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ABSTRACT

Measurements are made on superconducting Niobium on Sapphire and oxidized Silicon

microwave coplanar resonators for quantum bit experiments. Device geometry and mate-

rials are investigated and quality factors in excess of a million have been observed.

The resonant frequency as a function of temperature of a coplanar resonator is char-

acterised in terms of the change in the number density of superconducting electrons. At

lower temperatures, the resonant frequency no longer follows this function, and evidence

is shown that this is associated with the resonant coupling of the resonant frequency with

two level systems in the substrate.

At T < 2.2 K the resonant frequency scales logarithmically with the temperature,

indicating that two level systems distributed in the volume of the Silicon Dioxide affect the

electric permittivity. Applying higher input microwave power levels is shown to saturate

these two level systems, essentially decoupling them from the CPR resonance. This is

observed as an increase in resonant frequency and Q factor.

The resonant frequency is also shown to have a high sensitivity to a magnetic field

applied perpendicular to the plane of the coplanar resonator, with a quadratic depen-

dence for the fundamental, second and third harmonics. Frequency shift of hundreds of

linewidths are obtained. Coplanar resonator are fabricated and measured with current

control lines built on chip, and these have shown to produce frequency shifts of tens of

Kilohertz.
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1. INTRODUCTION

1.1 Overview.

The purpose of the experimental work described in this thesis is to investigate changes in

resonant frequency and quality factor of Superconducting Coplanar Resonators (CPRs)

driven by a microwave source, with variations in device material and geometry. Both

resonant frequency and quality factor are measured as a function of temperature.

Investigations are also made into novel methods of perturbing the CPR resonant fre-

quency. This is achieved by an externally applied magnetic field, and an internally applied

magnetic field through an inbuilt current control line on chip. These methods are shown

to provide a large and reproducible change in the CPR resonant frequency.

The research undertaken here can be used to support research into cavity quantum

electrodynamics (CQED) [1], quantum computing [2], kinetic inductance detectors [3],

filters [4], and resonators [5].

1.2 CPR Basic Concepts.

A coplanar resonator consists of a central conductor strip separated by a gap on either

side from ground conductor planes. The conductor strip and planes are made from high

electrical conductivity materials that support an electromagnetic field, and these reside

on a high dielectric constant, low loss substrate. A picture of a CPR is given below.
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Fig. 1.1: Top, A diagram of a half wavelength CPR. The dimension of the conductor strip is

given by s, and the separation between the inner and the outer conductor planes are

given by w. L and C are the inductance and capacitance of the inner conducting strip.

Bottom, A diagram of a quarter wavelength CPR.

The central conductor strip can resonate at a frequency that is determined by its

inductance (L) and its capacitance (C). The inductance is dependent on the length (l) of

the conducting strip and the ratio of its width to the total separation of the two ground

planes s/(s + 2w). The capacitance is due to the electric field between the conducting

strip and the outer ground planes.

The modes of a CPR are equivalent to a resonant waveguide. A half wavelength

resonant waveguide is constructed with its two ends open to air, and supports a half

wavelength standing wave. For a half wavelength CPR this is achieved by the placement

of coupling capacitors at each end of the conducting strip, see figure 1.1 [6, 7]. For a quarter
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wavelength CPR one end of the conducting strip encompasses a coupling capacitor and

the other end is shorted to the ground conductor plane [8, 9, 10, 11]. The transverse

electromagnetic wave for the fundamental mode of a half wavelength CPR is given in

figure 1.2.
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Fig. 1.2: Electromagnetic field pattern for a half wavelength resonance at fixed time t = 0

seconds, showing the variation in fields across the length of the CPR (Position 0 and

10 cm corresponds to the two ends of the CPR). The red curve represents the electric

field E and the black curve represents the magnetic field B. The evolution of these

waveforms follows a typical standing wave mode.

For a half wavelength resonator, all modal frequencies are given by fn = n/4πl
√

LC =

nc/4πl
√

1/2(ǫr + 1), where n is the mode number, L and C are the inductance and ca-

pacitance, c is the speed of light, ǫr is the dielectric constant of the substrate and l is the

length of the conducting strip.

CPRs of interest here are designed to resonate at microwave frequencies. When the
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resonator is driven by an external microwave source through one end of the CPR (via

the coupling capacitor) at a frequency above or below the resonant frequency, the signal

transmitted through the device is small. When the microwave drive frequency is resonant

with the CPR, then the amplitude of the transmitted signal is maximized. Below is a

figure of the transmitted signal across a half wavelength CPR.
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Fig. 1.3: Lorentizan shaped response of the transmission signal through a half wavelength CPR.

The parameters of interest in CPR operation are its resonant frequency and quality

(Q) factor. The Q factor is defined as the energy stored at resonance divided by the energy

lost per cycle and is equivalent to the resonant frequency divided by its bandwidth (full

width at half maximum). The inverse of Q is a measure of energy loss and is dependent

on the intrinsic, Qint, and the extrinsic, Qext, quality factors.

The inverse of Qint describes the loss associated with the electrically conductive ma-

terial and the dielectric substrate. The inverse of Qext describes the loss associated with

the coupling of the CPR to the external microwave source and radiation loss. The loaded

Q factor, QL of the CPR is given by:
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(

1

QL

)

=

(

1

Qint

)

+

(

1

Qext

)

(1.1)

The losses defining the intrinsic and extrinsic Q are described in more detail in the

following chapters.

1.3 The History of Coplanar Waveguide Resonators.

CPRs have been the subject of intense interest to the scientific community since their

invention by Cheng. P. Wen in 1969, over 4 decades ago [11]. The original terminology

for these devices was the “planar strip line”, until it was pointed out that by changing

the name to “CoPlanar Waveguide” (CPW), it would resemble his initials in honour of

his invention.

CPWs are a type of planar transmission line used in microwave integrated circuits.

They have a planar geometry with the conductors on the same side of the substrate, with

the advantage of fast and inexpensive manufacturing using current on-wafer technology.

There are many applications of the coplanar waveguide, including delay lines, filters,

oscillators and resonators. The focus of this thesis are coplanar resonators and therefore

the notation of CPR is more appropriately applied to these devices.

CPRs are made from metal and superconducting materials. Metal CPRs are used

within the telecommunications industry due to their low dispersion, offering the potential

to construct wide band circuits and components, and they do not require cryogenic cooling.

Superconducting CPRs are devices of interest in scientific research as outlined in the

overview.

The superconducting materials that are most commonly used are Aluminium (Al),

Niobium (Nb) and Yttrium Barium Copper Oxide (YBCO). The advantages of using

superconductors over normal metals are that they exhibit extremely low transmission loss

and can be made smaller in size. CPRs made from superconducting Niobium have a short

penetration depth λL, and thus can be made with dimensions close to the theoretical

limit with thickness 2λL (although not ideal as conductor losses increase, hence Q is not
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maintained high).

Superconducting CPRs were initially used (and still are) as a direct method for mea-

suring the absolute penetration depth, from measurements of the surface impedance. This

is favourable to a common indirect measurement technique involving the extrapolation

of the penetration depth to a temperature of absolute zero from changes in the resonant

frequency of a microwave cavity [12, 13].

Superconducting CPRs find use as tuned cavities for the interrogation and manipula-

tion of the state of quantum bits (Qubits), for Quantum Electrodynamic (QED) experi-

ments [1]. They have been used to communicate information between two phase qubits

[2]. They also can be used as detectors of radiation, such devices are called Kinetic Induc-

tance Detectors [3, 8, 9, 14]. There is a great deal of interest in the development of novel

superconducting CPRs due to their wide application as sensitive measurement devices in

other expanding fields of research.

1.4 Original Contribution.

Much of the experimental work undertaken and discussed here, contributes to the study of

CPRs as detectors of radiation and devices for cavity quantum electrodynamics (CQED).

To do this, control over the behaviour of the resonant frequency and Q factor of the CPR

device under varying conditions is required. This has been achieved here by measuring

the resonant frequency and Q factor as a function of temperature, power, and magnetic

field.

The response of the resonant frequency of a CPR to changes in temperature are char-

acterised by changes in the number density of superconducting electrons [33]. At lower

temperatures (T < 2 K) the resonant frequency drops, and this is attributed to the reso-

nant frequency coupling to two level systems (TLS) within the substrate. Investigations

made here confirm observation of these effects. Furthermore, measurements of the reso-

nant frequency and Q factor as a function of temperature, for varying power levels provide

additional support for the evidence of TLS as a cause for the dip in the resonant frequency

at low temperatures.
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The method of applying a magnetic field perpendicular to the surface of the CPR,

creates a tunable CPR suitable for use in the coupling process of a CPR with a QUBIT.

These investigations show that the resonant frequency behaves quadratically to an in-

crease in the magnetic field. This is attributed to the H2 nature of the superconducting

penetration depth. Applying a field of 0.2 mT perpendicular to the CPR geometry is

focussed ≈ 400 times in the gap between the inner and outer conductor, due to the high

flux focussing factor of the device. The shift in resonant frequency for this applied field

is ≈ 200 linewidths, with a high and unperturbed Q factor. This method is unique due

to the fact that the Q remains constant for magnetic fields applied below the critical

magnetic field of the superconductor.



2. CPR AND QUBIT EXPERIMENTS: MOTIVATION FOR

DESIGNING HIGH Q CPRS

High Q resonators form the basis of two types of technology that are described below. The

first technology incorporates high Q CPRs as high resolution detectors of radiation. The

second technology couples high Q CPRs with QUBITs to gain a greater understanding of

the quantum mechanics that drive the most fundamental atomic processes.

CPRs can be used to detect radiation in the form of Kinetic Inductance Detector (KID)

[3, 14] and/or Lumped Element KID (LEKID) [8, 9] devices. KIDs are based on quarter

wavelength (λ/4) resonators, whereas LEKIDs are lumped inductors and capacitors. The

operation of both devices differ, in that the KID is capacitively/electrically coupled to

a feedline, whereas the LEKID is inductively/magnetically coupled. KID/LEKID circuit

designs have a high transmission away from resonance and high absorption of the signal

on resonance, as shown in figure 2.1a.

When electromagnetic radiation is incident upon a superconductor with energy greater

than the bandgap energy E = hf >> 2∆ (cut-off frequency for Niobium at T = 4 K with

Tc = 9.2 K is f = 2∆/h ≈ (7KbTc/h)
√

1 − T/Tc = 1 THz, and for Aluminium at

T = 300 mK with Tc = 1.2 K is f = 150 GHz), Cooper pairs can dissociate, becoming

quasiparticles (for a description of superconducting particles see chapter 4). Changes

in the number density of Cooper pairs can be measured with KID/LEKID devices by a

change from resonance and phase of a transmitted microwave signal. Figure (2.1a) shows

Cooper pairs at the Fermi level, and the density of states for quasiparticles Ns(E) as

a function of quasiparticle energy E. An increase in incident photon energy implies a

reduction in the number density of Cooper pairs. Figure (2.1b) is the circuit diagram of a

KID, with hf representing the energy of the incident photon. The figure shows that the



2. CPR and QUBIT Experiments: Motivation for Designing High Q CPRs 27

increase in quasiparticle density changes the inductive surface impedance of the film.

Fig. 2.1: a The superconducting band energy diagram versus the number density of supercon-

ducting Cooper pairs Ns(E), the diagram also contains a schematic of a photon incident

on a Cooper pair, generating two quasiparticle excitations. b The equivalent circuit

diagram of the superconducting KID represented by a parallel LC circuit, capacitively

coupled to a feedline. This figure is taken from reference [3].

When a photon interacts with a single KID/LEKID structure, the following results

are obtained.
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Fig. 2.2: c and d represents the response of a KID before (solid line) and after (dotted line)

the absorption of a photon on the resonant frequency and the phase respectively. This

figure is taken from reference [3]

The energy gap of superconductors is typically ∼meV (deduced from 2∆ calculated

above), which corresponds to photon detection in the region of radio to far infra-red photon

energies. KID/LEKID devices are used within the space industry where the range of

energies of particular interest are the mid infra-red to the far infra-red spectrum. Photons

arriving with these energies are used to study early star formations, active galactic nuclei

and galaxy evolution [15].

These KIDs/LEKIDs are typically multiplexed [10], with multiple resonators operating

at slightly different frequencies coupled to the same feedline. This allows for individual

addressing of each resonator by the feedline and increased cross-sectional area to increase

the photon count rate.

When multiplexing these devices size is a crucial factor. It is more advantageous to use

LEKIDs, as the cross-sectional surface area accessible for photon absorption is larger than

that for KIDs. LEKIDs are typically 50 µm2 in area, and can absorb photons arriving

anywhere on their surface due to an inherent uniform current distribution. KIDs are

typically a few millimetres in length, and can only absorb photons at the uncoupled end

of the device where the current is a maximum.
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The detection of microwave signals with high resolution and the reduction of cross

talk between multiple resonators is possible due to the high Q factors exhibited by these

devices. Therefore there is increased interest within the scientific community to develop

and fully characterise the response of these KIDs/LEKIDs for detecting radiation.

Half wavelength CPRs can also be used in experiments investigating the strong cou-

pling of a single photon to a superconducting QUBIT. Strong coupling occurs when the

CPR resonant frequency and QUBIT frequency coincide (on resonance), and an electric

dipole moment lifts this degeneracy, see figure 2.3b. The off resonance microwave response

is a single frequency peak located at the CPR resonant frequency, see figure 2.3a.

When the CPR and QUBIT are on resonance, the electric dipole moment that lifts

the degeneracy is observed as a shift in the microwave frequency response, producing two

new frequency peaks. A minima between these two peaks is centered at the original CPR

resonant frequency. The difference between these peak frequencies corresponds to the

interaction rate (2g), which is also known as the vacuum Rabi frequency. On resonance,

a continuous exchange of energy between the CPR and QUBIT occurs, provided that

the interaction rate is greater than the loss rate of photons from the cavity (κ) and the

dephasing rate of the QUBIT (γ). If the interaction rate is less than these loss rates, the

coherence between the CPR and the QUBIT is lost, and the effects decribed above are

not observed.

The dephasing rate of the QUBIT (γ) is designed to be long to ensure that when

the CPR and QUBIT are on resonance, maximum coherence of the two energy levels is

maintained. The loss rate of photons from the CPR is expressed by κ/2π = f0/Q and

therefore to limit the number of photons lost, the Q is maximized. A high Q CPR also

means that it is easier to resolve the splitting of these two states, when the CPR and

QUBIT are on resonance.
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Fig. 2.3: a Measured CPR transmission as a function of microwave probe frequency for the

CPR and QUBIT, off resonance (large ∆). b Measured transmission as a function of

microwave probe frequency for the CPR and QUBIT on resonance (zero ∆). The inset

diagrams represent the energy levels of the coupled systems for both large and zero ∆.

Taken from reference [1].

When the CPR and QUBIT are on resonance, two frequency peaks are observed in the

spectrum, see figure 2.3b. Off resonance a single frequency peak is observed and located

at the CPR resonant frequency, see figure 2.3a.

Wallraff et al [1] have measured the spectroscopic splitting due to the degeneracy

between a CPR and a QUBIT, with a coupling strength of g/2π = 11.6 MHz, QUBIT

decoherence γ/2π = 0.7 MHz, and photon loss rate of κ/2π = 0.8 MHz. Preliminary cal-

culations based on the coupling between a flux QUBIT with dimensions given in reference
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[6] and a CPR (with a Silicon Dioxide substrate) designed here, predicts the coupling rate

to be g/2π = 35 MHz. Derived QUBIT decoherence rate based on present literature is

γ/2π = 1 MHz, and an ideal photon loss rate based on Q ≈ 1, 000, 000 is κ/2π = 6 KHz.

Considering the Q of the CPR alone as the source of decoherence, then there will be

≈ 5500 oscillations before the coherence between the coupled CPR and QUBIT state are

destroyed, this is compared with ≈ 15 oscillations currently observed and reported in ref-

erence [1]. Including decoherence of the QUBIT, the number of Rabi oscillations for both

devices are similar, suggesting further investigation into reducing QUBIT decoherence

should be undertaken.

Different QUBIT structures have also been investigated in concurrence with CPRs.

They are the charge [1], flux [6], phase [16], quantronium [17] and transmon [18] QUBITs.

These QUBITs and CPRs have all been shown to exhibit strong coupling interactions.

There is an extensive current field of research investigating different strengths of coupling

interactions [19] ranging from weak, dispersive weak, dispersive strong to quasi-dispersive

strong [20]. Effects such as vacuum Rabi splitting and the Purcell effect [21] for example,

are observed with CPRs and QUBITs, and are analogous to optical photon and atom

coupling experiments [22].



3. TUNABLE QUBIT AND CPR EXPERIMENTS

3.1 QUBIT Tunability

To perform Coplanar resonator/Quantum bit (CPR/QUBIT) experiments, either the

CPR or the QUBIT has to be tunable. QUBIT tunability has been extensively stud-

ied by a number of groups [1, 16, 23]. One of the main leaders in this field of research is

J. E. Mooij, who successfully demonstrated the ability to change the energy level spacing

of a QUBIT under a flux bias with three Josephson Junctions (JJ) in a superconducting

ring (the flux QUBIT) and a current control line, see figure 3.1.

Fig. 3.1: Diagram of a 3 JJ QUBIT with directions of circulating current generated by the

current control line (Ic). Taken from reference [23].

The simplest QUBIT is constructed from a single JJ in a superconducting loop. This

device has a well known washboard energy-phase diagram, that can be tilted by an exter-

nal magnetic field. This tilt of the washboard energy-phase diagram means that stable,
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accessible energy states can be created, see figure 3.2. Experimentally, these energy states

are generated by two directions of the circulating currents, as shown in figure 3.1.

Fig. 3.2: Ratio of the energy applied (U) to the Josephson energy (Ei) of a QUBIT as a function

of the ratio of the phase applied (Φ) to the flux quantum Φ0, across a single JJ in a

superconducting loop. The green washboard is representative of the QUBIT with no

flux bias, whereas the blue washboard is representative of the QUBIT with 0.5 Φ0 bias.

When the field applied to the QUBIT by the current control line is 0.5 Φ0 (0.5 flux

quantum), the two lowest energy states are symmetric and antisymmetric superpositions of

the clockwise and anticlockwise circulating currents [24]. These two lowest energy states

can be coupled resonantly to a CPR for CPR/QUBIT experiments. Strong coupling

between the QUBIT and CPR can be achieved without a degradation of the Q of the

CPR, despite the small magnetic fields generated by the current control line perturbing

the state of the QUBIT or the presence of the QUBIT itself.

