain supervised by the vehicle controller 

includes one gasoline engine, one integrated starter-generator (ISG), one trans-motor and two 
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energy sources of fuel and electricity as shown in Fig. 3-4. In this case, the powers from the 

ICE after the transmission and the trans-motor are combined by coupling their speeds; where 

the speeds of the two power plants are decoupled to be chosen freely as described in [1]. The 

peak power of the trans-motor is 𝑃𝑚𝑜𝑡∗ = 75 kW (kilowatt) with 270 N m (newton - metre) 

peak torque. The peak power of the gasoline engine is 𝑃𝐼𝐶𝐸∗ = 63 kW with 140 N m peak 

torque. The peak power of the ISG is 𝑃𝐼𝑆𝐺∗ = 32 kW. The data for all the components is 

provided by ADVISOR software and their suitability has been proved by BYD Auto Co Ltd. The 

main parameters of the HEV model are shown in Table 3-1. 

 

Fig. 3-4. Overall structure of the series-parallel plug-in HEV model 
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Table 3-1. Main parameters of the vehicle model 

Symbol Parameters Value 

𝑀 Gross mass 1,500 𝑘𝑔 

𝐴𝑓  Windward area 2 𝑚2 

𝑅𝑤ℎ  Tyre rolling radius 0.3 𝑚 

𝐶𝑑  Air drag coefficient 0.3 

𝑖0 Differential ratio 3.75 

𝑖𝑔 Transmission ratio  3.55/1.96/1.30/0.89/0.71 

𝜂𝑖0 Efficiency of speed reducer 0.98 

𝜂𝑡𝑟𝑎𝑛𝑠  Transmission efficiency 0.98 

𝜂𝑖𝑛𝑣  Inverter efficiency 0.95 

𝜂𝑑𝑐−𝑑𝑐  DC-DC converter efficiency 0.95 

 

In normal driving the chosen plug-in HEV architecture has three modes of operation: EV mode, 

in which the clutch is open, Lock 1 is closed, and Lock 2 is open; hybrid mode, in which the 

clutch is closed and the locks are both open; and ICE mode, in which the clutch is closed, Lock 

1 is open and Lock 2 is closed. All other combinations are either prohibited or used as “park” 

settings. In the current research, attention is restricted to the EV mode, which incorporates 

regenerative braking and the hybrid mode. This allows ICE power to be used to simultaneously 

fully drive the vehicle and charge the battery packages, or to partially drive the vehicle 

supplemented by the trans-motor depleting the charge of the battery packages, depending 

on the sign of the trans-motor speed, 𝑛𝑚𝑜𝑡 (negative charges, positive depletes). 
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3.2.1. VEHICLE DYNAMICS 

The modelled vehicle illustrates the longitudinal vehicle dynamics and employs a mechanical 

multibody system model. In the vehicle dynamics model, the traction force 𝐹𝑡  needs to 

overcome various resistances for keeping the force balance in the vehicle. The traction force 

𝐹𝑡 and resistances can be sequentially expressed as: 

𝐹𝑡 = 𝐹𝑓 + 𝐹𝑤 + 𝐹𝑖 + 𝐹𝑗 

{
 
 

 
 
𝐹𝑓 = 𝑀𝑔𝑓 cos 𝜃

𝐹𝑤 =
𝐶𝑑𝐴𝑓
21.15

𝑢𝑎
2

𝐹𝑖 = 𝑀𝑔sin 𝜃
𝐹𝑗 = 𝛿𝑀𝑎

                                                      (3 − 1) 

where, 𝐹𝑓, 𝐹𝑤 , 𝐹𝑖, 𝐹𝑗  are rolling, aerodynamic, grade and accelerative resistance forces 

respectively; 𝑓 is the rolling resistance coefficient; 𝜃 is the road slope; 𝑢𝑎 is the vehicle speed 

in km/h; 𝛿 is the vehicle rotating quality conversion coefficient; 𝑎 is the vehicle acceleration; 

and 𝑢 is the vehicle velocity. Derived from Eq. (3-1), the demand power 𝑃𝑑 of the vehicle can 

be calculated as given by: 

𝑃𝑑 = 𝑃𝑓 + 𝑃𝑤 + 𝑃𝑖 + 𝑃𝑗 = (𝑀𝑔𝑓 cos 𝜃 +
𝐶𝑑𝐴𝑓
21.15

𝑢𝑎
2 +𝑀𝑔 sin 𝜃 + 𝛿𝑀𝑎)𝑢     (3 − 2) 

In which the demand torque 𝑇𝑑 after a reducer is calculated as given by: 

𝑇𝑑 = (𝑀𝑔𝑓 cos 𝜃 +
𝐶𝑑𝐴𝑓
21.15

𝑢𝑎
2 +𝑀𝑔sin 𝜃 + 𝛿𝑀𝑎)

𝑅𝑤ℎ
𝑖0 ∙ 𝜂𝑖0

                  (3 − 3) 

where, 𝑅𝑤ℎ is tire rolling radius; 𝑖0 is a reducer ratio; and 𝜂𝑖0 = 0.95 is the efficiency of the 

bevel-gear speed reducer. 
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3.2.2. MAIN POWERTRAIN COMPONENTS 

Traction motor – In this speed-coupling parallel hybrid electric drive train, an interesting 

device used in speed coupling is an electric motor i.e. a trans-motor as called by Ehsani et al. 

[1] As shown in Fig. 3-5, the stator which is usually fixed on the frame is released as a power 

input port. The other two ports are the rotor and the air gap, through which electrical energy 

is converted into mechanical energy. Commonly, the motor speed is the relative speed of the 

rotor to the stator. Due to the action and reaction forces, the torque action on the stator and 

rotor is always the same, and the constants are 𝑘1 = 1 and 𝑘2 = 1. 

 

Fig. 3-5. speed-coupling devices by trans-motors [1] 

The model uses a Westinghouse 75 kW (continuous) AC induction motor with 0.92 peak 

efficiency, which means that its construction is quite simple in nature, robust and mechanically 

strong. Compared to permanent magnet motors, it offers a higher starting torque, reliable 

speed regulation and acceptable overload capacity. [1] Due to having no brushes, the 

maintenance required is quite low. Considering the torque and power limitation of the motor 

under certain motor speeds, 𝑛𝑚𝑜𝑡, it can be described as: 



 

- 59 - 

 

𝑇𝑚𝑜𝑡 = {
min(𝑇𝑑, 𝑇𝑚𝑎𝑥_𝑑𝑖𝑠(𝑛𝑚𝑜𝑡)) , 𝑇𝑑 ≥ 0

max(𝑇𝑑, , 𝑇𝑚𝑎𝑥_𝑐ℎ𝑟𝑔(𝑛𝑚𝑜𝑡) ) , 𝑇𝑑 < 0   
                       (3 − 4) 

𝑃𝑚𝑜𝑡 =

{
 

 
𝑇𝑚𝑜𝑡 ∙ 𝑛𝑚𝑜𝑡
9550 ∙ 𝜂𝑚𝑜𝑡

, 𝑇𝑚𝑜𝑡 ≥ 0 

𝑇𝑚𝑜𝑡 ∙ 𝑛𝑚𝑜𝑡 ∙ 𝜂𝑚𝑜𝑡
9550

, 𝑇𝑚𝑜𝑡 < 0 

                                   (3 − 5) 

where, 𝑇𝑑 is the torque demand; 𝑇𝑚𝑎𝑥_𝑑𝑖𝑠  is the maximum output torque at the current speed 

when it is discharging; 𝑇𝑚𝑎𝑥_𝑐ℎ𝑟𝑔 is the maximum regenerative torque; 𝜂𝑚𝑜𝑡 = 𝑓(𝑇𝑚𝑜𝑡, 𝑛𝑚𝑜𝑡) 

is the efficiency of the motor which is determined from the motor efficiency map as shown in 

Fig. 3-6. 

 

Fig. 3-6. State-steady efficiency map of the AC motor for variations in load torque 

 

Internal combustion engine - The ICE converts the chemical energy of the fuel into mechanical 

energy to power the propulsion of the vehicle. It is the primary energy source of an HEV, and 

the only source of a conventional vehicle. The ICE model in the work represents a Saturn 1.9 L 
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spark ignition engine with a single overhead camshaft. The brake specific fuel consumption 

(BSFC) of the ICE is defined as: 

𝐵𝑆𝐹𝐶𝐼𝐶𝐸 =
�̇�𝑓𝑢𝑒𝑙

𝑃𝐼𝐶𝐸
                                                      (3 − 6) 

where �̇�𝑓𝑢𝑒𝑙  is the mass rate of fuel consumption and 𝑃𝐼𝐶𝐸  is the output power of the ICE that 

is defined as: 

𝑃𝐼𝐶𝐸 = 𝑇𝐼𝐶𝐸𝜔𝐼𝐶𝐸                                                         (3 − 7) 

where 𝜔𝐼𝐶𝐸  is the engine speed (in rad/s) and 𝑇𝐼𝐶𝐸  is the output torque of the ICE. To define 

the BSFC at various operating points, the ICE model is simulated for 𝑃𝐼𝐶𝐸 ∈ [0, 𝑃𝐼𝐶𝐸∗] kW in 

0.1 kW steps and 𝜔𝐼𝐶𝐸 ∈ [700, 5500] rpm in 100 rpm steps. The ICE efficiency map can be 

calculated based on the resulting BSFC map, which is presented in Fig. 3-7. It can be seen that 

the maximum efficiency is found in the island around 𝜔𝐼𝐶𝐸  = 1500 rpm and 𝑃𝐼𝐶𝐸  = 18.136 kW. 

The envelope of the efficiency map depends on the feasibility of the ICE. The omitted data 

points at very low power requirements are not operationally feasible, or the model is not 

verified within this range. 
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Fig. 3-7. State-steady efficiency map of the ICE for variations in load torque 

 

Integrated-starter-generator - The ICE is connected to a DC-brushless motor, which works as 

an ISG. It replaces both the conventional starter and generator of an automobile in a single 

electric device. The model uses the Unique Mobility 32 kW permanent magnet motor; 

however, it is only operated with a negative torque. Therefore, the energy flow is reversed, 

and the machine converts mechanical energy into electrical energy (similar to the case of 

regenerative braking). The efficiency map of the ISG is shown in Fig. 3-8. Note that due to the 

above negative torque convention, the output power is expressed as a negative value. 
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Fig. 3-8. State-steady efficiency map of the ISG for variations in load torque 

 

Automatic transmission – The model uses a standard five-speed automatic gearbox to 

connect to the back end of the AC motor; it provides the ICE with a proper gear ratio to achieve 

efficient operation. In general, three rules need to be considered when tuning shifting points 

[2]: 1) shift up below the maximum RPM of the ICE; 2) shift down above the idle RPM of the 

ICE; and 3) the distance between the up and downshift points must be far enough so that the 

new RPM after shifting up is not lower than the downshift point (and vice versa). The first two 

rules are obvious. The third rule is needed to avoid the case where a vehicle shifts up, the RPM 

is reduced in the new gear, then the vehicle shifts back down, starting an infinite up and 

downshifting situation. On this basis, the shifting strategy adds supplementary constraints to 

the vehicle speed and acceleration, which ensure that a higher ratio always has priority when 

the gear ratio has more choices. Therefore, a gear ratio can be given: 

 𝑖𝑔 = max(𝑠𝑎(𝑎𝑡), 𝑠𝑣(𝑣𝑡))                                             (3 − 8)  
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where 𝑖𝑔  indicates output of the gear ratio; 𝑠𝑎  and 𝑠𝑣  are look-up tables used to find the 

corresponding gear ratios; and 𝑎𝑡  and 𝑣𝑡  are vehicle speed and acceleration. The shifting 

maps are drawn as: 

 

Fig. 3-9. Shifting maps used in the research 

 

Battery package - The studied battery pack consist of the battery cell type NCR-18650 series 

supplied by Panasonic Automotive & Industrial System Ltd. The inputs to a battery package 

model are the number of battery cells 𝑛𝑏𝑐 and the required power 𝑃𝑏𝑝 from the DC link. The 

output of the battery package model is the battery state of charge (SoC) for the hybrid electric 

system. In this model, battery cell current and voltage are applied in iterative calculations to 

simulate the battery cell dynamics. Starting from each iteration, the battery cell current 𝐼𝑏𝑐  

needs to be calculated firstly by the following formula: 

𝐼𝑏𝑐 =
𝑃𝑏𝑝

𝑛𝑏𝑐 ∙ 𝑉𝑏𝑐
                                                          (3 − 9) 
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where, 𝑉𝑏𝑐  is the open circuit voltage of the battery cell. Here, a standard two R-C equivalent 

battery model is employed to expose the current-voltage dynamics of a lithium-ion battery 

cell as displayed in Fig. 3-10. 

 

Fig. 3-10. Electric model of battery cell 

The battery’s voltage dynamics must obey: 

{
 
 

 
 
𝑉𝑏𝑐 = 𝑉𝑜𝑐(𝑆𝑜𝐶) − 𝑉𝑝1 − 𝑉𝑝2 − 𝑅0(𝑆𝑜𝐶)𝐼𝑏

𝐶𝑝1(𝑆𝑜𝐶) ∙
𝑑𝑉𝑝1
𝑑𝑡

= 𝐼𝑏 −
𝑉𝑏1

𝑅𝑝1(𝑆𝑜𝐶)

𝐶𝑝2(𝑆𝑜𝐶) ∙
𝑑𝑉𝑝2
𝑑𝑡

= 𝐼𝑏 −
𝑉𝑏2

𝑅𝑝2(𝑆𝑜𝐶)

                            (3 − 10) 

where, 𝑅0, 𝑅𝑝1, and 𝑅𝑝2 indicate the effective series resistance, the short transient resistance 

and long transient resistance respectively; and each of them are a function of the battery cell’s 

SoC; 𝐶𝑝1 and 𝐶𝑝2 indicate the short transient capacity and long transient capacity respectively, 

which are functions of the SoC as well. The SoC of the battery cell is calculated by: 

𝑆𝑜𝐶 = 𝑆𝑜𝐶0 −∫
𝐼𝑏
𝑄𝑏
𝑑𝑡

𝑡

0

                                             (3 − 11) 

where 𝑆𝑜𝐶0 is the initial BP’s SoC. The battery cell data and calibrated model parameters are 

organized in Table 3-2. 



 

- 65 - 

 

Table 3-2. Battery cell parameters [3] 

Parameter Description Value 

𝑉𝑏𝑐_𝑚𝑎𝑥  Rated battery cell voltage 3.60 V 

𝐼𝑏𝑐_𝑐𝑚𝑎𝑥 Rated battery cell charge current (A) 2.25 A 

𝐼𝑏𝑐_𝑑𝑚𝑎𝑥  Rated battery cell discharge current (A) 11.25 A 

𝑄𝑏𝑐_𝑚𝑎𝑥 Rated battery cell capacity (mAh) 2900 mAh 

𝑉𝑜𝑐  1.031 ∙ 𝑒−35∙𝑆𝑜𝐶 + 3.685 + 0.2156 ∙ 𝑆𝑜𝐶 − 0.1178 ∙ 𝑆𝑜𝐶2 + 0.3201 ∙ 𝑆𝑜𝐶3 

𝑅0 0.1562 ∙ 𝑒−24.37∙𝑆𝑜𝐶 + 0.07446 

𝑅𝑝1 0.3208 ∙ 𝑒−29.14∙𝑆𝑜𝐶 + 0.04669 

𝑅𝑝2 6.603 ∙ 𝑒−155.2∙𝑆𝑜𝐶 + 0.04984 

𝐶𝑝1 −752.9 ∙ 𝑒−13.51∙𝑆𝑜𝐶 + 703.6 

𝐶𝑝2 −6056 ∙ 𝑒−27.12∙𝑆𝑜𝐶 + 4475 

 

3.2.3. SUPERVISORY CONTROL SYSTEM 

This section describes the integration of all powertrain elements; a driver module with 

feedback control; as well as the overall control by the baseline series-parallel control strategy. 

As shown in Fig. 3-11, each of the described components and the additional driver module are 

connected and governed by a local energy management power-split device. All energy-related 

indicators are aggregated into a module of monitors for later analysis. 

 

Fig. 3-11. Systemic diagram of a series parallel HEV control system 
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Driver dynamics - The commonly used approach of processing the accelerator pedal’s angle 

of depression is adopted for driving style classification. Zhang et al. [4] provide a simplified 

sub-model to describe different types of driving styles by adjusting a style factor 𝜆 and it is 

used here. Through the model, driving cycles with different driving styles can be assigned to 

five grades: Very Gentle, Gentle, Normal, Aggressive, and Very Aggressive. The driver sub-

model can be simplified as follows: 

{
𝛿𝑘+1 = 𝑓𝐾𝑝 ,𝐾𝑖,𝐾𝑑(𝑒𝑘)

𝑒𝑘 = 𝜆 ∙ (𝑣𝑘 − 𝑣𝑟𝑒𝑓,𝑘)
                                               (3 − 12) 

where, 𝛿 is the degree of accelerator pedal depression; the style factor 𝜆 ∈ [0,1] is an impact 

factor derived from the driving style type; the function 𝑓 is a proportional–integral–derivative 

controller; 𝐾𝑝, 𝐾𝑖, 𝐾𝑑  are coefficients of proportional, integral and derivative terms, 

respectively; and 𝑒𝑘 is the error between the target speed, 𝑣𝑟𝑒𝑓, and the vehicle speed,𝑣𝑘. 

 

Baseline series-parallel control strategy - To maximize the usage of electricity from grid, the 

baseline control policy is developed based on industry-recognized series-parallel charge 

depleting (CD) and charge sustaining (CS) strategies. [5] It will be treated as a benchmark for 

analysis of the later proposed control strategies. Here, a power-split vector 𝝃 is constructed in 

Eq. (3-13) from the trans-motor torque, 𝑇𝑚𝑜𝑡; the trans-motor speed, 𝑛𝑚𝑜𝑡; the ICE torque, 

𝑇𝐼𝐶𝐸; the ICE speed, 𝑛𝐼𝐶𝐸; the ISG power, 𝑃𝐼𝑆𝐺 : 

𝝃 = [𝑇𝑚𝑜𝑡 𝑛𝑚𝑜𝑡 𝑇𝐼𝐶𝐸 𝑛𝐼𝐶𝐸 𝑃𝐼𝑆𝐺]                                    (3 − 13) 
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In the electric traction mode, enough electricity can be supplied to satisfy the powertrain 

demand independently, so that both the ICE and the ISG do not need to work. The power 

distribution in this state is described as follows: 

𝝃 = [𝑇𝑑,𝑘 𝑛𝑑,𝑘 0 0 0]                                        (3 − 14) 

Series and parallel traction modes are governed by CD/CS control strategy. During this period, 

the switch condition of series and parallel hybrid traction modes is determined by value of the 

demand power to ensure the power and economy of the vehicle. A vehicle will, normally, favor 

electric traction, and then the battery will later be recharged by the power grid. When the trip 

is quite long and the battery SoC reaches a low level, the engine will be used to charge battery 

in a charge-sustaining manner. Therefore, the power distribution at each time step 𝑡  is 

described as follows: 

𝝃𝑠𝑒𝑟𝑖𝑒𝑠 = [𝑇𝑑 𝑛𝑑 ∙ (1 − 𝜒1) 𝑇𝑑 𝑛𝑑 ∙ 𝜒1 0]

𝝃𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = [𝑇𝑑 𝑛𝑑 𝑇𝐼𝐶𝐸
′ (𝑃𝐼𝑆𝐺) 𝑛𝐼𝐶𝐸

′ (𝑃𝐼𝑆𝐺) 𝑃𝐼𝑆𝐺∗ ∙ 𝜒2]
}             (3 − 15) 

where, 𝜒1  and 𝜒2  are the proportionality factors of the ICE and ISG, both determined 

according to the SoC. 𝑇𝐼𝐶𝐸
′  and 𝑛𝐼𝐶𝐸

′  are optimal torque and speed of the ICE converted based 

on demand power of the ISG 𝑃𝐼𝑆𝐺 . Their definition uses the logistic function in a piecewise 

form, [6] given by the formula: 

𝜒𝑖(𝑆𝑜𝐶) =

{
 
 

 
 

1, 𝑆𝑜𝐶 ∈ [0,0.2]
1

1 + exp (
𝑆𝑜𝐶𝑘
𝑆𝑜𝐶∗

)
, 𝑆𝑜𝐶 ∈ (0.2,0.5]

0, 𝑆𝑜𝐶 ∈ (0.5,0.8]

                       (3 − 16) 

where, 𝑆𝑜𝐶∗ is a scaling coefficient of the BP’s state of charge 𝑆𝑜𝐶𝑘 . 
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3.3. EXPERIMENTAL FACILITIES 

This research was carried out at the Vehicle Technology Research Centre at the University of 

Birmingham. Experimental facilities including a driving simulator platform and a hardware-in-

the-loop testing bench were used for demonstration and testing validation in the PhD study. 

Their specification and function will be described as follows. 

 

3.3.1. DRIVING SIMULATOR PLATFORM 

A static experience platform driving simulator system is involved in this research, as shown in 

Fig. 3-12, which is the ideal tool for subjectively testing vehicle functions through direct 

experience. It makes the most of the advantages offered by the combination of a detailed and 

realistic human-machine interface simulation and a real-world driving experience, coupled 

with a state-of-the-art simulation tool for vehicle dynamics, the CarMaker open integration 

and test platform. [7] 

 

Fig. 3-12. Driving simulator used in the research 
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Cockpit Package - There is one cockpit package supported by a Thrustmaster T500RS (as 

shown in Fig. 3-13) and one host PC with I5-6500 3.2GHz processor and 8GB RAM. Their 

communication relies on a 3.0 USB cable, in which the sampling frequency of the vehicle 

system and pedal data acquisition are both 10 Hz. The features and benefits of the system 

experience platform include [8]: 1) realistic haptics with real-time feedback; 2) real pedals and 

a real steering wheel to ensure a realistic driving experience; 3) optional coupling with virtual 

reality devices; and 4) the possibility of connecting to real control units. 

