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Abstract 

The adrenal steroid dehydroepiandrosterone (DHEA) and its sulphate ester, DHEAS are the 

most abundant circulating steroid hormones in humans. Uncongugated DHEA predominately 

exerts its effects via its downstream conversion to active sex steroids in peripheral target 

tissues. In contrast the conversion of DHEAS to androgens first requires cleavage of the 

sulfate group, catalysed by the microsomal enzyme steroid sulfatase (STS). Conversely, 

DHEA is converted to inactive DHEAS by the activity of the cytosolic enzyme DHEA 

sulphotransferase (SULT2A1). However, in addition, evidence is growing that DHEA and 

DHEAS can have specific, direct effects.  

In this thesis, I have demonstrated that abrogation of DHEA metabolism can result in the 

manifestation of pathophysiological conditions. SULT2A1 requires 3'-phosphoadenosine-5'-

phosphosulfate (PAPS) for catalytic activity. I have identified compound heterozygous 

mutations in the gene encoding human PAPS synthase 2 (PAPSS2) in a girl with androgen 

excess and confirmed the inactivating nature of the mutations via in vitro activity analysis. 

These observations indicate that PAPSS2 deficiency is a novel monogenic adrenocortical 

cause of androgen excess.  

In addition, I have demonstrated that DHEA can have specific direct effects, attenuates 

human adipogenesis, while enhancing glucose uptake in mature adipocytes. These findings 

highlight DHEA metabolism, particularly by SULT2A1, as important mechanisms regulating 

DHEA activity.   
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1 Chapter 1: Introduction 

 



1.1 Adrenal steroidogenesis  

1.1.1 The anatomy and structure of the adrenal gland 

The adrenal glands are located above the kidneys. Each gland weighs approximately 

4g (McNicol, 2008) in the human adult and is encapsulated in a layer of thick 

connective tissue which serves to maintain its structure. The adrenal can be 

morphologically and functionally divided into two zones of different embryological 

origin (Ehrhart-Bornstein and Bornstein, 2008); the outer cortex which comprises the 

largest volume of the gland, and the inner medulla, which contributes approximately 

10% of the adrenal gland (McNicol, 2008).   
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Figure 1-1 Diagram of the adrenal gland The adrenal glands are positioned above 

the kidneys. They can be divided into two distinct zones based on their morphology 

and function; the cortex and medulla. Taken from jcsurgery.com/lap%20adrenal.htm 

 

http://jcsurgery.com/lap%20adrenal.htm


The adrenal cortex can be further sub-divided into three histologically and 

enzymatically distinct concentric zones; the outer zona glomerulosa, the site of 

mineralocorticoid synthesis; the intermediate zona fasiculata, the site of 

glucocorticoid production; and the inner zona reticularis, which synthesises 

androgens including DHEA (Figure 1-2). In general each of the zones of the cortex 

possesses a distinct enzyme profile allowing the synthesis of a particular set of 

steroid hormones (Figure 1-4). 

The adrenal medulla is developmentally, physiologically, and functionally distinct 

from the adrenal cortex (Fung et al., 2008). In the medulla catecholamines, notably 

adrenaline and to some extent noradrenaline, are synthesised from the amino acid 

tyrosine and secreted upon stimulation by a groups of specialised cells, termed 

chromaffin cells (Ehrhart-Bornstein and Bornstein, 2008). The medulla is highly 

innervated by preganglionic sympathetic neurones in the splanchnic nerves, which 

upon stimulation, in response to environmental stress, causes acetylcholine (ACH) to 

be released from nerve endings (Fung et al., 2008). ACH induces an increase in 

permeability of the chromaffin cells to Ca2+, stimulating the release of catacholamines 

by exocytosis. In addition, due to its location within the adrenal, the medulla is 

exposed to relatively high levels of glucocorticoids (which are elevated in response to 

stress) inducing the activity of N-methyltransferase resulting in the stimulation of the 

biosynthesis of adrenaline (Ehrhart-Bornstein and Bornstein, 2008). Catecholamine 

release induces physiological changes that prepare the body for physical activity, 

termed the fight-or-flight response. Physiologically this manifests as increases in 

blood vessel constriction, heart rate, circulating glucose concentrations, and 

bronchiole dilation. 

 



 

 

 

 

 

Figure 1-2 Histology of the human adrenal cortex. The adrenal cortex can be sub-

divided into three histologically distinct zones; the glomerulosa, the fasiculata and the 

reticularis which are clearly distinguishable following Mallory-Azan staining. Taken 

from missinglink.ucsf.edu/.../Assets/Endo_histo.htm 

 

 

http://missinglink.ucsf.edu/lm/IDS_106_Endocrine/Assets/Endo_histo.htm


1.1.2 Principles of steroid hormone synthesis 

1.1.2.1 Steroid hormone structure 

Steroid hormones are synthesised from the precursor cholesterol in the adrenal 

glands, gonads and placenta. All steroid hormones share a basic 

cyclopentanoperhydrophenanthrene ring structure, which comprises three 

cyclohexane rings; A, B and C, and a cyclopentane ring, D.  The differential 

properties of steroids are conveyed by the number of carbon atoms and side chain 

groups. The conventional numerical nomenclature for steroid hormones is shown in 

Figure 1-3. Based on the number of carbon atoms, five groups of steroids can be 

identified: progestagens, glucocorticoids and mineralalocorticoids with 21, androgens 

with 19 and oestrogens with 18 carbon atoms.  

 

Cholesterol 

 

 

 

 

 

 

 

Figure 1-3 The conventional nomenclature used for steroid hormone 

structures. The structure of cholesterol, the precursor for the synthesis of all steroid 

hormones, is shown. Letters identify the cyclohexane rings; A, B and C, and the 

cyclopentane ring D. Numbers identify the carbon atoms.  

 



1.1.2.2 Steroid precursor synthesis 

Cholesterol, the common precursor for all adrenal steroidogenesis, can be acquired 

by three mechanisms. In the human, the principle source is in the form of low-density 

lipoprotein (LDL) from the diet. LDL cholesterol esters are internalised into cortical 

cells from the circulation by endocytosis via specific LDL receptors present on the cell 

surface (Miller, 2007). Subsequently free cholesterol is produced following hydrolysis.   

Secondly, cholesterol can be synthesised de novo within the adrenal cortex from 

acetyl coenzyme A. The rate-limiting step in this pathway is the conversion of ß-

hydroxy-ß-methylglutaryl-CoA to mevalonic acid by the enzyme 

hydroxymethylglutaryl coenzyme A (HMG CoA) reductase. Cholesterol itself exerts 

negative feedback on HMG CoA reductase activity, thus the rate at which LDL enters 

the cell by receptor-mediated endocytosis tightly regulates the rate of de novo 

synthesis (Miller, 2002). In contrast, ACTH stimulates the expression of HMG CoA 

reductase and LDL receptors, resulting in enhanced uptake of LDL cholesterol 

(Miller, 2009). Finally, high-density lipoprotein (HDL) cholesterol can be internalised 

into the adrenal via a putative HDL receptor, scavenger receptor class B type 1 (SR-

B1), which is thought to be the principle mechanism of cholesterol synthesis in rodent 

adrenals. However this pathway appears to play a minor role in human 

steroidogenesis (Ikonen, 2006). 

Prior to conversion to steroid hormones, hydrophobic cholesterol is required to 

translocate the aqueous space to the mitochondria, a process regulated by a group 

of proteins termed StarD4, 5 and 6 (Miller, 2007). In turn, cholesterol is transported 

across the aqueous space from the outer mitochondrial membrane to the inner 

 



membrane (Kraemer, 2007), which is the rate-limiting step in adrenal 

steroidogenesis. This process is performed by the steroidogenic acute regulatory 

protein (StAR), a 30Kd protein whose expression is confined to the adrenal and the 

gonad (Miller, 2007). The mechanism of action of StAR is not fully understood. 

However, it is known that StAR acts exclusively on the outer mitochondrial 

membrane (Bose et al., 2002), causes structural changes of the membrane, and 

requires the binding of cholesterol for its activity (Miller, 2007). Once inside the 

cholesterol deprived inner mitochondrial membrane the C18 side chain of cholesterol 

is cleaved by the cytochrome P450 side chain cleavage enzyme (P450scc, encoded 

by CYP11A1) involving sequential hydroxylations to produce Δ5-pregnenolone. 

Subsequently, pregnenolone is translocated from the mitochondrion to the cytosol or 

smooth endoplasmic reticulum and is converted to progesterone by the type II 

isozyme of the enzyme 3ß-hydroxysteroid dehydrogenase (3ß-HSD2, encoded by 

HSD3B2) (Arlt and Stewart, 2005). Further steroidogenic conversion is specific for 

the distinct enzyme profile of the respective zones (Figure 1-4). 
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Figure 1-4 The steroid pathways and regulatory enzymes of adrenal steroid 

biosynthesis. Mineralocorticoids, which regulate the homeostasis of minerals, 

predominately sodium, are synthesised in the adrenal zona glomerulosa (green 

outline). Glucocorticoids which regulate circulating glucose concentrations are 

synthesised in the adrenal zona fasiculata (red outline). Adrenal androgens (DHEA 

and DHEAS) are synthesised in the zona reticularis (blue outline). DHEA is 

metabolised to active androgens and oestrogens in peripheral target tissues.   

 

 

 

 



1.1.3 Mineralocorticoids 

1.1.3.1 Synthesis of mineralocorticoids   

The enzyme system responsible for the synthesis of the most potent 

mineralocorticoid, aldosterone, is expressed uniquely in the zona glomerolosa, the 

outer layer of the adrenal cortex. Since adrenal circulation is centripetal, only minimal 

amounts of corticosterone produced by the zona fasiculata reach the zona 

glomerolosa cells to be converted to aldosterone (Muller, 1995). Therefore the daily 

cortisol output of the adrenal cortex (15-40 mg) is 300 times higher than that of 

aldosterone (50-150 µg) (Muller, 1995). In the glomerolosa, following the conversion 

of pregnenolone to progesterone by HSD3B2, progesterone is 21-hydroxylated by 

the enzyme CYP21A2 to form 11-deoxycorticosterone (DOC) (Shinzawa et al., 

1988). Subsequently, DOC is converted to aldosterone via corticosterone and 18-

hydroxycorticosterone, catalysed by CYP11B2 in the mitochondria (Lisurek and 

Bernhardt, 2004).  

1.1.3.2 Regulation of synthesis and secretion of mineralocorticoids 

Aldosterone levels have to be continually adapted in response to changes in the 

body sodium and potassium concentrations. This is achieved via the regulation of 

aldosterone synthesis being under control of the renin-angiotensin system (RAS) 

(Quinn and Williams, 1988) and in contrast to the synthesis of glucocorticoids and 

androgens is largely independent of pituitary ACTH secretion (Bureik et al., 2002). In 

the RAS angiotensinogen is first converted into the inactive deca-peptide angiotensin 

 



I, by an aspartyl protease, renin, in specialised juxtaglomerular cells (Lumbers, 

1999). Angiotensin converting enzyme (ACE) subsequently catalyses the conversion 

of angiotensin I into the active octa-peptide angiotensin II. Angiotensin II and 

potassium positively regulate the synthesis of aldosterone by the zona glomerulosa 

by inducing the expression of CYP11B2 (Bureik et al., 2002). Aldosterone synthesis 

is also negatively regulated by inhibitory factors such as sodium status and the atrial 

natriuretic peptide (ANP) (Lisurek and Bernhardt, 2004; Quinn and Williams, 1988). 

1.1.3.3 Mechanism of action 

The main function of aldosterone is the maintenance of mineral concentrations, in 

particular that of sodium and potassium in extracellular fluids. Aldosterone principally 

performs this role by acting on the distal tubule of the kidney, increasing the transport 

of sodium into the nephron in exchange for potassium and hydrogen ions. This 

results in a reduction in sodium loss and a reabsorbtion of water by osmosis, thus 

elevating the volume of extra cellular fluid and consequentially blood pressure.  

Indeed it is well characterised that hyperaldosteronism may be accompanied by 

hypertension and heart disease (Marney and Brown, 2007; Nagata, 2008).   

The principle effector of the cellular response to mineralocorticoids is the 

mineralocorticoid receptor, a member of the nuclear receptor superfamily. Upon 

binding of aldosterone to the MR, the activated complex translocates to the nucleus 

of the target cell and initiates transcription of mineralocorticoid specific genes, 

including the gene encoding the sodium-potassium adenosine triphosphatease 

(Na+/K+-ATPase). The MR is regulated in part, at least in epithelial tissue, by pre-

receptor regulation via co-expression with 11β-Hydroxysteroid dehydrogenase 2 

 



(11β-HSD 2) (Stewart et al., 1995b), described in detail in section 1.1.4.5.2. In non-

epithelial tissues, predominantly in the cardiovascular system, aldosterone and 

angiotensinogen II can additionally synergistically activate inflammatory cascades 

which provoke the cardiac hypertrophy and fibrosis (Nagata, 2008).   