The flux QUBIT is made scalable by introducing more JJ’s into the superconducting

loop, which is the size limiting factor for a QUBIT (as in figure 3.1). The extra JJ’s add

increased inductance in the loop, which allows a reduction in the size of the loop for no
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overall change in QUBIT inductance. One advantage of this size reduction is that the

QUBIT is less susceptible to flux noise. The extra JJ’s also gives more flexibility over

the tunability of QUBIT energy states, making it easier to resonantly couple the QUBIT

with a CPR.

Figure 3.2 above, is based on the response from superconducting - insulating - su-

perconducting (SIS) QUBIT, where low energy basis states are created by applying 0.5

Φ0. Research using superconducting-ferromagnet-superconducting (SFS) QUBITs with

specific values of ferromagnet thickness have shown that low energy basis states can be

created without applying an additional flux [25]. This may make the process of observ-

ing the strong coupling interaction between the CPR and QUBITs potentially easier, by

excluding the need to manipulate the QUBIT with a current control line.

3.2 CPR Tunability

Tunability of a CPR can be achieved by many techniques including changing the capaci-

tance and inductance of the device, by changing the effective permittivity of a dielectric

buffer layer, changing the permeability of a ferrimagnet ferrimagnet-CPR-dielectric sand-

wich and changing the non-linear Josephson inductance in a SQUID in the middle of the

CPR conducting strip.

M. J. Lancaster et al. [26], have developed a technique for manipulating the dielectric

constant of a buffer layer by a large electric field and as a result produce large tun-

ing frequencies. The CPR sample is constructed from three layers; Y1Ba2Cu3Ox/Buffer

layer/SrTiO3.

There are many different buffer layers such as (Ba,Sr)TiO3, (Pb,Sr)TiO3, (Pb,Ca)TiO3,

Ba(Ti,Sn)O3, Ba(Ti,Zr)O3 and KTaO3, that are added to pure Strontium Titanate (SrTiO3)

substrate that are particularly sensitive to changes in the dielectric constant by large elec-

tric fields. The investigators report that adding 3% barium doping to Strontium Barium

Titanate (SBT) buffer layer, and applying an electric field of 200 V, produces a 2.5 % shift

from the resonant frequency and a change in Q from Q(0 V) = 450 to Q(200 V) = 250.

See figure 3.3 below:
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Fig. 3.3: Q, tanδ, percentage frequency shift and dielectric constant (ξr) response for a 3%

Barium doped SBT buffer layer. Taken from reference [26]

The relatively low Q in this case renders this method insufficient for observing the

strong coupling between a CPR and a QUBIT. This is because the coupling rate of the

CPR/QUBIT system is less than the decay rate of the CPR, due to its low Q. However,

this does make a suitable broadband filter, for which they are primarily designed.

The next two examples discussed rely upon changing or adding to the inductance of

the resonator. D. Seron et al [27] add a ferrite layer to the top of the CPR to alter the

magnetic permeability of the CPR, and hence change the resonant frequency. A. Palacios-

Laloy [28] inserts a series of DC SQUIDs (superconducting quantum interference devices)

into the central conducting strip of the resonator line to add an extra superconducting

non-linear inductance. The SQUID is addressed by a small localized flux to perturb its

state, change its inductance, and hence the total inductance of the conducting strip.

Seron et al, designed a multilayered sample based on the materials; LaAlO3 substrate,

Y1Ba2Cu3Ox superconducting CPR, followed by a ferrimagnetic layer consisting of Yt-

trium Iron Garnet (YIG) or Calcium Vanadium Garnet (CVG). In the absence of the

ferrimagnetic layer, and passing a DC field in the (a, b) plane of the YBCO, the following

results are generated:
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Fig. 3.4: Resonant frequency and Q as a function of the DC magnetic field applied to the (a, b)

plane of YBCO. Taken from reference [27]

Fig. 3.5: Resonant frequency and Q as a function of the DC magnetic field applied to the (a, b)

plane of YBCO in the presence of the CVG layer. Taken from reference [27]

The decrease in resonant frequency with an applied magnetic field parallel to the

YBCO CPR is associated with an increase in the penetration depth of the superconduc-

tor. With the added ferrimagnetic layer they find a lower zero field resonant frequency

and Q, and an increase in resonant frequency for an increase in the applied magnetic

field. The resonant frequency in this case, is proportional to the magnetisation of the

ferrimagnetic layer that is proportional to the applied magnetic field. The dependence of
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the magnetisation on the resonant frequency outweighs the decrease associated with the

change in the penetration depth.

Firstly, the difference in the zero field resonant frequency for figures 3.4 and 3.5 is solely

associated with the change in the magnetic permeability associated with the presence

of the ferrimagnetic layer. The zero field Q is seriously degraded by the presence of

the ferrimagnet. They attribute this to a ferrimagnetic resonance of the ferrite at the

temperature of operation that is close to the resonance of the device, and leads to strong

absorption of the microwave field.

The difference in the change in resonant frequency from the CPR with, and without

the ferrimagnetic layer is about 50 times. The change in frequency for the ferrimagnetic

layer is 0.29 % from the zero field frequency and this is attributed to an enhanced change

in the permeability due to the high magnetic susceptibility of the ferrimagnetic layer.

This percentage change is not as large as the results demonstrated by Lancaster et al,

and the Q is not as high. Another method for perturbing the resonant frequency is given

below.

A. Palacios-Laloy et al, place a seven Aluminium SQUID array into the central con-

ducting strip of the CPR, below is the figure of the SQUID array (figure 3.6).

Fig. 3.6: A seven Aluminium SQUID array image taken by electron micrograph and fabricated

using electron-beam lithography and double angle evaporation. Taken from reference

[28]
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A single SQUID contributes a non-linear inductance component to the total inductance

of the line. This non-linear inductance varies with the magnetic flux that threads the

SQUID loop. As the magnetic flux in the superconducting loop varies between 0 and

Φ0/2 (where Φ0 is the flux quantization as discussed in the previous chapter), the non-

linear inductance (LJ0) changes from LJ0 = Φ0/2πIc to LJ0 → ∞, where Ic is the critical

current of the SQUID. Therefore the resonant frequency of the CPR when the magnetic

flux is Φ0/2, is zero.

In fact, they report a 30 % tunability from the zero field frequency, and a change in

Q from Q(Φ0/Φ = 0) = 3.4 × 103 to Q(Φ0/Φ = 0.5) = 0. See figure 3.7.

Fig. 3.7: The frequency and Q of sample A with parameters: Coupling capacitance 27 fF, self

inductance of one SQUID 40 pH and Ic0 = 330 nA, compared with sample B with

parameters; coupling capacitance 2 fF, self inductance of one SQUID 20 pH and Ic0 =

2.2 µA as a function of Φ/Φ0. The red curve is a fit to the data at T = 60 mK. Taken

from reference [28]

The result demonstrates a large change in the resonant frequency and Q for a small

change in the applied magnetic field. The Q plateau for Φ/Φ0 < 0.5 and Φ/Φ0 > 0.5 is not
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well understood, but is believed to be associated with the presence of low frequency noise

in the sample (specifically critical current noise), or a dissipation source associated with

the SQUID (and arising from dielectric losses in the tunnel barrier). They attribute the

dip in Q at Φ/Φ0 = 0.5 to thermal noise. They recall that the resonant frequency depends

on the energy stored in the resonator. At thermal equilibrium, thermal fluctuations in

the photon number translate into fluctuations of the resonant frequency that causes this

inhomogeneous broadening of the bandwidth, and reduction in the Q.

There have been many attempts to place SQUIDs in the gap between the central

conducting strip, and ground conductor planes of CPRs [29, 30]. Essentially all of these

experiments depict the same characteristic resonant frequency and Q dip with applied

field. If the CPR/SQUID system are used as tuning elements to couple to QUBITs, then

the SQUIDs are not operated near the Φ/Φ0 = 0.5 limit, therefore the change in the

resonant frequency is not as high (∼ Mhz). This is not ideal and essentially a loss-less

tunable CPR is more desirable.

3.3 QUBIT and CPR Tunability

Both QUBIT and CPR tunability are employed in scientific research into cavity quantum

electrodynamics. QUBIT tunability is achieved by changing the current in the current

control line, that perturbs the energy states within the QUBIT. CPR tunability has been

achieved by changing the capacitance and inductance of the CPR, by changing the effec-

tive permittivity of a dielectric buffer layer, changing the permeability of a ferrimagnet,

ferrimagnet-CPR-dielectric trilayer and changing the non-linear Josephson inductance in

a SQUID in the middle of the CPR conducting strip.

QUBIT tunability is difficult to realise experimentally owing to the difficulty in fab-

ricating QUBITs. These QUBITs are micron sized and fabricated using electron-beam

lithography. Choosing a suitable substrate that is compatible with this process determines

the resolution of these QUBITs, this is discussed in more detail in chapter 11. Essentially

it is difficult to reproducibly make these QUBITs. Secondly any impurities present in the

fabrication process can cause pin holes in the Josephson Junctions causing an electrical
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short, essentially eliminated any quantum effects. These impurities may also contribute to

the decoherence of the QUBIT. Both effects cause loss meaning that the strong coupling

between the CPR and QUBIT is difficult to achieve. It should be noted that when the

QUBIT is coupled with the CPR, the Q of the CPR does not degrade.

The tunability of the resonant frequency of a CPR has been shown to be in excess of

30 %, by exploiting the non-linear Josephson inductance of a SQUID in the middle of the

CPR conducting strip [28]. The other methods show equally large tuning frequencies. All

methods demonstrate a degradation of the Q of the CPR. Ideally large tuning frequencies

and unperturbed Q of the CPR are required to make good measurements of the coupling

between the CPR and the QUBIT.

3.4 Summary of Results

Author δf/f0(%) Q0 Reference

M. J. Lancaster 2.5 450 [26]

D. Seron 0.29 185 [27]

A. Palacios-Laloy 30 3.4 × 103 [28]

Tab. 3.1: Table contains the author, percentage change in frequency, Q and reference paper for

different methods of perturbing the resonant frequency.



4. BASIC SUPERCONDUCTIVITY THEORY

4.1 Properties of Superconductivity.

There are two key properties that define superconductivity, they are zero electrical re-

sistivity and perfect diamagnetism [31]. Zero resistivity is demonstrated in the figure

below:

Fig. 4.1: Resistivity ρ of a metal as a function of reduced temperature. At T = Tc, the metal

undergoes a phase transition to a superconducting state characterised by zero electrical

resistivity.

The electrical resistivity (which is inversely proportional to the electrical conductivity)

of a type one superconductor such as Aluminium, changes from a finite value to zero when

a material undergoes a first order phase transition from a normal conducting state to a

superconducting state (type two superconductors such as YBCO undergo a second order

phase transition). In this state, if a transient current is applied to the superconductor it

will cause a current to flow that will not decay away with time.
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A normal metal exhibiting perfect conductivity requires that the transient current does

not decay away, meaning that scattering of electrons or other processes must be inhibited.

However the superconducting state is different and exhibits perfect conductivity because

of an ordered state of loosely associated pairs of electrons called Cooper Pairs [32].

Cooper pairs in BCS superconductors, are created by a weak attractive interaction

between the electrons, generated by an electron-phonon interaction with the lattice. This

causes an instability in the ordinary Fermi-sea ground state of the electron gas, and

the result is the formation of bound pairs of electrons occupying a state with equal and

opposite momentum and spin. These Cooper pairs have a spatial extension of order of

the coherence length ξ, that is the length in which the number density of Cooper pairs

cannot change dramatically in a spatially varying magnetic field. The energy required to

break apart a Cooper pair and create two electron/hole-like particles called quasi-particles

is Eg = 2∆(T ) (where ∆(T ) corresponds to the order parameter of a superconductor).

There is no mechanism for scattering processes to occur when an energy applied to the

condensate is less than the energy gap Eg of the system (neglecting Andreev Reflections),

hence this process is loss-less. The energy required to break a Cooper pair can arise from

increasing the temperature, magnetic field and/or applying a high powered microwave

field [33].

The other property specific to superconductors is perfect diamagnetism. When a

superconductor is placed in a weak magnetic field it will act as a perfect diamagnet,

with zero magnetic induction in its interior. The superconductor expels the magnetic

field applied and this is called the Meissner effect. The depth to which a magnetic field

penetrates the superconducting surface is called the London penetration depth λL [34].

4.2 B and J field Distributions in CPRs.

In 1 dimension the magnetic field distribution and current density in a superconductor

has the solution, B = B0e
−Z/λL and Jy = (B0/µ0λL)e−Z/λL .

The current distribution for a long thin rod is shown below:-
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Fig. 4.2: A diagram of the induced current flow, Jy in a superconducting long thin rod by an

applied magnetic field, Bz.

The current distribution for a half wavelength CPR is shown below:

Fig. 4.3: Current density (red colour) for a CPR, ignoring resonant microwave effects.

In both cases the depth to which a magnetic field penetrates the superconductor is

determined by the effective mass m̂, the number density n̂s, and the effective charge ê of
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the Cooper pairs.

λL =

√

m̂

µ0n̂sê2
(4.1)

The current distribution is also shown to be related to the kinetic inductance as shown

in the derivation below.

The kinetic energy (K) of the supercurrent (Is) is given by K = 1/2
∫

m̂v̂2
s n̂sdV , and

the supercurrent density is Js = −n̂sêv̂s, where v̂s is the supercurrent velocity and
∫

dV

is the integration over the volume. Substituting for v̂s and introducing λL:

K =
1

2
µ0λ

2
L

∫

J2
s dV (4.2)

The kinetic energy is also related to the kinetic inductance per unit length (LK) by

K = 1/2LKI2:

1

2
LKI2 =

1

2
µ0λ

2
L

∫

J2
s dS (4.3)

where I is the total current along the inductor. Re-arranging in terms of the LK :

LK = µ0λ
2
L

∫ J2
s

I2
dS (4.4)

The kinetic inductance can be made large by making Js as large as possible by non-

uniform current distribution or by making the CPR thickness thin compared with λL.

4.3 The Temperature Dependent Penetration Depth.

The temperature dependence of the penetration depth is expressed as:

λL(T ) =
λL(T = 0K)√

1 − t4
(4.5)

Where λ(T = 0 K) is the zero temperature penetration depth, t is the reduced temper-

ature factor and is equal to T/Tc. T is the temperature and Tc is the critical temperature

at which a material changes state from a normal metal conductor to a superconductor.

This equation arises from the temperature dependence of the number density of quasipar-

ticles and Cooper pairs in the superconducting condensate.

The two fluid model describes the conductivity and the temperature dependent pen-

etration depth that is associated with the temperature dependence of the quasiparticles
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and Cooper pairs in the superconducting condensate, see Gorter and Casmier [35]. This

model is based on a circuit containing two different conducting paths expressed by the

impedence associated with the quasiparticles and Cooper pairs. The circuit diagram

shown below includes resistors and an inductor. The resistance and the inductance of the

embedded parallel circuit is associated with electron/hole-like particles (quasiparticles),

with an impedance similar to normal metals. The inductance of the quasiparticles occurs

because they cannot respond instantaneously to changes in the electromagnetic field. The

inductor in the first parallel circuit is associated with the superconducting Cooper pairs.

Fig. 4.4: Circuit diagram of a superconductor.

When the frequency applied to this circuit is zero (e.g. DC), the current flows solely

through the inductor in the first parallel circuit (this has no resistence associated with

it). At a finite frequency and in accordance with the first London equation [34], a time-

varying supercurrent requires an electric (E) field to accelerate and decelerate the Cooper

pairs, and this is loss-less. This electric field also acts on the electron/hole like quasi-

particle excitations that scatter from impurities, and it is this mechanism that causes

losses in superconducting resonators. This model is qualitative but extremely powerful

as it demonstrates zero resistance when the applied frequency is zero and loss when the

frequency is non-zero.

The total number density nT is given by the sum of the number density of quasiparticles
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(nn) and number density of Cooper pairs (ns), nT = ns+nn. The temperature dependence

of ns and nn is:

ns

n
= 1 −

(

T

Tc

)4

(4.6)

nn = n − ns = n

(

T

Tc

)4

(4.7)

Since the penetration depth is inversely proportional to the square root of the number

density of superconducting Cooper pairs (as shown in section 4.2), then, λL ∝ 1/
√

ns ∝

1/
√

1 − (T/Tc)4.

4.4 The Demagnetisation Factor for Different Geometries.

The field to which a magnetic field penetrates a superconductor is determined by the

London penetration depth, and the assumption has been that the magnetic field acts

uniformly over the surface of the superconductor. This implies that the demagnetisation

of the superconductor is zero. For geometries in which the demagnetisation factor of the

sample is not zero, the magnetic field over part of the surface can exceed the applied field,

see figure 4.5 below:
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Fig. 4.5: Top, A superconducting long thin rod and sphere in an applied magnetic field. Bot-

tom, The demagnetisation as a function of the aspect ratio, where c/a corresponds

to the length/diameter, N⊥, perpendicular to the axis of an ellipsoid with semi-major

axis a = b 6= c and N|| parallel the axis of an ellipsoid. Taken from reference [36].

For a long thin rod positioned parallel to the magnetic field the demagnetisation factor

is zero, and for a sphere it is 1/3 [34]. The field inside (Hins) a superconductor is expressed

as:

Hins =
B

µ0

− DM (4.8)

Where B is the magnetic field applied, D is the demagnetisation factor and M is the

magnetization of the superconductor.

For a spherical ideal type 1 superconductor when the applied field reaches 2/3Bc, the
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field on the equator of the sphere reaches Bc. At this point normal regions invade the

sphere, not as a thin equatorial belt of normal material, because if this were to happen, the

whole sphere would turn normal. This is because the demagnetisation would disappear

completely, leaving B = Bins ≈ 2/3Bc and hence the internal field is less than the critical

field allowing superconductivity to reappear. What does happen for a range of fields

2/3Bc < B < Bc is a coexistence of superconducting and normal regions which is known

as the intermediate state. An intermediate state therefore exists for general ellipsoidal

shapes in the field region:

1 − D <
H

Hc

< 1 (4.9)

The demagnetisation factor generally only applies to spheres and ellipsoids, because

the demagentisation factor is constant over the whole surface. The demagnetisation factor

for a CPR is not constant over the whole surface, therefore it is more appropriate to apply

the term flux focusing to the magnetic field perturbed by the superconductor.

To place the CPR in context with the example given in figure 4.5, the CPR ground

plane is say equivalent to a long flat ellipsoid. For a long flat ellipsoid, c/a → 0, and hence

demagnetisation/flux focusing is maximised. The magnetic field applied perpendicular to

the surface of the CPR is therefore highly focused in the gap between the conducting strip

and outer ground conductor planes. This increased magnetic field affects the penetration

depth, discussed in more detail below.

4.5 The Magnetic Field Dependence of the Penetration Depth.

The Ginzburg-Landau theory is based on general observed features of superconductivity

and not on any particular microscopic model, which is dealt with in BCS theory [37].