 

Fig. 3-13. Cockpit package supported by the Thrustmaster T500RS 

 

Set-up for driving simulation - The driving simulator platform is used for generating real-world 

cycles. As Fig. 3-14 shows, data collection is conducted in the cockpit package (supported by 

a Thrustmaster T500RS) with the same scale HEV model with an automatic gearbox. This is to 

make sure the driving characteristics exhibited by drivers are under the same constraints and 

their results are comparable. With respect to real-world road conditions, the road map model 

used with reconstructed traffic simulates a cyclic undivided highway with uphill, downhill, 

curved and straight roads, and is provided by IPG CarMaker. It is developed specifically for 

testing passenger cars and light-duty vehicles. Users can accurately model real-world test 
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scenarios, including the entire surrounding environment, in the virtual world. To reduce the 

impact of differing traffic and road conditions on human drivers, they are restricted to the 

same cycling road conditions and required to follow the speed limits, stop signs, traffic lights, 

and other traffic regulations. It should be noted that the driver’s pedal behaviour might be 

dependent on the vehicle, the pedal to torque map, and even the physical pedal resistance 

feedback.  

 

Fig. 3-14. Collection process of driving profiles 

CarMaker supports the extension of its models with MATLAB Simulink to facilitate the 

development and testing of enhanced vehicle control algorithms. There is a pre-defined 

structure and it is represented in Simulink as a nested, multi-level model. The implementation 

of self-developed control algorithms is greatly restricted due to the subsystems not being 

completely open. This study deals with the power split for power machines and does not 

interfere with the drivetrain outputs out of consideration; verifying of the self-developed 

control algorithms can be conducted in the open-loop testing environment. In terms of data 

analyzation, IPG offers its own tool called IPGControl that was developed for viewing and 
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analysing purposes, and can also be used stand-alone. This study uses MATLAB for data 

analyzation. 

 

3.3.2. HARDWARE-IN-THE-LOOP TESTING BENCH 

Hardware-in-the-loop testing is a technology that is widely used in industry for development 

and testing of complex embedded systems. Real-time computing and signal emulating 

technologies are applied to implement functional testing of control systems. The ETAS group 

is one of the world's leading suppliers for HiL test equipment. For this PhD study the hardware 

supplied by ETAS was chosen to build a HiL test system as shown in Fig. 3-15, comprising a 

prototype controller (ES910) and a real-time computer (LABCAR). The ES910 is used to package 

an energy management strategy to control the LABCAR for functional verification. The LABCAR 

emulates the signals as in real vehicles using real-time models and communicates with the 

ES910 via a CAN bus. The ETAS software which contains ITECRIO, INCA, IP and EE is employed 

for the real-time implementation of control algorithms and HEV models. 

 

Fig. 3-15. Hardware-in-the-loop testing system 
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ETAS ES910 – The ES910 prototyping module with common ECU interfaces has high-

performance computing in a compact and rugged housing. It is designed for testing in the 

development environment and in stand-alone operation. 

 

Fig. 3-16. Interfaces of ES910 – prototyping and interface module 

The ETAS ES910 is a prototype controller, whose key elements consist of a 1.5 GHz 

microprocessor, 4Gb RAM, 1Gb/s Ethernet communication and communication interfaces. 

Communication interfaces incorporating CAN, LIN and ETK make it possible to control 

communication with downstream ECUs. Software and control functions can be realized in the 

ES910 and verified through the HiL test network, as displayed in Fig. 3-16. For my research, 

the ES910 acts as a supervisory HEV controller for functional validation of energy management 

strategies, in which CAN and LIN buses pass control signals to downstream controllers i.e. the 

LABCAR. 
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ETAS LABCAR - ES5100 - The ES5100.1 desktop housing is based on the ETAS RTPC (Real-Time 

PC) and the ETAS Multi-I/O Simulation Board ES5340.2. The ETAS RTPC offers multicore 

simulation functions in real time as the core of all LABCAR test systems. Alongside the 

ES5340.2, the housing of the ES5100.1 can accommodate two further PCI express boards. The 

ETAS Multi-I/O Simulation Board ES5340.2 can be adapted to suit all kinds of test scenarios. 

Fig. 3-17 shows (a) system diagram and (b) different views of the ES5100.1 desktop housing. 

 

Fig. 3-17. Front (top) and rear view (bottom) of the ES5100.1 desktop housing 

The ES5100 is a compact real-time computer for HiL testing as shown in Fig. 3-17. It has an 

embedded system with Linux pre-installed that allows real-time models can be downloaded 

from the host computer via Ethernet. The ES5100 is equipped with an Intel Core i7-4700 

@3.1GHz processor, 8GB RAM and a 500-GB hard drive. Five external PCle slots can be used 

for additional modules e.g. the ES 5400 HEV simulator and CAN card module. The ES5100 is 

equipped with a breakout-box (BoB) and located in the centre of the HiL system that enables 

signal bypass for controller testing via communicating with the host PC and external ECU. 
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ETAS LABCAR - ES5340 & IXXAT PCle PC interface - The ES5340 hybrid vehicle simulation 

board is operated for signal-level ECU testing as shown in Fig. 3-18. It can emulate signal 

communications in the same way as in practice, wherein analogue signals, digital signals, and 

pulse-width modulation (PWM) inputs can be produced by the ES5340. Also, it accepts 

analogue signals, digital signals, and PWM inputs from other external controllers. In this work, 

the ES5340 is utilized for real-time simulation of the HEV plant model.  

 

Fig. 3-18. ES5340 hybrid vehicle simulation board and IXXAT PCle PC interface 

The IXXAT iPC-I XC 16/PCle PC-CAN interface is a powerful electronic component that can 

cause the interaction between the LABCAR and the external ECU via a CAN bus. It is mounted 

on the ES5100 with the PCle interface. The PC-CAN interface is equipped with a 16-bit 

microprocessor, a 40-MHz clock, 512Kb RAM, 128Kb flash memory and two independent CAN 

lines. In this work, IXXAT PC/CAN interface is adopted to access the CAN bus communication 

between the LABCAR and the prototype controller. 

 

Set-up for the HiL testing - HiL test software is mainly used for modelling, compilation, and 

implementation, as shown in Fig. 3-19. The software is installed in a host PC that 
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communicates with ETAS hardware via Ethernet. The real-time models of hybrid vehicles and 

energy management controllers are developed by MATLAB/Simulink. The real-time model is 

connected to a hardware interface (such as a CAN) and compiled into C-code to perform real-

time calculations during the compilation process. ETAS EE and INTECRIO are model 

compilation software for LABCAR and ES910, respectively. Through the ETAS Experimental 

Environment (EE) and INCA, compatible models of vehicles and controllers are respectively 

implemented in the LABCAR and ES910. The model’s performance in the LABCAR and ES910 

can be observed in the host PC via EE and INCA. 

 

Fig. 3-19. Software used for HiL testing 

 

3.4. SUMMARY 

This chapter describes the research methodology and the involved experimental facilities. The 

main contributions relevant to this chapter are concluded as follows: 

1) The interaction topology in HEVs’ energy management has been developed and 

analysed. Its challenges inspire the design of the technical route for the overall 

research. The overall research objective is specified in four independent tasks: 
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adaptability, global optimality, synergy, and predictability. Each task will be carried out 

in turn in subsequent chapters.  

2) The target vehicle is a virtual computing model based on MATLAB/Simulink that has 

been developed and analysed from three layers: 1) vehicle longitudinal dynamics; 2) 

real-time modelling of main powertrain components; and 3) developing the 

supervisory control system. 

3) This chapter illustrated the work of the driving simulator platform and the HiL testing 

bench. Specifications and features of the main facilities used for the research are 

explained. 
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CHAPTER 4 

DRIVER-ORIENTED SUPERVISORY CONTROL SYSTEM WITH 

PERSONALIZED NON-STATIONARY INFERENCE 

The content presented in the Chapter 4 is based on the author's submitted articles, ‘Online 

Driver-oriented Energy Management of Connected Hybrid Electric Vehicles with Personalized 

Non-stationary Inference’ in IEEE Transactions on Systems, Man, and Cybernetics: Systems. 

This chapter investigates an online driver-oriented energy management (ODEM) methodology 

for connected plug-in hybrid electric vehicles. A novel approach that uses personalized non-

stationary inference is proposed to increase the robustness of the rule-based vehicle control 

system through real-time driving behaviour monitoring for vehicle energy economy 

improvement. Based on personalized WLTP cycles, optimal control parameters of the charge-

depleting and charge-sustaining (CD/CS) control strategy are firstly obtained by separate 

offline optimization. Then interval type-2 fuzzy sets are applied to develop a real-time driving 

style recognition function so that the change of driving behaviour is better identified. The 

developed functionalities are integrated and implemented in a distributed driving style 

recognizer to provide the control signal, which is subsequently downloaded via V2X network 

to an on-board energy-flow controller for adjusting the vehicle control parameters in real-

time. The proposed approach is validated by hardware-in-the-loop testing, which proves that 

the improved system is robust and it saves energy the studied driving cycles by up to 5% over 

the equivalent consumption minimization strategy (ECMS), especially for gentle drivers. Even 
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under harsh communication conditions (with signal loss 80+%), it still performs better than 

the ECMS (by 1.11%) and the CD/CS control strategy (by 4.31%). 

 

4.1 CONNECTED VEHICLE SYSTEM 

Modern road traffic is a complex and interconnected system, which includes traffic 

information centres, monitoring infrastructures, and vehicles with different energy sources. 

The V2X network is the communication medium of intelligent transport systems, connecting 

vehicles, infrastructure, and information centres. V2X possesses powerful cloud computing 

facilities that can implement an advanced optimization scheme for connected vehicles. This 

system has great potential to save energy for each connected vehicle and even for the whole 

transport system by managing traffic and individual vehicle operation. 

 

Fig. 4-1. The connected vehicle communication framework 

Fig. 4-1 shows a connected HEV communication scenario studied in this chapter, and the 

workflow is explained as follows: i) roadside units receive the HEV real-time state signal 
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through the vehicle-to-infrastructure (V2I) network; ii) the information centre collects the HEV 

real-time state signal from the roadside units and operates an advanced optimization scheme 

to determine optimal control signals; iii) the information centre sends the command signal to 

the vehicle controller via the roadside units. This framework with cyber-physical technology 

can implement advanced intelligent algorithms to enable real-time driver-oriented energy 

management, which was previously limited by the performance of local vehicle controllers. 

 

4.2 PROPOSED SOLUTION 

To increase robustness of the rule-based vehicle control system, the ODEM methodology is 

established and presented in Fig. 4-2, is proposed. In the on-board control layer, the chaos-

enhanced accelerated particle swarm optimization (CAPSO) algorithm is implemented to 

offline optimize control parameters (cut-in timing and conversion speed of the ICE and ISG) of 

CD/CS strategy based on classified driving styles. In the distributed control layer, a real-time 

driving style recognition function using interval type-2 fuzzy sets is developed to identify 

driving styles. The proposed methodology is expected to subvert the traditional reasoning 

process by activating its stationary inference. Via the V2X network, the distributed server 

receives uploaded feedback information, analysis driving behaviour, and computes real-time 

control signals. That signals will be downloaded to adjust the control parameters of the CD/CS 

strategy for minimizing the energy consumption and maintain the state of charge (SoC). 
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Fig. 4-2. The mechanism of online driver-oriented energy management 

 

4.2.1. DRIVER-ORIENTED RULE OPTIMIZATION 

In order to tailor personalized rules for various driving style, this section describes a driver-

oriented problem formulation, and optimization process of the control parameters of the 

CD/CS strategy based on a range of driving styles. 

 

A. Problem formulation 

To adaptively adjust the boundary between CD and CS control modes, two control parameters 

𝜙𝛼  and 𝜙𝛽  are introduced into Eq. (3-16) to enable optimization of cut-in timing and 

conversion speed of the ICE and ISG. So far, a total of four control parameters jointly define 

the position and slope of the curve in the logistic function. Here, the proportionality factors 

𝜒𝑖  of the ICE and ISG with the control parameters are 
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𝜒𝑖(𝑆𝑜𝐶𝑘) =
1

1 + exp {(
𝑆𝑜𝐶𝑘
𝑆𝑜𝐶∗ +𝜙𝛽)𝜙𝛼

}
, 𝑆𝑜𝐶 ∈ (0.2,0.5]       (4 − 1) 

where, for the given case study, the range of the control parameter 𝜙𝛼  is between 휀𝛼
− = 0.01 

and 휀𝛼
+ = 50, its limits are the lowest requirement to ensure close to 0-90 degree slope search 

area (also depends on the length of sampling time); the control parameter 𝜙𝛽  is constrained 

between 휀𝛽
− = −6 and 휀𝛽

+ = 6, and limited by its horizontal search range. 

In the multi-objective optimization problem formulation, there are two main targets: the final 

energy consumption from the fuel tank and the battery package (BP); and the BP’s SoC. These 

optimization targets are given by 

𝐽1 =∑ 𝐸𝑓𝑢𝑒𝑙,𝑘
𝑘𝑒𝑛𝑑

𝑘=1

𝐽2 = 𝑆𝑜𝐶𝑘𝑒𝑛𝑑

}                                               (4 − 2) 

where, 𝐸𝑓𝑢𝑒𝑙,𝑘  denotes the instantaneous fuel consumption at the 𝑘th time-step; and 𝑘𝑒𝑛𝑑  is 

the final time of the driving cycle. Besides, delta SOC value is another form used in evaluation 

of HEV systems. Differing the value of SoC, the delta SOC value has a reference value of SoC 

which is more flexible in the problem formulation. Plug-in HEVs used in this thesis commit to 

maximize the usage of grid electricity, so there is no substantial difference of using these two 

formulations. Here, the weighted sum method [1] is utilized to convert the multi-objective 

optimization problem into a single objective optimization. Therefore, the optimal energy-flow 

control problem with constraints is described by 

min 𝐽 = 𝑤 𝐽1
1

𝐽1
∗ + (1 − 𝑤)

1

𝐽2
 𝐽2
∗                                       (4 − 3) 
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𝑠. 𝑡.

{
 
 

 
 
𝑆𝑜𝐶𝑘, 𝑆𝑜𝐶𝑘 ∈ [𝑆𝑜𝐶

−, 𝑆𝑜𝐶+]
𝑛𝑚𝑜𝑡,𝑘 ,

𝑇𝑚𝑜𝑡,𝑘 ,
𝑛𝑚𝑜𝑡,𝑘 ∈ [0,𝑛𝑚𝑜𝑡∗]

𝑇𝑚𝑜𝑡,𝑘 ∈ [−𝑇𝑚𝑜𝑡∗ , 𝑇𝑚𝑜𝑡∗]

𝑃𝑖𝑐𝑒,𝑘,

𝑃𝑔𝑒𝑛,𝑘,

𝑃𝑖𝑐𝑒,𝑘 ∈ [0, 𝑃𝐼𝐶𝐸∗]

𝑃𝑔𝑒𝑛,𝑘 ∈ [0,−𝑃𝐼𝑆𝐺∗]

 

where, 𝑆𝑜𝐶−  and 𝑆𝑜𝐶+  are the lower and upper limits of value of BPs’ SoC. 𝐽1
∗  and 𝐽2

∗  are 

scaling coefficients of the optimization targets  𝐽1 , 𝐽2 . Here, the optimization target 𝐽2  is 

formulated as a penalty function in the cost function. 

B. CAPSO implementation 

The standard accelerated particle swarm optimization (APSO) usually keeps the attraction 

parameters as a fixed value [2]: the solutions still change slightly, however, as the optima are 

approached. Inspired by chaotic mapping strategy, the CAPSO algorithm, with its higher 

convergence speed and probability of finding global optima, something that was first reported 

for energy management optimization by our team. [4, 5] This chapter uses this algorithm to 

optimize the control parameters for different driving behaviours in order to further improve 

the vehicle system adaptability. For the CAPSO, the particle’s position updates with the 

following equation: 

𝑥(𝑖+1,𝑗) = (1 − 𝛽) 𝑥(𝑖,𝑗) + 𝛽 𝑔(𝑖,∗) + 𝛼(𝑖) 𝑟(𝑖,𝑗)                                (4 − 4) 

In Eq. (4-4), 𝑔(𝑖,∗)  is the best position in the 𝑖th iteration, 𝛽  is the attraction parameter of 

CAPSO, 𝛼 is the convergence parameters of CAPSO, and 𝑟 is a 𝑈[0, 1] random variable. Here, 

𝛼 and 𝛽 are updated in each iteration via: 

𝛼(𝑖) = 𝛼(0) 𝛾𝑖,

𝛽(𝑖+1) = 𝑎 𝛽(𝑖) (1 − 𝛽(𝑖)),
}                                            (4 − 5) 
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where, the settings, 𝛼(0) = 0.9 and 𝛾 = 0.95, were chosen; and the attraction parameter is 

mapped by the logistic map, in which the initial values 𝛽(1) = 0.6 and 𝑎 = 4 are used. When 

convergence has been achieved, the algorithm ends the main iteration and outputs the best 

position at the end iteration as the global optimal solution. In driver-oriented rule optimization, 

APSO modified by the chaotic mapping strategy is implemented with its higher search 

efficiency to optimize the control parameters 𝜙𝛼 , 𝜙𝛽  of the CD/CS control strategy. The 

weight value is set here to a fixed value of 0.7 to reflect an equal preference towards relatively 

lower total used energy and higher SoC. 

 

4.2.2. DRIVING STYLE RECOGNITION 

Driving style is a complex concept that affects driving safety and fuel economy during real-

time driving. Driving style recognition is performed here by the nonlinear model (recognizer) 

to monitor driving behaviour, shown in Fig. 4-3, which includes an observation window, a type-

2 FLC, and a final interpolation. 

 

Fig. 4-3. Schematic diagram of driving style recognition 
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A. Observation window 

This recognizer includes a short-term sliding window, a type-2 LFC and further signal 

processing. A short-term sliding window is introduced to restrict the sampling dimension and 

lengthen memory time of characteristic states. The dataset of driving operation signals is 

defined, in which each time step k of data is expressed as given by: 

(𝒗, 𝒂)𝑇 = [
𝑣𝑘−ℎ+1 𝑣𝑘−ℎ+2
𝑎𝑘−ℎ+1 𝑎𝑘−ℎ+2

⋯ 𝑣𝑘
⋯ 𝑎𝑘

]                                      (4 − 6) 

where, 𝒗 is a vector of vehicle speed (m/s); 𝒂 is a vector of vehicle acceleration (m/s2); and 

ℎ = 60s is length of the short-term sliding window. As the core of the reasoning mechanism, 

a type-2 FLC is used to differentiate driving style during real-time driving, which can be 

expressed mathematically as follows 

𝜆 = 𝐺(𝑣𝑎𝑣𝑔, 𝑎𝑟𝑛𝑔)                                                    (4 − 7) 

in which 

{
𝑣𝑎𝑣𝑔 =

∑ (𝒗)𝑇𝑖=ℎ
𝑖=0

ℎ
𝑎𝑟𝑛𝑔 = max(𝒂)

𝑇 −min(𝒂)𝑇
                                        (4 − 8) 

where, ranges of vehicle acceleration are adopted to reflect operational proficiency of drivers. 

In general, drivers with higher operational proficiency have relatively low maximum range. 

Average values of vehicle speed are adopted as considered in [5] to reflect driving habits.  
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B. Interval type-2 fuzzy logic controller 

Differing from type-1 fuzzy sets, type-2 fuzzy sets have the ability to handle higher-order 

uncertainty factors at lower computational cost and minimize the effects of uncertainties in 

rule-based fuzzy systems. In this case, type-2 fuzzy sets with linguistic terms are regulated by 

standard triangular membership functions (MFs), where the degree of membership is 

expressed as a function of normalized values in the interval, [0,1]. In the general structure of 

the interval type-2 (IT2) Takagi-Sugeno (T–S) FLC, the lth rule can be written as 

𝑅(𝑙): IF 𝑧1 is �̃�1
𝑙 and 𝑧2 is �̃�2

𝑙,…, and 𝑧𝜐 is �̃�𝜐
𝑙, THEN 𝑥𝑘+1 = 𝐴𝑙𝑥𝑘 + 𝐵𝑙𝑢𝑘       (4 − 9) 

(𝑙 = 1,2, … ,𝑚) 

where, �̃�1
𝑙 is the interval type-2 fuzzy set, which corresponds to the membership function of 

rule 𝑙. The firing strength of the lth rule belongs to the following interval set 

𝜔𝑙(𝑥) ∈ [𝜔𝑙(𝑥),𝜔𝑙(𝑥)], 𝑙 = 1,2,… ,𝑚                               (4 − 10) 

where 

{
𝜔𝑙(𝑥) = 𝜇�̃�1𝑙

(𝑥) 𝜇�̃�2𝑙
(𝑥) ⋯  𝜇�̃�𝑚𝑙 (𝑥)

𝜔𝑙(𝑥) =  𝜇�̃�1𝑙
(𝑥) 𝜇

�̃�2
𝑙(𝑥) ⋯ 𝜇�̃�𝑚𝑙

(𝑥)
                                   (4 − 11) 

in which 𝜇�̃�𝑖
𝑙(𝑥) and 𝜇

�̃�𝑖
𝑙(𝑥) denote the lower and upper membership grades, respectively. 