1.1.4 Glucocorticoids 

1.1.4.1 Synthesis of glucocorticoids  

The zona fasiculata, located between the zona glomerulosa and the zona reticularis, 

expresses the enzymes necessary for glucocorticoid production. In this zone 

pregnenolone is released from the mitochondria and converted by microsomal 

enzymes to 17-OH-progesterone by one of two pathways. In the principle pathway 

pregnenolone is first dehydrogenated at the 3-hydroxyl group and isomeration of the 

double bond at C5, catalysed by 3β-HSD2, encoded by HSD3B2, to form 

progesterone (Arlt and Stewart, 2005). Subsequently progesterone is hydroxylated at 

the C17 position to 17-OH-progesterone by the 17α-hydroxylase activity of P450c17, 

a product of the CYP17A1 gene. In the alternative pathway pregnenolone is first 

converted to 17-OH-pregnenolone by the 17α-hydroxylase activity of P450c17, which 

is subsequently converted to 17-OH-progesterone by 3β-HSD2 (Arlt and Stewart, 

2005). Subsequently P450c21, encoded by the CYP21A2 gene, catalyses the 

hydroxylation at the C21 position of 17-OH-progesterone to produce 11-

deoxycortisol. Finally, 11-deoxycortisol is hydroxylated at C11, by the mitochondrial 

enzyme P450c11, encoded by the CYP11B1 gene, to produce cortisol (Arlt and 

Stewart, 2005).    

 



1.1.4.2 Regulation of synthesis and secretion 

Glucocorticoid secretion is under control of prototypic neuroendocrine feedback 

system, the hypothalamic-pituitary-adrenal (HPA) axis (Figure 1-5). In response to 

neural stimuli, induced by both psychological and physical stressors, a rapid 

induction of the transcription factor c-fos in the parvocellular of the paraventricular 

cells of the hypothalamus ensues. This induces the activation of numerous genes, 

including corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP), 

which are transported by the hypophyseal portal vein to the anterior pituitary, where 

they synergistically stimulate the synthesis and release of adrenocorticotrophin 

(ACTH) from the corticotroph cells (Buckingham, 2006). ACTH acts on the adrenal 

cortex to stimulate the synthesis and release of cortisol by increasing intracellular 

cAMP levels, the activation of the cholesterol transporter and StAR and the induction 

of CYP11B1 expression (Bureik et al., 2002). The coding sequences of the CYP11B2 

(involved in aldosterone synthesis) and CYP11B1 genes are highly homologous. 

However, their promoter regions are significantly different, allowing for distinct 

mechanisms of induction by the RAS or ACTH respectively. As with numerous 

endocrine systems, cortisol induces negative feedback of the HPA axis via its 

specific receptor the glucocorticoid receptor (GR), at the hypothalamus and pituitary 

level. 

In addition to stress the HPA axis is also regulated by 'the clock' and exerts a 

circadian pattern of cortisol secretion; an early morning peak of after awakening to a 

serum concentration of approximately 800nM, followed by a rapid decline over the 

course of the day to very low levels, approximately 200nM at midnight 

 



(Nieuwenhuizen and Rutters, 2008). In contrast, the circulating cortisone level is 

significantly lower and shows no circadian rhythm (Walker et al., 1992).  
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Figure 1-5 The Hypothalamo-Pituitary-Adrenal axis. The synthesis of cortisol and 

DHEA is under control of the HPA axis. The hypothalamus produces corticotrophin 

releasing hormone (CRH) which stimulates the anterior pituitary to synthesise and 

release adrenocorticotrophic hormone (ACTH). ACTH in turn stimulates the synthesis 

and release of DHEA and cortisol from the adrenal gland. Glucocorticoids regulate 

their own circulating levels via the inhibition of CRH and ACTH synthesis and 

secretion from the hypothalamus and pituitary, respectively.  Adapted from 

www.vitalifenetworks.com/VL_Cortisol.php 

 

http://www.vitalifenetworks.com/VL_Cortisol.php


1.1.4.3 Mechanism of action of glucocorticoids 

While circulating plasma cortisone is largely unbound, approximately 90% of cortisol 

is bound to corticosteroid binding globulin (CBG) and a further 6% is bound to 

albumin (Meulenberg and Hofman, 1990a). In principle, only free cortisol is able to 

diffuse into target cells and exert its effects. At a cellular level GCs elicit diverse 

effects, modulating approximately 10% of our genes, by an array of mechanisms 

including the rapid modulation of signalling pathways, to post translational 

modifications that occur well after gene transcription. However, GCs predominantly 

mediate their effects via their specific receptor, the glucocorticoid receptor (GR), a 

member of the nuclear receptor (NR) superfamily. Activation of the GR can result in 

both the positive or negative regulation of gene transcription.  

As with other NRs the GR consists of five distinct domains (Figure 1-6). The N 

terminal A/B domains include activational functional domain 1 (AF-1), which 

facilitates transcriptional activity. The C domain contains two cystine rich Zn2+ 

fingers and is responsible for receptor dimerisation and DNA binding. The D-domain 

or hinge region aids nuclear translocation as does the C-terminal E domain. The E 

domain is also responsible for ligand binding and includes a second activational 

functional domain (AF-2) (Warnmark et al., 2003).  
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Figure 1-6 Schematic of the domain structure of the glucocorticoid receptor. 

The five main domains of the GR, with some detail of the C-domain. The N-terminal 

A/B-domains include activational function domain 1 (AF-1), which facilitates 

transcriptional activity. The C-domain includes two cysteine-rich Zn2þ fingers and is 

responsible for receptor dimerisation and DNA binding (DBD). The D-domain or 

hinge region aids nuclear translocation as also does the C-terminal E-domain. The E-

domain is also responsible for ligand binding, includes a second activational function 

domain 2 (AF-2). Adapted from (Buckingham, 2006). 

 

In the unbound state the GR is part of a large heteromeric complex in the cytoplasm, 

containing various heat shock proteins including heat-shock protein 90 (HSP-90). 

Upon GC binding in the cytosol, a conformational change is induced, and the GR is 

released from the inactivating complex. The GR is then sequentially phosphorylated, 

homodimerised and translocated into the nucleus where it binds to a specific cis 

regulatory region in the promoter of target genes termed a glucocorticoid response 

element (GRE), via the DNA binding domain, and induce gene transcription 

(Chandler et al., 1983). Alternatively, in rare instances the GR can bind to negative 

GRE (nGRE), and inhibit gene transcription (Malkoski and Dorin, 1999). Additionally, 

 



co-activators and co-repressors, expressed in a tissue or cell specific manner, are 

recruited to the activated ligand bound GR complex and act to facilitate or inhibit 

transcription. 

The ligand activated GR can also modulate gene transcription, independent of  GREs 

via protein-protein or 'tethering' interactions (Reichardt and Schutz, 1998). In this 

situation the GR is recruited to DNA bound transcription factors in a regulatory 

complex, thus itself acting as a co-repressor or co-activator (Garside et al., 2004; 

Nissen and Yamamoto, 2000). Examples of protein-protein interactions include 

suppression of transcription evoked by the transcription factor NF-κB (Nissen and 

Yamamoto, 2000) (Auphan et al., 1995; Barnes and Adcock, 2003; Reichardt and 

Schutz, 1998) and stimulation of transcription induced by AP-1, c-fos/c-jun (Reichardt 

and Schutz, 1998).             

More recently, it is becoming recognised that GC's can also effect gene transcription 

via modulating the mRNA stability and translation of target genes. Sequences have 

been identified in the untranslated region of inflammatory genes which mediate GC 

induced acceleration or inhibition of mRNA decay (Stellato, 2004).  

In addition to their genomic actions, which require hours to be fully operative, GC’s 

also exert effects characterised as non-genomic, which occur within minutes or even 

seconds of drug administration (Matthews et al., 2008).  Non genomic effects of GC 

involve the production of second messenger molecules and activation of signal 

transduction pathways, either by the nuclear glucocorticoid receptor or by a 

membrane glucocorticoid receptor that has net yet been fully characterised.   

 



Two isoforms of the GR have been identified, α and β, which are formed by 

alternative splicing. The α isoform has a greater affinity for GC, while the β isoform, 

when co-expressed with GRα, acts as a negative regulator of GC signalling.  
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Figure 1-7 Glucocorticoid receptor activation. In the unbound state the GR is 

complexed with various inactivating heat shock proteins including heat-shock protein 

90 (HSP-90). Upon cortisol binding in the cytosol, a conformational change is 

induced, and the GR is released from the inactivating complex. The GR is then 

sequentially phosphorylated, homodimerised and translocated into the nucleus where 

it binds to a glucocorticoid response element (GRE) in the promoter of target genes, 

via the DNA binding domain, inducing gene transcription. Additionally, co-activators 

and co-repressors, expressed in a tissue or cell specific manner, are recruited to the 

activated ligand bound GR complex and act to facilitate or inhibit transcription. 

Adapted from www.panomics.com 

 



1.1.4.4 Cortisol metabolism 

Cortisol has a half life in the circulation of approximately 70-120 minutes (Tomlinson 

et al., 2004). The major site of cortisol clearance is the liver, where cortisol is reduced 

or oxidized, and hydroxylated prior to conjugation of the resultant metabolites to 

sulfate or glucuronic acid in preparation for their excretion in urine (Tomlinson et al., 

2004). Briefly, the principle steps in cortisol metabolism, as shown in (Figure 1-8), 

are the conversion to 5α-tetrahydrocortisol (5α- THF/ allo-THF) and 5β-

tetrahydrocortisol (5β-THF/ THF) by the membrane bound enzyme 5α-reductase 

(SRD5A1), or the cytosolic enzyme 5β-reductase (SRD5A2), respectively. In normal 

subjects, conversion by 5β-reductase predominates resulting in a 5β-THF: 5α-THF 

ratio of 2:1 (Arlt and Stewart, 2005).  Additionally, 5β-reductase can catalyse the 

metabolism of cortisone into tetrahydrocortisone (THE). Although the majority of 

metabolism is to tetrahydros (50%), a smaller proportion (25%) of cortisol and 

cortisone is converted to α-/ β-cortol and α-/ β-cortone, respectively, by 20α- or 20β-

hydroxysteroid dehydrogenase (20α- or 20β-HSD) (Arlt and Stewart, 2005).  Active 

cortisol and inactive cortisone can be interconverted by the activity of the 11β- 

hydroxysteroid dehydrogenases (11β-HSDs, HSD11B1 and HSD11B2) via the 

oxidation of cortisol and the reduction of cortisone, which is discussed in further detail 

in section 1.1.4.5.2.  

In humans the majority of cortisone circulates in the free form at approximately 50-

100nmol/l. While this level is significantly less than that of cortisol during the diurnal 

peak (400-600nmol/l), approximately 95% of cortisol is bound to plasma proteins, 

notably cortisol binding globulin, and therefore biologically inactive (Meulenberg and 

 



Hofman, 1990a; Meulenberg and Hofman, 1990b). The metabolites of cortisone and 

cortisol, which are detectable in urine, can be used as biomarkers of 11β-HSD1 

activity, employing the equation: 5α-THF + 5β-THF: THE (Tomlinson et al., 2004). 

Any changes in GC metabolism and clearance are compensated for by the HPA axis 

via an alteration in ACTH secretion, so that circulating cortisol levels are maintained.  
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Figure 1-8 The key pathways of cortisol metabolism. Cortisol can be 

interconverted to cortisone by 11β-HSD or to 5α-tetrahydrocortisol (allo-THF) and 5β-

tetrahydrocortisol (THF) by 5α-reductase, or 5β-reductase, respectively. Additionally, 

5β-reductase can catalyse the metabolism of cortisone into tetrahydrocortisone 

(THE). Cortisol can also be converted to 6β-hydroxycortisol by 6β-hydroxylase, or 

20β-dihydrocortisol by 20β-oxoreductase. 

 



1.1.4.5 Pre-receptor regulation of glucocorticoids 

The interconversion of active cortisone and inactive cortisol is catalysed by 11β-HSD, 

of which two isoforms have been cloned and characterised in human tissues: 11β-

HSD type 1 (11β-HSD1, HSD11B1) and 11β-HSD type 2 (11β-HSD2, HSD11B2) 

(Stewart, 1996; Stewart and Krozowski, 1999; White et al., 1997). Both isoforms are 

members of the short chain dehydrogenase/ reductase (SDR) superfamily of 

oxidoreductases, comprising around 300 members, which share several distinct 

sequence motifs (Jornvall et al., 1995). Despite this the 11β-HSD isozymes are 

encoded for by different genes, have only 21% identity and display differential 

cofactor specificity, substrate affinity and importantly, direction of reaction that they 

catalyse (Albiston et al., 1994; Draper and Stewart, 2005; Tannin et al., 1991). 

1.1.4.5.1 11β-Hydroxysteroid dehydrogenase type 1   

11β-HSD1 was first purified from rat liver by White and colleagues (Agarwal et al., 

1989), and shown to act solely as a dehydrogenase (Lakshmi and Monder, 1988). 

However, subsequent studies revealed 11β-HSD1 to be a bi-directional enzyme, 

capable of catalysing both the inactivation of cortisol and the activation of cortisone. 

In vivo and in whole cell systems, this isoform acts predominately as an 

oxoreductase, catalysing the conversion of inactive cortisone to active cortisol 

(Figure 1-9) (Odermatt et al., 2006; Stewart and Krozowski, 1999; Tomlinson et al., 

2004). Upon cellular disruption the reductase activity of 11β-HSD1 is lost and its 

dehydrogenase activity prevails (Tomlinson et al., 2004). The underlying mechanism 

for this ‘switch’ appears to depend on the intracellular redox content (see section 

1.1.4.5.3) (Agarwal et al., 1990). Type 1 is principally expressed in glucocorticoid 

 



target tissues such as liver, skeletal muscle and adipose tissue, gonad and bone 

where, via its oxoreductase activity, it amplifies the local effects of glucocorticoids 

(Draper and Stewart, 2005).  