The particular importance of the Ginzburg-Landau theory is that it describes regions

in which the state of the superconductor is non-uniform such as neighboring magnetic

domain boundaries, quantized flux lines and more importantly with respect to microwave

superconductivity is the surface superconductivity.

Ginzburg-Landau theory considers the free energy of any system to be an expansion
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in powers of np, which is the effective Cooper pair density (np = ns/2), so that:

F(np, T ) = Fn(T ) + α(T )np +
1

2
β(T )n2

p + ... (4.10)

This expansion of the free energy is only in terms of the temperature of the system.

Since α and β are dimensionless factors that are obtained from experimental observation,

then they are easily modified to include the magnetic field dependence of the free energy

on the system. This is shown in the first Ginzberg-Landau equation, see reference [38].

∆ǫ = ∆F/2∆F0 = − 1

κ2
∇2f + (|a|2 + f2 − 1)f = 0 (4.11)

This is obtained using equation 4.10, f is the order parameter equal to Ψ/Ψ0, Ψ0 =
√

β/|α| and ∆F0 = α2/2β. ∆ǫ is the free energy density difference, κ = λL(T )/ξ(T ), and

a = A/
√

2BcλL is the vector potential.

The equation shows that for high current densities, where |a| → 1, f will be depressed

in the surface region. This increases λL and the surface critical current density is corre-

spondingly reduced.

Since the free energy difference is dependent on the square of the vector potential,

then in the Meissner state the penetration depth in conventional superconductors exhibit

a weak H2 dependence near Tc and at low temperatures [39, 40].

λL(T,H)

λL(T, 0)
∝ H2

H2
c

(4.12)

where λL(T,H) is the penetration depth at temperature T and applied field H, λL(T, 0)

is equivalent to λL described previously, and Hc is the thermodynamic critical field.

When a magnetic field is applied to the surface of the CPR, the penetration depth,

and the microwave currents that flow in the CPR are changed. This alters the kinetic

inductance and the resonant frequency, and this is exploited when designing tunable

resonators, as shown in the following chapters. It should also be noted that changing the

kinetic inductance by either raising the temperature or changing the magnetic field, is

achieved by changing the number density of Cooper pairs.



5. ELECTROMAGNETIC THEORY APPLICABLE TO

SUPERCONDUCTORS

Coplanar resonators are made from both normal metals and superconducting materials.

The Q of normal metals and superconducting CPRs is inversely proportional to loss, and

this loss can be related to the surface resistance (Qint = ωL/Rs, where ω is the frequency

of the applied EM field and L is the inductance). The surface resistance is dependent on

the depth to which a magnetic field penetrates the surface of the CPR. This distance is

called the skin depth δ in normal metals and the penetration depth λ in superconductors.

For a normal metal conductor the skin depth δ, is equal to δ =
√

(2/µ0µσω), where µ

is the permeability of the material (=1 for non-magnetic material), µ0 is permeability of

free space, and σ is the electrical conductivity [41, 42].

The resistance of a metal is determined by R = ρl/A, where ρ is the electrical resis-

tivity, l is the length, A is the cross-sectional area and A = l × δ. Therefore the surface

resistance, Rs of a normal metal is given by Rs =
√

ωµµ0/2σ and is a measure of the

time-averaged power dissipated per unit surface area. Therefore the Q of a normal metal

is inversely proportional to square root of the frequency (Q ∝ √
ω).

The depth to which the EM field penetrates the superconductor is called the penetra-

tion depth of the material. This is different to the skin depth in normal metals because the

penetration depth is not dependent on the frequency of the applied EM field, as shown

in section 4.2. The surface resistance of a superconductor is more complicated than the

surface resistance of a normal metal, because of the two conducting channels represented

by the quasiparticles and Cooper pairs.

The London theory considers the total surface current to be the sum of the normal

component (Jn) and the supercurrent component (Js), JT = Jn +Js. This is directly anal-
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ogous to the number density of particles in the superconducting condensate as described

by the two fluid model.

The complex conductivity of a superconductor is also expressed as the sum of two com-

ponents; the normal component (σ1s) and the superconducting component (σ2s), where

σT = σ1s − jσ2s. Provided that the superconductor is thick enough (t >> λL) to prevent

transmission of the EM field travelling through it, then the total surface impedance only

depends on the frequency dependent complex conductivity. The complicated rectangu-

lar geometry (like a CPR) can therefore be reduced to a single boundary with a single

boundary impedance value.

Zs = Rs + jXs =

√

jωµ0

σT

=

√

jωµ0

σ1s − jσ2s

(5.1)

The total impedance of a superconductor, Zs is expressed by the sum of the surface

resistance Rs which is real, and the surface reactance Xs which is imaginary.

The surface impedance for a plane wave incident on a superconductor such as Niobium,

with σ1s << σ2s is simplified to Zs =
√

ωµ/σ2s · (σ1s/2σ2s + j). Since the conductivity of

the superconducting state is σ2s = 1/ωµλ2, then the total impedance is given by:

Zs =
1

2
µ2

0ω
2λ3σ1s + jµ0ωλ (5.2)

The surface resistance extracted from the equation above is shown to be

Rs = 1/2µ2
0ω

2λ3
Lσ1s. The surface reactance is given by Xs = jµ0ωλ, and the surface

inductance, Ls is equal to Ls = LK +LM , where LK = µ0λL is the kinetic inductance and

LM is the internal magnetic field. There is also a geometric inductance LG, associated

with a finite magnetic energy density (µ0H
2/2) stored within the thin film. The total

inductance LT is therefore determined by LT (T ) = LK(T ) + LG + LM .

It should be noted that the validity of this model is restricted to frequencies below the

energy gap frequency (ωg) of the superconductor, since above that frequency additional

loss mechanisms set in and the dissipation approaches that of the normal conductor state.

It is assumed that ω << ωg when comparing the two materials.

As shown above, the Q of normal metals is proportional to the square root of the

frequency, and for superconductors the Q is inversely proportional to the frequency. The
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applied frequency therefore also determines the Q of the material. From figure 5.1 below,

it is shown that at lower frequencies the surface resistance is lower and therefore the Q is

higher for superconducting CPR.

Fig. 5.1: The surface resistance of different materials as a function of frequency. The gray

rectangle represents YBCO, where the width is associated with the varying transition

temperatures of the material, dependent on the oxygen content. Taken from reference

[43].

In fact it is reported [43] that the reduction in the surface resistance of superconducting

Niobium below its critical temperature, at T = 4.2 K, and for a frequency of 10 Ghz, can
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result in a Q that is 500 times greater than Copper at the same temperature. Also the

magnetic field and electric field intensities can be very high for superconducting resonant

cavities making them suitable for CPR/QUBIT measurements due to their high coupling

strengths.



6. TWO LEVEL SYSTEMS IN DIELECTRIC SUBSTRATES

Substrates form one of the most fundamental components of CPRs. They are necessary to

support the patterened superconducting film, and have electrical properties such as high

resistivity and low loss. Substrates such as Sapphire and Silicon naturally lend themselves

for this purpose. A disadvantage common to all substrates is the presence of two level

systems (TLS).

Two level systems (TLS) naturally occur in all man made and naturally occuring

single crystals such as Sapphire and Silicon. TLS occur as paramagnetic impurities such

as Chromium in Sapphire, and dangling bonds at the unpassivated interface in oxidized

Silicon [44, 45, 46].

These TLS in the substrate of superconducting CPRs are becoming increasing prob-

lematic as our ability to sensitively measure the microwave response of these devices

increases. In previous chapters, it has been shown that the resonant frequency increases

monotonically while the conductor losses decrease, as described by the two fluid model.

At temperatures ∼ Tc/10, these mechanisms saturate and other effects become prominent,

most notably a decrease in the resonant frequency as the temperature is reduced. This

“back-bending” is now believed to be due to the presence of these TLS in the substrate.

At these low temperatures one would expect the properties of a dielectric to stay con-

stant [47, 48]. However experimentally variation in both the effective dielectric constant

and losses are observed. The TLS couple via an electric dipole moment to the CPR res-

onant frequency, much like the coupling occuring between a charge QUBIT and a CPR.

This coupling results in a reduction in the resonant frequency and the Q of the CPR.

The variation in the dielectric constant (ǫ(T )− ǫ(T0)/ǫ(T )) is expressed as, and taken
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from reference [48]:

ǫ(T ) − ǫ(T0)

ǫ(T )
= −2nd2

3ǫ

(

ln
T

T0

− [g(T, ω) − g(T0, ω)]

)

(6.1)

where g(T, ω) = ReΨ(1/2 + h̄ω/2πikBT ), T0 is the reference temperature, Ψ is the

complex diagamma function significant only for KBT ≤ h̄ω/2, and nd2 is the material

dependent numerical factors.

Using cavity perturbation theory, the shift in resonant frequency is given by ∆f0/f0 =

−(F/2)∆ǫ/ǫ, where F is the filling factor which depends on the geometry and the electric

field distribution. Therefore any change in the dielectric constant is proportional to the

change in the resonant frequency.

The nature of the filling factor can also give some evidence of where the TLS exist.

If TLS exist in the bulk of the superconductor then the filling factor is expressed as

F ≈ ǫr/(ǫr +1), and is independent of the CPR parameters, w and s. If TLS exist on the

surface layer, F scales with the CPR geometry w and s, and this is because the energy

stored in the TLS load the total energy stored in the CPR resonance [49].



7. CPR DESIGN

The capacitance and inductance of a conventional CPR are associated with the geometry

of the device and the superconducting material. To determine the capacitance of the

CPR, the CPR is divided into regions and the electric field is assumed to exist only in

that region. In this manner the capacitance of each region is determined separately. The

total capacitance is therefore the sum of the capacitance of each region. This allows for a

more accurate method of determining the resonant frequency [50].

The first derivation is based on a CPR residing on a infinitely thick dielectric substrate

and measured in a vacuum. The later part of this chapter includes the solutions for a CPR

on an infinite thick dielectric substrate, and measured in liquid Helium. The majority of

equations given below are taken from reference [51].

7.1 Calculations of the Inductance and Capacitance of a Simple CPR on

a Dielectric Substrate.

A diagram of a CPR residing on a single Sapphire or Silicon substrate and measured in a

vacuum is shown below.
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Fig. 7.1: Picture of a CPR (blue) residing on a dielectric substrate (red) and measured in a

vacuum (clear).

The geometric capacitance of the CPR is determined by the sum of the capacitance

of the lower dielectric material (C1) that has a dielectric constant of ǫr1 and a thickness

of h1 = ∞, and the capacitance of the air Cair that has a dielectric constant of ǫair = 1

and a thickness of hair = ∞. The capacitance of the lower dielectric material is:

C1 = 2ǫ0(ǫr1 − 1)
K(k1)

K(k
′

1)
(7.1)

K(k1) and K(k
′

1) are the complete elliptical integrals and are given below. The com-

plete elliptical integrals are used to describe the electric fields everywhere in the partial
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regions and include fringing fields present near the corners of the CPR.

k1 =
sinh(πs/4h1)

sinh([π(s + 2w)/4h1])
(7.2)

k
′

1 =
√

1 − k2
1 (7.3)

where w is the separation distance between the inner and outer conductor planes, s

is the width of the conductor strip, and t is the thickness of the CPR. The electric field

pattern for a CPR is shown below:

Fig. 7.2: A picture of the simulated electric field from one side of the CPR, looking end on.

The grey colour represents the substrate and the yellow colour represents the air. The

coloured lines that originate from the CPR represent the magnitude of the electric

field. The strongest electric field is when the contour lines are closely packed and are

represented by the colour red, the weakest electric field is represented by low density of

contour lines and are represented by the colour blue. This is simulated in HFSS [52].

The capacitance of the air is:

Cair = 2ǫ0
K(k3)

K(k
′

3)
+ 2ǫ0

K(k4)

K(k
′

4)
(7.4)

where the complete elliptic integrals K(k3), K(k4), K(k
′

3) and K(k
′

4) are:

k3 =
tanh(πs/4h3)

tanh([π(s + 2w)/4h3])
(7.5)
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k4 =
tanh(πs/4h4)

tanh([π(s + 2w)/4h4])
(7.6)

k
′

3 =
√

1 − k2
3 (7.7)

k
′

4 =
√

1 − k2
4 (7.8)

For this structure, k3 = k4 = k1 = k0 = s/(s + 2w) and k3
′ = k

′

4 = k
′

1 = k
′

0, therefore:

Cair = 4ǫ0
K(k0)

K(k
′

0)
(7.9)

The total capacitance (CCPR = C1 + Cair) is:

CCPR = 4ǫ0
K(k0)

K(k
′

0)
+ 2ǫ0(ǫr1 − 1)

K(k0)

K(k
′

0)
= 2ǫ0(ǫr1 + 1)

K(k0)

K(k
′

0)
(7.10)

The effective permittivity is expressed as the ratio of CCPR to Cair, and is therefore:

ǫeff =
CCPR

Cair

=
ǫr1 + 1

2
(7.11)

Where ǫeff is the average dielectric constant of the structure.

The geometric inductance is expressed as:

Lg =
µ0

4

K(k
′

0)

K(k0)
(7.12)

The kinetic inductance as shown before is expressed as LK = µ0λL, and by including

geometric constraints the inductance is modified to [51];

Lk = µ0λL(T )
C

4ADK(k0)

(

1.7

sinh(t/2λL(T ))
+

0.4
√

[(B/A)2 − 1][1 − (B/D)2]

)

(7.13)

It should be noted that these numerical factors (1.7 and 0.4) are derived for an YBCO

CPR, and this solution may not be valid for Niobium CPRs. A, B, C, and D are associated

with the geometry of the structure and are determined by; A = −t/π+1/2
√

(2t/π)2 + s2,

B = s2/4A, C = B − t/π +
√

(t/π)2 + w2 and D = 2t/π + C.

Substituting Cg, Lg, and Lk, then f0 becomes:

f(T ) =
1

√

Cg(T )(Lg + Lk(T ))
=

1
√

LgCCPR(T )
·
(

1 − Lk(T )

2Lg

)

(7.14)

f(T ) =
1

2l
√

µ0ǫeffǫ0

(

1 − CλL(T )

2ADK(k′)

(

1.7

sinh(t/2λL(T ))
+

0.4
√

[(B/A)2 − 1][1 − (B/D)2]

))

(7.15)
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The temperature dependence of the penetration depth is given in section 4.3, and

therefore the resonant frequency takes on the following form.

0 1 2 3 4
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Temperature (K)

Fig. 7.3: A graph of the change in resonant frequency as a function of temperature for a Niobium

(Tc = 9.2 K) CPR residing on a sapphire dielectric substrate (ǫr1 = 9.9 [53]) and

assumed to be measured in a vacuum. The half wavelength CPR has a length of 11

mm, with geometry w = 5 µm and s = 10 µm.

The resonant frequency sharply rises from zero to a finite value when the supercon-

ducting CPR undergoes the phase transition from a normal metal to a superconductor.

This increase in the resonant frequency is due to the change in the penetration depth.

The plateau occurs because the resonant frequency approaches the geometric resonant

frequency of the CPR.

7.2 More Complex Structures.

The calculation of the resonant frequency for more complex structures such as that shown

in the figure below is appropriate for some of the structures that have been measured.
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Fig. 7.4: Full structure of a CPR contains two lower dielectric substrates, a single upper dielectric

substrate, and top and bottom air gaps with metal box covers.

The CPR structures measured here are based upon a CPR on an Sapphire substrate

(previously discussed), CPR on an oxidized Silicon substrate and both measured at cryo-

genic temperatures either within a vacuum or liquid Helium environment. The measured

resonant frequency varies quite drastically in all four situations.
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7.2.1 Niobium CPR on a Sapphire Substrate and Measured in a Liquid Helium

Environment.

The permittivity of the Sapphire substrate is ǫAl2O3
∼ 9.9 [53] and the capacitance C1 is

the same as in equation 7.1. The upper permittivity is nolonger zero, but is dependent

on the permittivity of the liquid Helium that varies with temperature (ǫ2(T )). The air

capacitance remains the same as before, h3 = h4 = ∞, k3 = k4 = k0 = s/(s + 2w) and

K(k1) 6= K(k2) therefore the total capacitance, CCPR is:

CCPR = Cair + C1 + C2 = 4ǫ0

(

1 + (ǫr1 − 1)
1

2

K(k1)

K(k
′

1)

K(k0)

K(k
′

0)
+ (ǫr2(T ) − 1)

1

2

K(k2)

K(k
′

2)

K(k0)

K(k
′

0)

)

(7.16)

The resonant frequency is of the same form as in equation 7.15, however the effective

permittivity is modified to, ǫeff (T ) = 1+q1(ǫr1−1)+q2(ǫr2(T )−1). Where q1 = 1
2

K(k1)

K(k
′

1
)

K(k0)

K(k
′

0
)

is associated with the Sapphire and q2 = 1
2

K(k2)

K(k
′

2
)

K(k0)

K(k
′

0
)

is associated with the liquid Helium.

7.2.2 Niobium CPR on a Silicon Dioxide on Top of a Silicon Substrate and Measured

in a Vacuum Environment.

This structure has a double lower dielectric substrate, so therefore k1 6= k2 6= k3, and

k4 = k5 = k0 = s/(s + 2w). The effective permittivity in this case is:

ǫeff = 1 + q3(ǫr3 − 1) + q1(ǫr1 − ǫr3) (7.17)

where q1, ǫr1 is associated with the Silicon Dioxide and q3 = 1
2

K(k3)

K(k
′

3
)

K(k0)

K(k
′

0
)
, ǫr3 is associ-

ated with the Silicon.

7.2.3 Niobium CPR on a Silicon Dioxide on Top of a Silicon Substrate and Measured

in a Liquid Helium Environment.

This structure has a double lower dielectric substrate, so therefore k1 6= k2 6= k3 and

k4 = k5 = k0 = s/(s + 2w). The effective permittivity in this case is:

ǫeff = 1 + q2(ǫr2(T ) − 1) + q3(ǫr3 − 1) + q1(ǫr1 − ǫr3) (7.18)
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where q1, ǫr1 is associated with the Silicon Dioxide, q2, ǫr2(T ) is associated with the

Liquid Helium and q3, ǫr3 is associated with the bulk Silicon substrate.

Substituting the effective permittivity into equation 7.15 in all cases determines the

resonant frequency for all these structures, see table 7.1 below. These values are used for

comparisons with the measured values shown in chapter 11.