Then, the inferred IT2 T–S fuzzy model is defined by 

𝑥𝑘+1 =∑{𝛼 𝜔𝑙(𝑥) + 𝛽 𝜔𝑙(𝑥)}(𝐴𝑙𝑥 + 𝐵𝑙𝑢)

𝑚

𝑙=1

=∑�̃�𝑙(𝑥)(𝐴𝑙𝑥 + 𝐵𝑙𝑢)

𝑚

𝑙=1

          (4 − 12) 

where 
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{

�̃�𝑙(𝑥) = 𝛼 𝜔𝑙(𝑥) + 𝛽 𝜔𝑙(𝑥) ∈ [0,1]

∑�̃�𝑙(𝑥)

𝑚

𝑙=1

= 1
                              (4 − 13) 

Here, the values of 𝛼 and 𝛽 are both set as 0.5, according to Ref. [6] To control a nonlinear 

plant based on the IT2 T–S fuzzy model described by Eq. (4-14), an IT2 T–S fuzzy controller is 

designed, and its fuzzy rules are given as follows: 

𝑅(𝑟): IF 𝑧1 is �̃�1
𝑟 and 𝑧2 is �̃�2

𝑟,…, and 𝑧𝜐 is �̃�𝜐
𝑟, THEN 𝑢𝑘 = 𝐾𝑟𝑥𝑘,         (𝑟 ∈ 𝐿 ≔ 1,2,… ,𝑚) 

where 𝐾𝑟  stands for the rth local linear control gain. The output of this controller is defined to 

be 

𝑢(𝑘) =∑𝑓(𝜔𝑟
𝐿(𝑥),𝜔𝑟

𝑈(𝑥))

𝑚

𝑟=1

𝐾𝑟  𝑥                                     (4 − 14) 

𝜔𝑟
𝐿  and 𝜔𝑟

𝑈  satisfy the constraint, 

∑𝜔𝑟
𝐿(𝑥) + 𝜔𝑟

𝑈(𝑥)

𝑚

𝑟=1

= 1                                             (4 − 15) 

and the value of 𝑓(𝜔𝑟
𝐿(𝑥),𝜔𝑟

𝑈(𝑥)) depends on the TR methods and belongs to an interval. The 

TR method is employed in this section and based on minimax uncertainty bounds. [7] 

Assigning (𝜔𝑟
𝐿(𝑥),𝜔𝑟

𝑈(𝑥))/2 to (𝜔𝑟
𝐿(𝑥),𝜔𝑟

𝑈(𝑥)) and substituting it into Eq. (4-16); leads to 

𝑢𝑘 ∈ [𝑢𝑘
(𝑂), 𝑢𝑘

(𝑀)]                                                   (4 − 16) 

Then, the uncertainty bounds can be calculated to be 
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{
 
 

 
 𝑢𝑐,𝑘 = min

 
{𝑢𝑘

(𝑂) , 𝑢𝑘
(𝑀)}

𝑢𝑐,𝑘 = 𝑢𝑐,𝑘 − [
∑ 𝜔

𝑖
−𝜔𝑖𝑚

𝑖=1

∑ 𝜔
𝑖𝑚

𝑖=1 ∑ 𝜔𝑖𝑚
𝑖=1

×
∑ 𝜔𝑖(𝐾𝑖 − 𝐾1)𝑥
𝑚
𝑖=1 ∑ 𝜔

𝑖(𝐾𝑚 − 𝐾𝑖)𝑥
𝑚
𝑖=1

∑ 𝜔𝑖(𝐾𝑖 − 𝐾1)𝑥
𝑚
𝑖=1 +∑ 𝜔

𝑖(𝐾𝑚 −𝐾𝑖)𝑥
𝑚
𝑖=1

]
 

(4 − 17) 

The lower bound 𝑢𝑐,𝑘 is assigned to be equal to the upper bound 𝑢𝑐,𝑘 if only one rule is fired 

(i.e., 𝑚 =  1). The crisp output of the controller is 

{
𝑢𝑘 ≈

1

2
(𝑢𝑐,𝑘 + 𝑢𝑐,𝑘)

𝜆𝑘 = 𝑢𝑘

                                               (4 − 18) 

So far, the optimized control parameters 𝜙𝛼, 𝜙𝛽  were used to fit to the style factor 𝜆 using 

the linear interpolation,  

𝜙 = 𝜙𝑖 + (𝜙𝑖+1 −𝜙𝑖)
𝜆 − 𝜆𝑖
𝜆𝑖+1 − 𝜆𝑖

, 𝜆 ∈ [𝜆𝑖, 𝜆𝑖+1]                      (4 − 19) 

where, index 𝑖  indicates the type of classified driving styles. Activated by Eq. (4-19), the 

proceed signal of driving style 𝜆  can be calculated and used to adjust the rules of CD/CS 

strategy based on mapping relations between the style factor 𝜆 and the control parameters 

𝜙𝛼 , 𝜙𝛽. 

 

4.3 EXPERIMENTAL PLAN 

4.3.1 DRIVING CYCLE PRODUCTION 

In this case, driving cycles are considered based on the Worldwide Harmonised Light Vehicle 

Test Procedure (WLTP). These testing cycles are generated from the sub-driver model [8] by 
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adjusting the style factor 𝜆 , wherein five standard driving styles and one stochastically 

changing driving style are acquired, namely, V. Gentle, Gentle, Normal, Aggressive, V. 

Aggressive, Stochastic. It should be noted that the driving cycle with stochastic style changes 

is produced by adding a white noise signal to the style factor. Fig. 4-4 presents the probability 

density function of vehicle acceleration of all of the testing cycles. 

 

Fig. 4-4. Probability density of classified WLTP-based cycles 

Fig. 4-4 shows that, for all the driving cycles, the acceleration distribution is unimodal with the 

mode being close to zero. It is also apparent that the dispersion of the acceleration distribution 

increases with driving aggressiveness. It is interesting to see that aggressive driving seems to come 

out in more deceleration events than acceleration events. The reason is that the maximum range of 

acceleration events is determined by the vehicle driving torque, and the maximum range of 

deceleration events depends on the braking force. Table 4-1 summarizes the specifications of the 

driving cycles through their style factors, maximum accelerations, and minimum decelerations. 
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Table 4-1. Driving cycle profiles under classified driving styles 

Driving style 
type 

Style 
factor  

Max. acceleration 
(m/s2) 

Min. acceleration 
(m/s2) 

Very Gentle  𝜆1 1.7 -2.5 

Gentle 𝜆2 2.0 -3.0 

Normal 𝜆3 2.3 -3.7 

Aggressive 𝜆4 2.8 -4.6 

Very Aggressive 𝜆5 3.6 -5.8 

Stochastic [𝜆1, 𝜆5] 3.6 -5.8 

 

4.3.2 HARDWARE-IN-THE-LOOP EXPERIMENT 

Hardware in the loop testing is used for evaluating the cyber-physical system’s real-time 

performance. This research uses the industry standard real-time testing facilities provided by 

the ETAS Group. The configuration of the HiL testing system is shown in Fig. 4-5. The 

distributed computing and V2I communication are performed by an ETAS ES910, whose core 

components are a 1.5GHz microprocessor with 4GB RAM and 1Gbps Ethernet communication. 

The control strategy and algorithm involved in the proposed ODEM methodology are 

programmed into host PC-1 and flashed to the ES910 by ETAS INTECRIO. The DESKLABCAR 

functions as the PHEV with a local controller and it communicates with the V2I interface 

(ES910) via a CAN bus. The vehicle and local controller are modelled and compiled in host PC-

2 and downloaded to the DESK-LABCAR by the ETAS experimental environment via Ethernet 

protocol. In this study, the sampling time is 10 Hz and the vehicle performance is supervised 

by the ETAS experimental environment in host PC-2. 
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Fig. 4-5. Hardware-in-the-loop testing system 

 

4.4 RESULT AND DISCUSSION 

This section presents the experimental results of the study and provides an in-depth 

elaboration from the four aspects of energy-saving performance, vehicle system adaptability, 

and communication efficiency comparison. 

 

4.4.1 ENERGY-SAVING PERFORMANCE 

This section studies impact of different driving styles on energy-saving performance of the 

improved vehicle system. For comprehensive evaluation, the vehicle systems embedded with 

different control strategies are compared, including the ECMS and the CD/CS strategy of using 

stationary and personalized non-stationary inferences (the proposed ODEM). During the 

experiment, the PHEV’s components work within their operational ranges in real-time for all 

involved strategies.  
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Fig. 4-6 illustrates the HiL result over the WLTP-based driving cycle with Normal driving style, 

in which the colour bar represents the corresponding thermal efficiency (%) of the ICE. The 

initial SoC value is set to 50% in order to focus on the conversion of multiple energy sources 

in CD/CS mode. It can be seen from the highlighted equivalent operating points (black dotted 

circle) that using the proposed ODEM methodology leads to more operating points of the 

engine in the high-efficiency area (marked in yellow) compared to the ECMS and CD/CS 

strategy. 

 

Fig. 4-6. Engine operation map during Normal in driving style 

The performance comparison of the studied control strategies for each driving style is 

summarized in Table II. Evidently, the vehicle system using the proposed ODEM methodology 

outperforms the system using ECMS or CD/CS strategy for different driving styles in the WLTP 

cycle. There is a nonlinear relationship between the total energy and aggressiveness of driving 

style which rises first and then drops. It appears that too mild actions signify lower power 

demand so that the control strategy has greater latitude in optimizing between the different 
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traction modes. The results show the proposed ODEM system has a significant reduction in 

energy consumption of 9.16% from the conventional CD/CS control strategy in the Very Gentle 

driving style, compared to 4.33% reduction by using the ECMS. 

Table 4-2. Performance comparison of using different control strategies 

Driving style Control strategy Final SoC Used fuel (g) Total energy (𝐉) Savings (%) 

 CD/CS 0.4141 2.1334e+03 9.8150e+07 - 

Very Gentle ECMS 0.2331 2.0309e+03 9.3896e+07 4.33% 

 ODEM 0.3735 1.9380e+03 8.9162e+07 9.16% 

 CD/CS 0.4038 2.1934e+03 1.0091e+08 - 

Gentle ECMS 0.2299 2.1439e+03 9.80943+07 2.78% 

 ODEM 0.3797 2.1111e+03 9.6122e+07 4.76% 

 CD/CS 0.4021 2.2416e+03 1.0312e+08 - 

Normal ECMS 0.2304 2.1942e+03 1.1014e+08 1.67% 

 ODEM 0.3868 2.1649e+03 9.9598e+07 3.42% 

 CD/CS 0.4140 2.2976e+03 1.0570e+08 - 

Aggressive ECMS 0.2350 2.2527e+03 1.0409e+08 1.52% 

 ODEM 0.3998 2.2262e+03 1.0241e+08 3.12% 

Very CD/CS 0.3987 2.2327e+03 1.0271e+08 - 

Aggressive ECMS 0.2340 2.2075e+03 1.0201e+08 0.68% 

 ODEM 0.3799 2.1956e+03 1.0031e+08 2.34% 

 

4.4.2 VEHICLE SYSTEM ADAPTABILITY 

Investigation of vehicle system adaptability when using the ODEM methodology is carried out 

over the driving cycle with stochastic changes in driving styles (produced in Section 4.3.1). For 

evaluation purposes, a type-1 fuzzy set is designed to compare the ODEM methodology with 

a type-2 fuzzy set. The type-1 and type-2 MFs of the inputs are shown in Fig. 4-7, wherein their 
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shapes are drawn following Ref. [6]. Type-2 MFs impose extra constraints on fuzzy rules for 

improving identifiability in fuzzy-logic-based driving style recognition. Here, 25 fuzzy rules are 

defined and used to infer an output of the style factor, as shown in Table 4-3. 

 

Fig. 4-7. MFs of the two input variables (i.e. 𝑣𝑎𝑣𝑔 and 𝑎𝑟𝑛𝑔): (a) type-1 MFs; (b) type-2 MFs 

Table 4-3. Rule base for 5 × 5 fuzzy logic inference 

𝑣𝑎𝑣𝑔 𝑎𝑟𝑛𝑔  

VS S M L VL 

VS VG VG G G N 

S VG G G N A 

M G G N A A 

L G N A A VA 

VL N A A VA VA 

 

Fig. 4-8 shows the real-time performance of the PHEV system using the ODEM methodology, 

wherein type-1 and type-2 fuzzy sets are separately embedded, and their performance is 

investigated. From the result, both using two types of fuzzy sets has an ability to detect driving 



 

- 94 - 

 

behaviour (style factor). The trend of real-time performance from using these two types of 

fuzzy set is roughly the same and that their style factors vary in [0,1]. From the actions of the 

ICE in the intercepted period, the type-2 fuzzy set driven recognizer offers a relatively mild 

driving style. Under the conditions of the same MF distribution, using type-2 fuzzy set saves 

2.35% total energy under the same final value of SoC compared to using type-1 fuzzy sets. In 

fact, there is a trade-off between the quantity of the parameters and the performance 

enhancement brought by introducing more parameters. Differing using discrete classes, using 

continuous indexing is no need to classify rare driving behaviours separately. The appropriate 

number of categories can reduce development cost and ensure the system robustness. 

Compared with the three discrete driving modes (i.e. eco, balanced, and sport modes) of 

mainstream luxury models, the adaptive sliding driving mode based on five categories is 

definitely a great improvement for the industry. 

 

Fig. 4-8. Real-time performance of HEV system during stochastic changes in driving style 
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4.4.3 COMMUNICATION EFFICIENCY COMPARISON 

This section compares communication efficiency for a connected vehicle system under 

different signal loss rates. A trigger square signal is designed to simulate communication 

quality of the V2X network between the vehicle and roadside unit. As shown in Fig. 4-9, six 

levels of signal loss rate are considered and used to expose the communication efficiency of 

the ODEM methodology. Each trigger segment is used to activate the function of driving style 

recognition and its duration is fixed at 30 s. Conversely, the non-trigger segment is used to 

deactivate the recognition function and its duration is based on the signal loss rate. 

 

Fig. 4-9. Communication efficiency comparison under different signal loss rate 

From the result, the ECMS and the conventional CD/CS strategy are not affected by signal loss 

because their control policies do not need to be updated during real-time driving. As signal 

loss rate increases, the energy consumption of the ODEM systems using type-1 and type-2 
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fuzzy sets both increase gradually. When the signal is completely lost, their performance is 

still higher than that obtained by using the ECMS (1.11%) and the conventional CD/CS strategy 

(4.31%). Therefore, the proposed ODEM methodology has an ability to help the connected 

PHEV system improve fuel economy even under harsh communication conditions, especially 

when using type-2 fuzzy sets. 

 

4.5 SUMMARY 

This chapter proposes and investigates a new personalized non-stationary inference approach 

for online driver-oriented energy management (ODEM) of connected plug-in hybrid electric 

vehicles. The vehicle system’s performance with the proposed ODEM is evaluated in terms of 

the performance of energy saving, vehicle system adaptability and communication efficiency. 

The advantage of the vehicle system driven by the proposed ODEM methodology has been 

demonstrated through HiL testing. The conclusions drawn from the investigation are as 

follows:  

1) The vehicle controller using the ODEM methodology adapts well to differing driving 

styles, including stochastic changes in driving style. 

2) Compared to the CD/CS strategy with stationary inference, up to 9% total energy can 

be saved over the WLTP-based cycle by using personalized non-stationary inference, 

especially for very gentle drivers. 

3) Compared to driven by type-1 fuzzy sets, driving style recognizer driven by type-2 fuzzy 

sets helps save a further 2.35% of total energy for stochastic changes in driving style. 
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4) When the control signal is completely lost, energy-saving performance of the improve 

vehicle system is still higher than that of the ECMS (1.11%) and the CD/CS strategy 

(4.31%). 

The novelty of this chapter contributes to the field is that real-time monitoring of driving 

behaviour has been introduced to increase robustness of the HEV energy management system 

and that, via the V2X network, optimal control parameters for the rule-based control strategy, 

which is currently in wide use, can be determined in real-time to adapt to change of driving 

behaviour. 
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CHAPTER 5 

DRIVER-ORIENTED SUPERVISORY CONTROL SYSTEM BASED 

ON SPECTRUM-GUIDED FUZZY FEATURE EXTRACTION 

The content presented in the Chapter 5 is based on the author's published article, ‘Driver-

identified Supervisory Control System of Hybrid Electric Vehicles using Spectrum-guided Fuzzy 

Feature Extraction’ in IEEE Transactions on Fuzzy Systems. [1] Inspired by the personalized 

non-stationary inference approach proposed in Chapter 4, the author aimed to transfer 

driving style classification methods from continuous indexing towards discrete classes and 

expand the human-related factors from velocity and acceleration only towards velocity, gas 

pedal, brake pedal, and steering wheel angle. This chapter introduces the concept of the 

driver-identified supervisory control system, which forms a novel architecture of adaptive 

energy management for hybrid electric vehicles (HEVs). As a man-machine system, the 

proposed system can accurately identify the human driver from natural operating signals and 

provides driver-identified globally optimal control policies as opposed to mere control actions. 

To help improve the identifiability and efficiency of this control system, the method of 

spectrum-guided fuzzy feature extraction (SFFE) is developed. Firstly, the configuration of the 

HEV model and its control system are analysed. Secondly, design procedures of the SFFE 

algorithm are set out to extract 15 groups of features from primitive operating signals. Thirdly, 

long-term and short-term memory networks are developed as a driver recognizer and tested 

by the features. The driver identity maps to corresponding control policies optimized by 

dynamic programming. Finally, the comparative study includes involved extraction methods 



 

- 99 - 

 

and their identification system performance as well as their application to HEV systems. The 

results demonstrate that with help of the SFFE, the driver recognizer improves identifiability 

by at least 10% compared to that obtained using other involved extraction methods. The 

improved HEV system is a significant advance over the 5.53% reduction on fuel consumption 

obtained by the fuzzy-logic-based system. 

 

5.1. PROBLEM STATEMENT 

In order to rationally assign the demand power of the powertrain to different power sources, 

the demand power of the powertrain and the state of charge (SoC) value of the battery 

package (BP) are treated as two input variables and the two output variables are the rotational 

speed of traction motor and the required power of the ISG. Here, the supervisory control 

system comprises two modes of pure electric traction and optimization-based traction, which 

can be expressed as 

(𝑇𝑚𝑜𝑡, 𝑛𝑚𝑜𝑡 , 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = {
𝑀𝑜𝑑𝑒𝐸𝑉(𝑃𝑑, 𝑆𝑜𝐶), 0.8 ≥ 𝑆𝑜𝐶 > 0.5 

𝑀𝑜𝑑𝑒𝑜𝑝𝑡.(𝑃𝑑, 𝑆𝑜𝐶), 0.5 ≥ 𝑆𝑜𝐶 > 0.2
             (5 − 1) 

where, 𝑀𝑜𝑑𝑒𝐸𝑉 indicates a pure electric traction mode; 𝑀𝑜𝑑𝑒𝑜𝑝𝑡. indicates an optimization-

based control mode; 𝑇𝑚𝑜𝑡  is the torque of traction motor; 𝑛𝑚𝑜𝑡  is the rotational speed of 

traction motor; 𝑃𝑖𝑐𝑒  is the power of internal combustion engine; 𝑃𝑔𝑒𝑛  is the power of the 

integrated starter-generator; 𝑃𝑑 is the demand power of the powertrain; and 𝑆𝑜𝐶 is the BP’s 

state of charge. To ensure the BP is performing under proper conditions and to protect the BP 

from over discharge, the battery’s SoC should remain in the range, 0.2 < 𝑆𝑜𝐶 ≤ 0.8 

considered as Ref. [2]. 
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In the electric traction mode, enough battery current can be supplied to satisfy the powertrain 

demand independently so that neither the ICE nor the ISG need to operate. The power 

distribution in this state is 

𝑇𝑚𝑜𝑡,𝑘 = 𝑇𝑑,𝑘

𝑛𝑚𝑜𝑡,𝑘 =
𝑃𝑑,𝑘
𝑇𝑚𝑜𝑡,𝑘

∙ 9550

𝑃𝑔𝑒𝑛,𝑘 = 0

𝑃𝐼𝐶𝐸,𝑘 = 0 }
 
 

 
 

   .                                          (5 − 2) 

where 9550 is a conversion factor when units of torque, power and rotation speed are Newton, 

kilowatt and revolution per minutes separately. The optimization-based control mode allows 

ICE power to be used either to simultaneously drive the vehicle and charge the BP or to 

partially drive the vehicle supplemented by a BP-charge-depleting drive from the trans-motor, 

depending on the sign of the trans-motor speed, 𝑛𝑚𝑜𝑡 (negative charges, positive depletes). 

The power distribution in this state is therefore given by 

𝑇𝑚𝑜𝑡,𝑘 = 𝑇𝑑,𝑘
𝑛𝑚𝑜𝑡,𝑘 = 𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘
𝑃𝑔𝑒𝑛,𝑘 = 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘

𝑃𝐼𝐶𝐸,𝑘 = −𝑃𝑔𝑒𝑛,𝑘 + (𝑃𝑑,𝑘 −
𝑇𝑚𝑜𝑡,𝑘 ∙ 𝑛𝑚𝑜𝑡,𝑘

9550
)}
 
 

 
 

   ,                        (5 − 3) 

where 𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘  is the optimal rotation speed of the traction motor; and 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘  is the 

optimal demand power of the ISG. Based on Eq. (5-3), the state equation of the HEV model 

can be generally expressed in discrete-time format by the following equation 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘)

𝑥 = 𝑆𝑜𝐶
𝑢𝑘 = [𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘]

}  ,                                    (5 − 4) 
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where, 𝑥 is the state variable; 𝑘 is the integer-valued discrete time variable; and 𝑢 denotes 

the control variable expressed as a vector of the optimized rotational speed 𝑛𝑚𝑜𝑡_𝑜𝑝𝑡  of the 

traction motor and the optimized demand power 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡  of the ISG. 