11β-HSD1 is a nicotinamide adenine dinucleotide phosphate (NAD(P)H)-dependent 

enzyme and has a much lower affinity for cortisol and corticosterone (the rodent form 

of cortisol) than 11β-HSD2 (Tomlinson et al., 2004). Biochemical analysis has 

revealed that the reductase reaction has co-operative rather than Michaelis-Menten 

kinetics (Maser et al., 2002), unlike the dehydrogenase, ensuring cortisol generation 

across a wide range of substrate concentrations.  

1.1.4.5.2 11β-HSD2 

11β-HSD2 is a high affinity, nicotinamide adenine dinucleotide (NAD)-dependent 

dehydrogenase that rapidly inactivates F to E (Figure 1-9) (Stewart et al., 1995b). 

Although expressed in many tissues in the developing foetus, in adult life its 

localisation is principally classic mineralocorticoid target tissues, including the distal 

nephron of the kidney, sweat glands, salivary glands and colonic mucosa where this 

isozyme prevents the illicit occupation and activation of the MR by cortisol, which in 

vitro has an equal binding affinity for the MR as its natural ligand, aldosterone 

(Edwards et al., 1988; Stewart et al., 1995b). In addition, 11β-HSD2 is highly 

expressed in the placenta and the developing foetus, where it protects against 

exposure to maternal glucocorticoids (Seckl and Meaney, 2004). 11β-HSD2 is not 

expressed in human adipose tissue (Bujalska et al., 1997). Where 11β-HSD2 is 

congenitally absent, as in the condition apparent mineralocorticoid excess (AME), or 

inhibited, as following exaggerated liquorice ingestion, active glucocorticoid is able to 

 



access the MR of the kidney, resulting in sodium retention, hypertension and 

hypokalemia (Stewart et al., 1995b; Ulick et al., 1979). In these patients the 

circulating concentration of cortisol are maintained within the normal range by intact 

regulation by the HPA axis. This ‘experiment of nature’ mirrors the phenotypic 

findings of 11β-HSD2 knockout mice (Kotelevtsev et al., 1999).  
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Figure 1-9 The pre-receptor regulation of glucocorticoid action. In glucocorticoid 

target tissues 11β-HSD1 activates cortisone (E) to cortisol (F) which can bind and 

activate the glucocorticoid receptor (GR). In mineralocorticoid target tissues 11β-

HSD2 inactivates cortisol to cortisone, preventing the illicit occupation of the 

mineralocorticoid receptor (MR) by cortisol. Adapted from (Arlt and Stewart, 2005). 

 



1.1.4.5.3 Hexose-6-phosphate dehydrogenase 

Hexose-6-phosphate (H6PDH) is co-expressed with 11β-HSD1 and is the rate 

limiting step in the microsomal pentose phosphate pathway, which is believed to exist 

within the ER lumen (Bublitz and Steavenson, 1988). H6PDH has dual nucleotide 

specificity for NADP+ and NAD+ but under physiological conditions, within the 

microsomal environment, G6P and NADP+ are believed to be its native substrates 

(Hewitt et al., 2005). It is responsible for catalysing the oxidation of glucose-6-

phosphate (G6P) and other hexose-6-phosphates to 6-phospho-gluconolactone, 

thereby generating NADPH (Kimura et al., 1979). As described in section 1.1.4.5.1, 

NADPH is the co-factor required for the oxo-reductase activity of 11β-HSD1 which 

activates inactive cortisone to active cortisol. A supply of G6P is ensured by the G6P 

transporter of the ER, which is specific for G6P and a supply of NAD(P)+ is 

maintained through the functional co-operation of H6PDH and intraluminal 

reductases (Hewitt et al., 2005), 

Bujalska et al have previously demonstrated that H6PDH expression is a crucial 

determinate of 11β-HSD1 oxoreductase activity in intact human adipocytes and 

Chinese hamster ovary cells and HEK cells transiently expressing 11β-HSD1 and 

H6PDH in vivo (Bujalska et al., 2005). Furthermore, H6PDH mRNA levels were found 

to positively correlate with 11β-HSD1 oxo-reductase activity in human omental 

adipocytes obtained from 15 women, independent of 11β-HSD1 mRNA expression 

levels (Bujalska et al., 2005).  

 



 

Figure 1-10 Schematic representation of the interaction between H6PDH and 
11β-HSD1 within the ER. H6PDH converts glucose-6-phosphate (G6P) to 6-

phosphogluconate (6PG), thus generating NADPH, within the ER. 11β-HSD1 (T1) 

uses the NADPH as a cofactor, converting cortisone to cortisol.   

 

1.1.4.5.4 Cortisone reductase deficiency 

Failure to regenerate the active glucocorticoid cortisol from cortisone via the enzyme 

11β-HSD1 results in the disease cortisone reductase deficiency (CRD). A lack of 

cortisol regeneration stimulates the HPA axis resulting in adrenal androgen excess. 

Consequently affected males present early in life with precocious pseudopuberty, 

while females present in midlife with a phenotype resembling PCOS, characterised 

by hirsuitism, oligoamenorrhea, and infertility (Lavery et al., 2008a). It originally 

appeared that mutations in HSD11B1 may be responsible for CRD. However, large-

scale population studies have failed to identify disease-causing mutations and have 

only identified polymorphic variants, with population frequencies that could not 

explain CRD.  More recently it has become apparent that CRD can be explained by 

 



mutations of the H6PDH gene, resulting in reduced generation of NADPH and 

consequently reduced 11β-HSD1 activity (Lavery et al., 2008a).   

1.1.4.5.5 Animal models of 11β-HSD1 and H6PDH  

To investigate the role of 11β-HSD1 and H6PDH in vivo, knockout (KO) and 

overexpressing mice have been generated. 11β-HSD1 -/- mice appear to develop 

normally and are viable, fertile and normosensitive, but display protection from high 

fat diet induced dyslipidemia, glucose intolerance and obesity, a phenotype 

compatible with impaired intracellular glucocorticoid regeneration and reduced 

antagonism of insulin action (Kotelevtsev et al., 1997). These animals display a 

normal baseline expression of the gluconeogenic enzyme phosphoenopyruvate 

carboxylase (PEPCK) in the liver, however, induction of this enzyme is attenuated on 

fasting (Kotelevtsev et al., 1997). As both the liver and adipose play critical roles in 

whole body homeostasis it is difficult to assess the differential phenotypic effects due 

to the loss of GC action in these tissues in these animals. However, these animals do 

not have an obvious adipose phenotype (Kotelevtsev et al., 1997) possibly due to 

enhanced preadipocyte proliferation which may offset any potential benefits on 

adipocyte differentiation. 

In contrast, a variety of transgenic models overexpressing 11β-HSD1 in a tissue 

specific manner have displayed detrimental effects (Masuzaki et al., 2001; Masuzaki 

et al., 2003). Mice overexpressing 11β-HSD1 under control of the adipose specific 

AP2 promoter have elevated cortisol levels in adipose tissue and the portal vein 

(which supplies the liver) but not in the systemic circulation, and display the full blown 

metabolic syndrome, including obesity, dyslipidemia and hypertension (Masuzaki et 

 



al., 2001; Masuzaki et al., 2003). In this model, because the transgene was directed 

to the adipocyte-specific aP2 promoter, increases in adipose tissue mass were solely 

a consequence of increased lipid accumulation within pre-existing adipocytes. 

Similarly mice expressing 11β-HSD1 in liver under the ApoE promoter exhibit insulin 

resistance dyslipidemia, and hypertension, although these animals do not 

spontaneously develop obesity or glucose intolerance (Paterson et al., 2004), 

suggesting that adipose tissue may be more important than liver in determining the 

metabolic effects of 11β-HSD1. Overexpression of 11β-HSD2 in adipose tissue, 

where this isoform is not usually expressed, results in local GC inactivation and 

protects against high fat feeding induced obesity, compared to WT mice (Kershaw et 

al., 2005).  

H6PDH KO mice have reduced generation of NADPH within the ER, resulting in a 

switch in 11β-HSD1 activity from reductase to dehydrogenase (Lavery et al., 2006). 

Similar to 11β-HSD1 KO mice, H6PDH KO mice display protection from high fat diet 

induced dyslipidemia, glucose intolerance and obesity, and elevated plasma 

corticosterone concentrations (Table 1-1)(Rogoff et al., 2007). However, in contrast 

to 11β-HSD1 KO mice, in H6PDH KO mice there is preserved induction and activity 

of the glucocorticoid responsive gluconeogenic enzymes PEPCK and glucose-6-

phosphatase (G6Pase) (Lavery et al., 2007), suggesting that these animals partially 

retain glucocorticoid sensitivity in the liver. These animals display enhanced rates of 

glycogen synthesis, as has been observed in 11β-HSD1 KO mice, which has been 

proposed to be due to due to allosteric activation of glycogen synthase and inhibition 

of glycogen phosphorylase by G6P in these animals (Lavery et al., 2007). In contrast 

to fasted 11β-HSD1 KO mice, fasted H6PDH null animals were able to mobilise 

 



stored glycogen, suggesting these animals have no defect in glycogenolysis (Table 

1-1)(Lavery et al., 2007).  

Interestingly H6PDH null animals also display severe skeletal myopathy, which is 

absent in 11β-HSD1 KO animals (Lavery et al., 2008b). The affected muscles of the 

animals have normal sarcomeric structure but contain large intrafibrillar membranous 

vacuoles and switching of muscle fibre type from type II to type I (Lavery et al., 

2008b). It has been proposed that the molecular cause of this phenotype is the 

alteration of the redox state within the sarcoplasmic reticulum which results in the 

impairment of protein folding resulting in the activation of the unfolded protein 

response pathway (Lavery et al., 2008b). The lack of similar phenotype in 11β-HSD1 

null animals, suggests that this phenotype is due to an 11β-HSD1 independent 

currently uncharacterised role of H6PDH.   

Rodent models of obesity and diabetes interestingly elude to the tissue specific 

(dys)regulation of 11β-HSD1 in these conditions. In a model of genetic obesity, leptin 

resistant Zucker rats, obesity is associated with elevated type 1 mRNA expression in 

visceral adipose tissue, while liver expression is decreased compared control animals 

(Livingstone et al., 2000). Similar findings have been reported in leptin deficient ob/ob 

mice (Liu et al., 2003). However, in a model of diet induced obesity, short term 

feeding of Wistar rats with a high fat diet decreased 11β-HSD1 mRNA expression in 

both adipose and the liver (Drake et al., 2005). Although, following a longer period of 

high fat feeding expression levels were comparable to controls, indicating that the 

modulation of 11β-HSD1 levels may be an adaptive mechanism to protect against 

the short term effects of high fat feeding (Drake et al., 2005).     

 



 

Table 1-1 Similarities and differences in the phenotype of 11β-HSD1 KO and 

H6PDH KO mice. Phenotype refers to comparison with wild type animals.   

Phenotype 11β-HSD1 KO mouse H6PDH KO mouse 

Protection from diet induced obesity 
and dyslipidemia 

Yes Yes 

Improved glucose sensitivity Yes Yes 

Enhanced glycogen synthesis Yes Yes 

Normal ability to metabolise stored 
glycogen 

No Yes 

Normal Induction of gluconeogenic 
genes 

No Yes 

Skeletal myopathy No Yes 

 



1.1.4.6 Physiological and pathophysiological effects of glucocorticoids 

The physiological effects of GC's can be summarised as being anti inflammatory/ 

immunosuppressive, metabolic or behavioural (Figure 1-11).  In normal physiological 

conditions, acute stimulation of GC secretion, in times of illness or psychological 

stress, results in a beneficial stimulation of the anti-inflammatory response, and the 

catabolism and mobilisation of substrates for energy generation, thus restoring the 

homoeostasis of the organism. However, in cases of chronic GC excess, as in 

Cushing's disease or prolonged glucocorticoid treatment, the effects of GC can be 

detrimental (Stewart and Krozowski, 1999).  

 

Figure 1-11 The key sites of glucocorticoid action. Glucocorticoids act on a 

diverse range of tissue to cause numerous physiological effects which can be 

summarised as being anti inflammatory/ immunosupressive, metabolic or behavioural 

Taken from (Arlt and Stewart, 2005).  

 



1.1.4.6.1 Physiological effects 

1.1.4.6.1.1 Adipose 

Glucocorticoids are potent modulators of adipose tissue adipogenesis, homeostasis 

and distribution, exemplified by the development of central obesity associated with 

Cushing’s syndrome (Orth, 1995; Stewart et al., 1995a). The modulation of adipose 

tissue homeostasis by glucocorticoids appears to depend on nutritional status and 

adipose depot. In the fed state, glucocorticoids have been shown to enhance the rate 

of insulin induced lipogenesis (Wang et al., 2004), via induction of Acetyl CoA 

carboxylase (ACC) and fatty acid synthase (FAS) (Rumberger et al., 2003). However, 

in the fasted state, when insulin and glucose levels are low, GCs have been shown to 

enhance lipolysis, at least in part by stimulating hormone sensitive lipase (Slavin et 

al., 1994) and adipose triacylglycerol lipase (ATGL) and suppressing PEPCK 

expression, consequently reducing triglyceride re-esterfication and consequently 

increasing free fatty acid release (Chakravarty et al., 2005; Nechushtan et al., 1987). 

The effects of glucocorticoids on adipose tissue are also dependent on adipose 

depot and as observed in Cushing’s syndrome, increase central (visceral, abdominal, 

facial and nape of neck) fat deposition while peripheral fat mass is reduced. This has 

led to the hypothesis that opposing effects of glucocorticoids may prevail in different 

tissues, and on the one hand increase lipolysis and downregulate lipoprotein lipase, 

thereby liberating free fatty acids from peripheral fat, but concurrently increase 

substrate flux into central adipocytes. In addition, glucocorticoids decrease glucose 

uptake and oxidation (Weinstein et al., 1995). 