CPR configuration Environment ǫr f0 Ghz

Nb/Al2O3 Vacuum 9.9 5.7095

Nb/Al2O3 Lq Helium 9.9 5.6971

Nb/SiO2/Si Vacuum Si:11.9, SiO2=4.9 5.6859

Nb/SiO2/Si Lq Helium Si:11.9, SiO2=4.9 5.6721

Tab. 7.1: Table contains the CPR configuration, environment in which the CPR is measured,

the permittivity of the substrates and the estimated geometric resonant frequency f0.



8. SCATTERING PARAMETERS

For Transverse Electromagnetic (TEM) devices and non-TEM devices such as CPRs

(quasi-TEM), it is difficult to define the voltage and current through these devices and

extract the resonant properties. It is more appropriate to extract the resonant properties

through measurements of the magnitude (inferred from the power) and phase of the stand-

ing wave. The extracted magnitude and phase generally come in the form of incident,

reflected and transmitted waves and are given by the scattering matrix (or S parameters)

[54].

The S matrix provides a complete description of the network as seen at its N ports (two

ports for all CPRs considered here). They relate the voltage waves incident on the ports

to those reflected from the ports. These scattering parameters are generally measured

directly with a network analyzer and are described in this form in the results chapters.

For a 2-port network, where V −
n is the amplitude of the voltage wave incident on port

n (1 or 2), and V +
n is the amplitude of the voltage wave reflected from port n, then the

scattering matrix (S) becomes;-

[

V −
1

V −
2

]

=

[

S11 S12

S21 S22

] [

V +
1

V +
2

]

(8.1)

To calculate all four of the S parameters for the 2-port resonator, requires the use of

the ABCD matrix. The ABCD matrix takes into consideration the transmission for each

2-port network and includes both the current and the voltage. An example of this is given

below:
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Fig. 8.1: A two port network circuit.

and in matrix form.
[

V1

I1

]

=

[

A B

C D

] [

V2

I2

]

(8.2)

For various circuit configurations (series or shunt for example) there is a corresponding

ABCD matrix. The ABCD parameters of four 2-port circuits that are used in this thesis

are shown below:

Transmission Line Coupling Capacitance Series Impedance Shunt Admittance

A cos γl 1 + Y2/Y3 1 1

B Z0 sin γl 1/Y3 Z 0

C Y0 sin γl Y1 + Y2 + Y1Y2/Y3 0 Y

D cos γl 1 + Y1/Y3 1 1

Fig. 8.2: Circuit diagram and ABCD parameters for a transmission line, coupling capacitor,

series impedance and shunt admittance. Taken from reference [55].

The first model represents a transmission line, where γ = α + jβ is the transmission

line wave propagation coefficient, α is the attenuation coefficient and β ≈ ω/c is the

wave propagation (c is the velocity of the travelling wave). Z0 is the impedance of the
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transmission line, and is generally set to 50 Ω as this is compatible with the majority

of microwave components. Y0 is the admittance of the transmission line and is inversely

proportional to Z0.

The second model is used to calculate the coupling capacitance, e.g. the coupling

between the microwave circuitry and the half wavelength CPR. The third model is based

on a half wavelength CPR and is represented by a series impedance. The last model

represents a quarter wavelength CPR and is represented by a shunt impedance to ground.

The ABCD parameters used to infer the S parameters of these devices can be deduced

using the S parameter matrix below [55].

[

S11 S12

S21 S22

]

=
1

Z0A + B + Z2
0C + Z0D

×
[

Z0A + B − Z2
0C − Z0D 2Z0(AD − BC)

2Z0 −Z0A + B − Z2
0C + Z0D

]

(8.3)

The above tools are used to solve the S parameters of the coupling capacitance, the

half wavelength CPR and the quarter wavelength CPR.

8.1 The Transmission Line.

As shown above, the transmission line wave propagation coefficient is described by γ =

α + jβ, where α can be used to describe the loss and β is inferred from the wave velocity

of the EM wave in the material. Transmission line loss is due to either the quasiparticles

in the superconducting condensate and/or the lossy dielectric, and is generally small for

Sapphire and Silicon substrates. To measure the loss in the transmission lines, it is better

to express the transmission line parameters in terms of the resistance R, inductance L,

conductance G, capacitance C, so that γ =
√

(R + jωL)(G + jωC) and is rearranged to

[55]:

γ = jω
√

LC

√

√

√

√1 − j

(

R

ωL
+

G

ωC

)

− RG

ω2LC
(8.4)

For low loss conductors R << ωL and for low loss dielectrics G << ωC, then RG <<

ω2LC and the propagation constant reduces too:

γ = jω
√

LC

√

1 − j
(

R

ωL
+

G

ωC

)

(8.5)
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For zero loss R/ωL + G/ωC term is ignored and this corresponds to α = 0, i.e.

the wave is not attenuated, and β = ω/ω0 is simply the wave propagation through the

device (ω0 is the resonant frequency). For the following solutions, it is assumed that the

superconductor has zero loss as this simplifies the calculations.

8.2 Coupling Capacitance.

In Figure 8.2, the coupling capacitance is represented by Y3, and Y1 and Y2 are the coupling

capacitance to the box ground. The value of Y1 and Y2 is small compared with Y3 because

the separation between the superconducting ground planes and the box ground plane is

large compared with the separation between the conducting strip and microwave circuitry.

Using the B parameter of the ABCD matrix (B = 1/Y3) and the conversion chart

between 2-port network parameters as set out by D. M. Pozar [55], then:

−1

B
= −Y3 =

−Z21

Z11Z22 − Z12Z21

= Y21 (8.6)

Therefore Y3 = Y21 = Im(2πω0Ck) and hence the coupling capacitance (Ck) can be

extracted directly from the network analyzer using the transmission admittance.

8.3 The Transmission Parameter for a Half Wavelength CPR.

For a half wavelength resonator coupled to two coupling capacitors, the ABCD parameters

are determined using:

[

A B

C D

]

=

[

1 Zin

0 1

] [

t11 t12

t21 t22

] [

1 Zout

0 1

]

(8.7)

Firstly assume that the coupling capacitance are the same at both ends, therefore Zin =

Zout = Zc and Zc = 1/jωCk, where Ck is the coupling capacitance. The transmission

matrix parameters given in figure 8.2 are:

t11 = cos γl (8.8)

t12 = Z0 sin γl (8.9)
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t21 = Y0 sin γl (8.10)

t22 = cos γl (8.11)

As stated in section 8.1, when the loss-less CPR is on resonance γ = β = ω
√

LC,

where L and C are the inductance and capacitance of the CPR. The transmission matrix

is simplified to:
[

t11 t12

t21 t22

]

=

[

1 Z0

0 1

]

(8.12)

The transmission through the CPR is given by:

S21 =
2

A + B/Z0 + Z0C + D

Using a small perturbation of β away from resonance, e.g. β = j∆ω/ω0, then the

equation becomes:

S21 =
1

cos(βl) + sin(βl) + (Zc/Z0)(sin(βl) + 2 cos(βl)) + (Zc/4Z0)2 sin(βl)
(8.14)

Then S21 on resonance, where β = 2nπ/λ and looking at the fundamental mode,

(n = 1 and λ = 2l) then βl = π, and S210:

S210 =
1

1 + 2Zc/Z0

(8.15)

Ignoring the coupling capacitance, e.g. Ck → 0, the resonant frequency is given by

equation f0 = c/2l
√

ǫeff . As Ck increases the resonant frequency is pulled lower. The

new frequency is f0 = f0,0(1 − 4f0,0CkZ0), which is typically 1 − 2 % correction to the

resonant frequency.

For high unloaded Q >> 1, S21 is modified too:

S21 =
2g

1 + 2g + 2jQf−f0

f0

(8.16)

where g = 2Q/π(2πf0CkZ0)
2 is the coupling coefficient. The transmission parameter

at resonance determined in terms of the coupling coefficient becomes:

|S21| =
2g

1 + 2g
=

Q

1 + 4Q
π

(2πf0CkZ0)2
(8.17)

The loaded Q is related to the unloaded Q by; Ql = Q/1 + 2g.
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8.4 The Transmission Parameter for a Quarter Wavelength CPR.

The quarter wavelength CPR that are currently used as kinetic inductance detectors

(KID) are represented by a shunt admittance to ground, as shown in figure 8.2. The

transmission parameter for this device is calculated in a similar way to that above.

Using the ABCD parameters shown in figure 8.2, with the conversion to the transmis-

sion parameter as shown in equation 8.3, and Y = 1/Zi which is the impedance associated

with inserting a quarter wavelength CPR near to the transmission line, S21 on resonance

becomes:

S21 =
2

2 + Z0/Zi

(8.18)

Here Z0 is the characteristic impedance of the transmission line. When the frequency

of the microwave source is set far from the resonance of the quarter wavelength CPR,

S21 tends to unity. Near resonance Zi reduces and on resonance it reaches a minimum.

The transmission on resonance in that case is equal to S210 = 2/(2 + g), where g is the

coupling of the quarter wavelength CPR to the transmission line.



9. SIMULATIONS: CAPACITANCE AND LOSS TANGENT ON THE

Q OF A CPR.

Simulations are made in high frequency structure simulator (HFSS) and Microwave Office

(MWO) (see appendix A for the method for simulating these structures). The coupling

capacitance and associated coupling Q is simulated in HFSS and the effect of varying the

loss tangent on the resonant frequency is simulated in MWO. The coupling gap for a half

wavelength CPR is shown below:

Fig. 9.1: A diagram of the coupling capacitor. The coupling gap is a 2D perfect electrically

conducting (PEC) film, residing on a silicon dielectric substrate (with ǫ = 11.9 [56])

and enclosed in a box. The size of the box is x = 140, y = 70, and z = 30 µm

Applying an electric (E) field across a parallel plate capacitor produces effects that

are different from a thin film capacitor, and therefore the capacitance of a thin film is not

assumed to follow C = ǫ0ǫrA/d (where ǫ0 and ǫr are defined previously, A is the cross-
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sectional area of the capacitor, and d is the separation of the two plates). The E field

applied to a thin film capacitor extends some distance into the plane of the film. Calcu-

lating the capacitance therefore becomes difficult, so a finite element software simulator

such as HFSS is employed to simplify this process.

The surface of the capacitor is simulated as a perfect electrical conductor (PEC) and

resides on a Silicon substrate with ǫ = 11.9 [56]. The capacitor and substrate are enclosed

in a box, and the wall sides are defined by PEC boundaries. Lumped ports are placed

at the ends of the thin film capacitor in the yz-plane and the direction of the E field is

defined by an integration line that extends from the middle of the y-plane at the centre

of CPR and extends to the end of the box.

The real, imaginary and magnitude of the impedance of the structure is calculated

below:
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Fig. 9.2: The real, imaginary and magnitude of the impedance from port 2 to port 1 as a function

of frequency.
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This is consistent with what is expected for a capacitor. For example, the real part of

the impedance is zero, because the reactance of a capacitor is given by Xc = 1/ωC, hence

purely imaginary. The magnitude of the impedance is

Mag(Z21) =
√

(Re(Z21))2 + (Im(Z21))2, therefore Mag(Z21) = Im(Z21) = 1/ωC.

The capacitance is extracted using the Y parameter and c = 2πωIm(Y 21) (as shown

in section 8.2). The following graph is obtained:
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Fig. 9.3: The capacitance of a coupling capacitor of a half wavelength resonator as a function of

frequency for a Niobium CPR on a Silicon substrate (with ǫ = 11.9) with a coupling

gap of 16 µm and strip to separation width; s = 30 and w = 15 µm.

The capacitance of the gap at 6 Ghz is 1.065 fF, using Q = ωc/g (as shown in section

8.3) then, Q = 82, 277.

The coupling capacitance for a CPR with s = 10 µm and w = 5 µm and varying the

coupling gap is given below.
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Fig. 9.4: The coupling capacitance and Q as a function of a single gap on a CPR as measured

at 1 Ghz.

The above graph demonstrates that by increasing the size of the gap, the capacitance

reduces and the coupling Q factor increases. It should be noted that within this model,

there is no loss introduced in the substrate or surface conductor, therefore the Q in this

case is associated with the impedance of the gap and the coupling to the 50 Ω ports.

It is reported by Frunzio et al [5], that the coupling capacitance of their 4 µm gap res-

onators is ≈ 0.3 fF. These simulations undertaken in HFSS produce coupling capacitances

of 0.59 fF for a single gap. This value is of the same order of magnitude as reported by

Frunzio et al, therefore these values are consistent.

Internal loss in the CPR structure is introduced by varying the loss tangent of a

Silicon dielectric substrate. The loaded Q factor behaves inversely proportional to the

loss tangent of the substrate, see figure below.
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Fig. 9.5: Simulation of the transmission spectrum of a Niobium CPR on a Silicon substrate with

dimensions s = 10 µm, w = 5 µm with different loss tangents

The loss tangent for Sapphire and Silicon Dioxide on top of Silicon for temperatures

< 4 K is tan δ ∼ 10−6 [57, 58, 59] and therefore Qsubstrate ∼ 106.



10. EXPERIMENTAL SET-UP

To measure the resonant parameters of CPRs, the following techniques are employed.

There are two types of cryostat used in this project and the operation of both are discussed.

They are the liquid Helium filled glass cryostat and the carbon fibre cryostat where the

sample is placed in a vacuum can. A discussion follows about the sample box and CPR

mounting, followed by a discussion about the thermometry and microwave control system.

A simple block diagram below demonstrates how a CPR is measured.

Fig. 10.1: Block diagram of the circuit employed to measure CPRs.

These CPRs are operated at low temperatures. The temperature is measured by two

thermometers placed around the CPR, and the CPR is measured with a network analyzer.

A program written in Labview is used to initialize and probe CPR parameters and record
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the temperature of the system. This information is collected, interpreted and results are

given in the following sections.

10.1 Measurement Technique.

To test the CPR requires a cooling device that can achieve temperatures ∼ 10% of their

superconducting transition temperatures. For Niobium resonators this is around 1 K.

This can easily be achieved by using a glass cryostat and pumping on the liquid Helium

to reduce its vapour pressure. The CPR in this case is placed in direct contact with

the liquid Helium bath. The second method for measuring these CPRs is a carbon fibre

cryostat, encasing the CPR within a vacuum can. In this case the temperature is reduced

by pumping on the liquid Helium within a 1 K pot contained within the vacuum can,

and cooled via conduction through the brass and copper supports. A diagram of both

cryostats are shown below.

Fig. 10.2: Liquid Helium pumped glass cryostat.
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Fig. 10.3: Photograph of the carbon fibre cryostat and equipment. At the bottom of the cryostat

is a Helmholtz coil positioned on a lazy Susan, used to apply a magnetic field with

easily adjustable orientation.

Upon achieving a low temperature with these cryostats, a microwave signal is initiated

by a computer program written in Labview [60] shown in appendix B, and generated by

a microwave automated network analyzer (ANA) (HP model 8720).

The output microwave signal is guided from port one of the ANA, through semi-flexible

coaxial cables to the roof of the glass cryostat. SMA (sub miniature version A) connectors

are then used to make a transition from semi-flexible coaxial cables outside the cryostat

to rigid copper 2.2 mm coaxial cables (≈ 2 dB/m attenuation) inside the glass cryostat.

The set-up for the carbon fibre cryostat and vacuum can is similar to that described

above. The difference is that within the cryostat the coaxial cables are made from 2.2

mm CuproNickel (CuNi) coaxial cables and then on entering the vacuum can, the cables

are changed to 1 mm brass coaxial cables. This is to ensure adequate heat sinking of the

wires, to avoid thermal conduction (heat leaks) from the warmer environment outside the

vacuum can, that can be transfered to the sample inside the vacuum can.
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For both cryostats, the coaxial cables facilitate the microwave signal down to SMA

connectors attached to the outside of the copper box that house the CPR. Inside the box

are four SMA launchers. The SMA launcher consists of an outer ground connector and

inner launcher pin. The inner launcher pin sits on the inner conductor of a copper coated

Duroid substrate [61]. This Duroid substrate and Niobium CPR sample resides is a gold

coated Copper box, as shown in figure 10.6. This copper coated Duroid (RT 5880.01,

thickness 2mm and ǫ2.2) substrate is patterned in to a Coplanar transmission line (size of

board: 5 cm x 7 cm x 2 mm), with a designed impedance of 50 Ω. The outer connector sits

on the ground plane of the transmission line. The CPR is placed in a gap in the middle of

this coplanar transmission line, see figure 10.4. There have been measurements undertaken

on a Gold Alumina Coplanar transmission line, patterned similar to that shown in the

figure below (size of board: 5 cm x 7 cm x 400 µm). Aluminium wire bonds are used to

connect both the inner and outer parts of the transmission line to their respective parts

on the CPR chip, see figure 10.5 below.

The same microwave set-up exists on the other side of the CPR running from cryogenic

temperatures to room temperature. On receiving the signal from the device, this is further

analyzed using the Labview program to read the information from the ANA.

Additional coaxial cables are added to either pass a dc/ac current or a pulsed mi-

crowave signal to the CPR chip. This set-up is the same as that described above. The

current passed down the coaxial cables is used to manipulate the resonant frequency of

the CPR. The pulsed microwave signal is used to manipulate the state of the coupled

CPR/QUBIT system.
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Fig. 10.4: A photograph of the Copper transmission line and sample. Two of the SMA connectors

are used for the microwave signal, the other two SMA connectors are used as current

control lines.
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Fig. 10.5: A photograph of the CPR chip, wire bonds and Copper coplanar transmission line.

Vias can be seen in the duroid substrate, electrically and thermally connecting the

top electrode with the bottom. These vias act to reduce slot line modes, that can be

potentially generated in the substrate.

The Alumina and Duroid board contain vias connecting the top ground plane with the

bottom ground plane. These vias are placed every d ∼ λ0/10 (where λ0 is the standing

wavelength of the CPR), as this eliminates undesired frequency modes (e.g. slotline

modes) that exist within the substrate.

10.2 The Copper Box and Sample Mounting.

The box is made from high conductivity Copper because it has a very high electrical

conductivity and a short skin depth compared with other metals (see section 4.3). The

box is then coated with Gold, to stop the Copper from oxidizing.
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Fig. 10.6: Photograph of the sample stage. Shown from left to right is the 1 K pot, followed by

the Copper plates for heat sinking the coaxial cable, and followed by the sample box.

Since the box has a high electrical conductivity, then the losses generated by box

modes are lower hence Qbox is higher (as described in section 5). If a box mode exists

close to the frequency of the CPR, since Qbox is high, its FWHM is low, and hence it is

unlikely that the box mode will coincide and interfere with the resonance of the CPR.

Any such interference or coupling of a box mode to the CPR mode will cause the CPR

mode to be limited by the Q of the box (as the Q for the metal box is generally lower

then the superconducting CPR) and therefore generate unreliable results [42].