 

The principal optimization target for HEV systems is to reduce fossil fuel consumption by 

obtaining energy from the electricity grid. The following cost function for minimizing fuel 

consumption will be adopted 

min 𝐽 = ∑ 𝐿(𝑥𝑘, 𝑢𝑘)

𝑁−1

𝑘=0

= ∑𝐸𝑓𝑢𝑒𝑙,𝑘

𝑁−1

𝑘=0

  ,                                 (5 − 5) 

where, 𝑁 is the length of the driving cycle in discrete time-steps, 𝐿 is the instantaneous cost, 

and 𝐸𝑓𝑢𝑒𝑙  is the instantaneous fuel consumption at the 𝑘th time step. To ensure a smooth 

operation of engine, ISG, traction motor, and battery, the following constraints will be needed 

for the optimization. 

𝑠. 𝑡.

{
 
 

 
 

𝑇𝑚𝑜𝑡,𝑘 , −𝑇𝑚𝑜𝑡
∗ ≤ 𝑇𝑚𝑜𝑡,𝑘 ≤ 𝑇𝑚𝑜𝑡

∗

𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘 ,

𝑃𝐼𝐶𝐸,𝑘 ,

𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘 ,

0 ≤ 𝑛𝑚𝑜𝑡_𝑜𝑝𝑡,𝑘 ≤ 𝑛𝑚𝑜𝑡
∗

0 ≤ 𝑃𝐼𝐶𝐸,𝑘 ≤ 𝑃𝐼𝐶𝐸
∗

−𝑃𝐼𝑆𝐺∗ ≤ 𝑃𝑔𝑒𝑛_𝑜𝑝𝑡,𝑘 ≤ 0

𝑆𝑜𝐶𝑘, 0.2 < 𝑆𝑜𝐶𝑘 ≤ 0.8

        ,                       (5 − 6) 

where, 𝑇𝑚𝑜𝑡
∗  and 𝑛𝑚𝑜𝑡

∗  are the maximum torque and the maximum rotational speed of the 

traction motor; 𝑃𝐼𝐶𝐸
∗  and 𝑃𝐼𝑆𝐺∗  are the maximum power of the engine and of ISG. 
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5.2. PROPOSED SOLUTION 

The proposed driver-identified supervisory control system includes one LSTM-based driver 

recognizer and one DP-based supervisory controller as shown in Fig. 5-1. During real-time 

driving, human drivers generate primitive operating signals which are collected by a driving 

simulator. Due to primitive operating signals with interference information redundancy, 

driving feature extraction is needed to improve the identifiability and the efficiency of this 

control system. Through feature extraction, these extracted signals will be used as inputs to 

the recognizer identifying drivers that each bridge to their own control policy in the 

supervisory controller. Finally, the driver-identified control signal will be sent to the HEV 

powertrain to manage energy utilization. 

 

Fig. 5-1. Workflow of driver-identified supervisory control system 
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5.2.1. DRIVING FEATURE EXTRACTION 

To improve identifiability of the driver-identified supervisory control system, characterization 

of the training material is needed for the extraction of hidden features from the time-series 

of the primitive operating signals. The driving operating signals studied in this chapter are 

vehicle speed, gas pedal deflection, brake pedal deflection, and steering angle. Compared to 

others need to be detected with additional sensors, they were shown to be a pragmatic choice 

for driving style recognition by Martinez et al. [3] This section starts with the primitive 

operation signals namely Feature 0 and follows by introducing the rest of 14 groups of features 

that are respectively extracted by time-domain, frequency-domain and the proposed SFFE 

methods. 

Feature 0: The driving operating signals originally collected from a driving simulator are 

regarded as the baseline in this research and are combined into the row vector,  

[𝑣 𝛾 𝛽 𝛿], where 𝑣 is vehicle speed (km/h); 𝛾 is gas pedal deflection (%); 𝛽 is brake pedal 

force (%); and 𝛿 is the steering angle (rad). In the initial investigation on the human-related 

factors, the author has found that it is extremely hard to differentiate the drivers’ identities 

under the similar driving conditions by only using velocity and acceleration for network 

training. 

A. Time and frequency domain extractions 

In the widely used time-domain extraction technique, a short-term sliding window is 

introduced to standardize the sampling dimension and lengthen the memory time of 

characteristic states. Here, the dataset of driving operating signals is defined, in which each 

time step k of data is expressed as given by: 
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(𝒗, 𝜸, 𝜷, 𝜹)𝑇 = [

𝑣𝑘−ℎ+1 𝑣𝑘−ℎ+2
𝛾𝑘−ℎ+1 𝛾𝑘−ℎ+2

⋯ 𝑣𝑘  
⋯ 𝛾𝑘

𝛽𝑘−ℎ+1 𝛽𝑘−ℎ+2
𝛿𝑘−ℎ+1 𝛿𝑘−ℎ+2

⋯ 𝛽𝑘
⋯ 𝛿𝑘

]                                   (5 − 7) 

where, ℎ is length of the short-term sliding window, which is taken to be the discrete time 

equivalent of 60 seconds. 

Feature 1: The maximum values of the four elements in the time-domain are adopted to 

reflect the operating intensity of drivers. Based on Eq. (5-7), their values can be calculated by 

(𝑣𝑚𝑎𝑥 , 𝛾𝑚𝑎𝑥 , 𝛽𝑚𝑎𝑥 , 𝛿𝑚𝑎𝑥) = max(𝒗, 𝜸, 𝜷, 𝜹𝑎𝑏𝑠)
𝑇   ,                      (5 − 8) 

where 𝜹𝑎𝑏𝑠 denotes the element wise absolute value of 𝜹. 

Feature 2: The maximum ranges of the four elements in the time-domain are adopted to 

reflect the operating proficiency of drivers. In general, drivers with higher operating 

proficiency have lower maximum range. Based on Eq. (5-7), their values can be calculated by 

(𝑣𝑟𝑛𝑔., 𝛾𝑟𝑛𝑔., 𝛽𝑟𝑛𝑔., 𝛿𝑟𝑛𝑔.) = max(𝒗, 𝜸, 𝜷, 𝜹𝑎𝑏𝑠)
𝑇 −min(𝒗, 𝜸, 𝜷, 𝜹𝑎𝑏𝑠)

𝑇   . (5 − 9) 

Feature 3: The average values of the four elements in the time-domain are adopted to reflect 

driving habits. The authors hypothesize that this factor is related to the driving geography and 

the environment but a discussion of this hypothesis is beyond the scope of this chapter and 

will be left as a topic for future research. Based on Eq. (5-7), the average values of the four 

elements in the time-domain are 

(𝑣𝑎𝑣𝑔., 𝛾𝑎𝑣𝑔., 𝛽𝑎𝑣𝑔., 𝛿𝑎𝑣𝑔.) =
∑ (𝒗, 𝜸, 𝜷, 𝜹𝑎𝑏𝑠)

𝑇𝑖=ℎ
𝑖=0

ℎ
    .                    (5 − 10) 

Another mainstream extraction method to determine the extent of pre-processing human 

behaviours is frequency domain extraction. [4] Here, the discrete (fast) Fourier transform (DFT) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872055/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872055/
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is used to calculate three principal features and they will be examined later when training the 

recognizer. Therefore, the DFT of matrix Eq. (5-11) can be written 

(𝑯𝑣 , 𝑯𝛾 , 𝑯𝛽 , 𝑯𝛿)
𝑇
=

[
 
 
 
𝐻𝑣,1 𝐻𝑣,2
𝐻𝛾,1 𝐻𝛾,2

⋯ 𝐻𝑣,𝐿
⋯ 𝐻𝛾,𝐿

𝐻𝛽,1 𝐻𝛽,2
𝐻𝛿,1 𝐻𝛿,2

⋯ 𝐻𝛽,𝐿
⋯ 𝐻𝛿,𝐿]

 
 
 

                            (5 − 11) 

where, 𝐻𝑣 , 𝐻𝛾 , 𝐻𝛽 , 𝐻𝛿  denote the single-sided amplitude spectra  corresponding to vehicle 

speed, gas pedal deflection, brake pedal force, and steering angle, respectively; and 𝐿 = ℎ 2⁄ . 

Feature 4: The maximum magnitudes of the four elements in the frequency domain are used 

to express the spectral intensity of driving operation via the equation, 

(𝐻𝑣_𝑚𝑎𝑥,𝑘 , 𝐻𝛾_𝑚𝑎𝑥,𝑘 , 𝐻𝛽_𝑚𝑎𝑥,𝑘 , 𝐻𝛿_𝑚𝑎𝑥,𝑘) = max(𝑯𝑣 , 𝑯𝛾 , 𝑯𝛽, 𝑯𝛿)
𝑇
   ,       (5 − 12) 

Feature 5: The frequencies corresponding to the maximum magnitudes (denoted by max𝑓𝑟𝑒𝑞) 

of the four elements in the frequency domain are used to express the regularity of driving 

operation via the equation, 

(𝑓𝑣_𝑚𝑎𝑥,𝑘
∗ , 𝑓𝜚_𝑚𝑎𝑥,𝑘

∗ , 𝑓𝜎_𝑚𝑎𝑥,𝑘
∗ , 𝑓𝜍_𝑚𝑎𝑥,𝑘

∗ ) = max𝑓𝑟𝑒𝑞(𝑯𝑣 , 𝑯𝛾 , 𝑯𝛽, 𝑯𝛿)
𝑇
   .    (5 − 13) 

Feature 6: As another feature to express the regularity of driving operation, the frequencies 

corresponding to the centroids of the four elements in the frequency domain are considered. 

They are defined as follows: 

(𝐻𝑣_𝑐𝑒𝑛,𝑘
∗ , 𝐻𝜚_𝑐𝑒𝑛,𝑘

∗ , 𝐻𝜎_𝑐𝑒𝑛,𝑘
∗ , 𝐻𝜍_𝑐𝑒𝑛,𝑘

∗ ) =
∑ 𝑓𝑖
𝑖=𝐿
𝑖=1 × (𝐻𝑣,𝑖 , 𝐻𝛾,𝑖 , 𝐻𝛽,𝑖 , 𝐻𝛿,𝑖)

∑ 𝑓𝑖
𝑖=𝐿
𝑖=1

      , (5 − 14) 

in which 
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𝑓𝑖 =
𝐹𝑠

ℎ
𝑖, 𝑖 = 1,2,… , 𝐿,                                         (5 − 15) 

where, 𝐹𝑠 = 1000 Hz is the sampling frequency. 

B. Spectrum-guided fuzzy feature extraction 

It should be noted that instantaneous changes in driver behaviour might affect the 

characteristic expression of the time-series data during real-time driving. The SFFE activates 

the sampling window and uses frequency-domain characteristics as the basis for adaptively 

adjusting the window size. It is developed to ensure the classification accuracy while 

adaptively searching for a more appropriate minimum size of the sliding window. Ideally, it 

can enable the elimination of the effects of sudden driver behaviour changes on the 

characteristic expression of the time-series data through adaptively adjusting the size of the 

short-term sliding window. The consideration of spectral features easily captures essential 

attributes from the dynamic driving signals and they can be exploited as an important factor 

in adjusting window size. Inspired by fuzzy encoding technology, all spectral features are 

integrated to balance the contribution of each element to the window size, thereby guiding 

time-domain extraction. The design procedures of the SFFE are: 

Feature 7-15: The fuzzy sets with linguistic terms are regulated with standard triangular 

membership functions (MFs), where the degree of membership is expressed as a function of 

normalized values in the interval, [0,1]. The values of the MFs in the FLC are set at three levels: 

Low, Medium, and High. These functions fuzzify the crisp inputs. Here, the inputs of the FLC 

need to be sensitively scaled to maintain the boundaries of their working area. They are 

formulated mathematically through the relationship, 
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(𝑣∗, 𝛾∗, 𝛽∗, 𝛿∗) = (
𝑣𝑓 − 𝑣𝑓

−

𝑣𝑓
+ − 𝑣𝑓

− ,
𝛾𝑓 − 𝛾𝑓

−

𝛾𝑓
+ − 𝛾𝑓

− ,
𝛽𝑓 − 𝛽𝑓

−

𝛽𝑓
+ − 𝛽𝑓

− ,
𝛿𝑓 − 𝛿𝑓

−

𝛿𝑓
+ − 𝛿𝑓

−),               (5 − 16) 

where, 𝑣𝑓, 𝛾𝑓 , 𝛽𝑓 , 𝛿𝑓 indicate spectral feature signals related to speed, gas, brake and steering 

angle; ∙−  and ∙+  indicate the corresponding minimum and maximum; and ∙∗  indicates the 

corresponding scaled input, [0,1]. The rule base determines the control output O with the 

inputs states A, B, C, and D by applying a ‘if A and B and C and D then O’ policy. A mathematical 

expression of the ‘if A and B and C and D then O’ policy is 

𝑂 = (𝐴 × 𝐵 × 𝐶 × 𝐷) ∘ 𝑅 .                                           (5 − 17) 

where, ‘A’, ‘B’, ‘C’, ‘D’ denote the fuzzy sets of scaled spectral signals related to speed,  gas, 

brake and steering angle; ‘O’ denotes the crisp of the reference of scalar coefficient [0,1] for 

the size of sliding windows; and ‘R’ denotes the fuzzy relation matrix by cross-product of four 

fuzzy sets of inputs. 

To simplify the expression of 34 = 81 fuzzy logic inferences, we assign values to linguistic sets: 

‘Short’ = 1;  ‘Medium’ = 2;  ‘Long’ = 3. Therefore, the reasoning process that is based on Eq. 

(17) with the Sugeno fuzzy set can then be described by the following if-then statements: 

if 𝐴 + 𝐵 + 𝐶 + 𝐷 ∈ [4,6]

if 𝐴 + 𝐵 + 𝐶 + 𝐷 ∈ [7,9]

if 𝐴 + 𝐵 + 𝐶 + 𝐷 ∈ [10,12]
}  then O is {

Long
Medium
Short

                       (5 − 18) 

In this inference mechanism, the implied fuzzy sets are produced using the max–min 

composition. In defuzzification, these implied fuzzy sets are combined to provide a crisp value 

of the controller outputs. There are several approaches [5] to accomplish the defuzzification 

process, of which the centroid of area method has been chosen for this case. The final output 
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is then measured as the average of the individual centroids weighted by their membership 

values as follows: 

𝑂 =
∑ 𝑂𝑢𝑡𝑖 ∙ 𝜑𝑖
𝑛
𝑖=1

∑ 𝜑𝑖
𝑛
𝑖=1

ℎ∗ = ℎ −
ℎ

2
𝑂 }

 

 

    ,                                            (5 − 19) 

where, 𝑂𝑢𝑡𝑖 is the output of rule base i; 𝜑𝑖  is the centre of the output MF; and ℎ∗ is the size 

of the adaptive sliding window. In this chapter, these functions are taken as a triangular 

membership function as follows: 

𝑞𝑖 = max(min (
𝑥 − (0.5𝑖 − 0.9)

0.4
,
(0.5𝑖 − 0.1) − 𝑥

0.4
) , 0) , 𝑖 = 1,2,3. (5 − 20) 

Through fuzzy encoding technology, the proposed method extracts 3 × 3  permutations 

between time and frequency domain. i.e. nine groups of extra features.  Their mapping 

relation is expressed as shown in the following table: 

 

Fig. 5-2. Mapping relation in spectrum-guided fuzzy feature extraction 
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An upgrade version of time-domain extraction, the purpose is the elimination of the effects of 

sudden driver behaviour changes on the characteristic expression of the time-series data. So 

far, 15 groups of features extracted from the original operating signals are obtained and then 

used as training data for the driver recognizer. These will be discussed in the next section. 

 

5.2.2. RECOGNIZER TRAINING AND CONTROLLER OPTIMIZATION 

This section introduces two principal parts to develop the driver-identified supervisory control 

system: 1) the structure and training data of networks to be trained; 2) the driver-identified 

dynamic programming for controller optimization.  

 

A. Bidirectional LSTMs and training data 

To efficiently classify each time step of the extracted sequence data, a bidirectional recurrent 

neural network (RNN) is adopted as a model that can overcome various restrictions inherent 

in conventional RNNs. This model divides regular RNN neuron states into forward and 

backward. These two networks connect to the same output layer to generate output 

information. With this structure, both past and future situations of sequential inputs in a time 

frame are evaluated without delay. [6] After 20 times of repeatability test for 10, 20, 50, 100, 

200 number of one-cell memory blocks, using 100 one-cell memory blocks achieves the 

highest value of average identifiability. Thus, a Bi-directional LSTM network, with two hidden 

LSTM layers, both containing 100 one-cell memory blocks of one cell each is used in this 

research. 
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To gain a better understanding of the contribution of each feature to driver identification, 

ablation studies are performed to divide the training data and the extracted features into two 

categories for each extraction method: one category is target features; the remaining category 

is non-target features. In each ablation, one feature is removed from all combinations of single 

types. E.g. in time-domain extraction methods, if Feature 1 is regarded as a target feature, 

Features 2 and 3 are the corresponding non-target features. If Feature 2 is regarded as the 

target feature, Features 1 and 3 are the corresponding non-target features. Similar arguments 

can be applied in other cases. 

 

B. Driver-identified dynamic programming  

According to the decision of the LSTM-based driver recognizer, the control policies in the DP-

based control mode need to be adaptively switched for each driver. Therefore, the control 

variables must be redetermined and their definition is  

𝑢𝑘 = Φ𝑖(𝑆𝑜𝐶𝑘),                                                 (5 − 21) 

in which 

𝑖 = ℤ𝑙𝑠𝑡𝑚(𝑣𝑘, 𝛾𝑘 , 𝛽𝑘 , 𝛿𝑘), 𝑖 = [𝐴, 𝐵, 𝐶, 𝐷, … ],                          (5 − 22) 

where 𝑢 is the control variable; Φ𝑖  is the DP-based control policy for index 𝑖 driver; and ℤ𝑙𝑠𝑡𝑚  

is the LSTM-based network to determine the driver behaviour.  

In the optimization-based control mode, DP is employed to locate the optimized control 

actions at each stage by minimizing the fuel consumption cost function over a certain driving 

cycle. As an industry-recognized global optimization algorithm, DP can efficiently handle the 
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constraints and nonlinearity of a problem and find a global optimal solution. [7] Here, the DP 

problem is described as the recursive Eqs. (5-23) and (5-24), which can be solved 

through backward recursion. The sub-problem for the (𝑁𝑖 − 1)th step is 

𝐽𝑁𝑖−1
∗ (𝑥𝑁𝑖−1) = min

𝑢𝑁𝑖−1
[𝐿(𝑥𝑁𝑖−1, 𝑢𝑁𝑖−1) + 𝐺(𝑥𝑁𝑖)] .                        (5 − 23) 

For the 𝑘th 0 ≤ 𝑘 < 𝑁𝑖 − 1 step, the sub-problem is given by 

𝐽𝑘
∗(𝑥𝑘) = min

𝑢𝑘
[𝐿(𝑥𝑘, 𝑢𝑘) + 𝐺(𝑥𝑘)]   ,                                  (5 − 24) 

where,  𝐽𝑘
∗(𝑥𝑘)  is the optimal cost-to-go function at state 𝑥𝑘  from the 𝑘 th step to the 

termination of the driving cycle, and 𝑥𝑘+1 is the state in the (𝑘 + 1)th step after the control 

variable 𝑢𝑘 is applied to state 𝑥𝑘 at the 𝑘th step according to Eq. (5-24). Eventually, the results 

will be used to calibrate the lookup tables of driver-identified control policies. For calculating 

each case, it takes about 4 hours. 

 

5.3. EXPERIMENTAL PLAN 

5.3.1. DATA COLLECTION IN DRIVER SIMULATOR 

In this chapter, data collection is conducted on the cockpit package (supported by a 

Thrustmaster T500RS) with the same HEV model with an automatic gearbox as Fig. 5-3. This is 

to make sure the driving characteristics exhibited by them are under the same constraint and 

their results are comparable. With respect to real-world road conditions, the road map model 

used with reconstructed traffic simulates a cyclic undivided highway with uphill, downhill, 

curved and straight roads and is provided by IPG CarMaker. To reduce the impact of differing 
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traffic and road conditions on human drivers, they are restricted to the same cycling road 

conditions and required to follow the speed limits, stop signs, traffic lights, and other traffic 

regulations. It should be noted that the driver’s pedal behaviour might be dependent on the 

vehicle, the pedal to its torque map, and even the physical pedal resistance feedback.  

 

Fig. 5-3. Collection process of driving profiles 

 

5.3.2. DRIVING OPERATION PATTERNS 

Observable driving signals can be categorized into three groups [4]: 1) driving behaviour, e.g., 

gas and brake pedal pressures and steering angles; 2) vehicle status, e.g., velocity, acceleration, 

and engine speed; and 3) vehicle position, e.g., following distance, relative lane position, and 

yaw angle. Among these driving signals, we focus on driving behaviour with respect to the 

relationship between velocity, gas, brake pedal, and steering angle operating signals. Table 5-

1 organizes driving-related information about six subjects. 
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Table 5-1. driving information of six subjects 

Driver Age Time to hold a driving 
license (yrs.) 

Annual mileage 
(mile) 

Driving 
geography 

A 27 10 2000 Urban 

B 27 5 3000 Hybrid 

C 24 7 2500 Hybrid 

D 26 10 1500 Hybrid 

E 26 4 6000 Motorway 

F 30 1 1000 Urban 

 

Fig. 5-4 shows driving operation pattern examples of 10-min driving signals collected in the 

simulator with a 10Hz sampling frequency, wherein (a) is used for training and (b) is used for 

testing and their data capacity ratio is 5:6. For one single driver, 6000×4 original signal data 

has been collected. Data from Driver F is only used as testing data to further validate the 

system robustness. It can be seen that primitive driving operation patterns are like a ‘yarn ball’ 

and their fragments are intertwined. It is difficult to distinguish their owners under the same 

road conditions. 