 



Glucocorticoids are potent  regulators of adipogenesis by stimulating preadipocyte 

differentiation (Bujalska et al., 1999) and limiting preadipocyte proliferation (Gregoire 

et al., 1991; Rabbitt et al., 2002; Tomlinson and Stewart, 2002), which is discussed in 

section 1.2.3.1.  

1.1.4.6.1.2 Liver 

Under normal physiological conditions, acute GC secretion, as observed during 

fasting, results in hepatic de novo glucose synthesis and gluconeogenesis, in order 

to provide glucose for extra hepatic tissues such as erythrocytes, brain and adrenal 

medulla (Consoli, 1992). At a molecular level GC's achieve this by the activation of 

key gluconeogenic regulatory genes including pyruvate carboxylase (PC), which 

catalyses the conversion of pyruvate into oxaloacetate (Yamada et al., 1999); 

PEPCK, the rate limiting step in the gluconeogenic pathway, which converts 

oxoloacetate to phosphopyruvate (Hanson and Reshef, 1997); and G6Pase, which  

hydrolyses glucose-6-phosphate into free glucose and inorganic phosphate (Saltiel 

and Kahn, 2001). However, chronically elevated GC levels result in the aberrant 

induction of gluconeogenic gene expression, and a consequential increase in hepatic 

glucose output, the development of hyperglycaemia and type II diabetes (Consoli, 

1992). In addition, chronic GC levels have been shown to be associated with 

increased hepatic triglyceride synthesis, reduced hepatic fatty acid oxidation and the 

subsequent accumulation of lipids in the liver, termed 'fatty' liver or hepatic steatosis 

(Cole et al., 1982), as observed in patients with Cushing’s syndrome (see section 

1.1.4.6.2.1)(Taskinen et al., 1983). The molecular mechanism(s) of this process are 

 



not fully understood but are thought to involve the upregulation of the key lipogenic 

genes, fatty acid synthase (FAS), and acetyl coA carboxylase (ACC).  

1.1.4.6.1.3 Skeletal muscle 

In times of stress, such as fasting or infection, GCs stimulate skeletal muscle 

catabolism by direct and indirect mechanisms, mobilising amino acids which can be 

utilises as substrates for gluconeogensis and protein synthesis (Schacke et al., 

2002). Concurrently GC’s inhibit muscle glucose utilisation, increasing the availability 

of glucose to other tissues such as the brain and immune system. The catabolic 

effect of GC on muscle is exemplified by Cushing’s syndrome and steroid therapy, 

both of which are associated with muscle atrophy (Schacke et al., 2002).  

GCs have been shown to inhibit glucose uptake via reduced activation of the Insulin 

receptor/ PI3-kinase/ AKT signalling pathway. Treatment of rats or cultured C2C12 

cells with the GR agonist dexamethasone (Dex) has been shown to result in reduced 

IR phosphorylation (Giorgino et al., 1993), PI3-kinase activity (Saad et al., 1993) and 

AKT phosphorylation and activation (Long et al., 2003; Sandri et al., 2004) in 

response to insulin. Reduced activation of this pathway results in the attenuation of 

insulin dependent glucose transporter, GLUT4, translocation to the plasma 

membrane and a subsequent reduction of insulin stimulated glucose uptake 

(Weinstein et al., 1995). In addition the GC-induced inhibition of AKT signalling 

results in suppression of glycogen synthase activity in muscle resulting in reduced 

glycogen synthesis (Ekstrand et al., 1996).                 

 



1.1.4.6.2 Pathophysiological effects of glucocorticoids 

1.1.4.6.2.1 Cushing’s syndrome 

The pathology of GC excess, caused by a malfunction of the pituitary gland, was first 

described by Harvey Cushing in 1912, which he termed ‘polyglandular syndrome’ 

(Cushing H, 1932) and today is known as Cushing’s syndrome. The eitiology of 

Cushing’s syndrome can be ACTH dependent or independent (Orth, 1995). 

Autonomous ACTH secretion by pituitary corticotroph tumours (termed Cushing’s 

disease) accounts for 80% of ACTH dependent causes of Cushing’s syndrome, and 

demonstrates female preponderance (8:1) (Felig P, 2001). The remaining 20% of 

cases result from ectopic ACTH secretion, commonly from small cell lung carcinomas 

(Felig P, 2001). ACTH independent mechanisms include cortisol secreting adrenal 

tumours (Felig P, 2001). However the most common cause of Cushing’s syndrome is 

treatment with exogenous GCs, which are estimated to be prescribed to 2.5% of the 

population (Van Staa TP, 2000).  

Patients with Cushing’s syndrome present with a dramatic phenotype, including 

hypertension (due to an increased activation of the MR in the distal nephron, as in 

AME), increased central adipose tissue mass (Figure 1-12), impaired glucose 

tolerance, insulin resistance, increased risk of cardiovascular disease, decreased 

bone mineral density, myopathy, and skin thinning (Orth, 1995). 

1.1.4.6.2.2 Obesity  

There are striking phenotypic similarities between Cushing’s syndrome and the 

metabolic syndrome (visceral obesity, hypertension, dyslipidemia and 

 



hyperglycaemia). However, in contrast to patients with Cushing’s syndrome, who 

have elevated circulating levels of glucocorticoids, circulating cortisol concentrations 

are normal or possibly even reduced by 10-20% in patients with obesity and 

associated with a concomitant increase in daily cortisol secretion rates, an effect that 

is reversed upon weight loss (Dunkelman et al., 1964; Glass et al., 1981; Stewart, 

1996). These findings led to the hypothesis that obesity, is associated with 

glucocorticoid excess via elevated 11β-HSD1 oxo-reductase activity, particularly at 

the omental depot representing ‘Cushing’s disease of the omentum’ (Bujalska et al., 

1997), and is supported by studies with genetically obese Wistar rats (see section 

1.1.4.5.5). However, the majority of studies investigating global cortisol metabolism 

(assessed by urinary glucocorticoid metabolites, see 1.1.4.4) have shown reduced 

reductase activity with increasing adiposity (Rask et al., 2001; Rask et al., 2002; 

Stewart et al., 1999; Valsamakis et al., 2004). Although a limitation of this approach 

is that it most likely predominately reflects hepatic 11β-HSD1 activity and is 

influcenced by 11β-HSD2.  

The adipose tissue level of 11β-HSD1 in humans remains controversial, possibly due 

to the use of inappropriate dehydrogenase assays on tissue homogenates in some 

studies (Rask et al., 2002). The majority of studies have been carried out on sc 

adipose samples and have shown an increase in 11β-HSD1 dehydrogenase activity 

compared to lean controls (Rask et al., 2002; Sandeep et al., 2005; Tomlinson et al., 

2008; Wake et al., 2003). There have been a smaller number of studies investigating 

omental adipose tissue and the majority have shown no change or indeed an inverse 

correlation with fat mass (Tomlinson et al., 2002). However, all studies have agreed 

 



that, as in rodent models, there is decreased hepatic 11β-HSD1 expression and 

activity in human obesity (Rask et al., 2001; Rask et al., 2002; Stewart et al., 1999).  

Interestingly recent data seems to suggest that the decrease in global 11β-HSD1 

activity that is seen in simple obesity with increasing fat mass is not observed in type 

2 diabetes (Valsamakis et al., 2004). It has been proposed that a down regulation of 

11β-HSD1 activity and/ or expression may represent a compensatory mechanism, 

preserving insulin sensitivity and preventing an increase in hepatic glucose output in 

the face of increasing fat mass (Tomlinson et al., 2008). Furthermore, failure to 

regulate 11β-HSD1 may result in relative tissue specific GC excess, perpetuating 

insulin resistance, hyperglycaemia and central adiposity.   

 

 

 



 

Figure 1-12 An early patient of Harvey Cushing with Cushing’s Syndrome 

demonstrating the Cushingoid phenotype of increased central adipose tissue 

mass which is similar to that seen in patients with the metabolic syndrome. The 

three photographs show the progression of the development of this disease in the 

patient.  

 



1.1.5 Adrenal sex steroids 

1.1.5.1 Adrenal androgen synthesis- the synthesis of dehydroepiandrosterone 

The innermost layer of the adrenal cortex, the zona reticularis, is the site of 

production of the metabolically active adrenal androgens, and their precursors, 

dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS), which are converted in 

peripheral target tissues to metabolically active sex hormones. The synthesis of 

DHEA occurs in a three step process, requiring the enzymes CYP17A1 and 

CYP11A. The synthesis of adrenal androgens, unlike that of glucocorticoids and 

mineralocorticoids, is not solely regulated by differential zona enzyme expression. 

Indeed, CYP17A1 and CYP11A are also expressed in the zona fasiculata and zona 

glumerolosa, and are required for glucocorticoid and mineralocorticoid expression 

and are expressed prior to adrenarche, a time when little DHEA is produced. Instead, 

adrenal androgen production relies on the modulation of the activity of these 

enzymes.  In contrast to the zona fasiculata, the zona reticularis promotes both 17α-

hydroxylase and 17,20-lyase activity of CYP17A1, driving steroid synthesis in the 

direction of  C19 over C21 generation. The differential activity of CYP17A1 is 

regulated via the co-factor cytochrome b5 (CYB), expression of which is distinct to 

the zona reticularis (Yanase et al., 1998). Expression of CYB increases during 

adrenarche (Suzuki et al., 2000), the onset of adrenal androgen production, 

characterised by a dramatic increase in serum DHT, DHEA, DHEAS and urinary 17-

ketosteroids. It is thought that human CYB modulates adrenal androgen production 

by acting as an allosteric effector, optimising the interaction of CYP17A1 with its 

 



obligatory electron donor, P450 oxidoreductase, resulting in the stimulation of 17,20-

lyase activity (Auchus et al., 1998b). The ratio of P450c17 17,20 lyase activity to 17-

hydroxylase activity is also regulated by the concentration of P450 OR, with high 

molar ratios of POR to P450c17 promoting 17,20 lyase activity. Therefore, CYB can 

selectively augment 17,20-lyase activity, but only when OR is present (Gupta et al., 

2001)  In addition, phosphorylation of serine residues on P450c17 by a cAMP-

dependent protein kinase also favours CYP17A1 17,20 lyase activity, however the 

specific kinase is yet to be identified (Auchus et al., 1998a; Auchus et al., 1998b).  

In addition to CYP17A1, POR is the electron donor for all microsomal P450 enzymes, 

including P450c21 (encoded by CYP21A2), and aromatase (CYP19A1), key 

enzymes in glucocorticoid and sex steroid synthesis, respectively. Mutations in POR 

give rise to POR deficiency, a variant of congenital adrenal hyperplasia (CAH), which 

manifests as craniofacial malformations and disordered sex development in both 

sexes (Arlt, 2007). Interestingly, recent studies have provided evidence for a 

differential interaction of specific POR mutations with different electron-accepting 

P450 enzymes which begins to further explain the complex pathogenesis of this 

disease (Dhir et al., 2007).  

Following the conversion of cholesterol to pregnenolone by CYP11A1, pregnenolone 

is converted to DHEA by CYP17A1. DHEA is predominately inactivated to DHEAS 

(Baulieu, 1996) by the action of the cytosolic enzyme SULT2A1, described in more 

detail in section 1.1.6. DHEA can also be converted to androstenedione by 3β-HSD2 

(HSD3B2), and subsequently to active androgens and oestrogens. In addition, a 

significant amount of unmetabolised DHEA is secreted from the adrenal. An 

alternative pathway also exists by which pregnenolone can be converted to 

 



androstenedione. In this secondary pathway pregnenolone is first converted into 

progesterone by 3β-HSD2 (HSD3B2) and then to 17α-hydroxy-progesterone by the 

17α-hydroxylase activity of CYP17A1. 17α-hydroxy-progesterone is finally converted 

into androstenedione by CYP17A1 17,20-lyase activity. However, the hydroxylation 

of 17α-hydroxy-pregnenolone by CYP17A1 is around 100 fold that of 17α-hydroxy-

progesterone (Auchus, 2004). Therefore, in humans 17α-hydroxy-pregnenolone is 

the predominant substrate for DHEA generation under normal physiological 

circumstance and 17α-hydroxy-progesterone only contributes when there is an 

accumulation of this steroid due to an enzymatic block in steroidogenesis, for 

example, in 21-hydroxylase deficiency.  

 



 

Pregnenolone

17-OH-
Pregnenolone

Progesterone

17-OH-
Progesterone

DHEA Androstenedione

HSD3B2

HSD3B2

HSD3B2

CYP17A1CYP17A1

CYP17A1CYP17A1

CYP17A1CYP17A1

CYP17A1CYP17A1

17α-hydroxylase activity

17,20-lyase activity

 

Figure 1-13 Schematic diagram of CYP17A1 activity. CYP17A1 catalyses the 

17α-hydroxylation of both pregnenolone and progesterone to 17-hydroxy-

pregnenolone and 17-OH-progesterone, respectively, and the subsequent 17,20-

lyase reaction to DHEA and androstenedione, respectively. The hydroxylation of 17α-

hydroxy-pregnenolone by CYP17A1 is around 100 fold that of 17α-hydroxy-

progesterone. Therefore, in humans 17α-hydroxy-pregnenolone is the predominant 

substrate for DHEA generation. 