10.3 Fabrication.

The first stage of fabricating these sample is to design a photolithographic mask, see

appendix C. The photolithographic mask contains samples with different capacitive cou-

plings and different conducting strip to strip separations based on the simulations made

in section 9. The mask is designed in KIC [62], an integrated circuit layout editor, and is
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exported as a GDS file that is compatible with mask fabricators.

The mask is subsequently sent to Toppan [63] for fabrication. Niobium on single

crystal Sapphire and Niobium on Silicon Dioxide on top of high resistivity Silicon samples

are prepared by Starcyro [64]. The Niobium is 250 nm thick with a 2 nm uniformity.

The Sapphire and Silicon substrates are 400 µm thick and the Silicon Dioxide layer is

thermally grown on top of the Silicon to a thickness of 400 nm. These thin films have

been processed by the author and by Starcyro.

The samples that are prepared by the author are fabricated by the method shown in

figure 10.7

Fig. 10.7: A diagram of the steps taken to fabricate a CPR.
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The first step to fabricate these samples is to spin a positive photoresist on to the

surface of a sample. This is pre-baked at 100 0C for 5 minutes. The photoresist is then

exposed to UV under a Karlsuisse Mask aligner, developed and post-baked at 95 0C for

3 minutes. The sample is then placed in an Argon Ion Beam miller to etch the Niobium.

This is not a particularly clean method for removing Niobium, see the Atomic Force

Microscopic image shown in figure 10.8, therefore subsequent etching is required.

Fig. 10.8: AFM images of a niobium CPR on a oxidized Silicon substrate.

The etch that is used is a combination of Hydrofluoric acid, Nitric Acid and water in

the following combination: 1 Hf : 9 HNO3 : 20 H2O (On recommendation from StarCryo

[64]). This produces smoother edges, which is crucial for CPRs since the microwave

current is mostly concentrated at the surface and edges.

10.4 Temperature Measurement and Control.

The lakeshore 340 temperature controller is used to measure the temperature at the base of

the cryostat. The temperature sensor that is used is a calibrated Cernox sensor (CX-1010-

MT) [65], calibrated from 100 mK to room temperature. To measure the temperature

of the system, a four terminal measurement is made. This is achieved with two twisted
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pairs of CuproNickel (CuNi) wires, with I+ and I- wires connected to opposite legs of

the Cernox sensor, and likewise for V+ and V-. Twisted paired wires ensure external

radiation does not interfere with the measurement system, because the loop inductance

has been minimised, and therefore the flux in the loop has been reduced.

At the top of the cryostat, the wires are attached to a 6 pin-D plug and socket, and a

further cable is used to connect the measurement system to the back of the temperature

controller. The Lakeshore temperature controller reads the sensor units, in this case the

resistance of the Cernox sensor, and this is converted to a temperature using the calibrated

data values provided with the sensor. This is sent to the GPIB card that is connected to

the computer. A Labview program is then used to record this data and store it in a file,

see appendix B.

Within the liquid Helium filled glass cryostat, the Cernox thermometer is placed next

to the CPR sample. Within the Carbon fibre cryostat, the Cernox thermometer is placed

directly onto the 1 K pot. A second RuO sensor (calibration data in Appendix D) is then

added to the bottom of the sample stage, on to the sample box and is wired in the same

way as described above.

10.5 Magnetic Field Measurement Set-up.

There are two ways to apply a magnetic field to the sample. The first is via a Helmholtz

coil positioned externally to the cryostat, as shown in figure 10.3. The arrangement of

these coils means that a field of ≈ 1 mT can be achieved at the centre of the cryostat. The

second method is via a current control line patterned into the Niobium film, as shown in

figure 10.9.
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Fig. 10.9: CPR with current control line. The arrows dictate the direction of the applied current.

Another method to perturb the resonant frequency of the CPR, is coupling the CPR

to an RF QUBIT patterned into the Niobium film, see figure 10.10.

Fig. 10.10: CPR with enlarged RF QUBIT in the centre of the CPR.

These structures are patterned using the method shown in figure 10.7.



11. NIOBIUM ON SAPPHIRE AND OXIDIZED SILICON

RESONATOR MEASUREMENTS

The primary aim of this work is to design CPRs with high Q factors for the purpose

of providing an investigative tool suitable for scientific research into quantum computing

and cavity quantum electrodynamics [1, 2]. This is achieved by measuring the resonant

frequency and Q in terms of changes in temperature, power and magnetic field. High Q

CPRs are obtained by investigating device material and geometry. CPRs are measured at

low temperatures in two cryostats; liquid Helium filled glass cryostat denoted by cryostat

1, and carbon fibre cryostat denoted by cryostat 2.

The resonant frequency and Q factor are extracted from the transmission parameters

of the microwave signal through the CPR cavity. An example of this is shown in figure

11.1.

The typical transmission spectrum of an ideal half wavelength CPR is shown in figure

1.3. Off resonance there is no transmission of the microwave signal, and on resonance

there is maximum transmission of the microwave signal. The off resonance response for a

non-ideal CPR, results in some transmission of the microwave signal through the cavity.

On resonance the microwave signal is not fully transmitted, see figure 11.1.
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Fig. 11.1: Frequency and magnitude versus temperature for a Niobium on oxidized Silicon sub-

strate CPR with parameters w = 5 µm, s = 10 µm, l = 11 mm and 6 µm gaps,

measured in a liquid Helium filled glass cryostat.

This measurement is made on a patterned Niobium thin film deposited on top of an

oxidized Silicon Substrate. The CPR parameters are s = 10 µm, w = 5 µm, l = 11 mm

and 6 µm coupling gaps measured in the liquid Helium filled glass cryostat. The transition

temperatures of these CPRs is T ∼ 9.2 K as determined from SQUID magnetometre

measurents.

Additional device parameters investigated are CPRs with conductor strip to strip

separation; s = 10 µm, w = 5 µm, and s = 30 µm, w = 15 µm with various coupling

capacitors. The device materials investigated are Niobium CPRs on Sapphire and oxidized

Silicon substrates.

The high Q measured here is due to the weak coupling of the CPR to the microwave
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circuitry. A high CPR Q factor results in low photon loss rate and longer coherence

time between CPR and QUBIT systems. These CPR/QUBIT systems can thus be imple-

mented to realise quantum bit experiments. Fabrication of CPR devices are achieved by

photolithography and Argon ion beam milling (described in section 10.3). QUBITs are

fabricated by electron beam lithography.

Electron beam lithography is a process for fabricating micron sized features in a thin

film resist, by exposure to a high energy density beam of electrons. The primary electrons

in the incident beam lose energy upon entering the material through inelastic scattering

or collisions with other electrons. These primary electrons from the incident beam with

sufficient energy to penetrate the photoresist, can be multiply scattered over large dis-

tances from underlying films and/or the substrate. This leads to exposure of areas at a

significant distance from the desired exposure location [66]. This effect is significant in

Sapphire substrates, and leads to over exposure of the photoresist and poor QUBIT reso-

lution. Oxidized Silicon is proven to work better with electron beam lithography processes

[66]. Both Sapphire and oxidized Silicon substrates are investigated because of their inher-

ent low loss, but their usefulness in the study of quantum effects in quantum computing

and cavity quantum electrodynamics maybe limited due to fabrication limitations.

11.1 Frequency Versus Temperature Measurements

The resonant frequency is determined by the kinetic and geometric inductance, and the

capacitance of the CPR. The full equation for determining the resonant frequency as a

function of temperature is found in chapter 7:

f(T ) =
1

2l
√

µ0ǫeff (T )ǫ0

(

1− CλL(T )

2ADK(k′)

(

1.7

sinh(t/2λL(T ))
+

0.4
√

[(B/A)2 − 1][1 − (B/D)2]

))

(11.1)

Two unknowns from the equation above are the effective permittivity of the substrate

(R-plane sapphire ǫAl2O3
∼ 9.9 [53], Silicon Dioxide ǫSiO2

∼ 4.5 [56], and Silicon ǫSi ∼ 11.9

[56]) and the penetration depth of the superconductor λL(T ). The other factors are

associated with the geometry of the CPR.
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The dielectric constant is used to predict the geometric frequency, and the penetration

depth is used to predict the correct functional form of the temperature dependence. In

this model the temperature dependence of the dielectric constant of both Sapphire and

oxidized Silicon is neglected as it does not change significantly at these low temperatures

[47, 48].

The resonant frequency and Q are measured as a function of temperature in cryostat

1 (the liquid Helium filled glass cryostat), for a Niobium CPR on Sapphire substrate with

CPR parameters; s = 10 µm, w = 5 µm, l = 11 mm and 6 µm coupling gaps.
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Fig. 11.2: Resonant frequency and Q measured as a function of temperature for a Nb/Al2O3

CPR with parameters; s = 10 µm, w = 5 µm, l = 11 mm and 6 µm coupling gaps,

measured in cryostat 1.

The resonant frequency, Q and fitting data are plotted below as a function of temper-

ature for the same CPR as above, and measured in cryostat 2.
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Fig. 11.3: Resonant frequency and Q measured as a function of temperature for a Nb/Al2O3

CPR with parameters; s = 10 µm, w = 5 µm, l = 11 mm and 6 µm coupling gaps,

measured in cryostat 2. The figure below contains the resonant frequency fit to the

data described in appendix F.2, the penetration depth used here is based on London

theory [33].
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The process for fitting the function to the resonant frequency data is described in

appendix F.2. This fitting process is based on the Nelder-Mead method [67], which is

a direct search method of optimisation, based on evaluating the function with estimated

values of λ0 and ǫr. Evaluating the difference between the square of the measured resonant

frequency and the estimated resonant frequency gives an estimate on how good the fit

is. Choosing new values of λ0 and ǫr, and re-evaluating this function, means that it is

possible to converge on a solution on completing a number of iterations.

Data extracted from the fit in figure 11.3 are ǫAl2O3
= 9.312, and penetration depth

λL = 118.05 nm. The estimated value of the permittivity of the Sapphire substrate is a

reasonable estimate and the penetration depth is of the correct order of magnitude.

The same fitting process applied to results generated from a Nb/SiO2/Si CPR with

parameters; s = 10 µm, w = 5 µm, l = 11 mm and 6 µm coupling gaps measured

in cryostat 2, are ǫeff = 1 + q3(ǫSi − 1) + q1(ǫSiO2
) = 4.8741 and penetration depth

λL = 87.31 nm.

The value for the penetration depth of bulk Niobium at T = 0 K is 39 nm [31]. The

penetration depth for thin films differs from the bulk value, and the amount it differs by is

recorded in reference [68]. For a film thickness of 100 nm, the penetration depth is found

to be λ0 = 100 nm. The penetration depth of ≈ 118 nm obtained from the fitting process

is therefore a reasonable estimate.

The scatter on the measurements of the Q factor are most likely associated with

flux jumps in the Niobium film. These flux jumps contribute a resitive element in the

microwave circuity altering the losses and hence the Q of the CPR.

The temperature recorded in figure 11.2 in cryostat 1 is measured with a Mercury

manometer that responds to changes in the vapour pressure of liquid Helium. There are

some inaccuracies in the measured temperature values below T = 2 K when it becomes

difficult to read the manometer. The data points in figure 11.3 are taken with a RuO sensor

and the swept temperature is recorded. The second data set contains more temperature

points, therefore to compare figure 11.2 with figure 11.3, it is appropriate to manipulate

the second data set rather than the first.
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To compare the data sets, the data in figure 11.3 is manipulated to include the tem-

perature dependence of the permittivity of liquid Helium, see appendix E and reference

[69]. This is achieved using the following equation:

fmodified = fmeas

√

√

√

√

1 + q1(ǫAl2O3
− 1)

1 + q1(ǫAl2O3
− 1) + q3(ǫhel(T ) − 1)

(11.2)

Comparing the two data sets:
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Fig. 11.4: The blue square data set is based on the 6 µm gap CPR modified to include the

temperature dependence of the permittivity of the liquid Helium. This is compared

to the green circle 6 µm gap CPR data that is taken from the real data set measured

in cryostat 1.

There is ≈ 0.2 Mhz difference between the two data sets that imply a slight error,

probably due to the inaccuracy in measuring the temperature of the system in cryostat

1. The calculated percentage difference in permittivity is negligible.

The ratio of the kinetic to geometric inductance for the CPR is roughly

Lk(1.57K, 0mT )/Lg = 4.32%. This value is consistent with other reported values of

Lk(T, 0mT )/Lg for CPRs with similar dimensions reported in reference [5].
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The figure below is based on a Niobium on Sapphire substrate with CPR parameters;

s = 10 µm, w = 5 µm, l = 11 mm and 4 µm coupling gaps.
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Fig. 11.5: Resonant frequency and Q factor versus temperature for a Niobium on Sapphire Sub-

strate with CPR parameters of s = 10 µm, w = 5 µm, l = 11 mm and 4 µm coupling

gaps. Measured in cryostat 1.

The resonant frequency and Q factor have a similar temperature dependence to that

shown in figure 11.2. Below are results based on the same CPR as that above, but were

measured by Tobias Lindstrom [6] in a Adiabatic Demagnetisation Fridge (ADR). The

ADR is capable of much lower temperature giving a greater insight into the temperature

dependence of the resonant frequency and Q factor. These measurements were made as

part of a collaboration between the Condensed Matter Department at The University of

Birmingham and the Quantum Physics group at the National Physical Laboratory.
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Fig. 11.6: Resonant frequency and quality factor Q as a function of temperature for an overcou-

pled (4 µm coupling gap) CPR fabricated on a Al2O3 substrate. CPR parameters;

s = 10 µm, w = 5 µm, l = 11 mm and a 4 µm coupling gap. The rise in resonant

frequency for a decrease in temperature is due to the change in the number density

of Cooper pairs. The decrease in resonant frequency for T < 1.5 K, is an unexpected

feature of CPRs, and is attributed to the resonant coupling of the CPR with TLS in

the substrate. Courtesy of T. Lindstrom [6].

The first feature to note is the rise in the resonant frequency and Q with decreasing

temperature that is present in all four graphs above. This is consistent with London theory

[33] that states for decreasing temperatures the number density of superconducting Cooper

pairs increases, and this is reflected as an increase in resonant frequency and Q.

Present in figures 11.2 and 11.5 is a dip in frequency at 2.2 K. The significance of

this temperature point is that this corresponds to the phase transition between liquid

Helium and superfluid Helium, and is known as the lambda point. This phase transition

is associated with the superfluid fraction affecting the electric properties, i.e. altering the

dielectric constant of Helium due to the polarization connected with an elastic deformation

of the electron shell at that point, that occurs on a global scale involving the ensemble of

electrons within the Helium [69]. Since the effective permittivity is inversely proportional
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to the frequency, then any increase in the permittivity of the liquid Helium at this phase

change results in a dip in the measured resonant frequency.

The ratio below is found to be quantitatively correct.

fhelium(T = 2.2 K)

fvacuum(T = 2.2 K)
∝
√

√

√

√

ǫeff,vacuum(T = 2.2 K)

ǫeff,helium(T = 2.2 K)
(11.3)

The ratio of fhelium(T = 2.2 K)/fvacuum(T = 2.2 K) = 0.9972, taken from figures 11.2 and

11.4, and
√

ǫeff,vacuum(T = 2.2 K)/ǫeff,helium(T = 2.2 K) = 0.9973, where ǫeff,vacuum(T =

2.2 K) = 5.3885 and ǫeff,helium(T = 2.2 K) = 5.4172 taken from the fit above. The dip in

frequency at T = 2.2 K measured in cryostat 1 compared with the frequency measured in

cryostat 2, is comparable with the difference between the permittivity of the liquid helium

(ǫhelium(T = 2.2 K) = 1.05748) and the permittivity of air.

In figure 11.6 for T < 2 K, the general trend of the resonant frequency shows a decrease

and an increase in resonant frequency. The final rise in frequency is again a consequence of

the change in the kinetic inductance due to the change in the number density of Cooper

pairs, however the lowering of the resonant frequency is not easily explained or fully

understood.

The reduction in frequency for T < 2.2 K is believed to be associated with coupling

the resonant mode to two level systems (TLS) in the substrate material. This behaviour

is further characterised by a gradual increase in the Q, compared with the large increase

in the Q between 2.2 < T < 4.2 K, see figure 11.6. It is generally agreed [?, ?, 70] that the

losses at low temperatures are limited by dissipation mechanisms (such as TLS) unrelated

to superconductivity.

The evidence for TLS is the shape of the temperature dependences at T < 2.2 K, rem-

iniscent of the effects of paramagnetic impurities contributing a Curie term proportional

to 1/T to the magnetic susceptibility (∝ µ) of the substrate [45], see also figure 11.9.

These TLS could also arise from weak/dangling bonds within the Silicon Dioxide [71, 72].

Dangling bonds are an inherent quality of semiconductor surfaces. They act as reaction

sites in chemical reactions and surface states in electronic processes. Coupling between

the resonant frequency and these surface states and/or paramagnetic impurities produce

the same characteristics as observed above.
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For TLS to be the root cause of this dip in frequency, the TLS would have to have

comparable resonant frequencies to that of the CPR. This is possible because these TLS

have a wide distribution of energies and energy level spacings that could couple to the

CPR resonance.

The method employed to test this hypothesis is to apply different microwave power

levels to the coupled resonant modes of the CPR and the TLS, both on Sapphire and

oxidized Silicon substrates. Applying a high microwave power forces the electrons in the

TLS into higher energy states, saturating that state. This would make the TLS less likely

to absorb energy from the resonant mode of the CPR, hence the modes would become

decoupled. This would be observed in the experimental results as an increase in resonant

frequency and Q for a decrease in temperature.

11.2 Power Dependence

The power applied to CPRs can alter their resonant features, See figure 11.7.
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Fig. 11.7: Top; Power dependence of a Nb/Al2O3 half wavelength CPR with parameters; l = 11

mm, w = 5 µm, s = 10 µm, and 6 µm coupling gap. These measurements are taken

at a fixed temperature of T = 1.3 K and measured in cryostat 1. Bottom; resonant

frequency (black) and Q (blue) with error bars as a function of power.
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The onset of non-linearity for this device occurs between P = −30 dBm and P = −45

dBm. This non-linearity is characterised by a bending over of the resonant frequency peak

to a lower frequency. This is achieved by increasing the microwave power applied to the

CPR and dissipating energy in the resonator.

The major non-linear effects are driven by the current in the CPR, which changes

as the Q changes. The reduction in resonant frequency is associated with increasing

the kinetic inductance by making the current density as large as possible by non uniform

lateral current distributions. Increasing the kinetic inductance reduces the number density

of superconducting Cooper pairs, which is the same process as increasing the temperature

of the superconductor.

The power coupled into the resonator is dependent on the size of the coupling gap.

The onset of non-linearity can therefore be altered by changing the size of this gap. All

of the measurements reported in this thesis have been undertaken in the linear power

regime, as this leads to repeatable measurements and high Q factors.