 

Fig. 5-4. Driving profiles during designed road condition 
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5.4. RESULT AND DISCUSSION 

5.4.1. SIGNIFICANT DIFFERENCE ANALYSIS 

In this section, the significant difference of extraction results is analysed and the Mann-

Whiney U test is conducted to determine whether two independent driver samples were 

selected from populations having the same distribution without the assumption of normal 

distributions. Fig. 5-5 shows p-value results of assuming no significant difference between the 

two drivers of primitive operation data, in which p-values greater than 0.05 are marked in red. 

From the results, the primitive velocity samples between every two drivers all have a statistical 

difference, while some groups of the rest of the primitive samples between every two drivers 

have no statistically significant difference. Especially for primitive steering angle samples, the 

distribution differences for each pair of drivers is hard to statistically distinguish. 

 

Fig. 5-5. Mann-Whiney U test results of original driving profile 

Based on the results of Mann-Whiney U test, the independence factor is chosen to represent 

the performance of the original data by using all extraction methods. The extraction method 

with a higher independence factor provides better performance in terms of the significant 

difference results. Its definition is 
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𝐼𝑖 =
𝑁𝑢𝑚≤0.05

𝑁𝑢𝑚𝑎𝑙𝑙
   ,                                                 (5 − 25) 

where, 𝑁𝑢𝑚≤0.05 is the number of p-values less than or equal to 0.05 of significant differences 

between each pair of drivers; 𝑁𝑢𝑚𝑎𝑙𝑙  is the number of all trials. Calculating by Eq. (5-25), the 

independence factor values of all involved extraction methods are presented in Table 5-2.  

Table 5-2. Independence factor of using involved extraction methods 

 Original Time Frequency SFFE-4 SFFE-5 SFFE-6 

𝑁𝑢𝑚≤0.05 32 118 113 120 120 120 

𝑁𝑢𝑚𝑎𝑙𝑙 40 120 120 120 120 120 

𝐼𝑖  0.80 0.98 0.94 1.00 1.00 1.00 

Notes: the SFFE-4, -5, and -6 denote using the Feature 4, 5, and 6 as different spectral signals to guide extraction respectively. 

 

By comparing the independence factor value, all extraction methods have a certain degree of 

improvement in stripping the driver’s characteristics from the original driving data. Compared 

to time or frequency domain methods, the proposed SFFE can be more robustly implemented 

for these test drivers following the same road scenario. Through adaptively adjusting the size 

of sampling windows, this method can capture driving characteristics more accurately under 

relatively harsh conditions. Moreover, types of features collected may limit their significant 

difference. To evaluate the contribution of existing driving characteristics to driver 

identifiability is another interesting and independent topic that could be studied in future 

work. 
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5.4.2. IDENTIFICATION PERFORMANCE COMPARISON 

In Table 5-3, the contribution of the extracted feature (training material) types to driver 

identification is investigated. An initial experiment was conducted on every single feature of 

using different extraction methods (Target groups). As [38] considered, the ablation validation 

was performed for features other than selected single features (Non-target groups). The 

training process, which uses each feature extracted from the training cycles, has been 

repeated 20 times and the best testing results for each feature and network structures is 

recorded respectively. After investigation, the training parameters of networks are set at 100 

hidden units, 0.01 initial learn rate and 80 maximum epochs that are convergent and efficient.  
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It is seen that all three methods have a certain improvement in the characterization of the 

original data (59.2%), in which SFFE-5 method realize the highest identifiability of 96.1% by 

using Bi-LSTM networks without Feature 2. Obviously, the method proposed by Wijnands et 

al. used non-extracted data for training purposes is not applicable for this case [39]. From the 

perspective of extraction methods, the proposed SFFE ranks first with the 80.4% average 

identifiability compared to those of time domain (71.9%) and frequency domain (68.0%) 

extraction methods. From the perspective of network structure, the Bi-LSTM network has 78.6% 

average identifiability and the forward one has 71.7% average identifiability. With the double 

feature dimensions of training, the identifiability generally has an upward trend (average 9.35% 

up), whereas it does not work for the original data.  

 
Fig. 5-6. Real-time performance of driver identification 
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Fig. 5-6 shows real-time driver identification that compares the best performance of each type 

of extraction methods, which includes the original (Feature 0), time-domain (Feature 3), 

frequency-domain (Feature 5) and the proposed SFFE (Feature 11). During real-time driving, 

the original data driven driver recognizer cannot identify the driver from their driving 

operation signal. Training by using time domain or frequency domain data improves the 

recognition accuracy of the driver recognizer, especially for Drivers A, D, and E. Training by 

using data extracted by the proposed SFFE can further improve recognition accuracy of Driver 

C and reduce the size of sampling windows from 60 s to 47 s, but there still is a defect in 

identifying Driver B. It may be caused by Driver B having many behavioural similarities to 

Driver C and D. This factor is related to the driving geography and the environment, wherein 

the feature homogenization could reduce the classification performance of the proposed 

method. Like Driver F, Driver B’s data does not participate in the training process so that his 

driving fragments are assigned to other drivers. Then the DP-based supervisory controller calls 

a control policy corresponding to the driver for energy distribution to minimize the influence 

of the defect. 

 

5.4.3. VEHICLE ADAPTABILITY PERFORMANCE 

This section discusses the fuel economy of the driver-identified control supervisory system 

and examines vehicle adaptability under different control strategies. Fig. 5-7 shows fuel 

consumption comparison over different human drivers, in which each driving cycle in this case 

is of 60min duration and formed by six 10 min testing fragments from each driver. The data 

clearly indicates that fuel consumption over different human drivers has significant 
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differences, in which fuel consumption of Driver D (the highest in all testing drivers) is nearly 

twice that of Driver E. Compared to the baseline and FL-based schemes, the LSTM+DP control 

strategy always maintains the lowest fuel consumption for all of the drivers. From the 

perspective of the drivers, the higher the baseline fuel consumption, the greater the energy-

saving potential of the LSTM+DP control strategy. Moreover, the gender of human drivers is 

not considered in the chapter but may also affect the energy-saving performance of the 

developed system, especially, in the way they apply pressure to gas and brake pedals. [8] 

 

Fig. 5-7. Fuel consumption comparison over different human drivers 

In Fig. 5-8, the driver-identified supervisory control system is further compared with the FL-

based (fuzzy logic system) and baseline (charge depleting and charge sustaining control 

strategy) schemes under real-world driving conditions. These two widely-used strategies 

considered in the comparison group both have been employed and verified in the author's 

past work. [8, 9] Differing from FL-based control systems, the SFFE driven system has the 

unique ability to identify the driver and offer a personalized control policy. The fuel 



 

- 121 - 

 

consumption under the proposed control system is significantly lower than other control 

systems while maintaining the relatively higher SoC value. Compared to the baseline control 

system, both the FL-based and the proposed schemes have stronger robustness in adapting 

to the driving styles of differing drivers. Differing from the fuzzy control strategy, the DP 

algorithm considers fuel consumption of HEVs from a global perspective to balance the flow 

of electricity usage and maximize the fuel economy of HEV systems. The Bi-LSTM helps 

supervisory control systems to identify target drivers to ensure the effectiveness of optimized 

control policies. It is worth mentioning that for Driver F (no his knowledge in the network), the 

proposed system has excellent adaptability that continues to operate in the last period (3000 

- 3600 s) with the lowest energy consumption. However, the conventional baseline control 

system has no ability to counter the change of drivers and even driving styles.  

 

Fig. 5-8. Real-time performance comparison over different control strategies 
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The vehicle performance with different control strategies is summarized in Table 5-4. From 

the results, the LSTM+DP control strategy significantly reduces fuel consumption to 

5.2 liter/100 km, and saves 11.31% energy over the baseline (FL-based one saves 5.53%). 

Table 5-4. Vehicle performance comparison over real-world driving 

Control 
strategy 

Final 
SoC 

Fuel consumption 
(liter/100 km) 

Total 
energy (J) 

Energy 
saving (%) 

Baseline 0.2014 6.141 1.1715e+08 - 

FL-based 0.4252 5.762 1.1031e+08 5.53% 

LSTM+DP 0.2809 5.207 1.0389e+08 11.31% 

 

5.5. SUMMARY 

This chapter proposes a driver-identified supervisory control system of hybrid electric vehicles 

(HEVs), wherein an improved method of spectrum-guided fuzzy feature extraction (SFFE) is 

developed for improving the recognition accuracy and efficiency of this control system. The 

comparative study including involved extraction methods and their identification system 

performance as well as its application to HEV systems has been carried out. The contributions 

drawn from the investigation are as follows: 

1) With help of the spectrum-guided fuzzy feature extraction, recognition accuracy of both 

forward and bi-directional LSTM networks rises 7% and 6% from other extraction methods 

(time or frequency domain). 

2) Compared to forward LSTM networks, bi-directional LSTM networks have a better 

performance with an average of 7% higher accuracy in driver identification performance. 
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3) For each human driver, the driver-identified supervisory control system can save more 

fossil fuel, compared to fuzzy logic-based and rule-based them, especially for driver D 

(saving up to 16%). 

4) Driven by a human driver whose data was not in the training set, this proposed system 

shows strong robustness and provides excellent energy-saving performance, compared to 

the baseline (11.31%) and FL-based (5.53%) schemes. 
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CHAPTER 6 

REAR-HORIZON-BASED ONLINE ENERGY MANAGEMENT 

USING BACK-TO-BACK COMPETITIVE LEARNING MECHANISM 

The content presented in the Chapter 6 is based on the author's published article, ‘Back-to-

back Competitive Learning Mechanism for Fuzzy Logic based Supervisory Control System of 

Hybrid Electric Vehicles’ in IEEE transactions on Industrial Electronics. [1] This chapter 

proposes a novel back-to-back competitive learning mechanism (BCLM) for a fuzzy logic (FL) 

supervisory control system for hybrid electric vehicles (HEVs). This mechanism allows 

continuous competition between two fuzzy logic controllers during real-world driving. The 

leading controller will have the regulatory function of the supervisory control system. Firstly, 

the configuration of the HEV model and its FL-based control system are analysed. Secondly, 

the algorithm of chaos-enhanced accelerated particle swarm optimization (CAPSO) is 

developed for back-to-back learning of the membership function. Thirdly, based on fuel-

prioritized cost functions, the regulation of competitive assessment is designed to select a 

controller with a better fuel economy. Finally, the competitive performance of using the 

CAPSO algorithm is contrasted with other swarm-based methods and the BCLM-driven control 

system is validated by a hardware-in-the-loop test. The results demonstrate that the BCLM 

control system significantly reduces fuel consumption, at least 9% from charge sustaining 

and charge depleting based, and at least 7% from conventional FL-based systems. 
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6.1. FL-BASED SUPERVISORY CONTROL SYSTEM 

In order to rationally assign the vehicle’s power demand, 𝑃𝑑 , which has a corresponding 

torque demand (measured at the reducer input), 𝑇𝑑, to the three machines, it is paired with 

the state of charge, 𝑆𝑜𝐶 , of the battery pack (BP) to make up the input to the FL-based 

supervisory control system that chooses between the two modes of pure electric traction, 

𝑀𝑜𝑑𝑒𝐸𝑉, and FL-based traction, 𝑀𝑜𝑑𝑒𝐹𝐿𝐶 , and is expressed as follows: 

(𝑇𝑚𝑜𝑡, 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = 𝑀𝑜𝑑𝑒𝐸𝑉(𝑃𝑑, 𝑆𝑜𝐶), 𝑆𝑜𝐶 > 0.5,

(𝑛𝑚𝑜𝑡, 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = 𝑀𝑜𝑑𝑒𝐹𝐿𝐶(𝑃𝑑, 𝑆𝑜𝐶), 𝑆𝑜𝐶 ≤ 0.5,
}                    (6 − 1) 

where: 𝑇𝑚𝑜𝑡 is the trans-motor torque; 𝑛𝑚𝑜𝑡 is the trans-motor speed; 𝑃𝑖𝑐𝑒 is the ICE power; 

and 𝑃𝑔𝑒𝑛 is the ISG power. 

The electric traction system has the capacity to completely satisfy the torque demand, 

enabling deactivation of the ICE and the ISG in the electric mode. The power distribution in 

this state is therefore given by 

(𝑇𝑚𝑜𝑡, 𝑃𝑖𝑐𝑒 , 𝑃𝑔𝑒𝑛) = (𝑇𝑑, 0, 0).                                         (6 − 2) 

In the fuzzy logic control mode, FLCs are used to perform energy management. This structure 

supplies power to propel the vehicle while maintaining the BP’s SoC between safe limits. The 

design of the FLCs is described below. 
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A. Fuzzification 

The fuzzy sets with linguistic terms are regulated with standard triangular membership 

functions (MFs), where the degree of membership is expressed as a function of normalized 

values in the interval, [0,1]. The values of the MFs in the FLC are set at 3 levels: Low, Medium, 

and High. These functions fuzzify the crisp inputs. 

The power demand may take both positive and negative values and is bounded by the 

maximum (accelerative) power, 𝑃𝑑
+, and the minimum (powertrain braking) power, 𝑃𝑑

−, which 

is negative. The “knee point” of the corresponding input, 𝐼𝑛𝑝𝑢𝑡1, is not set at the midpoint 

between the power demand boundaries: it is set via  

𝐼𝑛𝑝𝑢𝑡1 =

{
 
 

 
 1

2
+
𝑃𝑑
𝑃𝑑
+ ∙
1

2
, 𝑃𝑑 ≥ 0.

1

2
−
𝑃𝑑
𝑃𝑑
− ∙
1

2
, 𝑃𝑑 < 0.

                                         (6 − 3) 

Sensitivity homogenization is used in this paper to correct the correspondence between the 

value of the power demand and its rule of inference. However, since the FLC is not used in the 

EV mode, the BP’s SoC also needs to be sensitively scaled to satisfy the boundaries of the 

𝑀𝑜𝑑𝑒𝐹𝐿𝐶  working area. They are formulated mathematically through the relationship: 

𝐼𝑛𝑝𝑢𝑡2 =
𝑆𝑜𝐶 − 𝑆𝑜𝐶𝑚𝑖𝑛

𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶𝑚𝑖𝑛
                                           (6 − 4) 

where 𝑆𝑜𝐶𝑚𝑖𝑛 = 0.2 and 𝑆𝑜𝐶𝑚𝑎𝑥 = 0.5 are the value of SoC boundary positions when the 

FLC is engaged. 
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B. Inference 

The rule base, as shown in Table 1, determines the control outputs C and D with the inputs 

states A and B, by applying a ‘if A and B then C and D’ policy. A mathematic expression of the 

‘if A and B then C and D’ policy is: 

[𝐶 𝐷] = (𝐴 × 𝐵) ∘ 𝑅                                                 (6 − 5) 

where: ‘A’ denotes the fuzzy set of power demand; ‘B’ denotes the fuzzy set of SoC value; ‘C’ 

denotes the crisp value of the normalized motor rotational speed; ‘D’ denotes the crisp value 

of the normalized ISG power; and ‘R’ denotes the fuzzy relationship matrix indexed by the 

cross-product of ‘A’ and ‘B’. The reasoning process is based on Eq. (6-5) with the Sugeno fuzzy 

set as described in the following table: 

Table 6-1. Fuzzy logic based decision system inference 

Rule Demand 
power  

SoC 
value 

Motor 
speed Ref.  

ISG power 
Ref. 

1 Low Low High High 

2 Medium  Low Low High 

3 High Low Low High 

4 Low Medium High Medium 

5 Medium Medium Medium Medium 

6 High Medium Low Medium 

7 Low High High Low 

8 Medium High High Low 

9 High High Medium Low 
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C. Defuzzification 

In inference mechanism, the implied fuzzy sets are produced using the max–min composition. 

In defuzzification, these implied fuzzy sets are combined to provide a crisp value of controller 

outputs. There are several approaches to accomplish the defuzzification process and here the 

centroid of area method has been adopted because it is relatively simple and has good 

information preserving properties [6]. The final output is then expressed as the mean of the 

individual membership values weighted by the corresponding centroids as follows: 

𝑂𝑢𝑡𝑝𝑢𝑡1 =
∑ 𝑂𝑢𝑡1𝑖 ∙ 𝑂𝑖
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

,

𝑂𝑢𝑡𝑝𝑢𝑡2 =
∑ 𝑂𝑢𝑡2𝑖 ∙ 𝑂𝑖
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

,
}
 
 

 
 

                                       (6 − 6) 

where, 𝑂𝑢𝑡𝑖 is the output of rule base i, and 𝑂𝑖 is the centroid of the 𝑖th output MF. Based on 

Eq. (6-6), the rotational speed of the traction motor and the power ref. of the ISG can be 

calculated separately. From these outputs, the power distribution under the FLC mode is 

calculated as follows: 

𝑛𝑚𝑜𝑡 = 𝑂𝑢𝑡𝑝𝑢𝑡1 ∙ 𝑛𝑚𝑜𝑡
∗ ,

𝑃𝑔𝑒𝑛 = 𝑂𝑢𝑡𝑝𝑢𝑡2 ∙ 𝑃𝑔𝑒𝑛
∗ ,

𝑇𝑚𝑜𝑡 = 𝑇𝑑,

𝑃𝑖𝑐𝑒 = {
𝑃𝑑 − 𝑛𝑚𝑜𝑡 ∙ 𝑇𝑚𝑜𝑡 − 𝑃𝑔𝑒𝑛 , 𝑃𝑑 ≥ 0,

−𝑃𝑔𝑒𝑛 , 𝑃𝑑 < 0,}
 
 

 
 

                        (6 − 7) 

where, 𝑛𝑚𝑜𝑡
∗  is the maximum speed of the traction motor, and 𝑃𝑔𝑒𝑛

∗  is the maximum power of 

the ISG. 
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6.2. PROPOSED SOLUTION 

The back-to-back competitive learning mechanism (BCLM) that is proposed in this research is 

shown in Fig. 6-1. The concept of the BCLM comprises two main modules: back-to-back 

learning; and competitive assessment. In the back-to-back learning module, two FLCs with the 

same structure were adopted. The first FLC is trained by an intelligent swarm optimizer, while 

the second serves the supervisory control system. In the competitive assessment module, 

there is an evaluator that competitively assesses the two controllers, and its assessment result 

decides both the control assignment to the supervisory controller system and the target of 

the optimizer. During the real-world driving, if better MF scalar parameters in the controller 

being trained are detected, both selectors (shown on Fig. 6-1) will be switched to their 

opposite side in order to concurrently exchange the current tasks of the two controllers. The 

controller being trained will take over the supervisory control system and the execution 

controller will hand over the optimization task. The main advantage of this parallel control 

structure is that it can ensure strong robustness and high efficiency of the supervisory control 

system whether before or after each update takes effect. 
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Fig. 6-1. Concept of back-to-back competitive learning mechanism 

 

6.2.1. CAPSO-DRIVEN BACK-TO-BACK LEARNING 

A. Search area and constraints 

According to structure of the FLC, the boundary condition of the inputs and outputs are fixed 

at predetermined intervals. There is also no change to the fuzzy rules and the triangular MFs. 

The intelligent swarm optimizer is applied to each output. Here, the search variables in the 

multi-objective optimization problem are labelled in bold type shown in Fig. 6-2. 
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Fig. 6-2. Representation of triangular MFs 

To simplify the implementation of optimization algorithms it is assumed here that the 

parameters 𝑎𝑀 , 𝑏𝐿 , 𝑎𝐻, 𝑐𝐿 , 𝑏𝐻 , and 𝑐𝑀  are fixed for each input and output. In this way, 24 

scalar parameters of the MFs need to be optimized, and the structure of the generic particle 

for each input and output is given by 

|𝑎𝑀 𝑏𝐿 𝑎𝐻 𝑐𝐿 𝑏𝐻 𝑐𝑀|                                           (6 − 8) 

Considering the structure of the FLC shown in Fig. 6-1, it is supposed that the six parameters 

to optimize each input and output must obey the following order criteria: 

𝑎𝐿 < 𝑎𝑀 < 𝑎𝐻,
𝑎𝐿 < 𝑎𝐻 < 𝑏𝑀 ,
𝑏𝑀 < 𝑏𝐻 < 𝑐𝐻,

𝑎𝐿 < 𝑏𝐿 < 𝑐𝐻 ,
𝑏𝑀 < 𝑐𝐿 < 𝑐𝐻 ,
𝑏𝑀 < 𝑐𝑀 < 𝑐𝐻 .

}                                       (6 − 9) 

For each iteration of algorithm optimization, it is necessary to check the constraints in Eq. (6-

9). 
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B. Cost functions and CAPSO algorithm 

This chapter considers two principal targets, the first is the overall liquid fuel consumption, 

and the second is the BP’s SoC at the end of test. These cost functions are defined by: 

𝐽1 =
1

𝜌𝑔𝑎𝑠𝑜
∫�̇�𝑓(𝑡)𝑑𝑡

𝐽2 =
1

𝑆𝑜𝐶(𝑡𝑒𝑛𝑑) }
 
 

 
 

                                           (6 − 10) 

where, 𝜌𝑔𝑎𝑠𝑜  is the density of gasoline (0.77 g/ml); �̇�𝑓 is the fuel consumption mass rate (g/s); 

and  𝑡𝑒𝑛𝑑  is the final time of the driving cycle. 

To convert the multi-objective optimization problem into a single objective optimization 

enabling the swarm-based algorithm, in the present work, the multi-objective optimization is 

formulated by using the weighted sum method. [2] Therefore, the optimal energy-flow control 

problem with constrains is expressed as: minimize the overall cost function, 𝐽, given by 

min 𝐽 = 𝑤 ∙
𝐽1
𝐽1
∗ + (1 − 𝑤) ∙

𝐽2
𝐽2
∗                                       (6 − 11) 

𝑠. 𝑡.