 



1.1.5.2 Regulation of dehydroepiandrosterone synthesis and secretion 

The human adrenal cortex synthesises and secretes approximately 4 mg and 25 mg 

of the active hormone DHEA, and the inactivated sulphated form, DHEAS, 

respectively, daily (Baulieu, 1996) making DHEA and DHEAS the most abundant 

steroid hormones in the circulation of human and some non-human primates (Cutler 

et al., 1978). Indeed, the plasma DHEAS levels in adult human men and women are 

100-500 times those of testosterone, and 1000-10,000 times those of oestradiol 

(Labrie et al., 2005). The relatively high levels of DHEAS present in the circulation 

reflect the high degree of sulphotransferase activity of the human adrenal in addition 

to the relatively long half-life of DHEAS (10-12 hours), to DHEA (1-3 hours) (Cutler et 

al., 1978). Approximately 75%-90% of DHEA in the body is synthesised by the zona 

reticularis, while the remainder is produced by the testes and ovaries (Labrie et al., 

2000b).  

DHEA is distinct from the other major adrenal steroids in that it exhibits a 

characteristic age related pattern of secretion (Orentreich et al., 1984) (Figure 1-14). 

High levels of circulating DHEAS are detectable immediately following birth. 

However, during the first decade of life levels rapidly decline, as a consequence of 

the involution of the foetal zone of the adrenals (Allolio and Arlt, 2002). Circulating 

levels remain low until the onset of adrenarche, which occurs between the age of 6-8 

years. Serum DHEAS then steadily increases until maximal levels are achieved 

between the second and third decade of life (Allolio and Arlt, 2002; Orentreich et al., 

1984). Thereafter serum DHEAS levels decrease markedly, so that at 80 years of 

age, serum DHEAS levels are decreased to approximately 20% of their peak values 

 



(Migeon et al., 1957). This process has been termed adrenopause, despite constant 

levels of cortisol and aldosterone secretion being maintained. 
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Figure 1-14 Serum DHEAS levels during human life. Humans and other non-

human primates express a characteristic pattern of DHEAS synthesis. Serum 

DHEAS levels are high immediately after birth due to production by the foetal 

adrenal. Levels rapidly decline and remain minimal until 8-10 years of age. Taken 

from (Arlt, 2004a).   

1.1.5.3 Mechanism of action 

The effects of DHEA are known to be exerted indirectly, in peripheral target tissues of 

sex steroid action (following conversion to active androgens and/or oestrogens), or 

directly, as a neurosteroid (via interaction with neurotransmitter receptors in the 

brain). However, it is also becoming increasingly apparent that DHEA may elicit 

further direct effects. 

 



1.1.5.3.1 Downstream metabolism of DHEA 

The principle way in which DHEA produces physiological effects is via its 

downstream conversion into potent androgens and oestrogens in peripheral target 

tissues (Figure 1-15). Only uncongugated DHEA can be metabolised in this way, 

whereas DHEAS has to first have the sulphate moiety removed to achieve biological 

activity. The local metabolism of DHEA, termed 'intracrinology', depends upon the 

level of expression of the various steroidogenic and metabolising enzymes in each of 

these tissues (e.g. HSD3B2, HSD17B3, SRD5A2 and CYP19A1) (Martel et al., 

1994a). In peripheral tissues, DHEA is predominantly converted into 

androstenedione by HSD3B2 and subsequently to testosterone by HSD17B3. 

Testosterone can be further metabolised to the potent androgen, 5α-

dihydrotestosterone (DHT), or aromatised to the active oestrogen, 17β-oestradiol 

(E2). DHT, however, cannot be aromatised (Miller, 2002).  

Both testosterone and DHT can elicit androgenic effects, predominantly by binding to 

the androgen receptor (AR), a member of the nuclear receptor superfamily, although 

DHT has a 5 times greater affinity for the AR. Similarly, E2 exerts its effects by 

binding to its specific receptor, oestrogen receptor (ER), of which there are two 

isoforms, ERα and ERβ.           

 

 

 

 

 

 



Figure 1-15 The principle downstream pathways of DHEA metabolism 
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1.1.5.3.2 Direct effects of DHEA 

In addition to its role as a precursor to active sex steroids there is growing evidence 

that DHEA can act via a direct mechanism. Although a specific receptor has not yet 

been isolated and cloned, high affinity binding sites for DHEA have been reported in 

several cell types of the vascular and immune system, including murine and human T 

lymphocytes (Meikle et al., 1992; Okabe et al., 1995), bovine aortic endothelial cells 

(BAEC) (Liu and Dillon, 2002; Liu and Dillon, 2004) and primary human umbilical vein 

endothelial cells (HUVECS). In a landmark paper, Liu et al (Liu and Dillon, 2002) 

described DHEA binding to BAEC cells which was of high affinity (Kd = 48.7 pM) and 

specificity (not inhibited by other sex steroids), saturable, within the physiological 

range of DHEA concentration (0-10 nM) and isolated to the plasma membrane. More 

recently this group and others have shown this specific binding to be to a G protein 

coupled receptor in BAEC cells, the activation of which, via a MAPK, ERK 1/2, results 

in the stimulation of endothelial nitric oxide synthase eNOS, nitric oxide (NO) 

production (Formoso et al., 2006; Simoncini et al., 2003), cellular proliferation, cell 

survival, cell migration and vascular tube formation in these cells. These findings may 

explain, at least in part, the beneficial effects of DHEA on the cardiovascular system 

observed in vivo. Although these studies provide support for a DHEA plasma 

membrane receptor, they have shown the effects of DHEA vary widely in time and 

dose- response characteristics. Therefore, the actions of DHEA are likely to occur via 

more than one specific receptor and/ or effector pathway, which remain to be 

elucidated.  

 



1.1.5.3.3 Metabolic effects of DHEA  

Sex steroids are known to play a role in adipose deposition and homeostasis, as 

described in section 1.2.3.2. In addition it is becoming clear that DHEA can modulate 

body composition and metabolic parameters directly, independent of the downstream 

conversion to active sex steroids. Several murine studies have demonstrated that 

DHEA administration blocks or retards fat accretion, and reduces weight gain in 

young rodents (Cleary et al., 1984; Cleary et al., 1988; Tagliaferro et al., 1986) and 

reduce fad pad weight, percentage body fat, adipocyte number and serum 

triglyceride levels  in adult mice (Cleary and Zisk, 1986; Lea-Currie et al., 1997b; 

Mohan and Cleary, 1988; Shepherd and Cleary, 1984), without affecting food or 

water intake of these animals (Tagliaferro et al., 1986). In addition DHEA treatment 

has been show to prevent or attenuate the hyperglycaemia and/or hyperinsulinemia 

of diabetic (db/db) and obese (ob/ob) mice and obese Zucker rats (Coleman, 1988; 

Coleman et al., 1984; Leiter et al., 1987). In vitro data suggests that DHEA 

attenuates rodent adiposity via a direct effect on the adipocyte. Studies using the 

embryonic murine preadipocyte cell line, 3t3-L1 cells, and rodent isolated 

preadipocytes have demonstrated that DHEA attenuates the proliferation, 

differentiation and lipid accumulation of these cells (Gordon et al., 1987; Ishizuka et 

al., 1999; Lea-Currie et al., 1998; Shantz et al., 1989). However, the molecular 

mechanisms by which DHEA mediates these effects are unclear. In addition, DHEA 

has been demonstrated to increase adipocyte insulin stimulated glucose uptake in 

ex-vivo murine adipocytes (Ishizawa et al., 2001; Ishizuka et al., 1999; Ishizuka et al., 

2007; Kajita et al., 2000; Labrie et al., 2000b). It has been suggested that DHEA may 

mediate this effect via activation of PI 3-kinase/ atypical PKC (Ishizawa et al., 2001; 

 



Ishizuka et al., 1999; Kajita et al., 2000) or IRS-1/2/ P13-kinase / typical PKC 

signalling (Perrini et al., 2004).  

The findings from human studies are less conclusive. The majority of clinical studies 

have shown that body composition after DHEA treatment remained either unaffected 

(Arlt et al., 2001; Diamond et al., 1996; Morales et al., 1994) or showed variable 

changes which were specific to men only (Morales et al., 1998; Yen et al., 1995). 

Furthermore, some studies have shown no effect of DHEA administration on insulin 

sensitivity or hyperglycaemia (Arlt et al., 2001; Christiansen et al., 2004; Hunt et al., 

2000). However, many of these studies were short in duration and underpowered, 

which may explain the lack of significant effects. In contrast, a randomised control 

trial in elderly men and women demonstrated that the administration of 50 mg/day of 

DHEA for 6 months significantly reduced abdominal visceral and abdominal 

subcutaneous fat and increased insulin sensitivity, assessed by oral glucose 

tolerance test (OGTT)  (Villareal and Holloszy, 2004). A further randomised double 

blind study where 1600 mg/day of DHEA was administered 28 days to healthy men 

demonstrated a significant reduction in body fat but no change in insulin sensitivity 

(Nestler et al., 1988). Conversely, a randomised double-blind cross over study has 

demonstrated that 50mg/day DHEA for 12 weeks to hypoadrenal women reduced 

plasma insulin and increased the amount of glucose required to maintain similar 

blood glucose levels while infusing the same insulin dosages (Dhatariya et al., 2005).  

1.1.5.3.4 Neuronal effects of DHEA  

In addition to the adrenal, DHEA can be synthesised ‘de novo’ in neuronal tissues, as 

the necessary steroidogenic enzymes are expressed in a region specific fashion in 

 



the brain (Compagnone and Mellon, 1998). Numerous studies have shown that 

DHEA and DHEAS can modulate several neurotransmitter systems, including the 

antagonism of γ-aminobut acid type A (GABAA) receptors (Demirgoren et al., 1991; 

Majewska et al., 1990) and the stimulation of N-metyl-D-aspartate (NMDA) receptors, 

thereby suggesting a putative anti-depressant action of DHEA(S). Furthermore, pre-

treatment with physiological concentrations of DHEA and DHEAS have been shown 

to protect murine primary hippocampal cell cultures from endocitoxin N-metyl-D-

aspartic acid (NMDA) induced toxicity and DHEA (nM concentration range) has been 

shown to promote cortical neuronal growth and antagonise the suppressive effect of 

corticosterone on both neurogenesis and neuronal precursor proliferation in the 

rodent foetus. Studies suggest that DHEA may mediate this antiglucocorticoid action 

in the hippocpus, at least in part, by decreasing nuclear glucocorticoid receptor levels 

(Cardounel et al., 1999). 

In addition, DHEA and DHEAS (nM range) have been shown to protect 

NMDA/GABAA negative neural crest derived PC12 cells in vitro, and rodent 

hippocampal cells in vivo against serum induced apoptosis via the activation of NF-

κB and CREB, within minutes of DHEA administration, suggesting a non-genomic 

mechanism of DHEA action (Charalampopoulos et al., 2006b). As in human immune 

cells, high affinity binding sites for DHEA (Kd at the nanomolar range) have been 

detected in PC12 cells, human chromaffin and rat hippocampal cells 

(Charalampopoulos et al., 2006a; Charalampopoulos et al., 2006b). These findings 

suggest that DHEA, at physiological concentrations, may also exert its potent 

neuroprotective effects via specific membrane receptors, independent of NMDA and 

GABAA receptors.     

 



Based on these findings it has been proposed that a relative deficiency of DHEA and 

DHEAS levels, as observed during aging and adrenal insufficiency, may represents a 

key cause of neuronal dysfunction and/or degeneration. In support of this hypothesis 

epidermiological studies have shown that patients with Alzheimer’s disease have 

decreased DHEAS levels in specific regions of the brain, as compared to that of 

healthy age-matched controls (Huppert et al., 2000). Furthermore, DHEA has been 

consistently shown to improve impaired mood and well-being reported in patients 

with AI (Callies et al., 2001), depressive disorders (Bloch et al., 1999; Wolkowitz et 

al., 1999) and schizophrenia (Strous et al., 2004). In addition, DHEA and DHEAS 

have been shown to enhance memory in mice and rats (Flood and Roberts, 1988; 

Flood et al., 1988). However, to date there is no consistent in vivo data that DHEA 

influences memory, cognition, mood or wellbeing in healthy subjects (Arlt et al., 2001; 

Baulieu et al., 2000). 

1.1.5.3.5 Immune effects of DHEA  

In vitro and in vivo studies have suggested that DHEA stimulatory activity on the 

immune system, counteracting the immunosuppressive effects of glucocorticoids. 

Several studies have shown that DHEA administration increases host resistance to 

viral and bacterial pathogens in animal studies (Ben-Nathan et al., 1999; Danenberg 

et al., 1992; Loria et al., 1996). In vitro studies employing human immune cells have 

revealed that DHEA induces mitogen stimulated IL2 production from CD4+ cells 

(Suzuki et al., 1991), increase natural killer (NK) numbers and cytotoxicity (Casson et 

al., 1993; Solerte et al., 1999a; Solerte et al., 1999b) and inhibit release of the 

inflammatory cytokine IL-6 (Catania et al., 1999). However, whether some of these 

effects are mediated by DHEA directly or via conversion to active androgens and 

 



oestrogens is controversial. Nonetheless, conversely glucocorticoids stimulate a shift 

to CD8+ T cells, suppressing IL-2 production (Dillon, 2005) and IL-6 secretion, and 

have been shown to suppress NK cell cytotoxicity (Gerra et al., 2003). Furthermore, 

in humans DHEAS, and in rodents DHEA, have been shown to attenuate cortisol 

induced suppression of neutrophil proliferation (Butcher et al., 2005). Consequently, 

a high cortisol to DHEA(S) ratio, as associated with aging, may create a negative 

milieu for immune function. Indeed, low serum DHEAS and high cortisol serum levels 

following trauma are correlated with high mortality in trauma patients (Beishuizen et 

al., 2002).   