It should be noted that not all research groups operate their CPRs in the linear regime.

P. Meeson from Royal Holloway uses the non-linear characteristics coupled to QUBITs to

perform quantum non-demolition experiments [73].

The power dependence of the Q factor has also been measured as a function of temper-

ature. This is not to investigate the difference between the linear and non-linear regions,

but rather the ability to decouple TLS from the resonant frequency of the CPR. The

graph taken from reference [70], demonstrates the effect of gradually increasing the power

applied to the CPR to saturate these TLS, and increase the Q.
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Fig. 11.8: Top; The Q as a function of temperature for different powers applied to Nb/Al2O3

CPR with parameters, l = 11 mm, s = 10 µm, w = 5 µm, and 4 µm coupling gap.

In their set-up, 0 dB corresponds to −27 dBm from the network analyzer and this is

attenuated by 70 dB at the sample input. Bottom; The same structure as above,

but measured on a Nb/SiO2/Si CPR. Courtesy of T. Lindstrom [70].

The change in Q is larger for CPR structures on oxidized Silicon substrates, compared

with Sapphire substrates. For example, an increase in power of 10 dB at T = 200 mK,

the Q changes from 100, 000 to 750, 000 for a Niobium CPR on oxidized Silicon (from −9

to −1 dB), and 390, 000 to 450, 000 for a Niobium CPR on Sapphire (from −10 to 0 dB).

This is probably because the Silicon Dioxide [74] layer is amorphous and contains more

TLS compared with Sapphire that is a single crystal [75]. The consequence therefore

of increasing the applied power, is reflected in a larger increase in the Q and resonant

frequency. This is further demonstrated by the work undertaken by T. M. Klapwijk et al
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[45].

T. M. Klapwijk et al, primarily study the temperature dependence of the resonant

frequency and frequency noise of NbTiN CPRs, however they include work on resonators

covered with SiOx dielectric of various thicknesses. Increasing the thickness of SiOx di-

electric layer results in the resonant frequency demonstrating a larger scaling with tem-

perature. This is indicative of increased number density of TLS distributed in the volume

of the SiOx that alters the permittivity. They also find that the thickness of the SiOx

dielectric does not effect the noise on the resonant frequency and the phase.

It should be noted that the change in Q for different powers applied to the CPRs is

not the same at all temperatures. For kT > E, where k is Boltzmann factor, T is the

temperature and E is the energy level separation of the TLS, every state of the TLS has

a probability of being equally occupied. If a microwave photon generated by the CPR

interacts with a single TLS, then the photon is absorbed and subsequently transmitted.

The energy within the CPR is therefore not lost to the TLS but is re-emitted. This effect

is equivalent to the strong field limit in atom-photon interactions [22] and typically occurs

at T > 2.2 K inferred from these measurements.

For lower temperatures (kT < E) it is more probable that the ground state of the TLS

is occupied, making it more susceptible to absorbing a photon. The TLS in its excited

state, looses energy either through spontaneous emission, or through other modes such as

phonons. This takes energy out of the CPR.

As stated above, for energy to be absorbed from the CPR, the frequency of the mi-

crowave photon has to be resonant with the energy levels within the TLS. Since the

resonant frequency is constantly changing, then as the temperature reduces, the resonant

frequency becomes resonant with different TLS within the substrate. The number density

and nature of TLS that exists within the substrate varies, therefore at different temper-

atures, the resonant frequency becomes resonant with different TLS, and therefore the

amount of energy that is taken from the CPR varies. As a consequence, when these TLS

are saturated with a high microwave power, then it can be inferred that a bigger increase

in Q is indicative of more TLS being saturated in the substrate.
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Below is a comparison between two CPR resonators with a 6 µm coupling gap on

Nb/Al2O3 and SiO2/Si substrates to compare the effect of TLS in different substrates. The

frequency points for both sets of data are normalised to T0 = 1.19 K, so easy comparisons

can be drawn from the data.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

N
or

m
al

iz
ed

 F
re

qu
en

cy

Temperature (K)

Fig. 11.9: Niobium CPRs on Sapphire (blue up arrows) and oxidized Silicon substrates (green

down arrows), with CPR dimensions of w = 5 µm, s = 10 µm and l = 11 mm

and a 6 µm gap, normalised frequency versus temperature. The frequency points

are normalised to a reference temperature of T0 = 1.19 K. Both are measured in the

cryostat 2. The red lines are the logarithmic fits to the data. The fit is based on the

resonant interaction of the dipole two-level systems with the electric field that results

in a temperature dependent permittivity.

At temperatures between 100 mK and 2 K, the resonant coupling between the CPR

and TLS, dominates over relaxation. This leads to a temperature-dependent variation

of the dielectric constant (ǫ(T ) − ǫ(T0)/ǫ(T ) = −(2nd2/3ǫ)(ln T
T0

− [g(T, ω) − g(T0, ω)]))

as shown in chapter 6 [49], and leading to the logarithmic function plotted in the figure

above.
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From the figure above it is evident that the Niobium on oxidized Silicon substrate data

set suffers greatly from the coupling between the CPR resonant frequency and TLS in the

substrate. These measurements are similar to those shown in reference [45].

11.3 CPRs with Different Sized Coupling Gaps

The QL of CPRs is a measure of the intrinsic and extrinsic loss associated with the CPR

configuration, as shown in equation 1.1. At low temperatures, the intrinsic loss decreases

as the number density of quasiparticles decrease. The dominant source of extrinsic loss

is due to the coupling of the external microwave circuitry with the CPR device. These

losses are investigated below. Fluctuations in the Q factor of some devices are due to flux

jumping/moving in the Niobium film. These flux jumps cause resistive losses reflected in

dramatic changes in the Q factor, these losses are not observed in the measurement of the

resonant frequency.

Figure 11.10 contains data from Nb/Al2O3 CPRs with fixed parameters of w = 5 µm,

s = 10 µm and l = 11 mm, with various couplings 4, 6 and 8 µm. Figure 11.11 contains

data from Nb/SiO2/Si CPRs with similar fixed parameters with various couplings 4 and

6 µm.
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Fig. 11.10: Small Nb/Al2O3 resonators with l = 11 mm, w = 5 µm, s = 10 µm and coupling

gaps 4 (top left), 6 (top right) and 8 µm (bottom left) CPRs measured in cryostat 1.



11. Niobium on Sapphire and Oxidized Silicon Resonator Measurements 104

1 2 3 4

6.0235

6.0240

6.0245

6.0250

 Frequency
 Q

Temperature (K)

Fr
eq

ue
nc

y 
(G

hz
)

0

50000

100000

150000

200000

250000

300000

350000

Q

1 2 3 4
6.0580

6.0585

6.0590

6.0595

6.0600

Temperature (K)

Fr
eq

ue
nc

y 
(G

hz
)

0

100000

200000

300000

400000

500000

600000

700000

Q

Fig. 11.11: Small Nb/SiO2/Si resonators with l = 11 mm, w = 5 µm, s = 10 µm and coupling

gaps 4 (left) and 6 µm (right) CPRs measured in cryostat 1.

The resonant frequency of these devices is similar to that shown in figure 11.2. By

renormalising the resonant frequency of all three graphs to a single value at a fixed tem-

perature, all graphs display the same temperature dependence. Therefore the value of the

penetration depth as shown previously is consistent for all CPRs measured. The second

feature to note is that the loaded Q increases with decreasing temperature, and increases

with increasing gap size. As shown in section 8.3, the loaded Q factor is the sum of all the

losses in the system. The unloaded Qu is related to the loaded QL by Qu = QL/(1−S21)

at resonance, see section 8.3.

The loaded QL for all resonators presented in figure 11.10 are different. However by

extracting the loading of the CPR in the cavity, it is found that Qu is independent of the

size of the coupling as a function of temperature, see figure 11.12.
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Fig. 11.12: Unloaded Q as a function of temperature for Nb/Al2O3 CPRs with l = 11 mm,

w = 5 µm, s = 10 µm, with a coupling gap of 4 µm (black squares), 6 µm (red

circles) and 8 µm (blue triangles) measured in cryostat 1.

The increase in unloaded Q as a function of temperature is therefore just a prop-

erty of the change in the number density of Cooper pairs and quasiparticles within the

superconducting condensate.

Resonators with strip widths s = 30 µm and strip to separation width w = 15 µm are

measured with various couplings 4, 8 and 15 µm.
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Fig. 11.13: The resonant frequency and QL versus temperature for Nb/Al2O3 CPRs, with di-

mensions l = 11 mm, s = 30 µm, w = 15 µm with coupling gaps 4 (top left), 8 (top

right) and 15 µm (bottom), and measured in cryostat 1

The resonant frequency for the 4 and 15 µm CPRs exhibits jumps in the resonant

frequency at T ∼ 2 K. This is probably associated with trapped flux jumping around

within the film of the Niobium altering the resonant frequency.

The unloaded Q of these structures are:
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Fig. 11.14: Unloaded Q as a function of temperature for Nb/Al2O3 CPRs, with dimensions

l = 11 mm, w = 30 µm, s = 15 µm, with coupling gaps of 4 µm (black squares), 8

µm (red circles) and 15 µm (blue triangles) and measured in cryostat 1.

The unloaded Q’s in this case do not match, suggesting that other loss mechanisms

are limiting the Q. It is not fully known why these larger resonators behave in such a

perculiar fashion.

Below are two graphs containing the estimated loaded Q and measured loaded Q for

the half wavelength CPRs displayed in figures 11.10 and 11.13. The estimated Q is based

on the coupling Q, discussed in chapter 9.
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Fig. 11.15: Comparison between the estimated coupling Q (taken from section 9) and the mea-

sured coupling Q for small (left) and large (right) Niobium on Sapphire CPRs. The

measured Q data points are taken at T = 1.5 K.

For both the small (s = 10 µm, w = 5 µm) and large (s = 30 µm, w = 15 µm)

CPRs the general trend of the graph is that Q increases with increasing coupling gap size.

The measured Q should theoretically lie below the estimated Q because measurements

contain additional losses. These additional losses are the reason why the experimental

and measured points do not exactly match.
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11.4 Summary of Results

Fig # Cryostat # Structure l mm w µm s µm Cc µm Predicted f0 Ghz f0(T = 1.5 K) Ghz Q(T = 1.5 K)

Fig 11.1 1 Nb/SiO2/Si 11 5 10 6 5.6721 6.0597 450000

Fig 11.2 1 Nb/Al2O3 11 5 10 6 5.6971 5.6975 320480

Fig 11.3 2 Nb/Al2O3 11 5 10 6 5.7095 5.7135 343196

Fig 11.5 1 Nb/Al2O3 11 5 10 4 5.6971 5.6760 276320

Fig 11.6 2 Nb/Al2O3 11 5 10 4 5.7095 5.7127 198000

Fig 11.10 1 Nb/Al2O3 11 5 10 8 5.6971 5.6984 502340

Fig 11.11 1 Nb/SiO2/Si 11 5 10 4 5.6721 6.0246 270000

Fig 11.11 1 Nb/SiO2/Si 11 5 10 6 5.6721 6.0597 450000

Fig 11.13 1 Nb/Al2O3 11 15 30 4 5.6992 (T = 2 K) 5.7780 (T = 2 K) 20347

Fig 11.13 1 Nb/Al2O3 11 15 30 8 5.6992 (T = 2 K) 5.7677 (T = 2 K) 26588

Fig 11.13 1 Nb/Al2O3 11 15 30 15 5.6992 5.7674 64754

Tab. 11.1: Table contains the CPR number and figure that it is taken from, the CPR param-

eters (length l, separation w, strip s, and coupling gap Cc), the predicted resonant

frequency, the measured resonant frequency and Q at T = 1.5 K unless otherwise

stated.



12. MAGNETIC MEASUREMENTS

The tunability of the CPR is investigated by an external magnetic field applied by a

Helmholtz coils, and an internal field applied through an inbuilt current control line on

chip. The resonant frequency properties and tunability of SFS CPRs are also investigated,

to determine whether these CPRs produce characteristic similar to normal CPRs. If

they produce similar results, then this could be the initial work that could encourage

other investigators to use these SFS CPRs coupled with SFS QUBITs, potentially making

quantum experiments more feasible.

12.1 Externally Applied Magnetic Field

An external magnetic field is applied by a Helmholtz coil to CPRs and the resonant

frequency and Q are measured, see configuration shown in section 10.5 and figure 12.1. The

sample measured is a 4 µm gap Niobium CPR on a Sapphire substrate with dimensions

w = 5 µm, s = 10 µm and l = 11 mm.

What is shown in the figure below is the shift in the resonant frequency (∆f = f0(H)−

f0(H = 0 mT )) as a function of magnetic field applied perpendicular to the CPR, and

for a fixed temperature of T = 1.38 K. The inset figure contains data on the shift in the

resonant frequency as a function of a fixed field rotated around the circumference of the

CPR. The fixed magnetic field is 0.2 mT, and φ = 00 is the field applied perpendicularly

to the surface of the sample [76].
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Fig. 12.1: A change in the resonant frequency with a perpendicular magnetic field (φ = 00)

measured for the fundamental, second and third harmonic. The inset shows the de-

pendency of the fundamental frequency shift on the angle φ at 0.2 mT. The Helmholtz

coils are rotated around the circumference of the CPR by using a lazy Susan. These

measurements are taken in cryostat 1, on a Niobium on Sapphire substrate CPR with

parameters l = 11 mm, w = 5 µm, s = 10 µm and 4 µm gap.

The results are highly reproducible as shown from the figure below. These results are

based on a CPR with the same dimensions as above, but are based on a Niobium on

oxidized Silicon substrate sample. The results below are courtesy of Tobias Lindstrom.
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Fig. 12.2: Measurements undertaken by Tobias Lindstrom, on a 4 µm gap Nb CPR on SiO2/Si

for a magnetic field applied at φ = 800 from the normal of the CPR. The top left

graph demonstrates that the Q does not change under the application of a magnetic

field, but it does as a function of temperature. The bottom graph is similar to figure

12.1. The top right is the derivative of the values obtained on the bottom graph,

this demonstrates that the behaviour of the resonant frequency to an applied field is

quadratic.

The first point to note is that the angle at which the magnetic field applied to the

CPR is φ = 800 and hence the shift in the resonant frequency is not at maximum. The

second point to note is that the perturbation of the resonant frequency is only dependent

on the geometry and not on the superconductor or substrate, therefore it is possible to

directly relate figure 12.1 with 12.2.

To compare these results, the perpendicular component of the magnetic field measured

by Tobias Lindstrom and the shift in the resonant frequency at this point is recorded. So
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for BT.L = 0.4 mT, the shift in the resonant frequency is ∆f = −120 to −175 kHz. Taking

the perpendicular component of the magnetic field gives, By = BT.L cos φ = 0.0044 mT.

Using this value of By = 0.0044 mT, and extracting the resonant frequency shift as

measured in figure 12.1, then the shift in frequency is ≈ 72 kHz. These results are not

quite equivalent, but it should be noted that there is some trapped magnetic field in the

Niobium film shown in the data in figure 12.2, and evidenced by the fact that for zero

magnetic field applied, the resonant frequency is not at maximum.

The parabolic nature of the response of the frequency to an applied magnetic field is

due to the magnetic field dependence of the order parameter and hence the penetration

depth, as shown in section 4.5.

The order parameter is given by ∆ ∝ (H/Hc)
2. Hence the frequency is modified to:

f(T,H) = f(T, 0)

(

1 − Lk(T, 0)

LT

β(T )
H2

H2
c

)

(12.1)

where Lk(T, 0) is the zero-field kinetic inductance, LT is the total inductance, β(T ) is

a scaling factor, β(T )H2 is small compared with H2
c , and Lk(T, 0) is small compared with

LT . From figure 12.2, the derivative of the frequency is plotted as a function of magnetic

field. Since the derivative is linear, then the integral is quadratic.

The field at which the frequency response deviates away from the parabolic behaviour

and when the Q diminishes is identified as the lower critical field for superconduct-

ing Niobium (Bc1 ≈ 0.1 T [31]). This occurs when the field applied externally is 0.25

mT (taken from figure 12.1), hence the flux focusing factor for this geometry is ≈ 400

(0.1 T/0.25 mT ).

An estimate of the flux focusing for such a device can be based on a simple ellipsoid.

The field at the edges of the ellipsoid is described by Hedge ∝ Happd/t, where d is the

diameter of the ellipsoid and t is the thickness. The diameter of the ground plane is ≈ 3

mm, the diameter of the inner conductor strip is 10 µm and the thickness of the Niobium

is 250 nm. The flux focusing (d/t) is therefore calculated between 50 − 15000, and the

flux focusing factor that is measured is 400, therefore the measured value fits within the

range of the calculated flux focusing factor.
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As the angle is rotated around the equator of the sample, the amount of flux focusing

in the gap diminishes, hence the change in the resonant frequency decreases, see figure 12.1

and 12.2. In fact, when the magnetic field is applied at φ = 900 to the sample (parallel),

no field is focused in the gap, hence the change in the frequency is at a minimum and

equivalent to the zero field situation. The change in the resonant frequency is a periodic

function of angle applied to its surface.

The higher harmonics are also subjected to changes in the resonant frequency by an

applied magnetic field. The higher harmonics change in the ratio of f3 : f2 : f1 = 2.8 :

1.8 : 1. This is different to the 3 : 2 : 1 ratio expected by this model, but it should

be noted that the flux focusing is slightly non-uniform near the ends of the CPR, and

that the different resonant modes are sensitive to different parts of the sample. The

shift in resonant frequency for the higher harmonics is significantly higher than the shift

in resonant frequency for the fundamental mode. It would be ideal to use these higher

harmonics to couple to QUBITs because of their larger tuning frequency and also, two

level systems (TLS) are more ineffective as their energy level spacings are not comparable

to the CPR higher harmonics. However, in practise it is not possible to fabricate QUBITs

with these energy levels either, therefore coupling between the CPR and QUBIT would

be impossible.

The Q for these measurements remains constant for fields << Bc1. This is because

the Q is weakly dependent on the number density of superconducting electrons within the

condensate at temperatures significantly less than the transition temperature.

Figure 12.2 above shows evidence of TLS. The data contains two measurements taken

at a fixed temperature of 300 mK with two different power levels of −21 and −27 dB.

Similar to the data shown in figure 11.9, the resonant frequency and Q differs in an

unexpected way. What is found is that for the lower power level applied to the CPR, the

Q has degraded and this is attributed to energy drawn from the CPR mode, due to the

resonant coupling between the CPR and TLS. Applying a slightly higher power causes

these TLS to be saturated, decoupling these TLS from the CPR resonance resulting in a

higher Q.
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Below is the data obtained from a quarter wavelength resonator that was fabricated

by the author, and measured in cryostat 1 at a fixed temperature of T = 1.4 K. The

coupling parameters are l1 = 250 µm long and g = 30 µm, see figure 12.3.