{
 
 

 
 
𝑆𝑜𝐶(𝑘), 0.8 ≥ 𝑆𝑜𝐶(𝑘) ≥ 0.2

𝑛𝑚𝑜𝑡(𝑘),
𝑇𝑚𝑜𝑡(𝑘),

𝑛𝑚𝑜𝑡∗ ≥ 𝑛𝑚𝑜𝑡(𝑘) ≥ 0
𝑇𝑚𝑜𝑡∗ ≥ 𝑇𝑚𝑜𝑡(𝑘) ≥ −𝑇𝑚𝑜𝑡∗

𝑃𝐼𝐶𝐸(𝑘),
𝑃𝐼𝑆𝐺(𝑘),

𝑃𝐼𝐶𝐸∗ ≥ 𝑃𝐼𝐶𝐸(𝑘) ≥ 0
0 ≥ 𝑃𝐼𝑆𝐺(𝑘) ≥ −𝑃𝐼𝑆𝐺∗

 

In Eq. (6-11), 𝑤 is a weight coefficient; 𝐽1
∗ and 𝐽2

∗ are scaling constants for the cost functions,  

𝐽1 and 𝐽2. The SoC contribution to the overall cost function ensures service life of the battery. 

The CAPSO algorithm, which is an upgraded version of the accelerated particle swarm 

optimization (APSO) algorithm, is a computational algorithm inspired by animal swarms such 
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as ant colonies, bird flocks, fish schools, and other biological phenomena. [3] The standard 

APSO usually keeps the attraction parameters as a fixed value [4]; however, the solutions still 

change slightly as the optima are approached. In the chaos-enhanced algorithm, a dynamic 

attraction parameter in each iteration is used to create some ‘accidents’, which help the 

particles to jump out of any convergence to a local optimum proved by Refs. [5, 6] For the 

CAPSO, the particle’s position updates with the following equation: 

𝑥(𝑖+1,𝑗) = (1 − 𝛽) ∙ 𝑥(𝑖,𝑗) + 𝛽 ∙ 𝑔(𝑖,∗) + 𝛼(𝑖) ∙ 𝑟(𝑖,𝑗)                              (6 − 12) 

In Eq. (6-12), 𝑔(𝑖,∗) is the best position in the 𝑖th iteration, 𝛽 is the attraction parameter of 

CAPSO, 𝛼 is the convergence parameters of CAPSO, and 𝑟 is a 𝑈[0, 1] random variable. Here, 

𝛼 and 𝛽 are updated in each iteration via: 

𝛼(𝑖) = 𝛼(0) ∙ 𝛾𝑖,

𝛽(𝑖+1) = 𝑎 ∙ 𝛽(𝑖) ∙ (1 − 𝛽(𝑖)),
}                                           (6 − 13) 

where, the settings, 𝛼(0) = 0.9 and 𝛾 = 0.95, were chosen; and the attraction parameter is 

mapped by the logistic map [3], in which the initial values 𝛽(1) = 0.6 and 𝑎 = 4 are used. 

When 𝛽 → 0 in any step, the algorithm may lead to slow changes. After the convergence has 

been achieved, the algorithm ends the main iteration and outputs the best position at the end 

iteration 𝑔max _𝑖𝑡𝑒𝑟,∗ as the global optimal solution. 

 



 

- 134 - 

 

6.2.2. FUEL-PRIORITIZED COMPETITIVE ASSESSMENT 

A. Observation window for assessment 

To evaluate the fuel-saving performance for both FLCs with back-to-back learning, a short-

term moving window 𝐻 is introduced. The observation window ensures that the competition 

between both controllers is fair and that the reference driving profiles for CAPSO-driven back-

to-back learning are equal. Short-term speed and acceleration profiles are expected to be 

strongly influenced by variables with fast dynamics such as traffic congestion and driving style. 

This chapter examines the impact of the length of observation windows in the fuel-prioritized 

competitive assessment on the vehicle’s fuel consumption. Different lengths of short-term 

windows are studied in the control system driven by the proposed mechanism. 

 

B. Competitive assessment procedure 

Fig. 6-3 sets out the competitive assessment procedure for electing the controller with the 

better fuel-saving performance. In each time-step, the optimizer calls the CAPSO algorithm to 

search the global best solution for the controller being trained based on the short-term driving 

profile restricted by the observation window. The best scalar parameters for the MFs are used 

in the controller being trained then the evaluator calculates the fuel-saving performance of 

both controllers. 
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Fig. 6-3. Flowchart of competitive assessment procedure 

Considering the impact of length of observation windows on the vehicle’s fuel consumption, 

the cost function from Eq. (6-11) for each controller is modified as follows: 

𝑐𝑠𝑛𝑒𝑥𝑒 = 𝑤 ∙
𝐽1
′

𝐻 ∙ 𝐽1
∗ + (1 − 𝑤) ∙ (

𝐽2
′

𝐻 ∙ 𝐽2
∗)

2

,

𝑐𝑠𝑛𝑜𝑝𝑡 = 𝑤 ∙
𝐽1
′′

𝐻 ∙ 𝐽1
∗ + (1 − 𝑤) ∙ (

𝐽2
′′

𝐻 ∙ 𝐽2
∗)

2

,
}
 
 

 
 

                               (6 − 14) 

where, 𝐻 is length of the observation window; 𝑐𝑠𝑛𝑒𝑥𝑒 and 𝑐𝑠𝑛𝑜𝑝𝑡  are, respectively, the cost 

functions of the execution controller and the controller being trained; 𝐽1
′  and 𝐽2

′  are the 

evaluation objects for the execution controller; and 𝐽1
′′ and 𝐽2

′′ are the evaluation objects for 

the controller being trained. It should be noted that the introduced observation window 

would increase the sensitivity to the change of 𝐽1 and reduces that for 𝐽2. To ensure sufficient 

service life of the battery, the order of penalty 𝐽2 should be increased when SoC value is low. 

Fig. 6-4 investigates the average value of cost function with different orders of penalty during 
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real world driving with the initial SoC value of 0.2. The cost functions of both objectives are 

scaled to the same range of [0,1]  with 𝑤  fixed at 0.5 in Eq. (6-7). Compared to other 

investigated orders, the quadratic penalty 𝐽2 gives the only positive differential related to 𝐽1. 

 

Fig. 6-4. Statistical results of cost function with different orders’ penalty 

In real time driving, cost functions of the execution controller are considered as a learning 

target to motivate another. At each time-step, the BCLM will calculate the cost functions of 

both controllers. If the current state meets the following conditions: 

𝑐𝑠𝑛𝑜𝑝𝑡(𝑘) − 𝑐𝑠𝑛𝑒𝑥𝑒(𝑘) < 0, and

𝑐𝑠𝑛𝑜𝑝𝑡(𝑘) − 𝑐𝑠𝑛𝑒𝑥𝑒(𝑘)

𝑐𝑠𝑛𝑜𝑝𝑡(𝑘 − 1) − 𝑐𝑠𝑛𝑒𝑥𝑒(𝑘 − 1)
< 1.

}                            (6 − 15) 

where, errors and its derivatives between two cost function values as the main factors in this 

chapter affect the final decision. If 𝑐𝑠𝑛𝑜𝑝𝑡(𝑘 − 1) − 𝑐𝑠𝑛𝑒𝑥𝑒(𝑘 − 1) = 0, then only the first 

condition of Eq. (6-15) needs to be satisfied and the proposed mechanism takes action to 

switch both selectors to the other side, exchanging the current tasks and roles between the 

two controllers. Otherwise, the two controllers will continue to operate their current tasks 
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and the mechanism will explore the MF scalar parameters searching for better fuel-saving 

performance for the next time step. 

 

6.3. EXPERIMENTAL PLAN 

6.3.1. REAL-WORLD DRIVING CYCLES 

As the goal of this work is to develop a supervisory control system that learns and adapts to 

human driving style the previously discussed HEV model was implemented in a driving 

simulator. Five human drivers were invited as experimental subjects to participate in 8000 

seconds of real-world driving. The road map model used was a mixture of highway and local 

roads with traffic, multiple stop signs, traffic lights, and speed limit changes: it was provided 

by IPG CarMaker and is shown in Fig. 6-5. The human driver was instructed to follow the speed 

limits, stop signs, traffic lights, and other traffic regulations. The specification of the real-world 

driving cycle is listed in Table 6-2. 

 

Fig. 6-5. Data collection of driving profiles 



 

- 138 - 

 

Table 6-2. Specification of real-world driving cycle 

Human 
driver 

Traffic 
type 

Driving 
time(s) 

Driving 
distance(km) 

A Urban  1880 11.6 

B Urban  1590 17.8 

C Urban  940 8.1 

D Highway  1350 22.5 

E Highway 2240 40.0 

 

6.3.2. HARDWARE-IN-THE-LOOP EXPERIMENT 

The work was carried out using the industry standard real-time testing equipment sourced 

from the ETAS Group. [7] The configuration of the HiL testing system is shown in Fig. 6-6. Firstly, 

the HEV model and its FL-based control system were compiled as MATLAB® code. Secondly, 

through the host PC, they were imported into the integration platform, which is the user 

interface through which the HiL system is configured, in preparation for creating signal paths 

between the models and the hardware, and generating code for the LABCAR simulation target 

LABCAR-RTPC. Thirdly, the whole vehicle system was downloaded to the DESK-LABCAR using 

the ETAS experimental environment (EE) via Ethernet protocol. In the experiment, vehicle 

performance was entirely supervised by the ETAS EE in the host PC. From the recorded results, 

the average computational time for CAPSO algorithm to complete an iterative convergence is 

0.225 seconds so the computing resource still has a surplus for the current version given the 

fact that its capacity will continue to increase. As indicated by Moore's Law, it is anticipated 

the BCLM can perform on the actual on-board controller of HEVs for real-time energy saving. 
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Fig. 6-6. Hardware-in-the-loop testing system 

 

6.4. RESULT AND DISCUSSION 

6.4.1. BACK-TO-BACK LEARNING PERFORMANCE 

In this section, the evaluation of the back-to-back learning is presented in two parts as a 

performance comparison of optimization algorithms and the MF evolution process. Fig. 6-7 

shows the cost function values achieved by the different swarm-based optimization 

algorithms averaged over 30 runs for 15 iterations. 

 

Fig. 6-7. Performance comparison of optimization algorithms 
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In each run: 20 particles for each variable in the swarm-based algorithms were initialized 

randomly; the weight coefficient of the cost function was set to w =  0.7; and the termination 

criterion was 15 iterations. From the results, all swarm-based algorithms realize fitness 

function convergence within 15 iterations. Especially at the fifth iteration, the CAPSO 

algorithm has reached the best global solutions while others are still in convergence. 

Therefore, the CAPSO algorithm enhanced by the chaos mapping strategy is more ambitious 

in expanding the exploration area for the global solution search. 

 

Fig. 6-8. Real-time performance of two FLCs boosted by the BCLM 

Fig. 6-8 shows a fragment of real-time performance of two FLCs, wherein the green dotted 

line indicates the timing of two controllers’ work exchange and the black circle indicates the 

fitness in the execution controller of HEV systems. From the results of the top subfigure, two 

controllers are alternately updated by the BCLM and their work exchanges frequently at 
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protruding spikes, which are caused by the dramatic changing in human driving behaviours. 

Although the working time and training time between two controllers cannot exactly equal in 

each optimization fragment, the BCLM can schedule them in relative balance to make both 

controllers have fair workloads (50.6% and 49.4%) during the long-term driving. The bottom 

subfigure dissects output surface evolution process between two FLCs at the 2889th seconds. 

It can be seen that the BCLM will abandon a relatively smooth output surface used for most 

driving scenarios and replace to an aggressive one for targeting higher fuel economy.   

 

6.4.2. VEHICLE PERFORMANCE COMPARISON 

In Fig. 6-9, the FL-based supervisory control system with the proposed mechanism is further 

compared with the conventional FL-based one during real-world driving. The fuel 

consumption under the FL-based control system with the proposed mechanism is significantly 

lower than the conventional one, while maintaining the higher SoC value. Boosted by the 

BCLM, the ICE initially tends to compensate for the total power demand to avoid the potential 

danger of a rapid drop in the BP’s SoC. The ISG maintains a higher workload compared to that 

supervised by the conventional FL-based control system. 
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Fig. 6-9. Vehicle performance comparisons at initial SoC=0.4 

The vehicle performance with different control strategies is summarized in Table 6-3. An 

analogous result can also be observed for initial SoCs of 0.5 and 0.3. The classic rule-based 

control strategies of charge depleting (CD) and charge sustaining (CS) were considered and 

used as a baseline for comparison with the FL-based strategies. As the decrease of initial SoC 

values, the space for freely distributing energy is narrowed. Compared to the CD/CS strategy, 

the static FL-based system after offline optimization can adaptively adjust energy distribution 

in the narrow SoC range but its improvement is not significant. Relatively, the dynamic FL-

based system with the help of the BCLM always selects a controller with better cost-function 

value in real time to counter driving scenario change. The result shows the improved system 
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has the lowest fuel consumption while maintaining the highest SoC value, compared to the 

performance of others. 

Table 6-3. The vehicle performance with different control strategies 

Control strategy Initial SoC Final SoC Used Fuel 
(𝐋) 

Saving (%) 

CD/CS 0.5 0.353 6.41 - 

Static FLC 0.5 0.379 6.24 2.7% 

Dynamic FLC 0.5 0.408 5.44 15.1% 

CD/CS 0.4 0.351 6.63  

Static FLC 0.4 0.379 6.48 2.3% 

Dynamic FLC 0.4 0.412 5.88 11.3% 

CD/CS 0.3 0.352 6.89 - 

Static FLC 0.3 0.379 6.75 2.0% 

Dynamic FLC 0.3 0.408 6.26 9.14% 

 

6.4.3. HORIZON SENSITIVITY ANALYSIS 

As discussed earlier, the observation window was introduced into the BCLM to regulate the 

learning range of the optimizer. In this section, the impact of the length of the observation 

window on the input-output signals of the controller is investigated, following which the 

sensitivity of the length of the observation window to the average applicable time for one set 

of MFs is analysed.  
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Fig. 6-10. The signal comparison over observation window lengths 

Fig. 6-10 presents the signal comparison with different lengths of the observation window 

(𝐻 = 1 s/10 s/50 s) when the initial SoC=0.5. As the length of the observation window 

increases, the early-cycle power provided by the motor rises, and the number of occurrences 

of peak trans-motor rotational speed increases gradually. For the improved control system, 

the aggressive braking power can be better absorbed when the observation window, 𝐻, is 

50 s than when it is 1 s or 10 s. This leads to the signal of SoC value dropping fast at an early 

stage, after which the signal is stable within a small range of oscillation. 
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Fig. 6-11. Computational efficiency over backward horizons 

Figure 6-11 shows the average application time and the fuel consumption over backward 

horizons, wherein the tests with the initial SoC=0.4 in each scenario were each repeated 10 

times. As the length of observation windows shorten (< 5 s), the rules in the fuzzy inference 

to be called lessen, and involved scalar parameters of corresponding MFs to be optimized are 

relatively limited and fixed. Therefore, optimized scalar parameters have longer average 

application time. The average application time troughs at 6.60 seconds at which the length of 

observation windows is 5 seconds. After that, as the length of observation windows increases 

(> 5 s), the rules in the fuzzy inference to be called increases and even some single rules are 

called multiple times. It results in that involved scalar parameters of corresponding MFs to be 

optimized need to balance under multiple scenarios. Therefore, optimized scalar parameters 

with stronger adaptability can handle more driving scenarios thereby average application time 

is longer. The lowest fuel consumption (on the second y-axis) occurs when the length of 

observation windows is 2 seconds. As the most suitable observation duration of driving events, 

this result is consistent with the view of Clara Marina and Cao. [8] After which the fuel 
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consumption rises rapidly to 6.03 L (𝑎𝑡 𝐻 = 20 s) then remains at a high level on further 

increase of 𝐻. Regarding balancing the computational resource usage and the accuracy of the 

real time prediction, the author has found computational resource usage is mainly affected by 

the sizes of state information i.e. size of the observation window. Comparing the various sizes 

of observation windows from 1 to 50 s, the 2-second observation window appears to be the 

best for learning from backward horizons as opposed to the longest one. 

 

6.5. SUMMARY 

This chapter proposes a back-to-back competitive learning mechanism for a FL-based 

supervisory control system to improve the fuel-saving efficiency of HEV energy management. 

The back-to-back learning performance is evaluated and compared with that optimized by 

other swarm-based algorithms. The contributions drawn from the investigation are as follows:  

1) The proposed mechanism has demonstrated abilities to adapt to the change of driving 

behaviours and to ensure the effectiveness of the FL-based control system by real-time MF 

parameter updates (957 times) in the case study. 

2) Under different initial SoC conditions (𝑆𝑜𝐶 = 0.3/0.4/0.5), the FL-based control system 

driven by the proposed mechanism can significantly improve the fuel consumption when 

compared to CD/CS and conventional FL-based control strategies. 

3) The improved FL-based control system reduces fuel consumption over the testing real-

world cycle, at least 9% from CD/CS-based and at least 7% from conventional FL-based 

systems. 
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4) Comparing the various size of observation windows from 1 to 50 s, the 2-second 

observation window appears to be the best for learning from backward horizons achieving 

the lowest fuel consumption of 5.88 litres/100 km. 
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CHAPTER 7 

FRONT-HORIZON-BASED ONLINE ENERGY MANAGEMENT 

USING DUAL-LOOP ONLINE INTELLIGENT PROGRAMMING 

The content presented in the Chapter 7 is based on the author's published article, ‘Dual-loop 

Online Intelligent Programming for Driver-oriented Predict Energy Management of Plug-in 

Hybrid Electric Vehicles’ in Applied Energy. [1] This chapter investigates an online predictive 

control strategy for series-parallel plug-in hybrid electric vehicles (PHEVs), resulting in a novel 

online optimization methodology named the dual-loop online intelligent programming (DOIP) 

that is proposed for velocity prediction and energy-flow control. By reconsidering the change 

of driving behaviours at each look-ahead step, this methodology guarantees the effectiveness 

of optimal control sequence in the energy-saving efficiency of online predictive energy 

management. The design procedure starts with the simulation of a series-parallel PHEV using 

a systematic control-oriented model and the definition of a cost function. Inspired by fuzzy 

granulation technology, a deep fuzzy predictor is created to achieve driver-oriented velocity 

prediction, and a finite-state Markov chain is exploited to learn transition probabilities 

between vehicle speed and acceleration. To determine the optimal control behaviours and 

power distribution between two energy sources, chaos-enhanced accelerated swarm 

optimization is developed for the DOIP algorithm. The prediction capability of the deep fuzzy 

predictor is evaluated by comparing with two existing predictors over the WLTP-based driving 

cycle, both of which have an excellent accuracy. The proposed control strategy is contrasted 

with short-sighted and dynamic programming based counterparts, and validated by a driver-
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in-the-loop simulation platform. The results demonstrate that the deep fuzzy predictor can 

effectively recognize driving behaviour and reduce at least 19% errors compared to involved 

Markov chain based predictors. Online predictive control strategy using the DOIP algorithm is 

able to significantly reduce 9.37% fuel consumption from the baseline and shorten 

computational time. 

 

7.1. PROBLEM STATEMENT 

7.1.1. SEARCH AREA AND CONSTRAINS 

The rotation speed of the motor (the relative speed of the rotor to the stator) and the power 

of the ISG are two optimization variables involved in this research, their boundary conditions 

need to be constrained as given by: 

{
  0 < 𝑛𝑚𝑜𝑡(𝑘) < 𝑛𝑚𝑜𝑡∗

 −𝑃𝐼𝑆𝐺∗ < 𝑃𝐼𝑆𝐺(𝑘) < 0
                                                  (7 − 1) 

Due to the limitation of peak powers and the layout of the HEV powertrain, it is necessary to 

constrain for ICE, ISG and the traction motor during the optimization, which are formulated 

as:  

{
  
 

  
 

𝑇𝑚𝑜𝑡 = 𝑇𝑑(𝑘), 0 < 𝑇𝑚𝑜𝑡(𝑘) < 𝑇𝑚𝑜𝑡∗

𝑇𝐼𝐶𝐸 = 𝑇𝑑(𝑘), 0 < 𝑇𝐼𝐶𝐸(𝑘) < 𝑇𝐼𝐶𝐸∗

𝑛𝐼𝐶𝐸 = (𝑃𝑑(𝑘) −
𝑇𝑚𝑜𝑡(𝑘) ∙ 𝑛𝑚𝑜𝑡(𝑘)

9550
− 𝑃𝐼𝑆𝐺(𝑘)) ∙

9550

𝑇𝐼𝐶𝐸(𝑘)
, 0 < 𝑛𝐼𝐶𝐸(𝑘) < 𝑛𝐼𝐶𝐸∗

𝑃𝑏𝑟𝑎 =
𝑇𝑑(𝑘) ∙ 𝑛𝑑(𝑘) − 𝑇𝑚𝑜𝑡(𝑘) ∙ 𝑛𝑚𝑜𝑡(𝑘)

9550
, 𝑃𝑏𝑟𝑎(𝑘) < 0

   

(7 − 2) 
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where, 𝑇𝑚𝑜𝑡 is the torque of the motor; 𝑇𝐼𝐶𝐸  is the torque of the engine; 𝑛𝐼𝐶𝐸  is the rotation 

speed of the engine; 𝑃𝑏𝑟𝑎 is the braking torque; 𝑛𝑑  is the demand speed. To ensure the BP is 

performing in proper condition and protect the BP from over discharge, the battery’s state of 

charge should obey [2]: 

0.2 ≤ 𝑆𝑜𝐶(𝑘) ≤ 0.8                                                      (7 − 3) 

The total power generated by the powertrain needs to meet: 

𝑃𝑑 =
𝑇𝑚𝑜𝑡(𝑘) ∙ 𝑛𝑚𝑜𝑡(𝑘) + 𝑇𝐼𝐶𝐸(𝑘) ∙ 𝑛𝐼𝐶𝐸(𝑘)

9550
+ 𝑃𝑏𝑟𝑎(𝑘)                       (7 − 4) 

 

7.1.2. COST FUNCTION 

Two main targets are mainly concerned in this chapter, one is the final fuel consumption from 

the fuel tank and the BP, and another is the BP’s SoC. These optimization targets are defined 

as: 

{
𝐽1 = 𝜎𝑠𝑓𝑐∫�̇�𝑓(𝑡)𝑑𝑡

𝐽2 = 𝑆𝑜𝐶(𝑡𝑒𝑛𝑑) 
                                                 (7 − 5) 

where, 𝜎𝑠𝑓𝑐 is the specific energy of gasoline (46𝑘𝐽/𝑔); �̇�𝑓 is the fuel mass flow rate (𝑔/𝑠); 

𝑡𝑒𝑛𝑑  is the ending time of the driving cycle. 