In a number of studies, DHEA supplementation has been used to modify immune 

functions and course of disease in patients with immunopathies. Clinical trials have 

demonstrated a beneficial effect of DHEA in systemic lupus erythematosus (SLE), 

increasing T lymphocyte IL-2 secretion (Suzuki et al., 1995), consequently 

decreasing the number of SLE flares, and reducing the requirement of 

glucocorticoids (van Vollenhoven et al., 1995). It remains to be seen if DHEA 

provides beneficial effects in other auto-immune disease states. In contrast, the 

DHEAge study involving DHEA treatment of healthy elderly subjects, did not reveal 

any effect of DHEA on NK cell cytoxicity, cytokine production, or T cell populations 

(Baulieu et al., 2000). It is likely that DHEA will be more efficacious in patients with 

immunopathies or an impaired immune system than healthy populations. 

1.1.5.3.6 Bone effects  

As sex steroids are potent regulators of bone remodelling, there has been interest on 

the influence of DHEA replacement on bone mineral density (BMD) and 

 



homeostasis. DHEA replacement to healthy elderly individuals, has been shown to 

increase in BMD at the femoral neck (Baulieu et al., 2000) and in the spine (Weiss et 

al., 2009) in older women (≥70 years of age) but not in men. Similar findings were 

observed in studies involving patients with primary AI, where an increase in femoral 

neck BMD was also reported (Arlt et al., 2001). Taken together, current findings 

suggest the beneficial effects of DHEA on BMD are small and limited to women, 

possibly due to the transformation of DHEA to androgens. Further large scale studies 

need to be performed in this area. 

1.1.6 Interconversion of DHEA and DHEAS 

Only uncongugated DHEA can be metabolised intracellularly to androgens and 

oestrogens, while DHEAS first requires cleavage of its sulphate moiety, and is 

thought to act as a storage pool of hormone. DHEA can be sulfated to DHEAS by the 

cytoplasmic enzyme, DHEA sulphotransferase (SULT2A1) and conversely DHEAS 

can be hydrolysed to DHEA by the microsomal enzyme steroid sulfatase (STS, 

Figure 1-16). Based on previous studies, which determined the pharmokinetics of 

DHEA and DHEAS following oral DHEA administration, it was generally accepted 

that DHEA and DHEAS interconvert freely and continuously. However, a more recent 

study in which oral DHEA and intravenous DHEAS was administered to healthy 

young men indicates that the predominant direction of DHEA and DHEAS 

interconversion to be of sulfation (Hammer et al., 2005b). In this study, as expected, 

DHEA administration resulted in an increase in circulating DHEAS, whereas, 

administration of DHEAS surprisingly failed to result in any significant production of 

DHEA. This finding was endorsed in vitro utilising hepatic HEPG2 cells, despite 

 



significant, comparable mRNA expression of STS and SULT2A1 by these cells. This 

finding suggests that the crucial rate limiting step regulating circulating DHEA levels 

to be that of DHEA sulphotransferase rather than STS. However, STS does play an 

important role in the regeneration of DHEA in select sex steroid target peripheral 

tissues, such as the breast and prostate (Labrie et al., 2003; Reed et al., 2005) which 

enables local sex steroid synthesis. In addition, STS is abundantly expressed in the 

placenta (Glass et al., 1998), enabling the biosynthesis of sex steroids important for 

foetal development.  
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Figure 1-16 The interconversion of DHEA and DHEAS. DHEA is metabolised by 

the cytosolic enzyme sulphotransferase (SULT2A1) to its sulphate ester, DHEAS. 

Conversely, DHEAS is hydrolysed by the microsomal enzyme steroid sulfatase (STS) 

to DHEA, which can be converted to active sex steroids in peripheral target tissues. 

 



1.1.6.1 Steroid sulphatase 

In addition to those of adrenal origin, sex steroid precursors can be synthesised by 

the hydrolysis of inactive conjugated steroids, catalysed by the microsomal enzyme 

STS, prior to their local biosynthesis of biologically active androgens and oestrogens. 

STS hydrolyses DHEAS to DHEA (Figure 1-16), which is then converted to 

dihydrotestosterone (DHT), the most potent agonist of the androgen receptor, by the 

actions of 3HSD, 17HSD3 and 5α-reductases 1 and 2 (5R1/R2), as described in 

section 1.1.5.3.1. Additionally STS can catalyse the hydrolysis of estrone sulfate to 

estrone, which is subsequently reduced to 17β-estradiol by 17HSD1. These 

pathways play a particularly important role in the maintenance of local levels of sex 

steroids in post-menopausal women (Labrie et al., 2000a; Labrie et al., 2000b). 

STS is a member of the highly conserved arylsulfatase (ARS) family. The ARS family 

members catalyse the hydrolysis of sulfate ester bonds of a wide variety of 

substrates ranging from sulfated proteoglycans to conjugated steroids and sulfate 

esters of small aromatics. Seventeen human sulfatase proteins and their genes have 

been identified (Diez-Roux and Ballabio, 2005), with a sequence homology ranging 

between 20% and 60% (Ghosh, 2007). The catalytically active N-terminal residues 

are particularly highly conserved indicating a common catalytic mechanism between 

family members (Ghosh, 2007).  

STS is a membrane bound microsomal enzyme, ubiquitously expressed in 

mammalian tissues (Martel et al., 1994b). The human STS gene contains ten exons 

comprising 583 amino acids located on the distal short arm of the X chromosome 

 



and maps to Xp22.3-Xpter (Yen et al., 1987). Inactivation of the STS gene results in 

X-linked ichthyosis, a disease related to scaling of the skin (Alperin and Shapiro, 

1997; Ghosh, 2004; Yen et al., 1992). In contrast, elevated levels of STS in breast 

carcinomas and STS dependent proliferation of breast cancer cells have been 

observed. Consequently, inhibitors of STS are being developed as a novel therapy 

for hormone dependant breast and endometrial cancer in women (Foster et al., 2008; 

Stanway et al., 2007; Stanway et al., 2006).  

1.1.6.2 Sulphotransferase superfamily 

The conversion of DHEA to DHEAS (Figure 1-16) is performed by a 

sulphotransferase, SULT2A1. Sulphotransferases transfer the polar sulpho moiety 

from the universal co-factor 5'-phosphoadenosine-3'-phosphosulphate (PAPS) to 

nucleophillic hydroxyl and amine groups of their specific substrates. In mammals two 

classes of sulphotransferases can be distinguished. The first comprises primarily 

membrane-bound sulphotransferases localised to the Golgi apparatus, which 

metabolise macromolecular endogenous structures, such as polysaccharides (Strott, 

2002). The second class, of which SULT2A1 is a member, are soluble, 

predominantly localised to the cytoplasm, and metabolise hormones, such as DHEA 

and other small endogenous compounds or neurotransmitters (Strott, 2002).    

As with the sulfation of DHEA, the transfer of a sulpho moiety to small molecules 

usually produces a product of increased aqueous solubility facilitating subsequent 

excretion and impairing passive membrane transport (Glatt et al., 2001). 

Consequently sulfation is generally associated with inactivation or detoxification. 

However, in some cases, sulfation promotes activation and sulphated products may 

 



have a longer half life then the uncongugated compound. Indeed, a growing number 

of promutagens and procarcinogens are known to be activated by SULT's (Glatt et 

al., 1998; Glatt et al., 1994). 

To date more than 50 mammalian and avian cytosolic sulphotransferases have been 

identified, cloned and sequenced, of which, 11 isoforms encoded by 10 genes have 

been identified in humans (Glatt and Meinl, 2004). Characterisation of these genes 

has revealed that cytosolic sulphotransferases, are members of a single gene 

superfamily, now termed SULT, which share considerable sequence and intron/exon 

homology (Nagata and Yamazoe, 2000; Yamazoe et al., 1994). In contrast, 

membrane bound sulphotransferases are genetically distinct. The human cytosolic 

SULT superfamily can be divided into four subfamilies SULT1, SULT2, SULT4 and 

SULT6 (Lindsay et al., 2008). 

SULT enzymes have a widespread tissue distribution and are expressed in the liver, 

lung, brain, skin, platelets, breast, kidney and gastrointestinal tissue. Members of 

each family (indicated by the number after 'SULT') show at least 45% homology and 

each subfamily (letter after subfamily number) share at least 60% identity (Glatt and 

Meinl, 2004). The distinct genes are identified by a further number after the subfamily 

letter, and different translational products are identified by a letter following this 

number. Most SULT proteins appear to exist as homodimers, although the 

monomeric and tetromeric forms have been detected in rodents (Glatt and Meinl, 

2004).  The monomenic subunits of human SULTs consist of 284 and 365 amino 

acid residues and are not known to undergo posttranslational modification (Glatt and 

Meinl, 2004).  

 



It is becomingly increasingly evident that the importance of DHEA sulfation may be 

even greater in humans than rodents, due to the inter-species differences in 

expression and function of SULTs. For example, to date, human is the only species 

in which a catecholamine specific SULT isoform (SULT1A3) has been identified 

(Glatt and Meinl, 2004). In contrast, rodents express several SULT2A isoforms, while 

only one has been characterised from humans (Glatt and Meinl, 2004).  

1.1.6.3 SULT2A1 

The SULT2A1 gene is located on 19q13.3 at a distance of nearly 500kb to SULT2B1. 

SULT2A1 is the major isoform involved in the formation of steroid sulphate esters 

(Falany et al., 1995). DHEA is the principle substrate, however many other alcoholic 

steroids, including both the 3α-and 3β-hydroxysteroids, estrogens and testosterone, 

and non-steroidal alcohols can also act as substrates (Strott, 2002). SULT2A1 mRNA 

has been observed in many tissues. However, SULT2A1 protein is only highly 

expressed in the liver, adrenal cortex and duodenum, whereas no enzyme or 

extremely low levels of expression have been detected in other tissues. Currently 

relatively little is known about the regulation of SULT2A1 gene expression. 

Immunohistochemistry has revealed that SULT2A1 expression is high and localised 

to the zona reticularis in the adrenal, consistent with the abundant adrenal production 

and high circulating levels of DHEAS in humans. In addition SULT2A1 is an 

important role in the sulfation of secondary bile acids such as lithocholic acid and 

chenodeoxycholic acid (Strott, 2002). 

Single nucleotide polymorphisms (SNPs) have been identified in most of the human 

SULT isoforms. Analysis of the liver SULT2A1 activity in 94 subjects revealed a 

 



bimodal distribution, with SULT2A1 activity strongly correlating with SULT2A1 protein 

expression in these individuals (Aksoy et al., 1993; Wood et al., 1996), suggesting 

this distribution is via at least 1 genetic polymorphism. However, comparison of the 

nucleotide coding sequences revealed no variation between subjects displaying high 

or low SULT2A1 activity, suggesting the polymorphism may be present in the non-

coding regions or outside the SULT2A1 gene (Glatt et al., 2001). To date 10 non-

synonyous cSNPs have been observed in the human SULTA1 gene (Glatt and Meinl, 

2004). Three of these SNPs, which have been detected only in African-Americans 

(alloenzymes *VII,*VIII and *X), show significantly reduced levels of enzyme activity 

and immunoreactive protein when expressed in a mammalian cell model (Thomae et 

al., 2002), suggesting that SNPs in SULT2A1 may account for differences in sulfation 

between people in vivo.  

1.1.6.4 3’-phosphoadenosine 5’-phosphosulfate (PAPS) synthesis 

All sulfation reactions, such as that of DHEA catalysed by SULT2A1, require a ready 

supply of the active, high energy form of sulfate, 3’-phosphoadenosine 5’-

phosphosulfate (PAPS). This is supported by the observation that sulfation does not 

proceed in the absence of PAPS in vitro or under conditions that limit PAPS 

synthesis (Klaassen and Boles, 1997). Inorganic sulfate (SO4
2-) is usually available in 

copious amounts from the diet and the catabolism of proteins and sugar sulfates, and 

plasma levels are tightly regulated, such that sulfate deficiency is distinctly unusual 

(Huxtable RJ, 1986). The generation of PAPS from inorganic sulfate occurs in the 

cytosol or the nucleus (Li et al., 1995) as a result of the concerted action of two 

enzymes (Bandurski and Lipmann, 1956; Robbins and Lipmann, 1958a; Robbins and 

 



Lipmann, 1958b), ATP sulfurylase and APS kinase, which in animal species are 

carried out by a bifunctional fusion protein termed PAPS synthase (PAPSS) (Lyle et 

al., 1994b), but in lower species are separate proteins (Strott, 2002). The presence of 

the bifunctional protein PAPS synthase in animals is thought to pose an advantage 

over lower species, in that the intermediate product APS can be shuttled from one 

active site to the other, increasing the efficiency of the process (Lyle et al., 1994b).  

Indeed, humans shuttling of the intermediate substrate, APS, has been shown to 

take place with remarkably high efficiency (96%) (Lyle et al., 1994a). It has been well 

established that the NH2-terminal region of human PAPS synthase constitutes the 

APS kinase domain, whereas the ATP sulfurylase domain is located in the COOH-

terminal portion of this bifunctional protein and when overexpressed and purified the 

domains can work independently of one another (Venkatachalam et al., 1998). 