Fig. 12.3: A quarter wavelength CPR coupled to the feedline.

The low Q measured for the quarter wavelength resonator suggests that the resonator

is over coupled to the feedline.
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Fig. 12.4: Shift in the resonant frequency and Q as a function of the magnetic field applied

perpendicular to the surface of the quarter wavelength (λ/4) CPR. The λ/4 CPR

coupling parameters are l1 = 250 µm long and g = 30 µm separation, Nb/SiO2/Si

fabricated by the author, and measured in cryostat 1 at a fixed temperature of T = 1.4

K. The resonant frequency for this device is f(T = 1.4 K, B = 0 mT ) = 4.3379 Ghz.

A shift of 0.5 Mhz is observed and corresponds to about ≈ 5 linewidths. This is slightly

less than the shift measured with the Niobium on Sapphire CPRs shown in figure 12.1.

There are two possible reason for this; the samples fabricated on Sapphire and oxidized

Silicon are patterned slightly different or it could be associated with the length of the two

resonators.

The Niobium on Sapphire samples, under the Atomic Force Microscope (AFM) ex-

hibits redeposited particulates in the gap of the CPR and at the edges. This could result

in varying amounts of flux focusing in the gap. This could alter the penetration depth

and hence the shift in the resonant frequency. Conversely, the oxidized Silicon samples

underwent rigorous etching and cleaning processes. If the Niobium had been over etched,

this would produce a lower flux focusing factor compared with the Sapphire samples, and
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this would be reflected in a lower shift in the resonant frequency for the same field applied

to the CPRs.

The second reason could be associated with the length of the two resonators. A half

wavelength CPR has a magnetic field pattern shown in figure 1.2, i.e. the magnetic field

peaks in the centre of the CPR. For a quarter wavelength CPR the magnetic field pattern

is half of that shown in the figure. Therefore the shift in the resonant frequency for a half

wavelength CPR should be half that of a quarter wavelength CPR. This is shown to be

correct.

In conclusions the maximum change in resonant frequency is shown in the data in figure

12.1 and for this device is ≈ 5 Mhz. This corresponds to about 200 linewidths. The high

Q factor is also maintained and therefore the perturbation of the resonant frequency is

therefore repeatable. This method is useful for changing the resonant frequency by a large

amount and would be suitable to be employed in CPR/QUBIT experiments. However it

would be more beneficial if this could be achieved by on chip patterning of the Niobium

wafer and this is addressed in the following section.

12.2 Internally Applied Magnetic Field

The specimen used here is based on the design shown in figure 10.9. It is a half wavelength

Niobium on oxidized Silicon CPR with a current control line ≈ 1% the length of the

line situated near to the resonator centre. An external field of 0.122 mT is applied by

the Helmholtz coil to provide a non-zero resonant frequency offset df0/dB, to provide

sensitivity to the current applied by the control line, see figure 12.5. The following results

were obtained.
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Fig. 12.5: The shift in the resonant frequency as a function of the current applied to the control

line for a Nb/SiO2Si CPR with dimensions, l = 13.7 mm, s = 10 µm, w = 5 µm and

coupling gap 4 µm. This sample was measured in cryostat 1 at a fixed temperature

of 1.28 K. The zero magnetic field resonant frequency is 4.54 GHz

It should be noted that the current is applied to generate a field opposite to that

applied by the external Helmholtz coil. Therefore an increase in the current applied to

the control line results in an overall decrease in the total field, and hence an increase in

the resonant frequency.

The shift in the frequency is approximately 3 linewidths. This is small compared with

the shift observed by applying the magnetic field externally. It should be noted that the

Q in this case is not particularly high, hence the bandwidth is broad, and this limits the

number of linewidths by which the resonance moves. The measured Q remains constant

with the current applied to the current control line.

There are two possibilities for the small shift in the resonant frequency. The first

possibility may be associated with the fact that the current control line is only a small

percentage of the total length of the CPR line, hence the field coupled into the CPR is
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small and limited to the centre. This can be rectified by producing CPRs with current

control lines that extend the whole length of the conductor strip. Secondly, the low Q

may be associated with coupling the CPR to the “lossy” 50 Ω current control line, as this

can effectively dampen the system.

12.3 Magnetic Field Tuning of SFS CPRs

CPRs are fabricated from Niobium (thickness 300 nm)/Cobalt (thickness 3 nm)/Niobium

(thickness 300 nm)/Titanium (thickness 2 nm) thin films on Sapphire and oxidized Silicon

substrates. As mentioned in section 3.1 Nb/Co/Nb is used as the basis of the Josephson

Junction that forms part of the RF QUBIT. The Titanium is deposited on the Sapphire

to act as an adhesive to encourage Niobium to grow on top of the titanium film. This film

is nanometres in thickness and does not contribute any property to the CPR or the RF

QUBIT characteristics, as shown below. Both layers of Niobium are 300 nm thick and

the Cobalt layer is 2.21 nm.

CPRs are measured in the absence of RF QUBITs, and this is to deduce whether

the Cobalt interacts with the resonant characteristics of the CPR. Measurements are also

made on a CPR with a superconducting thin film square in the centre of the gap of the

resonator representing the RF QUBIT.

12.3.1 CPR in the Absence of the RF QUBIT.

The CPR measured here has dimensions of l = 11 mm, s = 30 µm, w = 15 µm and 20

µm coupling gaps. These thin films are deposited by Jason Robinson from the Material

Science group at Cambridge University, and patterned by the author.
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Fig. 12.6: The resonant frequency and Q as a function of temperature for a Nb/Co/Nb/Ti/Al2O3

CPR with dimensions l = 11 mm, s = 30 µm, w = 15 µm and 20 µm coupling gaps,

and measured in cryostat 2.

The scatter on the Q can be attributed to flux jumps in the film, the scatter on the

resonant frequency is not understood. A magnetic field is subsequently applied by the

Helmholtz coils.
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Fig. 12.7: The shift in the resonant frequency and Q as a function of the magnetic field applied

perpendicular to the surface of the CPR. This resonator is based on the structure;

Nb/Co/Nb/Ti/Al2O3 with dimensions of l = 11 mm, s = 30 µm, w = 15 µm and 20

µm coupling gaps, and measured in cryostat 2.

For a field of 0.216 mT the shift in the resonant frequency is ∆f = −1.079 MHz

and corresponds to 4 linewidths. The Q for this sample is low. This could be due to

the coupling to the external microwave circuitry, a problem with the deposition of the

Niobium film, or the interaction between the CPR resonance and TLS in the Cobalt layer

[14].

The coupling gap is larger than the values previously measured for Niobium on Sap-

phire CPRs, see section 11.3. Since the coupling gap is larger than those previously

measured in figure 11.13, then the coupling capacitance is lower and the Q should be

higher. Previous measurements have produced Q ∼ 60, 000 for the same dimensions,

therefore the low Q measured here is probably not associated with the coupling.

The magnetic field applied to the surface does not exceed the coercive field of the
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Cobalt (1− 90 mT) [77]. The parabolic curve of the resonance with the applied magnetic

field is therefore associated with the flux focusing of the field in the gap and not associated

with any interaction with the magnetic Cobalt layer. It is assumed therefore that the

Cobalt does not interact with the CPR resonant characteristics.

The loss is therefore assumed to be associated with the poor quality of the Niobium

film. Previous measurements on other Niobium films have produced low Tc films, with

broad transition temperatures. Further research into producing higher quality films should

be therefore be undertaken.

12.3.2 CPR with a square in the Gap.

In this experiment, a square of superconducting material is deposited and patterened in

the middle of the CPR in the gap between the conducting strip and the outer ground

planes. This square represents the position where the QUBIT will be situated, and is

used to test whether the resonant frequency is unperturbed by its presence. The square

has dimensions of 10× 4 µm2. Numerous samples have been tested, and no resonance has

been observed. The lack of observable resonant frequency is not believed to be associated

with the presence of the square, but rather due to poor deposition of the top layer of

Niobium that is probably non-superconducting.

12.4 Summary of Results

Fig Composition l mm w µm s µm Cc µm f0(T = 1.5 K) Ghz Q(T = 1.5 K) ∆f Mhz

Fig 12.1 λ/2 Nb/Al2O3 11 5 10 4 5.6756 179900 -2.82

Fig 12.4 λ/4 Nb/SiO2/Si 6.85 5 10 l = 250 g = 30 4.3380 38560 -0.15

Fig 12.5 λ/2 Nb/SiO2/Si 13.7 5 10 4 4.496 12000 0.085 (T = 1.28 K, 200 mA)

Fig 12.7 Nb/Co/Nb/Ti/Al2O3 11 15 30 20 6.24325 43000 -1

Tab. 12.1: Table contains the figure that the data is taken from, the CPR parameters (length

l, width s, strip separation w, and coupling gap Cc), the resonant frequency and

Q at T = 1.5 K, and the shift in the resonant frequency at T = 1.4 K (∆f =

f0(1.4 K, 0.2 mT ) − f0(1.4 K, 0 mT )) unless otherwise stated.
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13.1 Niobium on Sapphire and Oxidized Silicon Resonator

Measurements

Niobium CPRs on oxidized Silicon and Sapphire substrate device material are investigated

in section 11.1. The resonant frequency and Q is shown to increase as a function of

decreasing temperature. It is reasonable to assume from London theory [33] a relationship

between this increase, and an increase in the number density of Cooper pairs. Measured

Niobium CPRs on both types of substrate is shown to produce high Q factors (Q(T =

1 K) ∼ 500, 000) (figure 11.5 for Nb/Al2O3 CPR and figure 11.11 for Nb/SiO2/Si). Loss

is minimized by the low loss tangent of both substrates at low temperatures [57, 58, 59]

(see section 9, figure 9.5).

The Q measured at temperatures < 3 K of a CPR on oxidized Silicon substrate (see

figure 11.11) is lower compared with that of a CPR on Sapphire substrate (see figure

11.5). This loss is not associated with the differences in loss tangent, which is negligible.

It is attributed to the resonant coupling between the CPR resonant frequency and two

level systems (TLS) within the substrate layer [70]. Coupling between the CPR resonant

frequency and TLS in the substrate layer absorbs energy from the CPR transmission

signal, and results in a decrease in the Q and the resonant frequency of the CPR.

It is generally shown that an increase in the microwave power applied to a CPR results

in a higher Q factor and resonant frequency. This is evidence of the decoupling of the

resonant frequency from TLS. Further evidence of TLS interaction is the logarithmic

dependence of CPR resonant frequency with temperature < 2 K (see figure 11.9). The

theoretical interaction of a dipole TLS with an electric field is also a logarithmic function,



13. Conclusions 124

and results in a temperature dependent permittivity [45].

These TLS are present in both types of substrate (see section 11.2). Oxidized Silicon

compared with Sapphire substrate devices show a larger increase in resonant frequency

and Q with increase in applied microwave power, for a measured temperature range of

150 to 1000 mK (see figure 11.8 top and bottom). This is most likely due to an increased

number density of TLS within the oxidized Silicon, as also inferred from measurements

of frequency versus temperature (section 11.2). For example, for an increase in power

of 10 dB at T = 200 mK, the Q changes from 100, 000 to 750, 000 for a Niobium CPR

on oxidized Silicon (from −9 to −1 dB), and 390, 000 to 450, 000 for a Niobium CPR on

Sapphire (from −10 to 0 dB).

Changes in resonant frequency and Q with temperature and power for Niobium CPRs

on both substrate devices with changes in CPR device geometry are also measured (see

section 11.3). Different conductor strip to strip separation widths (compare figure 11.10

with 11.13) and varying coupling capacitor dimensions are investigated (see figure 11.10

and 11.11). It is found that decreasing the conductor strip to separation width, for con-

stant width ratio, produces devices with higher Q factors. Increased losses with increase

in conductor strip width are attributed to radiation loss and flux noise within the super-

conductor.

The coupling of CPRs to microwave circuitry has been investigated for different con-

ductor strip and strip separation widths. Three devices with small strip and separation

width (s = 10 µm and w = 5 µm), and coupling gaps of 4, 6, 8 µm were classed as weakly

coupled. When extracting the loaded Q of these samples (see section 8), the unloaded Q

is shown to be independent of the coupling. Three devices with larger strip and separation

width (s = 30 µm and w = 15 µm), and coupling gaps of 4, 8, 15 µm were classed as

strongly coupled. The unloaded Q is not independent of the coupling of the CPR to the

microwave circuitry.

Both simulated and measured values of Q show an increase with coupling gap width

(see figure 11.15). Deviations of simulated from measured values may be due to additional

measurement losses unaccounted for by the simulation. More measurements would be
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needed to determine a correlation (see chapter 9 and section 11.3).

The primary aim of this work is to design CPRs with high Q factors for the purpose

of providing an investigative tool suitable for scientific research into quantum computing

and cavity quantum electrodynamics. As stated in chapter 11, it is difficult to achieve

the resolution necessary for the fabrication of QUBITs within the gap of a Niobium CPR

with a high Q on a Sapphire substrate. The required resolution for QUBIT fabrication

can be achieved with oxidized Silicon substrates. However, the greater number of TLS

inherent within this substrate reduces Q, making it difficult to produce a device suitable

for the study of QUBIT/CPR interaction. As discussed previously, Q can be increased

in these devices by the saturation of TLS with the application of high microwave input

power.

To observe QUBITs/CPR interaction, the power applied to a CPR must be low enough

to ensure a low number of photons within the cavity [46]. High microwave powers, that

correspond to < n >≥ 5 photons within the cavity, significantly alter the “bare” systems

and observed spectrum splitting (see simulations from reference [6, 7]). Therefore it is not

possible to saturate these TLS and observe the interaction between the QUBIT and the

CPR.

It is the opinion of the author that using a Niobium CPR on a Sapphire substrate to

observe the interaction between a CPR and a QUBIT is not possible due to the difficulty

in fabricating these devices. This interaction has been observed with Niobium CPR on

oxidized Silicon substrate devices within the limits on Q imposed by the presence of TLS

[1].

Wallraff et al [1] have measured the spectroscopic splitting due to the degeneracy

between a CPR and a QUBIT, with a coupling strength of g/2π = 11.6 MHz, QUBIT

decoherence γ/2π = 0.7 MHz, and photon loss rate of κ/2π = 0.8 MHz. Preliminary cal-

culations based on the coupling between a flux QUBIT with dimensions given in reference

[6] and a CPR (with Silicon Dioxide substrate) predicts the coupling rate to be g/2π = 35

MHz. Derived QUBIT decoherence rate based on present literature is γ/2π = 1 MHz,

and photon loss rate extracted from measurements is κ/2π = f0/Q = 0.01 MHz.
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A higher CPR Q factor results in low photon loss rate and longer coherence times.

A high Q factor CPR also results in a higher resolution for observing the spectroscopic

splitting between a CPR and a QUBIT. Due to very precise fabrication techniques CPR

devices (on oxidized Silicon substrate) made here exhibit high Q factors in the presence of

inherent TLS processes. These CPR devices can thus be implemented to realise quantum

bit experiments.

13.2 Magnetic Measurements

The tunability of a CPR by an external magnetic field is ≈ 0.05 % from f0 ≈ 6 Ghz, with

a high and unperturbed Q factor ∼ 500, 000 (see figure 12.1). This shift in the resonant

frequency corresponds to ∼ 200 linewidths (linewidth is defined as the shift in resonant

frequency divided by the bandwidth of the resonance). Rotating the applied magnetic

field around the equator of the CPR, shows a periodic decrease and increase in resonant

frequency for the field applied perpendicular and parallel to the surface of the CPR. This

is evidence that the perturbation of the resonant frequency is associated with the flux

focusing of the magnetic field in the gap between the conductor strip and outer ground

planes.

The estimated flux focusing of the device is based upon a simple ellipsoid shape, and

is shown to be in the region of 50 − 15000. Using the Niobium critical field of 0.1 T [31],

and the magnetic field data at which the resonant frequency and Q deviates away from

the expected response, the CPR has been shown to have a flux focusing of 400. This is

within the estimated flux focusing calculated for this device.

The higher harmonics are also subjected to changes in the resonant frequency by an

applied magnetic field. The higher harmonics change in the ratio of f3 : f2 : f1 = 2.8 :

1.8 : 1. This is different to the 3 : 2 : 1 ratio expected by this model, but it should be

noted that the flux focusing is slightly non-uniform near the ends of the CPR, and that

the different resonant modes are sensitive to different parts of the sample.

The effect of flux focusing the magnetic field on the superconducting material, is to

modify the penetration depth of the superconductor in accordance with Ginzburg-Landau
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theory [37]. The penetration depth is shown to have an H2 dependence, which is reflected

in the quadratic nature of the response of the resonant frequency to the applied magnetic

field.

A shift in the resonant frequency is also shown for a quarter wavelength Niobium CPR

on oxidized Silicon. For a field of 0.36 mT, a shift in resonant frequency of 0.5 MHz is

measured (see figure 12.4). This shift in resonant frequency is much less then previously

measured. This is attributed to differences in the fabrication process of the two samples.

An inbuilt current control line fabricated on chip is used to perturb the resonant

frequency of the CPR. The current control line is ≈ 1% the length of the inner conductor

strip, situated near the resonator centre. An external field of 0.122 mT is applied by

the Helmholtz coil to provide a non-zero resonant frequency offset df0/dB, this provides

maximal sensitivity to the current applied by the control line. Applying a current of 250

mA produces a shift in the resonant frequency of 85 Khz, and this corresponds to ≈ 3

linewidths (see figure 12.5). It should be noted that the Q in this case is not particularly

high, hence the bandwidth is broad, and this limits the number of linewidths by which

the resonance moves. The Q however, remains constant with changing current applied to

the current control line.

The small shift in resonant frequency is attributed to the magnetic field generated

by the current control line that is a small percentage of the total length of the inner

conducting strip. Increasing the length of the current control line, should hypothetically

increase the shift in the resonant frequency. The low Q is attributed to overcoupling the

CPR to the current control line, analogous to overcoupling a CPR via coupling capacitors

as discussed above.

Lastly, CPRs made from superconducting-ferromagnet-superconducting (SFS) trilay-

ers on oxidized Silicon are fabricated. The resonant frequency is 6.24 Ghz, and Q = 25, 000

(see figure 12.6). The low Q is attributed to overcoupling the CPR with the microwave

circuitry, that effectively dampens the Q. The shift in resonant frequency ≈ 1 MHz (see

figure 12.7), is similar to the shift in resonant frequency of half wavelength Niobium on

oxidized Silicon CPRs.
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13.3 Further Research

Decoherence due to TLS within oxidized Silicon is apparent from the measurements of

resonant frequency and Q as a function of temperature and power. This source of loss

adds to the decoherence when observing the interaction between a CPR and a QUBIT. It

has been shown that these TLS are saturated by high microwave powers, but that this is

also shown through simulations to alter the observed energy level spectrum. This makes

it difficult to observe the interaction between a CPR and a QUBIT.