To convert the multi-objective optimization problem into a single objective optimization for 

CAPSO algorithm, in the present work, the multi-objective optimization is formulated by using 

the weighted sum method. [3] Therefore, the optimal energy-flow control problem is 

described as: 
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min 𝐽 = 𝑤 ∙ 𝐽1 ∙
1

𝐽1
∗ + (1 − 𝑤) ∙ 𝐽2

∗ ∙
1

𝐽2
                                   (7 − 6) 

𝑠. 𝑡.

{
 
 
 
 
 
 

 
 
 
 
 
 

  0 < 𝑛𝑚𝑜𝑡(𝑘) < 𝑛𝑚𝑜𝑡∗

 −𝑃𝐼𝑆𝐺∗ < 𝑃𝐼𝑆𝐺(𝑘) < 0

𝑇𝑚𝑜𝑡 = 𝑇𝑑(𝑘), 0 < 𝑇𝑚𝑜𝑡(𝑘) < 𝑇𝑚𝑜𝑡∗

𝑇𝐼𝐶𝐸 = 𝑇𝑑(𝑘), 0 < 𝑇𝐼𝐶𝐸(𝑘) < 𝑇𝐼𝐶𝐸∗

𝑛𝐼𝐶𝐸 = (𝑃𝑑(𝑘) −
𝑇𝑚𝑜𝑡(𝑘) ∙ 𝑛𝑚𝑜𝑡(𝑘)

9550
− 𝑃𝐼𝑆𝐺(𝑘)) ∙

9550

𝑇𝐼𝐶𝐸(𝑘)
, 0 < 𝑛𝐼𝐶𝐸(𝑘) < 𝑛𝐼𝐶𝐸∗

𝑃𝑏𝑟𝑎 =
𝑇𝑑(𝑘) ∙ 𝑛𝑑(𝑘) − 𝑇𝑚𝑜𝑡(𝑘) ∙ 𝑛𝑚𝑜𝑡(𝑘)

9550
, 𝑃𝑏𝑟𝑎(𝑘) < 0

0.2 ≤ 𝑆𝑜𝐶(𝑘) ≤ 0.8

𝑃𝑑 =
𝑇𝑚𝑜𝑡(𝑘) ∙ 𝑛𝑚𝑜𝑡(𝑘) + 𝑇𝐼𝐶𝐸(𝑘) ∙ 𝑛𝐼𝐶𝐸(𝑘)

9550
+ 𝑃𝑏𝑟𝑎(𝑘)

 

where, 𝑤 is a weight coefficient; 𝐽1
∗ and 𝐽2

∗ are scaling coefficients of optimization targets  𝐽1,  

𝐽2. Here, the optimization target 𝐽2 is formulated as the penalty function in the cost function. 

 

7.2. PROPOSED SOLUTION 

Dual-loop online intelligent programming (DOIP) involves one driver-oriented velocity 

predictor and one intelligent power splitter, which takes over the real-time optimal control 

system of the vehicle. Real pedal actions 𝑺𝑣𝑒𝑙  by the human driver and the vehicle state data 

are sent to the DOIP algorithm for online optimization, then a real optimal control signal will 

be sent back to the powertrain for the energy distribution. 0.1 seconds is chosen according to 

Ref. [4] as the sampling time k, which is approved to be able to track the system dynamics 

while reserving enough time slot for algorithm computing. The mechanism of the DOIP for the 

PHEV system is shown in Fig. 7-1. 
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Fig. 7-1. Mechanism of dual-loop online intelligent programming 

 

7.2.1. INTERVAL FUZZY PREDICTOR 

In this chapter, the vehicle velocity and acceleration are described as a finite-state MC, [5] its 

state space is denoted as 𝑉 = 𝑣𝑖  | 𝑖 = 1,… ,𝑀 ⊂ 𝑋 ⊂ 𝑅, and 𝑊 = 𝑎𝑗 | 𝑗 = 1,… , 𝑁 ⊂ 𝑌 ⊂ 𝑅. 

The transition probabilities may be estimated from the frequencies of observed transitions as 

given by 

{
 
 

 
 𝑝𝑖𝑗 = 𝑃(𝑎

+ = 𝑎𝑗|𝑣 = 𝑣𝑖) =
𝐻𝑖𝑗
𝐻𝑖

𝐻𝑖 =∑𝐻𝑖𝑗

𝑁

𝑗=1

                                        (7 − 7) 
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where, 𝑣  is the present velocity; 𝑎+  is the next step acceleration; 𝑝𝑖𝑗  is the transition 

probability from 𝑣𝑖  to 𝑎𝑗 ; 𝐻𝑖𝑗  indicates the transition counts from 𝑣𝑖  to 𝑎𝑗 ; 𝐻𝑖  is the total 

transition counts initiated from 𝑣𝑖; the transition probability matrix ∏ is filled with elements 

𝑝𝑖𝑗 . Motivated by Eq. (7-7), the probability vector of the next state is defined as 

(𝜆+(𝑎))
𝑇
= (𝜆(𝑣))

𝑇
∏ = ∏𝑗

𝑇                                             (7 − 8) 

where, 𝜆𝑇(𝑣) = [0…1…0] is an N-dimensional probability vector with the 𝑗th element, to 

indicate a discrete state 𝑎𝑗 in disjoint intervals 𝐼𝑗, 𝑗 = 1, . . . , 𝑁; ∏𝑗
𝑇  denotes the 𝑗th row of the 

transition probability matrix ∏. In the fuzzy encoding technique, X and Y are divided into finite 

sets separately with fuzzy subsets Φ𝑖 , 𝑖 = 1, . . . ,𝑀 and Φ𝑗 , 𝑗 = 1, . . . , 𝑁. The fuzzy subset Φ𝑖  

and Φ𝑗  are pairs of (𝑋, 𝜇𝑖(∙))  and (𝑌, 𝜇𝑗(∙)) , where 𝜇𝑖(∙) , 𝜇𝑗(∙)  are Lebesgue measurable 

membership functions that satisfy the following property: 

{
𝜇𝑖: 𝑋 → [0,1] 𝑠. 𝑡. ∀𝑣 ∈ 𝑋, ∃𝑖, 1 ≤ 𝑖 ≤ 𝑀, 𝜇𝑖(𝑣) > 0

𝜇𝑗: 𝑌 → [0,1] 𝑠. 𝑡. ∀𝑎 ∈ 𝑌, ∃𝑗, 1 ≤ 𝑗 ≤ 𝑁, 𝜇𝑗(𝑎) > 0
                        (7 − 9) 

where, 𝜇𝑖(𝑣) reflects the degree of membership of 𝑣 ∈ 𝑋 in 𝜇𝑖; 𝜇𝑗(𝑎) reflects the degree of 

membership of 𝑎 ∈ 𝑌  in 𝜇𝑗 . Based on the theory of approximate reasoning, [6] the 

transformation with normalization allocates an M-dimensional probability vector for each 

𝑣 ∈  𝑋 as follows: 

(𝑂(𝑣))
𝑇
= [

𝜇1(𝑣)

∑ 𝜇𝑖
𝑀
𝑖=1 (𝑣)

,
𝜇2(𝑣)

∑ 𝜇𝑖
𝑀
𝑖=1 (𝑣)

,… ,
𝜇𝑀(𝑣)

∑ 𝜇𝑖
𝑀
𝑖=1 (𝑣)

]                    (7 − 10) 

This transformation is used to do normative fuzzification and map velocity in the space X to 

vector in M-dimensional probability vector space �̅� , and the sum of the elements in the 

probability vector ∼ 𝑂(𝑣) equals to 1. The probability distribution of the next state in �̅� is 
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computed based on Eq. (7-10), then aggregated with membership function 𝜇(𝑎) to decode 

vectors in �̅� back to the space 𝑌 as given by:  

𝑧+(𝑎) = (𝑂+(𝑣))
𝑇
𝜇(𝑎) = (𝑂(𝑣))

𝑇
∏𝜇(𝑎)                             (7 − 11) 

where, the element 𝑝𝑖𝑗  in the transition probability matrix Π is interpreted as a transition 

probability between Φ𝑖  and Φ𝑗 . The membership function 𝜇(𝑎)  is used to encode the 

probability vector of the next state in the space 𝑌.  

In this chapter, it is assumed that membership functions have the same volume from which it 

follows that ∑ 𝑝𝑖𝑗 = 1
𝑁
𝑗=1  and ∑ 𝑂𝑖(𝑣) = 1

𝑀
𝑖=1 , and the next one-step-ahead velocity is 

calculated and simplified to 

{𝑎
+ =

∑ 𝑂𝑖(𝑣)
𝑀
𝑖=1 ∑ 𝑝𝑖𝑗𝑉𝑗

𝑁
𝑗=1 𝑐𝑖

∑ 𝑂𝑖(𝑣)
𝑀
𝑖=1 ∑ 𝑝𝑖𝑗𝑉𝑗

𝑁
𝑗=1

= (𝑂(𝑣))
𝑇
∏𝑐

𝑣+ = 𝑣 + 𝑎+

                        (7 − 12) 

where, 𝑐𝑖  and 𝑉𝑗  are the centroid and volume of the membership function 𝜇𝑗(𝑣). 

 

7.2.2. DEEP FUZZY PREDICTOR 

As driver-oriented predict models, the deep fuzzy predictor (DFP) is created with multi-

dimensional fuzzification to improve the precision of future velocity predictions by 

reconsidering driving behaviours for each look-ahead step. Unlike a single MC model with 

fuzzy encoding, the DFP involves five driver-oriented MC models, which are classified by fuzzy 

C-mean clustering algorithm. A membership criterion vector solved by clustering is utilized as 

weighted sum coefficients to aggregate the predicted accelerations of the five driver-oriented 
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MC models. The fuzzy granulation evolution for the MC models is drawn in Fig. 7-2 and the 

production process of the DFP is presented as follows. 

 

Fig. 7-2. Fuzzy granulation evolution for MC models 

The auto-regression (AR) model is a proven tool for generalizing the signal’s average time 

regressive pattern and predicting by following the dynamic. The AR model used in this study 

follows the structure described in [7]: 

𝑣(𝑘) =∑𝜗𝑟𝑣(𝑘 − 𝑟) + 휀𝑘

𝐾

𝑟=1

                                           (7 − 13) 

where, 𝜗𝑟  are the AR coefficients; 𝐾 is the order of AR model; 휀𝑘 refers to the i.i.d noise; 𝑣(𝑘) 

is the vehicle speed at time step 𝑘, with sample period 𝜏 = 0.1𝑠 in this study. 

Due to real-world driving involving frequent transitions in the driver behaviour, the AR model 

is used in the moving horizon way to extract driver-oriented velocity information, in which 

parameters of past measurement horizon length and the AR model order R need to be 

investigated. AR models of horizons ranging from 10 to 500 seconds and with orders from 1st 

to 4th have been tested on 9000s WLTP-based driving cycles. Second order AR models with 
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200 seconds horizons show consistent advantage judged by the Corrected Akaike Information 

Criterion. [8] Its result is described as data vector 𝜸𝑟  of speed interval samples, which contains 

four sets of information as given by 

𝜸𝑟 = [𝜗𝑟1 𝜗𝑟2 𝑎𝑟_𝑎𝑣𝑔 𝑎𝑟_𝑚𝑎𝑥𝑅]                                    (7 − 14) 

where, the AR coefficient set 𝜗  provides the trend of sampling speed change; average 

acceleration rate 𝑎𝑟_𝑎𝑣𝑔  marks the average state and the maximum acceleration range 

𝑎𝑟_𝑚𝑎𝑥𝑅 marks the range of acceleration changes. 

Considering the computation efficiency and prediction accuracy, 5-layer Markov-chain model 

is reliable for training purpose as has been proved by Ref. [7]. In this chapter, the AR model 

coefficient sets are classified into 5 clusters representing different acceleration states to label 

the estimated AR models to some specific driver states. The five clusters are fuzzified to reflect 

the acceleration range relationship among different driving behaviours, the driving behaviours 

are noted as 1. Very Gentle, 2. Gentle, 3. Normal, 4. Aggressive, 5. Very Aggressive. As there 

is no prior information on the predicted vehicle’s performance or the driver’s preference, the 

fuzzy C-mean method with unsupervised learning process is recommended for dividing 

information with less strict internal borders and unpredictable external borders. It is more 

sensitive to the isolated point i.e. dramatic driving state. The method uses a membership 

criterion 𝜔𝑘,𝑛 and the Euclidean distance from data 𝑥𝑘 (𝑘 ∈ {1,···, 𝐴})  to identify multiple 

cluster centres 𝐶𝑛 (𝑛 ∈ {1,···, 𝐵}). The cluster centers 𝐶𝑛 are iterated till the total distance is 

minimized [9]: 

𝐽 = ∑∑𝜔𝑘,𝑛
𝑚 ∥ 𝑥𝑘 − 𝐶𝑛 ∥

2

𝐵

𝑛=1

𝐴

𝑘=1

                                          (7 − 15) 
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{
 
 

 
 𝜔𝑘,𝑛 =

1

∑ (
∥ 𝑥𝑘 − 𝐶𝑛 ∥
∥ 𝑥𝑘 − 𝐶𝑛 ∥

)

2
𝑚−1𝐵

𝑘=1

𝐶𝑛 =
∑ 𝜔𝑘,𝑛

𝑚𝜸𝑘
𝐵
𝑘=1

∑ 𝜔𝑘,𝑛𝑚
𝐵
𝑘=1

                                       (7 − 16) 

where, parameter m (m > 1) controls the fuzziness of cluster overlapping, which is set at 𝑚 =

2 in this study. The classification results provide data’s membership distributions with respect 

to all of the clusters. According to driving behaviour classification, the transition probability 

matrix ∏ in Eq. (7-8) is expanded into five transition probability matrixes as given by 

|∏1 ∏2 ∏3 ∏4 ∏5|                                              (7 − 17) 

where, the transition probability matrix with customized division can more accurately reflect 

the probability distribution of acceleration under different driving behaviours. Therefore, the 

next one-step-ahead accelerations by driver-oriented clustering (Fig.7-2 b) can be translated 

to 

𝑎𝑛
+ = (𝑂𝑛(𝑣))

𝑇
∏𝑛𝑐𝑛                                                    (7 − 18) 

Here, the membership criterion is utilized as weighted sum coefficient to aggregate predict 

acceleration of five driver-oriented MC models. Based on Eq. (7-18), the next one-step-ahead 

velocity is calculated as given by 

{
𝑎+ = ∑(𝑂𝑛(𝑣))

𝑇
∏𝑛 𝑐�̅� ∙ 𝜔𝑛(𝑣)

𝐵

𝑛=1

𝑣+ = 𝑣 + 𝑎+

                                       (7 − 19) 

where, the membership criterion vector 𝜔𝑛(𝑣) corresponds to the data vector 𝜸𝑟  of the 

speed interval sample. 
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7.2.3. INTELLIGENT POWER SPLITTER AND DOIP WORKFLOW 

In this section, an intelligent power splitter is designed based on CAPSO algorithm, which has 

three main procedures, namely, initialization, main iteration, and optimal position retrieving. 

The details and principle of the CAPSO algorithm working procedure are discussed in the 

author’s previous work. [10] To solve the optimization problem in Eq. (7-6) online, the 

algorithm is customized and modified in the following aspects. At the initialization procedure, 

the position of each particle is defined as: 

𝑥(𝑖,𝑗) = [𝑛𝑚𝑜𝑡
(𝑖,𝑗)

    𝑃𝐼𝑆𝐺
(𝑖,𝑗)]                                                    (7 − 20) 

Here, the superscript 𝑖 is an index of iterations, for a swarm intelligent algorithm that has 𝑀 =

15 iterations, 𝑖 = [1,2,3…𝑀]. The superscript 𝑗 is the index of the particle, for swarm that 

has 𝑁 = 20 particles, 𝑗 = [1,2,3…𝑁]. 𝑛𝑚𝑜𝑡
(𝑖,𝑗)

, 𝑃𝐼𝑆𝐺
(𝑖,𝑗)

 are the rotation speed of motor and the 

demand power of an ISG in the 𝑗th agent and 𝑖th iteration. For the CAPSO, the particles 

position updates with the following equation: 

𝑥(𝑖+1,𝑗) = (1 − 𝛽) ∙ 𝑥(𝑖,𝑗) + 𝛽 ∙ 𝑔(𝑖,∗) + 𝛼(𝑖) ∙ 𝜖(𝑖,𝑗)                          (7 − 21) 

In Eq. (24), 𝑔(𝑖,∗)  is the best position in the 𝑖th iteration, 𝛽  is the attraction parameters of 

CAPSO, 𝛼 is the convergence parameters of CAPSO and 𝜖 is the [0,1] random number. Here, 

𝛼 and 𝛽 could be updated respectively in each iteration as: 

{
𝛼(𝑖) = 𝛼(0) ∙ 𝛾𝑖

𝛽(𝑖+1) = 𝑎 ∙ 𝛽(𝑖) ∙ (1 − 𝛽(𝑖))
                                           (7 − 22) 

where, the setting range of 𝛼(0) and 𝛾 are 𝛼(0) = 0.9, 𝛾 = 0.95 in this chapter; the attraction 

parameter is mapped by the logistic map [11], in which the initial value 𝛽(1) = 0.6 and 𝑎 = 4 



 

- 159 - 

 

are used. When 𝛽 → 0  in any step, the algorithm may lead to slow changes. After the 

convergence has been achieved, the algorithm ends the main iteration and outputs the best 

position at the end iteration 𝑔max _𝑖𝑡𝑒𝑟,∗ as the global optimal solution. 

The proposed DOIP has two online iteration loops for updating predict model and optimizing 

control sequence, which can obtain a real-time optimal control signal for energy flow 

distribution. Inspired by fuzzy granulation technology, the DOIP algorithm improves the 

precision of future velocity by reconsidering driving behaviours for each look-ahead step to 

guarantee the effectiveness of the optimal control sequence solved by CAPSO algorithm. The 

DOIP workflow (at k sampling time) is shown in Fig 7-3. 

 

Fig. 7-3. Workflow of dual-loop online intelligent programming 

In the prediction process of the DOIP algorithm, a recording matrix and its mirror matrix are 

involved and used as short-term length moving windows for driving data collection. Although 

the size of the training data is limited by length of moving windows, the DOIP algorithm will 
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continuously motivate the training data to keep fresh all the time. It can be described as given 

by:  

𝑹 = 𝑹𝑚𝑖𝑟𝑟𝑜𝑟 = [𝜸𝑘, 𝜸𝑘−1, … , 𝜸𝑘−5000]
𝑇                                    (7 − 23) 

where, 𝜸𝑘  indicates data vector of the moving memory horizon at sampling time 𝑘; the update 

frequency of recording matrix 𝑹 is 5 seconds; the update frequency of mirror matrix 𝑹𝑚𝑖𝑟𝑟𝑜𝑟  

is consistent with the communication frequency of the real-time PHEV system (0.1s). 

Between two updates of the record matrix 𝑹, the mirror matrix 𝑹𝑚𝑖𝑟𝑟𝑜𝑟  will participate in the 

iterative calculation of multi-step prediction and its procedure is as follows. Based on Eq. (22), 

the new data vector 𝜸𝑘+1 related to the next one-step-ahead velocity 𝑣(𝑘 + 1) is calculated 

and used to squeeze out the last data vector 𝜸𝑘−5000  in the mirror matrix. Therefore, the 

mirror matrix 𝑹𝑚𝑖𝑟𝑟𝑜𝑟  is replaced to 𝑹𝑚𝑖𝑟𝑟𝑜𝑟
′  as given by 

𝑹𝑚𝑖𝑟𝑟𝑜𝑟
′ = [𝜸𝑘+1, 𝜸𝑘, … , 𝜸𝑘−4999]

𝑇                                    (7 − 24) 

Based on the new mirror matrix 𝑹𝑚𝑖𝑟𝑟𝑜𝑟
′ , the membership criterion of the next one-step-

ahead 𝑢𝑛(𝜸𝑘+1) is calculated as the weighted sum coefficient to aggregate the next two-step-

ahead velocity from predict results of five driver-oriented Markov models. The next-two-step 

velocity 𝑣(𝑘 + 2) can be calculated as given by 

{
𝑎(𝑘 + 2) = ∑(𝑂𝑛(𝑣(𝑘 + 1)))

𝑇

∏𝑛 𝑐�̅� ∙

𝐵

𝑛=1

𝜔𝑛(𝑣(𝑘 + 1))

𝑣(𝑘 + 2) = 𝑣(𝑘 + 1) + 𝑎(𝑘 + 2)

               (7 − 25) 

After iterative calculation, the future horizon velocity 𝑣(𝑘 + 1), 𝑣(𝑘 + 2),… , 𝑣(𝑘 + 100) is 

obtained, then used in the second iteration loop for optimizing the control sequence via the 

CAPSO algorithm. Finally, the first fifty elements of the control sequence 𝒖(𝑘 + 1), 𝒖(𝑘 +



 

- 161 - 

 

2),… , 𝒖(𝑘 + 100) will be sent back to the powertrain of the PHEV system for real-time energy 

management. Once the next updating trigger comes, the recording matrix 𝑹 and the mirror 

matrix 𝑹𝑚𝑖𝑟𝑟𝑜𝑟  will both be updated following which the driver-oriented MC models ∏𝑛 will 

be re-learned respectively. 