The biphasic reaction of PAPS synthesis is outlined in Figure 1-17. The first step is 

catalysed by ATP sulfurylase, in the presence of Mg2+, and involves the reaction of 

inorganic sulfate with ATP to form adenosine 5’-phosphosulfate (APS) and inorganic 

phosphate. The reaction results in the formation of a high-energy phosphoric-sulfuric 

acid anhydride bond that is the chemical basis for sulfate activation (Leyh, 1993), and 

appears to be the rate limiting step in PAPS formation (Wong et al., 1991). Kinetic 

studies have established the order of reaction mechanism. First the binding of ATP-

Mg and inorganic sulphate (SO4
2-) occurs in a random order. Subsequently the 

products are released in an ordered fashion with PPi-Mg being released before PPi. 

The subsequent step is catalysed by APS kinase, again in the presence of Mg2+, and 

involves the reaction of APS with a second molecule of ATP to yield PAPS and ADP.  

Similar to the ATP-sulfurylase domain, in the APS-kinase domain the synthesis of 

 



PAPS proceeds in an ordered manner. First MgATP associates, which 

phosphorylates APS kinase, subsequently APS binds with high affinity, which is 

phosphorylated to form PAPS. PAPS then disassociates from APS kinase, followed 

by mgADP (Strott, 2002). Interestingly this enzyme undergoes pronounced 

uncompetitive substrate inhibition with APS (Sekulic et al., 2007), which is thought to 

occur by the rebinding of APS to the same site, before ADP dissociation. 

The initial reaction, resulting in APS formation, is not favoured energetically with a 

Vmax of the forward and reverse direction as 6.6 and 50 units/ mg protein 

respectively (Klaassen and Boles, 1997; Seubert et al., 1985). In addition, as local 

levels of PAPS inhibit its own synthesis (Harjes et al., 2005), the subsequent 

hydrolysis or rapid utilisation of APS, and the consumption or translocation of PAPS 

out of the cytoplasm or nucleus are required for the reaction to proceed toward PAPS 

synthesis.  

Each domain of the bifunctional protein possesses a conserved nucleotide-binding 

motif. Sequence analysis has revealed in the APS kinase domain this is in the form 

of a P loop motif (GxxGxGKS/T), which is involved in coupling of the phosphate 

moiety of ATP and cleavage of the β-γ phosphodiester bond (Strott, 2002; Walker et 

al., 1982). In contrast, the carboxy-terminal ATP sulfurylase domain contains a HxGH 

nucleotide binding motif, which catalyses the removal of the β-γ diphosphate of ATP 

and condensation of the formed AMP with inorganic sulfate to form APS (Bork et al., 

1995). Mutational analysis of both nucleotide binding sites has confirmed their 

importance in PAPS generation (Deyrup et al., 1998; Venkatachalam et al., 1999).  

 



1.1.6.4.1 PAPS synthase 

PAPSS exists as two isozymes, PAPSS1 and PAPSS2, encoded by genes located, 

in humans, on chromosome 4q25-26 and chromosome 10q23-24, respectively. 

PAPSS 1 and 2 proteins are 106 and 85 kb in length, respectively, and share 77% 

identity (Strott, 2002) with very similar structures including 12 exons and virtually 

identical exon-intron splice junctions (Xu et al., 2000). PAPSS1 is highly expressed in 

brain and skin, while PAPSS2 is the predominant form in liver and cartilage (Fuda et 

al., 2002; Xu et al., 2000). PAPSS1 has been cloned from several species, including 

human (Venkatachalam et al., 1998), mouse (Li et al., 1995), guinea pig (Fuda et al., 

2002), marine worm (Rosenthal and Leustek, 1995) and drosophila (Jullien et al., 

1997) and appears to be highly conserved between species, indicated by the 98% 

and 95% identity between human and mouse or guinea pig (Strott, 2002), 

respectively.  

Two variants of the PAPSS2 isoform exist due to alternate splicing, PAPSS2a and 

PAPSS2b, which differ in an additional five amino acid segment (GMALP) in the ATP 

sulfurylase domain of the protein of the PAPSS2b variant (Strott, 2002). Rare 

mutations that inactivate PAPSS2 have been shown to be associated with human 

spondyloepimetaphyseal dysplasia (ul Haque et al., 1998) and murine 

brachymorphism (Kurima et al., 1998). In addition, more common genetic 

polymorphisms have been identified in both isoforms (Xu et al., 2002; Xu et al., 

2003). To date twenty-one and twenty-two single nucleotide polymorphisms (SNPs) 

have been observed in the PAPSS1 and PAPSS2 genes respectively, including two 

non-synonomous coding regions SNPs in PAPSS1 (Arg333Cys and Glu531Gln) (Xu 

et al., 2003) and four in PAPSS2 (Glu10Lys, Met281Leu, Val291Met and Arg432Lys) 

 



(Xu et al., 2002). Two of the non-synonomous SNPs in the PAPSS2 gene were found 

to have reduced activity compared to WT, which was found to be due to reduced 

protein expression for 1 SNP, while neither of the SNPs in PAPSS1 were shown to 

alter PAPSS activity. These findings give rise to the hypothesis that SNPs in these 

genes may be functionally significant and genetic polymorphisms might contribute to 

variations in sulfate conjugation in vivo. 

The physiological significance of two isoforms of PAPSS, and furthermore, two splice 

variants of PAPSS2, which appear to catalyse the same reaction is currently unclear. 

Particularly as numerous tissues express the ubiquitously expressed PAPSS1 and 

one or more of the isoforms of PAPSS2.  The striking phenotype observed with the 

loss of one isoform as observed in brachymorphic mice (Kurima et al., 1998) and 

human spondyloepimetaphyseal dysplasia (ul Haque et al., 1998), further confounds 

this matter. However, in the case of PAPSS2, the splice variants are known to have 

differential tissue and, compared to PAPSS1, at least in the case of rodents, 

differential temporal expression (Stelzer et al., 2007). Additionally the isoforms 

display distinct catalytic activities, which in the PAPSS 2 variants are 10-15 times that 

of PAPSS1, and in the PAPSS2a variant is 30% less than that of PAPSS 2b (Fuda et 

al., 2002). In addition, the isoforms may have differential cellular localisation. 

Although PAPS synthesis had been assumed to occur in the cytosol, recent evidence 

indicates that PAPSS1 may be nuclear in its subcellular localization, as is PAPSS2 

when coexpressed with PAPSS1 (Besset et al., 2000). Further studies are required 

to address if these proteins are truly redundant.  
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Figure 1-17 The synthesis of activated sulphate by PAPS synthase. Inorganic 

sulphate (SO4
2-) is converted by ATP-sulfurylase to adenosine 5’-phosphosulphate 

(APS), which in turn is converted to 3’-adenosine 5’-phosphosulphate by APS-kinase 

(PAPS). The enzymes are integral to a single bifunctional protein termed PAPS 

synthase. PAPS is the universal sulphate donor for all sulfation reactions, including 

that of DHEA to DHEAS catalysed by SULT2A1.   

1.1.7 Disorders associated with androgen excess 

Androgen excess is the most common endocrine disorder, affecting 8-12% of adult 

women (Azziz et al., 2004; Carmina, 2006). The clinical manifestations of 

hyperandrogenism range in severity and can include hirtuism, acne, alopecia, central 

obesity, oligo or an-ovulation and frank viralisation. Numerous disorders such as 

cushing’s syndrome, nonclassic 21 hydroxylase deficiency (NCAH), polycystic ovary 

 



syndrome (PCOS), hyperprolactinemia and hyperandrogenic-insulin resistant –

acanthosis nigricans (HAIR-AN) syndrome can present with similar hyperandrogenic 

phenotypes, although PCOS accounts for by far the majority (65-85%) of cases of 

hyperandrogenism (Maroulis, 1981; Rittmaster and Loriaux, 1987) and is estimated 

to affect 5-10% of females of reproductive age (Adams et al., 1986; Blank et al., 

2008; Homburg, 2008). Indeed, PCOS is associated with 75% of all anovulatory 

disorders causing infertility, with 90% of cases of oligoamenorrhoea, and more than 

90% with hirtuism and 80% with persistent acne (Blank et al., 2008; The Practice 

Committee of the ASRM, 2006).  

The European Society for Human Reproduction and Embryology and the American 

Society of Reproductive Medicine at a meeting, Rotterdam 2003 (Galluzzo et al., 

2008; Geisthovel and Rabe, 2007), redefined the criteria for the diagnosis of PCOS 

to the presence of any two of the following three observations, provided all other 

etiologies have been excluded: (a) polycystic ovaries on ultrasound scan, (b) oligo- 

and/or anovulation, (C) clinical and/or biochemical evidence of hyperandrogenism. 

As in the case of normal females, androgen production can originate from the 

adrenal or the ovary in hyperandrogenic disorders. Biochemical analysis is routinely 

used to identify the site of excess androgen production, with elevated DHEAS being 

regarded as indicative of adrenal origin and androstenediol indicative of ovarian 

origin (Carmina, 2006; The Practice Committee of the ASRM, 2006). However serum 

levels of DHEA, the active androgen precursor, are not usually examined. Studies 

have shown that serum DHEAS is increased, indicative of adrenal 

hyperandrogenism, in about 20-30% of women with classic anovulatory PCOS 

(Kumar et al., 2005). Although, the mean levels of DHEAS are shifted upward in most 

 



patients with the disorder. Additional biomarkers of PCOS include raised 

concentrations of serum total and free testosterone and androstenedione; increased 

serum luteinizing hormone (LH) with low normal follicle stimulating hormone (FSH), 

giving rise to a characteristic high LH/FSH ratio; and low levels of serum hormone 

binding globulin (SHBG), hence the high concentrations of androgens. In addition to 

these criteria, insulin resistance and compensatory hyperinsulinemia, which are often 

associated with obesity and established as risk factors for the development of the 

metabolic syndrome, are common in PCOS patients (Barber et al., 2006; Galluzzo et 

al., 2008; Homburg, 2008).  

Studies suggest that in some individuals the development of hyperandrogenism is 

associated with premature adrenarche (Ibanez et al., 2000; Ibanez et al., 1998a; 

Ibanez et al., 1998b). Precocious or premature adrenarche refers to an early 

increase in adrenal androgen production before the age of 8 years in girls and 9 

years in boys, which usually manifests clinically as premature pubarche, with or 

without axillary hair development and pubertal odour(Auchus et al., 1998a; Kousta, 

2006). Premature adrenarche occurs with increasing frequency between the ages of 

3 and 8 years, although it may present as early as 6 months of age (Silverman et al., 

1952). As with precocious puberty, girls are more frequently affected than boys, with 

a ratio of almost 10:1 (Sigurjonsdottir and Hayles, 1968; Silverman et al., 1952), 

although, there is currently no explanation for this unequal sex ratio. To date no 

single factor has been proven to regulate the onset of adrenarche. However, serine 

phosphorylation of P450c17 and access to CYB as a co-factor appear to be 

necessary for adrenarche to occur (Auchus et al., 1998a)(see section 1.1.5.1).   

 



During pubertal development, leading to the attainment of full reproductive 

competence, the concerted effects of adrenarche and gonadarche give rise to a 

PCOS-like state. In the few years following adrenarche there is a relative 

hyperandrogenism, with high levels of androgens, relative to oestrogens and a 

significant decrease in SHBG. There is also a 20-fold increase in luteinizing hormone 

(LH) concentration and an increased LH to FSH ratio, with LH hyperpulsatility and a 

30% decrease in insulin sensitivity with increased insulin secretion (Apter et al., 

1994; Apter and Sipila, 1993; Pasquali et al., 1991; Venturoli et al., 1992). 

Consequently, in early puberty it is difficult to detect ‘true’ hyperandrogenism and 

PCOS as opposed to the normal physiological transient hyperactivity of the HPG 

axis. However, evidence is growing that anovulatory pubertal or postpubertal girls 

have higher testosterone and LH levels than their ovulatory counterparts (Ibanez et 

al., 1999) and that girls with early onset adrenarche are more likely to develop 

hyperandrogenism and the associated metabolic disturbances in adulthood (Ibanez 

et al., 2000; Kousta, 2006). Furthermore, an increased incidence of hirsutism and 

PCOS has been observed in postpubertal girls diagnosed with premature adrenarche 

during childhood (Ibanez et al., 2000; Kousta, 2006). Therefore it is suggested that 

premature adrenarche should not be considered a normal benign variant, but an 

indicator for the potential subsequent development of detrimental metabolic disease 

in some individuals. 

The aetiology of PCOS is still unknown, although it is clear it is multifactorial involving 

genetic and environmental factors. The syndrome clusters in families and the 

prevalence rates in first degree relatives are five to six times higher than in the 

general population (Amato and Simpson, 2004). However, several candidate gene 

 



approaches have not proved fruitful (Dumesic et al., 2007). Due to the emerging 

relationship between premature adrenarche and PCOS the aetiology of both 

conditions is proposed to be similar, although the majority of studies have 

investigated the latter. Hyperandrogenism and hyperinmsulinemia are known to be 

the primary underlying factors of the condition. However, it is not clear if insulin 

resistance depends on hyperandrogenism or visa versa. 

It is likely that the pathogenesis of hyperandrogenism encompasses numerous 

derangements, and multiple pathways, which present with similar clinical 

manifestations and shared biochemical features. Therefore, both hyperandrogenism 

and insulin resistance may play initiating roles in some cases, or perpetuate the 

progression of others. Obesity and other antagonistic factors may be required in 

some patients to develop the disorder, or may not be required in more susceptible 

patients. In the future it is probable that further hyperandrogenic conditions or 

monogenic causes of PCOS will be unveiled, which will increase our understanding 

of the pathogenesis of this multifactorial syndrome.  