The origin of these TLS could be investigated through spectroscopy. This could iden-

tify whether TLS are paramagnetic impurities or dangling bonds within the oxidized

Silicon. If it is found that TLS are due to paramagnetic impurities within the oxidized

Silicon, then it may be possible to either thermally grow/deposit oxidized Silicon with

increased purity. If the origin of TLS is found to be dangling bonds, then there are

well developed techniques within the semiconductor industry for eliminating these bonds

[78, 79].

It has been shown that SFS CPRs are capable of producing Q ∼ 104, further research

into sample deposition and fabrication may yield Q ∼ 106. If this is achieved, then SFS

CPRs strongly coupled with SFS QUBITs would potentially produce effects similar to,

and better than the effects observed by Wallraff et al [1], in terms of less decoherence

introduced through the coupling of the current control line to the CPR.



14. DECLARATION

The results shown in the figures below are from samples fabricated by the author:

Figure 11.1

Figure 12.6

Figure 12.4

Figure 12.5

Tab. 14.1: Samples fabricated by the author.

The results shown in the figures below are from samples fabricated by StarCryo:

Figure 11.2

Figure 11.3

Figure 11.6

Figure 11.7

Figure 11.10

Figure 11.13

Figure 11.11

Tab. 14.2: Samples fabricated by StarCryo.
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APPENDIX



A. SIMULATIONS

The method for simulating these structures are shown below, and the example used is

based on a normal metal half wavelength CPR, residing on a silicon substrate.

The CPR geometric structure is designed in a program called KIC and exported as

a GDS file. These files are also sent to the mask fabricators as they form the basis

of the mask designs of the CPRs. These files are then imported into HFSS and the

different geometries are given constraints such as material type, boundary conditions,

wave excitations, and mesh operations. Within the HFSS program, the CPR structure

that is imported can be simulated as a 2D structure or extruded into a 3D structure.

However, for simplicity and time constraints the structure is simulated as a 2D film. A

typical CPR resides on a dielectric substrate, and this can be simulated as a box and

assigned a substrate material from a vast and comprehensive library contained within

the program. Finally, the whole structure is contained within an external box, either

contacting all sides of the CPR or only partially, depending upon the type of simulation

that is being undertaken.

There are three solvers to choose from, driven modal, driven terminal and eigenmode.

The driven modal and driven terminal solvers use wave ports to direct the EM field.

The driven modal solver calculates the modal-based S parameters of the structure and ex-

presses the S matrix in terms of incident and reflected powers of the waveguide mode. The

driven terminal calculates the terminal-based S parameters, and expresses the S matrix

in terms of the terminal voltages and currents. The eigenmode solver finds eigenmodes

of lossy and lossless system depending on any bounded region in the design. A typical

structure that is solved using the driven modal solver is shown below:



A. Simulations 140

Fig. A.1: Half wavelength coplanar resonator with supporting box and substrate.

The example used here is a CPR with a length of 11 mm, with a width of 30 µm, gap

separation of 15 µm and a coupling gap of 15 µm. The CPR resides on a silicon substrate

with ǫr = 11.9 and loss tangent equal to zero. The top layer (red) is modelled as a

perfectly electrically conducting (PEC) material to loosely represent a superconductor.

Wave ports are assigned to opposite faces of a box enclosing the CPR. A requirement for

placing a port on a face is to specify an electric field integration line. This electric field

integration line is drawn from the middle of this face to the edge of the box to represent

the direction where the peak E field resides on the CPR.

After specifying the structure and boundary regions within the HFSS window, the

analysis process is then defined. To apply the analysis process, a relevant frequency is

set that has an associated length scale within the structure (e.g. the CPR has a resonant

frequency of 6 Ghz and wavelength of 5.5 mm so this will determine the appropriate length

scale). The program then puts down a number of mesh elements, the number of which can

be chosen by selecting a fraction of the wavelength that is to be meshed e.g. 0.1×λ. The

mesh that has initially been set up can be used for further simulations, however for certain

structures with a high aspect ratio, applying the adaptive solution is more appropriate.
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The adaptive solution puts mesh elements in relevant places to decrease the average error

between mesh elements overlapping or leaving empty spaces. This also helps to resolve the

Electric and magnetic field distributions. For this reason the mesh error in the matching

of the elements is set low (typically 2 %) and the number of mesh iterations is kept high

(say 10).

Fig. A.2: Adaptive mesh used to simulate the electromagnetic field pattern of a half wavelength

resonator. For clarity, the mesh elements inside the larger box have been omitted.

Once the adaptive frequency has been set, the sweep function is then defined. There

are three types of sweep functions, discrete, fast and interpolating. Selecting the discrete

sweep function means that upon selecting the sweep frequency range and number of

points, the program calculates all Maxwell’s equations in each mesh element and for every

frequency point specified. This is a very accurate way of extracting S and field parameters.

This process can take a long time to solve, so to reduce the time of evaluation there are

two other process that can be employed; the fast and interpolating frequency sweeps.

The fast frequency sweep finds the “poles and zeros” of the problem to calculate

S parameters, it can also calculate fields at specific frequency points. The interpolating

frequency sweep is usually used when a DC solution is required or a very broadband sweep.
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HFSS chooses which frequency points are “ideal” for interpolating the S parameters. The

downside is that it does not produce field patterns (just S/Y/Z parameters) however, a

further discrete or fast frequency sweep can be used, while maintaining the same mesh

from the previous sweep.

Once all of the above parameters have been defined and solved, the post processing of

the details can be obtained. Typically the S parameters provide information regarding the

successfulness of the CPR depending on its Q and field distribution. The field distribution

information can be used to find the correct location to place a flux or charge qubit to take

advantage of the high energy density of the CPR to provide strong coupling for Qubit-CPR

experiments.

The S parameters for the above model are shown below. The Q in this case is fairly

meaningless with reference to a superconducting material, however the simulation shows

the capabilities of the HFSS program to cope with the CPR geometry.
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Fig. A.3: The transmission parameter (S21) as a function of the frequency applied.

The E and H field patterns for a CPR on resonance is shown below.
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Fig. A.4: The E field for a CPR on resonance.

The E field peaks at the ends of the resonator, near the coupling capacitors and is

zero at the centre. This is the field pattern for a typical fundamental mode of a CPR.

Below is the response of the H field:P

Fig. A.5: The H field for a CPR on resonance.

The H field peaks at the centre of the CPR and is a minimum at both ends near the

coupling capacitors. The central position is an ideal location to place a flux QUBIT, for
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strong coupling between the two devices.

It has been shown that HFSS is capable of simulating CPRs, therefore in the previous

sections a thorough analysis of the CPR geometries are considered and simulated in detail.



B. LABVIEW PROGRAM

Front end program.

Fig. B.1: Temperature settings.
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Fig. B.2: Network analyzer settings.
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Fig. B.3: Plotting facilities.
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Fig. B.4: Plotting facilities.

Back end program.
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Fig. B.5: Initialising the network analyzer.

Fig. B.6: Selecting functions that are extracted from the network analyzer.
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Fig. B.7: Selecting functions that are extracted from the temperature controller.

Fig. B.8: File capture, save and plotting functions.



C. PHOTOLITHOGRAPHIC MASK

Photolithographic masks. An example of a half wavelength CPR

Fig. C.1: Half wavelength CPR.

An example of a KID.
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Fig. C.2: Quarter wavelength CPR with current control line.

An example of a CPR with a current control line.

Fig. C.3: Half wavelength CPR with a current control line.

Entire mask.
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Fig. C.4: An image of the complete mask designed in KIC.



D. RUO CALIBRATION DATA

Temperature K Resistance Ω

3.220 2864.660

3.152 2879.200

3.120 2885.780

3.002 2910.620

2.950 2922.410

2.898 2934.220

2.849 2945.960

2.825 2951.970

2.799 2958.170

2.774 2964.410

2.749 2970.780

2.724 2977.020

2.699 2983.660

2.650 2997.290

2.625 3004.210

2.599 3011.350

2.574 3018.450

2.527 3032.620

2.503 3039.810

2.458 3053.940

2.437 3060.560
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2.417 3067.200

2.398 3073.380

2.380 3079.660

2.362 3085.820

2.345 3091.800

2.328 3097.480

2.312 3103.020

2.297 3108.390

2.282 3113.420

2.270 3118.060

2.259 3122.460

2.247 3126.880

2.236 3131.160

2.225 3135.340

2.214 3139.380

2.204 3143.320

2.197 3146.440

2.191 3148.480

2.186 3150.560

2.180 3152.910

2.172 3155.720

2.163 3159.110

2.150 3163.810

2.136 3169.680

2.122 3175.960

2.106 3182.840

2.089 3190.140

2.071 3197.670
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2.053 3205.110

2.035 3213.010

2.018 3221.030

2.000 3229.190

1.983 3237.550

1.966 3245.900

1.948 3254.140

1.931 3262.850

1.913 3271.640

1.894 3280.450

1.873 3289.520

1.857 3298.570

1.840 3307.710

1.823 3316.590

1.807 3325.840

1.790 3335.080

1.757 3353.710

1.741 3363.010

1.726 3372.420

1.711 3381.450

1.696 3390.830

1.681 3400.180

1.667 3409.520

1.652 3418.820

1.637 3428.050

1.623 3437.290

1.610 3446.190

1.597 3455.350
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1.584 3464.380

1.572 3473.470

1.559 3482.510

1.534 3500.250

1.522 3509.180

1.510 3518.000

1.498 3526.760

1.488 3535.400

1.477 3543.960

1.467 3552.520

1.456 3560.710

1.446 3569.060

1.436 3577.310

1.427 3585.440

1.417 3593.480

1.408 3601.370

1.399 3609.230

1.390 3616.630

1.381 3624.200

1.373 3631.650

1.366 3638.970

1.358 3646.180

1.351 3653.240

1.344 3660.140

1.337 3666.750

1.330 3673.400

1.316 3686.310

1.310 3692.610
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1.304 3698.700

1.297 3704.500

1.291 3710.290

1.286 3716.030

1.280 3721.570

1.275 3727.000

1.266 3737.360

1.261 3742.220

1.256 3747.120

1.252 3751.870

1.248 3756.460

1.244 3760.980

1.240 3765.310

1.236 3769.510

1.233 3773.480

1.229 3777.450

1.226 3781.290

1.222 3785.000

1.219 3788.630

1.216 3792.090

1.213 3795.440

1.210 3798.570

1.207 3801.710

1.205 3804.770

1.202 3807.640

1.200 3810.470

1.198 3813.150

1.195 3815.640
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1.193 3818.070

1.191 3820.430

1.190 3822.660

1.188 3824.770

1.186 3826.810

1.184 3828.800

1.183 3830.620

1.181 3832.510

1.180 3834.280

1.178 3835.950

1.177 3837.490

1.176 3838.990

1.175 3840.410

1.174 3841.660

1.173 3842.850

1.172 3843.950

1.171 3844.970

1.170 3846.710

1.169 3847.440

1.168 3848.090

1.167 3850.210

1.166 3850.580

1.165 3852.500

1.164 3854.570

1.163 3854.760

1.162 3857.990

1.161 3858.210

1.160 3860.890
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1.159 3861.120

1.158 3863.980

1.157 3864.170

1.156 3866.820

1.155 3867.010

1.154 3868.620

1.153 3870.690

1.152 3871.720

1.151 3873.660

1.150 3874.420

1.149 3876.350

1.148 3877.510

1.147 3879.830

1.146 3880.330

1.145 3882.660

1.144 3883.160

1.143 3885.600

1.142 3886.170

1.141 3888.470

1.140 3889.160

1.139 3891.120

1.138 3893.090

1.137 3893.170

1.136 3896.030

1.135 3896.100

1.134 3898.930

1.133 3899.010

1.132 3901.350
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1.131 3903.390

1.130 3903.480

1.129 3905.880

1.128 3907.670

1.127 3907.760

1.126 3910.320

1.125 3911.940

1.124 3912.050

1.1123 3929.800

1.1123 3929.860

1.1121 3930.140

1.1120 3930.230

1.1119 3930.330

1.1118 3930.410

1.1117 3930.610

1.1116 3930.670

1.1115 3930.920

1.1114 3930.940

1.1113 3931.120

1.1112 3931.370

1.1111 3931.380

1.1110 3931.510

1.1109 3931.780

1.1108 3931.820

1.1107 3931.930

Tab. D.1: Calibrated RuO sensor, temperature versus resistance.



E. PERMITTIVITY OF LIQUID HELIUM

Temperature K ǫhelium

4.2 1.0493

4.0 1.05052

3.8 1.0517

3.6 1.0527

3.4 1.0537

3.2 1.0546

3.0 1.05552

2.8 1.0562

2.6 1.0569

2.4 1.0573

2.2 1.05748

2.0 1.05713

1.8 1.057

1.6 1.05687

Tab. E.1: Permittivity of liquid helium as a function of temperature.



F. MATLAB CODE FOR EXTRACTING RESONATOR

PARAMETERS

F.1 Fitting Procedure

Simplifying all the multiple constants from the function shown in equation 7.15:

f(T ) = A

[

1 − Bλ(T ) − Cλ(T )

sinh( D
λ(T )

)

]

(F.1)

Where A, B, C and D are a combinations of constants that are real and positive.

Find where df(T )/dT− > 0 to find where any turning points exist in temperature. Now

differentiating with respect to T is difficult, but λ(T ) varies between λ0 and ∞. So

differentiate the function with respect to λ and see if a turning point lies within the range

λ0 → ∞. Therefore redefine the function:

f(λ) = A

[

1 − Bλ − Cλ

sinh(D
λ
)

]

(F.2)

Differentiate this and set it to zero to find any turning points. Discard the A as this

is just a scaling constant.

df

dλ
= 0 = −B − C

sinh(D
λ
)
− Cλ

(

d

dλ

)

·
(

1

sinh(D
λ
)

)

(F.3)

The term containing C is split in two parts using the product rule. Then using u =

C · λv = 1/sinh(D/λ) and using the identity d/dx(1/sinh(x)) = −1/(sinh(x) · tanh(x))

with the chain rule:

df

dλ
= 0 = −B − C

sinh(D
λ
)
− C

dx

dλ
· d

dx

1

sinh(x)
(F.4)
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Where x = D/λ. Perform the differentiation and then resubstitute back in and one

gets:

0 = −B − C

sinh(D
λ
)
− Cλ

(

−2D

λ2

)(

−1

sinh(D
λ
)tanh(D

λ
)

)

(F.5)

Tidying this equation:

0 = Bsinh

(

D

λ

)

tanh

(

D

λ

)

+ Ctanh

(

D

λ

)

+ 2C

(

D

λ

)

(F.6)

F.2 Matlab Code

function out = JoFunc(T,lambda0,epseff)

Tc = 9.20;

A = 4.93674 ∗ 10−06;

B = 5.06407 ∗ 10−06;

C = 1.00008 ∗ 10−05;

D = 1.01281 ∗ 10−05;

t = 2.00 ∗ 10−07;

l = 1.10 ∗ 10−02;

c = 2.99863 ∗ 10+08;

K = 2.15669 ∗ 10+00;

mu0 = 1.25663706 ∗ 10−06;

eps0 = 8.854187817 ∗ 10−12;

part1 = (1/(2.*l.*sqrt(mu0.*eps0.*epseff)));

part2 = 1.7*(C/(2*A*D*K));

part3 = (0.4./(sqrt(((B/A)2 − 1) ∗ (1 − (B/D)2)))) ∗ (C/(2 ∗ A ∗ D ∗ K));

out = part1.∗(1−part2.∗lambdaL(T, Tc, lambda0)./sinh(t./(2.∗lambdaL(T, Tc, lambda0)))

− part3. ∗ lambdaL(T, Tc, lambda0));
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function out = lambdaL(T, Tc, lambda0)

out = lambda0./((1 − (T/Tc).4).0.5);

function out = residuals(in, data)

fit = JoFunc(data(:, 1), in(1), in(2));

out = sqrt(sum((fit − data(:, 2)).2));

function out = PlotData(trange)

Tc = 9.20

SiData = load(′Silicondata.csv′);

lambda0 = 234 ∗ 10( − 10);

eeff = 10;

ifexist(′trange′,′ var′)

which = find(and(SiData(:, 1) > trange(1), SiData(:, 1) < trange(2)))

SiData = SiData(which, :);

end

getopt = optimset(′fminsearch′);

getopt = optimset(getopt,′ Display′,′ iter′,′ MaxIter′, 10000,′ MaxFunEvals′, 10000,

′TolX ′, 1E − 6);

fit = fminsearch(@(in)residuals(in, SiData), [lambda0; eeff ], getopt);

holdoff ;

plot(SiData(:, 1), SiData(:, 2),′ −r′);

holdon;

plot(SiData(:, 1), JoFunc(SiData(:, 1), f it(1), f it(2)));

out = fit;
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disp([′Lambda0 =′ num2str(fit(1))′andeeff =′ num2str(fit(2))]);

This is courtesy of Richard Lycett.



G. PAPERS

G.1 Contribution.

My contribution to this project was to design, simulate, fabricate, measure and analyze

high Q superconducting Niobium on Sapphire and oxidized Silicon Substrate CPRs.

G.1.1 Circuit QED with a flux qubit strongly coupled to a coplanar transmission line

resonator.

I provided pictures, contributed to the calculation of the coupling strength by providing

values for the inductance/capacitance of the CPR, measurements of CPR Q factor, and

acted as an editor for the publishing of the paper.

G.1.2 Numerical Simulations of a Flux Qubit Coupled to a High Quality Resonator.

I designed, fabricated and measured CPRs with various coupling parameters and device

materials.

G.1.3 Properties of high-quality coplanar waveguide resonators for QIP and detector

applications.

I designed, fabricated and measured CPRs with various coupling parameters and device

materials. Measurements of the resonant frequency and Q as a function of temperature

for various CPRs are undertaken in my cryostats.

G.1.4 Properties of Superconducting Planar Resonators at Millikelvin Temperatures.

I designed, fabricated and measured CPRs with various coupling parameters and device

materials.
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G.1.5 Magnetic Field Tuning of Coplanar Waveguide Resonators.

I designed, fabricated, measured and analyzed CPRs with various coupling parameters and

device materials. I measured the resonant frequency and Q as a function of temperature

and magnetic field. I acted as the author and editor of the paper, and provided the

majority of the graphs.