 

7.3. EXPERIMENTAL PLAN 

7.3.1. REAL-WORLD DRIVING CYCLES 

In this research, experimental studies are conducted on the cockpit package with the same 

PHEV model, in which five human drivers are invited as experimental objects to participate in 

8000 seconds real-world driving. The road map model used with traffic is a mixture of highway 

and local roads with multiple stop signs, traffic lights, and speed limit changes provided by IPG 

CarMaker as Fig. 7-4. The human driver is required to follow the speed limits, stop signs, traffic 

lights, and other traffic regulations. It should be noted that the driver’s pedal behaviour may 

be dependent on the vehicle, the pedal to its torque map, and even the physical pedal 

resistance feedback. This dependence is not studied in this research. The proposed model in 

this chapter is for generating/learning the drivers’ behaviour for a given vehicle. The 

specification of the real-world driving cycle is shown in Table 7-1. 
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Fig. 7-4. Driving scenario with traffic provided by IPG CarMaker 

Table 7-1. Specification of real-world driving cycle 

Human driver Traffic type Driving time(s) Driving distance(km) 

A Urban  1880 11.6 

B Urban  1590 17.9 

C Urban  940 8.1 

D Highway  1350 22.5 

E Highway 2240 40.0 

 

7.3.2. DRIVING SIMULATION PLATFORM 

A static system experience platform driving simulator is involved in this work as shown in Fig. 

7-5, which is the ideal tool for subjectively testing vehicle functions through direct experience. 

It makes the most of the advantages offered by the combination of a detailed and realistic 

human machine interface simulation and a real-world driving experience, coupled with the 

CarMaker open integration and test platform. [12] There is one cockpit package supported by 

a Thrustmaster T500RS and one host PC with I5-6500 3.2GHz processor and 8GB RAM. Their 



 

- 163 - 

 

communication relies on a 3.0 USB cable, in which sampling frequency of the PHEV system 

and pedal data acquisition are both 10 Hz. 

 

Fig. 7-5. Driving simulator used in this research 

 

7.4. RESULT AND DISCUSSION 

7.4.1. VELOCITY PREDICTION COMPARISON 

Existing MC-based predictors including the nearest neighbour predictor (NNP) [13] and the 

fuzzy encoding predictor (FEP) i.e. the interval fuzzy predictor [14] is considered in this chapter 

and compared with the proposed DFP. As the unique ability, the DFP can efficiently 

differentiate driving behaviours at each driving state using fuzzy C-mean clustering algorithm. 

In Fig. 7-6, it can be seen that five-level driving behaviours are clearly discriminated through 

deep fuzzy granulation, in which the driver with more aggressive actions have more wide 

operation range. Especially at deceleration range [-6,-3], the DFP differentiates the operation 

border of each driving behaviour. 
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Fig. 7-6. Clustering results of driving behaviour by the DFP 

Fig. 7-7 presents 5-second velocity prediction result of three predictors on the personalized 

WLTP-based cycles. In conjunction with the fragment of real-time delta-v comparison of using 

three predictors, it is very hard for the NNP to make a good prediction in the low-speed area 

because the transition probability of this area is very small by using one discrete MC model. 

Through fuzzy granulation, the FEP fixes the problem from the low-speed area but to treat 

different driving habits in a unified way makes its prediction performance in the medium-high-

speed area still unsatisfied. Compared with both MC-based predictors of the NNP and the FEP, 

it is apparent that the DFP can achieve more excellent accuracy because the training database 

of the predictive model is continuously updating during real-world driving. The prediction 

model can realize more personalized prediction in time-series through driver-oriented 

continuous adjusting among 5-layer Markov-chain models. The integral time absolute error 

(ITAE) in DFP (2.4237 × 105) is less than that in NNP (3.3412× 105) and FEP (2.7074 × 105), 
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in which the maximum error in DFP decreases 2.59% compared to that in FEP. More 

comparison detail is shown in Table 7-2. 

 

Fig. 7-7. Velocity prediction result of three MC-based predictors 

Table 7-2. Velocity prediction comparison of three MC-based predictors 

Predictor Driving behaviour 
recognition 

Maximum 
error 

ITAE(𝟏𝟎𝟓) Reduce 
(%) 

NNP NA 14.81% 3.3412 - 

FEP NA 4.81% 2.7074 18.97% 

DFP Yes 2.22% 2.4237 27.46% 
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7.4.2. PERFORMANCE OVER CYCLE-BASED DRIVING 

Here, the DOIP-based online control strategy using the DFP (10-second look ahead) is further 

compared with DP-based one and a rule-based control strategy over the WLTP-based driving 

cycle. Fig. 7-8 illustrates the vehicle system performance comparison when initial SoC=0.8. It 

can be discerned that the power split trajectory in the DOIP-based online control strategy is 

close to that of DP-based control strategy and clearly differs from the rule-based control. 

Especially during the hybrid mode, the rule-based control strategy more often let the engine 

work at maximum power. Relatively, the DP and DOIP based control strategies let engine keep 

working in a high-efficiency region for fuel saving. 

 

Fig. 7-8. Vehicle system performance comparison when initial battery SoC=0.8 
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An analogous result also can be observed in Fig. 7-9 when initial SoC=0.2. Obviously, the fuel 

consumption under the DOIP-based online control strategy is closest to that of the DP-based 

control, 9.18% and 11.8% energy-saving from the rule-based control strategy at SoC=0.8 and 

SoC=0.2. Compared to the rule-based control strategy, the DP and DOIP based them have a 

higher SoC level during the entire journey as backup energy for the potential high power 

requirements. Compared with when the initial battery SoC=0.2, energy-saving performance 

of productive control strategies is more significant when the initial battery SoC=0.8. The 

vehicle performance with different control strategies is summarized in Table 7-3. 

 

Fig. 7-9. Vehicle system performance comparison when initial battery SoC=0.2 
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Table 7-3. Vehicle system performance over WLTP-based driving 

Optimization 
strategy 

Initial 
SoC 

Final SoC Used fuel energy 

(𝟏𝟎𝟖𝐉) 

Savings 
(%) 

Rule-based 0.8 0.2893 2.2730 - 

DP 0.8 0.3339 2.0146 11.37% 

DOIP 0.8 0.3093 2.0644 9.18% 

Rule-based 0.2 0.2893 3.0951 - 

DP 0.2 0.3891 2.6383 14.76% 

DOIP 0.2 0.3348 2.7300 11.80% 

 

7.4.3. PERFORMANCE OVER REAL-WORLD DRIVING 

All the experiments here were conducted on the driving simulation platform. Fig. 7-10 shows 

the DiL experiment result operated by five human drivers in simulation driving scenarios, 

where each driver's independently driven section is separated by a black dotted line. After 

600-second initialization of the recording matrix, the DFP starts to produce 10s look-ahead 

horizon and its prediction models are real-time updating per five seconds. The predicted 

velocity feature relies on last-one-step driving behaviour not related to the driver's change. 

This means that if the driving behaviour of a single driver has changed dramatically, its 

predicted velocity will be adjusted adaptively according to a new pedal action (shown in 

magnified views). It is emphasized that the recording matrix of the DFP will be completely 

replaced within 600 seconds so that to relearn a new driver behaviour takes up to 10 minutes 

whenever the driver changes. 
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Fig. 7-10. Online prediction results over real-world driving 

Fig. 7-11 indicates when BP’s SoC is high, the DOIP-based control strategy allows the engine 

to compensate for the total power demand for low power. Fig. 7-12 indicates when BP’s SoC 

is low, this control strategy will give the engine a priority in compensating the total power 

demand compared to the generator to compensate the BP. Compared with the rule-based 

strategy, Up to 9.37% total energy can be saved while maintain the higher SoC value by the 

DOIP-based control strategy. During the real-world driving, the DOIP algorithm breaks the 

bondage of conventional rule-based strategy and freely explore the more efficient way for the 

PHEV’s energy-split. Due to no prior information on the predicted vehicle’s performance or 

the driver’s preference, global optimal algorithms i.e. the DP-based control strategy is no 

longer suitable for online optimization of the HEV energy management. More specification 

comparison over real-world driving is reported in Table 7-4. 
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Fig. 7-11. Vehicle performance over real-world driving when initial battery SoC=0.8 
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Fig. 7-12. Vehicle performance over real-world driving when initial battery SoC=0.2 

Table 7-4. Online performance comparison over real world driving 

Optimization 
strategy 

Initial SoC Final 
SoC 

Used fuel energy 

(𝟏𝟎𝟖𝐉) 

Saving  

(%)  

Rule-based 0.8 0.2985 2.0217 - 

DOIP 0.8 0.3144 1.8668 7.66% 

Rule-based 0.2 0.2985 2.7638 - 

DOIP 0.2 0.3123 2.5049 9.37% 

 

The computational time of the DOIP algorithm in the DiL experiment is investigated and 

contrasted in Table 7-5. The solving speed of the DOIP algorithm is affected by look-ahead 

horizon length and computational efficiency of the processor, where the latter will not be 
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discussed in this chapter. As an increase of look-ahead horizon length, iterative calculations in 

this algorithm increase and its computational time appears a linear upward trend. When the 

look-ahead horizon is 20 seconds, the computational time increases to 0.79s per second but 

computing resources still have a surplus depending on its concise solving frame. As the rapid 

development of computer science, it is feasible to operate the DOIP algorithm on the actual 

on-board controller of HEVs for real-time energy saving. 

Table 7-5. Computational time in different look-ahead horizon length 

Optimization 
strategy 

Look-ahead 
horizon 

Time (per 
second) 

Relative 
increase (%)  

DOIP 5s 0.54s - 

DOIP 10s 0.67s 24.07% 

DOIP 20s 0.79s 46.30% 

 

7.5. SUMMARY 

This chapter develops an online predictive control strategy using the proposed DOIP algorithm 

for series-parallel PHEVs. Its prediction performance is demonstrated and compared with 

existing MC-based predictors. Cycle-based driving (WLTP) and real-world driving are 

conducted on the driving simulator experimental platform for vehicle performance validation. 

The conclusions drawn from the investigation are as follows: 

1) The proposed DFP has the ability to differentiate driving behaviours at each driving state 

in real time. Its prediction result shows excellent accuracy with the lowest maximum error 

(2.22%), compared with the NNP (14.81%) and the FEP (4.81%). 
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2) From the cycle-based driving results, energy management efficiency of the DOIP-based 

control strategy is close to DP-based control strategy. It is clearly superior to the rule-based 

one over the WLTP-based driving cycle with up to 11.80% reduction in fuel consumption. 

3) During real world driving, up to 9.37% total energy can be saved compared with the rule-

based control strategy. The DP-based control strategy cannot work in this online 

environment. 

4) Whether cycle-based driving or real-world driving scenarios, the energy-saving 

performance of the DOIP-based control strategy is more outstanding when the initial SoC 

is low (SoC=0.2). 

5) The computational time of the DOIP algorithm is investigated. It is feasible to operate the 

DOIP algorithm for 20s look-ahead horizon and computing resources still have a surplus. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

Interdisciplinary research has been carried out for the past four years to shape the idea of 

developing a series of human-machine interactive systems for series-parallel hybrid electric 

vehicles using computational intelligence. This thesis demonstrates a new methodology for 

solving emerging engineering problems with the help of cutting-edge technologies of 

computational intelligence. This chapter draws the conclusions and highlights from the 

doctoral research, summarises the innovation and impact, and discusses possible future 

research directions.  

 

8.1. CONCLUSIONS AND HIGHLIGHTS 

This research exploits emerging ‘mediums’, computational intelligence, and the Internet of 

Things to establish an accessible human-machine interaction system. The impact of drivers on 

the hybrid system is first exposed and exhaustively studied. Computational intelligence 

(including fuzzy logic, evolutionary algorithms, and deep learning) and cyber-physical control 

technologies have been applied to this research. The conclusions of this thesis are drawn as 

follows, corresponding to the relevant chapters: 

a) Adaptability - the proposed driver-oriented supervisory control system with 

personalized non-stationary inference significantly enhances the robustness of hybrid 

electric vehicles. 
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According to the work carried out in Chapter 4, a cyber-physical control approach of using 

personalized non-stationary inference is proposed to enhance energy economy and 

robustness of the rule-based vehicle control system by real-time monitoring driving behaviour. 

Specified conclusions drawn from this research are: 

• Compared to the CD/CS strategy with stationary inference, up to 9% total energy can be 

saved over the WLTP-based cycle by using personalized non-stationary inference, 

especially for very gentle drivers. 

• Compared to driven by type-1 fuzzy sets, driving style recognizer driven by type-2 fuzzy 

sets helps save a further 2.35% of total energy for stochastic changes in driving style. 

• When the control signal is completely lost, energy-saving performance of the improve 

vehicle system is still higher than that of the ECMS (1.11%) and the CD/CS strategy (4.31%).  

 

b) Global optimality - the proposed spectrum-guided fuzzy feature extraction helps 

accurately identify the human driver from natural operating signals, and provides driver-

identified globally optimal control policies, as opposed to mere control actions.  

Chapter 5 carries out the research concerning a new concept of the driver-identified 

supervisory control system, wherein an improved method of spectrum-guided fuzzy feature 

extraction (SFFE) is developed for improving the recognition accuracy and efficiency of this 

control system. The findings from this research are as follows: 
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• With the help of the spectrum-guided fuzzy feature extraction, the recognition accuracy 

of both forward and bi-directional LSTM networks rises 7% and 6% respectively from other 

extraction methods (time or frequency domain). 

• Compared to forward LSTM networks, bi-directional LSTM networks give an average of 7% 

higher accuracy in driver identification performance. 

• Driven by a human driver whose data was not in the training set, this proposed system 

shows strong robustness and provides an excellent energy-saving performance, compared 

to the baseline (11.31%) and FL-based (5.53%) schemes. 

 

c) Synergy - the proposed back-to-back competitive learning mechanism has the capability 

of synergistic promotion of robustness and efficiency of hybrid electric vehicle systems. 

A novel back-to-back competitive learning mechanism (BCLM) for a fuzzy logic (FL) supervisory 

control system has been researched in Chapter 6. This mechanism breaks through the upper 

limit of heuristic system decisions and compensates the lower limit of optimization-based 

system decisions; and then makes the two systems complement each other. Specific 

conclusions drawn from the investigation are:  

• The proposed mechanism has demonstrated abilities to adapt to the change of driving 

behaviours and to ensure the effectiveness of the FL-based control system by real-time 

MF parameter updates (957 times) in the case study. 

• The improved FL-based control system reduces fuel consumption over the testing real-

world cycle, by at least 9% from the CD/CS-based and at least 7% from the conventional 

FL-based systems. 
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• Comparing the various sizes of the observation windows from 1 to 50 s, the 2-second 

observation window appears to be the best for learning from backward horizons, 

achieving the lowest fuel consumption of 5.88 litres/100 km.               

 

d) Predictability - the proposed dual-loop online intelligent programming has an online self-

updating predictor that guarantees the effectiveness of the optimal control sequence in 

the energy-saving efficiency of online predictive energy management. 

Chapter 7 investigates an online predictive control strategy for series-parallel plug-in hybrid 

electric vehicles (PHEVs), resulting in a novel online optimization methodology that is 

proposed for velocity prediction and energy-flow control. Inspired by fuzzy granulation 

technology, a deep fuzzy predictor is created to achieve driver-oriented velocity prediction, 

and a finite-state Markov chain is exploited to self-learn transition probabilities between 

vehicle speed and acceleration. The findings from this research are as follows: 

• The proposed DFP has the ability to differentiate driving behaviours at each driving state 

in real time. Its prediction result shows excellent accuracy with the lowest maximum error 

(2.22%), compared with the NNP (14.81%) and the FEP (4.81%). 

• During real-world driving, up to 9.37% total energy can be saved compared with the rule-

based control strategy. The DP-based control strategy cannot work in this online 

environment. 

• The computational time of the DOIP algorithm is investigated. It is feasible to operate the 

DOIP algorithm for a 20-s look-ahead horizon, and the computing resources still have a 

surplus. 
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8.2. INNOVATION AND IMPACT 

Through systematic research of driver-oriented intelligent control methodology for series-

parallel HEVs, the substantial outcomes comprise: 1) control-oriented real-time models of a 

series-parallel hybrid powertrain and its components (Chapter 3); 2) a driver-oriented 

distributed control framework for series-parallel hybrid electric vehicles (Chapters 4 and 6); 3) 

a back-to-back competitive learning mechanism to allow competition of two fuzzy-logic-based 

supervisory controllers in a vehicle system (Chapter 5); 4) a spectral-guided fuzzy feature 

extraction method to self-adaptively reduce sampling windows (Chapter 6); 5) an online 

velocity predictor with real-time driving style adaptation (Chapter 7); 6) dual-loop online 

intelligent programming of the velocity predictor and power-split optimizer (Chapter 7). 

 

Following the main chapter order, the research outcomes of Chapter 4 have been submitted 

with IEEE Transactions on Systems, Man, Cybernetics: Systems which is a top journal 

(IF=7.351, JCR Q1) in the field of human-computer interaction and control and systems 

engineering. The journal IEEE Transactions on Industrial Electronics (IF=7.503, JCR Q1) the 

number one journal in industrial engineering and a journal in the top four in automation and 

control systems, has published the research of Chapter 5. The journal IEEE Transactions on 

Fuzzy Systems has published the research results of Chapter 6, and is a leading journal (IF=  

8.759, JCR Q1) in the field of applied mathematics and artificial intelligence. Applied Energy, 

an eminent journal in the field of industrial and manufacturing engineering (IF= 8.426 JCR Q1), 

has recorded the research outcomes of Chapter 7. 
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In terms of application background of each individual control strategy in real cases, the first 

two of the driver-oriented supervisory control systems are more suitable for relatively fixed 

driving conditions e.g. bus routes and aircraft pushback routes. Because of offline optimization 

nature, they could maximize the system efficiency via route preview and global optimization 

algorithm implementation. The last two of the online energy management systems are more 

appropriate for relatively stochastic driving conditions e.g. taxi routes and family car routes. 

Because of online optimization nature, they could evaluate the system effectiveness in real 

time to acclimate to oncoming driving conditions via route prediction and real-time 

optimization algorithm implementation. 

 

8.3. FUTURE RESEARCH DIRECTION 

This section points out some of the suggested future paths of research. 

 

Chapter 3: Research Methodology and Experimental Facilities 

• Many components should be further refined, in particular the electronic components i.e. 

the induction motor and permanent magnet generator. The engine and battery models 

should be developed further, to allow the modelling of emissions and battery degradation. 

• It would be useful to conduct X-in-the-loop testing involving both humans and hardware, 

or even implement control strategies in real vehicles. 
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Chapter 4: Driver-oriented Supervisory Control System with Personalized Non-stationary 

Inference 

• Swarm driving behaviour in different regions should be considered, to expand the scope 

of personalization that would benefit the energy management of a large-scale intelligent 

transportation system. 

• In the cyber-physical system, how to ensure the real vehicle system maintains high 

efficiency under condition of signal loss is an interesting topic. 

 

Chapter 5: Driver-oriented Supervisory Control System based on Spectrum-guided Fuzzy 

Feature Extraction 

• This research only involves six participants. To expand the diversity of samples, 

participants with various attributes, such as gender, age, ethnicity, even education level 

should be analysed. 

• It is obviously impractical to increase the complexity of training networks in exchange for 

more driver segmentation. Transfer learning is a new favourite in machine learning that 

could be a good solution to handle driver-domain adaptation. 

 

Chapter 6: Rear-view-based Online Energy Management using Back-to-back Competitive 

Learning Mechanism 

• The function safety to embed the architecture of the back-to-back competitive learning 

mechanism into a real vehicle controller should be evaluated. 
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• Fuzzy logic controllers perform a synergistic promotion in robustness and efficiency of 

vehicles, but it is not clear that they are the best control architecture. Deep learning 

technologies, including a generative adversarial network, deep Q network, and neuro-

evolution could be good candidates to replace them. 

Chapter 7: Front-view-based Online Energy Management using Dual-loop Online Intelligent 

Programming 

• Using data from the V2X and the near-field sensors should help to improve the prediction 

performance trade-off between length and accuracy. The difficulty is how to reduce the 

dimensionality of these data while maintaining the prediction performance. 

• Dual-loop online intelligent programming should be developed for serving platoon energy 

management, especially for predictive adaptive cruise control. 

Although there are already fully autonomous vehicles on the roads for testing purposes, a 

rollout is far away. Autonomous vehicles are still not able to handle everyday driving and 

remain reliant on the driver when they reach their system limitations. One suggested 

approach to resolve this problem is indirect shared control as an emerging shared control 

method, which is able to realize cooperative driving through input complementation instead 

of haptic guidance. The big challenge is how to model human drivers’ trust in cooperative 

driving. This means if the driver has confidence in cooperative driving, he/she could focus 

more on relaxing himself than pursuing the desired path. Besides, driving behaviour modelling 

is an indispensable task for deploying autonomous driving. How to compromise the trade-off 

between energy economy, safety, and passenger acceptance during driving behaviour 

modelling is another big challenge. As a meaningful attempt towards applications of the man-
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machine system on HEVs, the proposed driver-oriented intelligent control methodology will 

continue to provide technical support and inspire more insights for future connected and 

autonomous vehicles. 
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