 



1.2 Regulation of adipose tissue proliferation and differentiation 

1.2.1 Adipose tissue embryology and morphology 

Adipose tissue can be divided into two main categories; brown adipose tissue (BAT) 

and white adipose tissue (WAT). Brown adipose tissue is localised around the neck 

and scapulae and has a multi-ocular morphology, due to it containing a high number 

of mitochondria, and is involved in thermoregulation (Figure 1-18) (Gesta et al., 

2007). The majority of BAT is lost in childhood, although it can exist at low amounts 

in adults. WAT differs from other tissues, in that it is forms at numerous, dispersed 

locations around the body (Figure 1-18) (Rosen and MacDougald, 2006). The 

majority of WAT forms at sites rich in loose connective tissues, such as the 

subcutaneous (sc) layers between the muscle and the dermis (Avram et al., 2007). 

However WAT deposits also form at intracellular depots, representing the main 

compartments of fat storage  (Rosen and MacDougald, 2006)(Figure 1-18). The sc 

depot forms a continuous layer under the skin and in adulthood develops a sexually 

dimorphic distribution, with higher levels of abdominal fat in men, which has been 

termed ‘android’ or ‘apple’ distribution, and gluto-femoral fat in women, giving rise to 

‘femoral’ or ‘pear’ adipose distribution (Lemieux et al., 1993).     

In humans adipose tissue formation begins during the second trimester of pregnancy 

(Cornelius et al., 1994). However, WAT expansion does not take place until after 

birth via an increase in adipocyte cell size and an increase in adipocyte number. 

Contrary to previous dogma, it is now undisputed that the potential to acquire new fat 

cells from adipocyte precursors, in addition to the enlargement of current adipocytes, 

 



persists in the human adult and occurs routinely as a consequence of normal cell 

turnover and the requirement for increased fat mass on significant calorie 

consumption (Miller et al., 1984; Prins and O'Rahilly, 1997). However, the adipogenic 

potential of preadipocytes depends on age, sex and depot (Lemieux et al., 1993; 

Rosen and MacDougald, 2006).  

1.2.2 Adipose tissue growth 

Adipose tissue development is dependent on two processes; hyperplasia and 

hypertrophy, with hypertrophy often preceding hyperplasia in a cyclic manner (Avram 

et al., 2007). Hyperplasia, hereafter termed adipogenesis, represents the complex 

process by which new fat cells are developed from adipocyte precursor cells and 

involves two major processes- the proliferation of adipocyte precursors and their 

differentiation into mature adipocytes (Gregoire et al., 1998; Hausman et al., 2001; 

Rosen and MacDougald, 2006). Although evidence from murine cell lines suggests 

that proliferation of a preadipocyte precedes its differentiation, studies using human 

preadipocytes suggest that partially differentiated cells are still capable of replication 

(Avram et al., 2007; Prins and O'Rahilly, 1997). Hypertrophy defines an increase in 

size of differentiated adipocytes due to lipid accumulation (Rosen and MacDougald, 

2006). 

The adipogenic process is regulated by an elaborate balance of stimulatory and 

inhibitory signals which can be nutritional, hormonal or paracrine in nature (Rosen 

and MacDougald, 2006). These stimuli co-ordinate the activation of a number of 

 



transcription factors which regulate the expression of over 300 genes (Morrison and 

Farmer, 1999), responsible for establishing the mature fat-cell phenotype. 

 

 

Figure 1-18 Human adipose tissue distribution. Brown adipose tissue is present in 

babies and in smaller amounts in adults. White adipose tissue is present in dispersed 

locations around the body. Taken from Gesta et al, 2007. 

1.2.2.1 Adipocyte proliferation 

WAT develops from multipotent stem cells of mesodermal origin that also give rise to 

muscle and cartilage lineages (MacDougald and Lane, 1995a). Human WAT-derived 

vascular cells have been shown to differentiate in vitro into myogenic, chondrogenic 

and osteogenic cells in the presence of lineage specific induction factors (Zuk et al., 

2001) (Figure 1-19). Therefore, indicating that multipotent precursor cells are present 

 



in adult human WAT. The first step in the adipogenesis process is the commitment of 

the multipotent stem cell (MSC) to the adipocyte lineage (Figure 1-19). Committed 

preadipocytes, have to withdrawal from the cell cycle, prior to the differentiation 

process (Amri et al., 1986; Gregoire et al., 1998). Growth arrest in G1/S phase is 

usually, with exception of certain conditions in vitro, achieved via contact inhibition. 

During this time preadipocytes appear morphologically similar to fibroblasts. The 

preadipocyte then requires a complex balance of proadipogenic and antiadipogenic 

signals, for the induction of differentiation to pursue (Gregoire et al., 1998).  In vitro 

this is achieved via an ‘induction cocktail’ which can include a combination of 

dexamethasone, isobutylmethylxanthine (increases cAMP levels), supraphysiological 

concentrations of insulin, foetal bovine serum and an agonist of PPARγ, such as 

rosiglitazone (Gregoire et al., 1998). Stimulated preadipocytes subsequently re-enter 

the cell cycle and are thought to undergo at least one round of DNA replication and 

cell doubling, leading the clonal expansion of committed cells, prior to differentiation 

(Cornelius et al., 1994; MacDougald and Lane, 1995b). During this time there is an 

increase in the expression of prooncogenes, c-fos, c-jun and c-myc, which are 

thought to possess mitogenic properties (Avram et al., 2007; Cornelius et al., 1994; 

Zeng et al., 1997). Although clonal amplification is required for the differentiation of 

clonal cell lines (Amri et al., 1986; Tang et al., 2003), differentiation of human 

preadipocytes can occur without cell division at this stage (Entenmann and Hauner, 

1996). It has been proposed that variation may be explained by the in vivo replication 

of human preadipocytes prior to cell harvesting (Avram et al., 2007), or that the clonal 

expansion may be an artefact of the in vitro process .  

 

 



 

Early development
? 

Fertilised egg 

Pluripotent
precursor stem cell 

Multipotent 
mesenchymal stem 

cell 

Determined 
unipotential
preadipocyte

Mature adipocyte

Bone Muscle

Adipose

 

 

Figure 1-19 Adipose tissue determination and differentiation. Multipotent 

mesenchymal stem cells have the potential to differentiate into muscle, bone and 

adipose. Under the correct stimuli, determined preadipocytes differentiate into mature 

adipocytes and accumulate unioccular lipid droplets which compress the nucleus to 

the cell membrane. Adapted from (Morrison and Farmer, 1999). 

 

 



1.2.2.2 Adipocyte differentiation 

Immediately following exposure of the preadipocyte to adipogenic stimuli the gene 

expression of CCAAT/enhancer binding protein β (C/EBPβ) and C/EBPδ significantly 

and transiently increases (Morrison and Farmer, 1999) (Figure 1-20). This event 

enables the distinction between preadipocytes and nonadipogenic precursor cells 

(Cao et al., 1991). The importance of these proteins upon adipogeneseis is 

demonstrated by gain of function models have shown that C/EBPβ and C/EBPδ can 

accelerate differentiation in NIH-3T3 preadipocytes (Darlington et al., 1998). During 

the transient induction of C/EBPβ and C/EBPδ expression, preadipocytes undergo a 

second permanent period of growth arrest termed GD (Scott et al., 1982) and at this 

stage preadipocytes are fully committed. GD coincides with loss of E2F/DP, a central 

transcriptional regulator of many genes involved in cell growth (Altiok et al., 1997).  

Along with cell-cycle regulators, C/EBPβ and C/EBPδ facilitate the expression of the 

nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) 

(Clarke et al., 1997) and C/EBPα (Figure 1-20), which remain high throughout 

differentiation and within the mature adipocyte (Wu et al., 1999). This event marks 

the entry of committed cells into the process of terminal differentiation and is 

associated with the onset of lipid droplet accumulation. Once activated PPARγ and 

C/EBPα cross-regulate one another, maintaining their gene expression despite the 

ensuing decrease in C/EBPβ and C/EBPδ expression. The expression of PPARγ and 

C/EBPα In support of their regulatory role, the ectopic expression of C/EBPβ and 

C/EBPδ in 3t3-l1 preadipocytes (Cao et al., 1991), and C/EBPβ alone, or in 

combination with C/EBPδ in NIH 3T3 fibroblasts (Wu et al., 1996; Wu et al., 1995) 

induces C/EBPα and PPARγ expression, respectively. Furthermore, induction of the 

 



adipogenic programme ensues, in the absence of extracellular hormones. 

Interestingly, both studies observed that C/EBPδ alone possesses minimal 

adipogenic activity (Cao et al., 1991; Wu et al., 1996). The finding that C/EBP 

regulatory elements are present in the promoters of C/EBPα and PPARγ further 

supports the important role of these proteins in inducing C/EBPα and PPARγ 

expression (Tang et al., 2004). However, there must be further uncharacterised, 

C/EBP independent, PPARγ and C/EBPα regulatory mechanisms, as C/EBPβ and 

C/EBPδ double-knockout mice express normal levels of these genes (Tanaka et al., 

1997).    

C/EBPα and PPARγ are recognised as the principle regulators of the differentiation 

process. In support of this notion, overexpression of C/EBPα or PPARγ in 3t3-l1 cells 

induces their differentiation into a mature adipocyte (Freytag et al., 1994; Lin and 

Lane, 1994). Furthermore, thiazolidinediones (TZD), high affinity synthetic ligands for 

PPARγ, are potent inducers of preadipocyte differentiation. PPARγ in particular is 

considered the master regulator; without it, precursor cells are incapable of 

expressing any known aspect of the adipocyte phenotype (Rosen and MacDougald, 

2006). Indeed, WAT-hypomorphic PPARγ knockdown mice display severe 

lipodystrophy (Koutnikova et al., 2003). Furthermore, studies in which PPAR was 

ectopically expressed in nonadipogenic mouse fibroblasts showed that PPARγ alone 

can initiate the entire adipogenic programme (Tontonoz et al., 1994).  However, cells 

deficient in C/EBPα are insulin resistant (El-Jack et al., 1999; Wu et al., 1999), 

indicating the requirement of C/EBPα for the accquistion of insulin sensivity (Wu et 

al., 1999).  

 



Other factors are known to be important in the molecular regulation of differentiation, 

in both a positive and negative fashion (Figure 1-20). The upregulation of the helix-

loop-helix transcription factor ADD1/SREBP-1c expression early on in the 

differentiation process is thought to be involved in the regulation of PPARγ 

expression (Fajas et al., 1999). Ectopic expression of a consitutively active form of 

ADD1/SREBP-1c enhances adipocyte gene expression in nonprogenitor NIH-3T3 

fibroblasts under adipogeneic conditions (Tontonoz et al., 1993). Furthermore, 

evidence suggests that SREBP-1c may be involved in gene expression that leads to 

the production of endogenous PPARγ ligands (Kim and Spiegelman, 1996). In 

addition, cAMP response element, which also induces expression of PPARγ, 

regulates expression of fatty acid synthase (FAS), GLUT-4, and leptin (Klemm et al., 

1998).  STAT5A and STAT5B, which are involved in cytokine signalling, may also 

provide an additional pathway for regulating adipogenesis and double-knockout mice 

have 5-fold reduction in WAT mass as compared to wild type animals (Teglund et al., 

1998) and ectopic expression of STAT5A in nonadipogenic fibroblasts induces 

preadipocyte differentiation (Floyd and Stephens, 2003).  

In addition a number of factors are known to inhibit preadipocyte differentiation, and 

maintain the preadipocyte phenotype until adipogenic stimuli repress their 

expression, such as the AP2-α and SP-1 genes.  Pre-adipocyte factor 1 (pref-1) is a 

plasma membrane protein expressed only in preadipocytes, which prevents 

differentiation by inhibiting PPARγ and C/EBPα expression (Smas and Sul, 1997). 

Accili et al have demonstrated that the forkhead transcription factor, FoxO1, when 

constitutively active inhibits the differentiation of 3T3-F422A preadipocytes by 

arresting the cells in clonal expansion (Accili and Arden, 2004).  In addition, 

 



constitutive expression of GATA binding protein transcription factors, GATA-2 and 

GATA-3, which are expressed in preadipocytes and suppresses differentiation, by 

binding the PPARγ promoter, inhibiting its transcription, and forming inhibitory 

complexes with C/EBPα and C/EBPβ (Tong et al., 2005). 

During terminal differentiation the adipocytes markedly increase their ability to 

perform de novo lipogenesis, due to the induction of a number of genes involved in 

glucose and lipid metabolism. For example, during the final stages of differentiation, 

expression of the insulin receptor and glucose transporters increases, resulting in the 

adipocyte acquiring sensitivity to insulin (Garcia de Herreros and Birnbaum, 1989). 

The ability of adipocytes to synthesise TAG is increased by the expression of 

enzymes such as FAS and ACC and glycerol phosphate dehydrogenase, while the 

capacity for lipid uptake is increased by the induction of lipoprotein lipase expression. 

In addition, there is an increase in the expression of β2- and β3- adrenoreceptors, 

and as consequence and increase in the response to lipolytic stimuli (Knittle et al., 

1979). 

Based on in vitro models each stage of the adipocyte differentiation has been well 

established and associated with specific patterns of gene expression. The expression 

of such genes can be defined as early, such as lipoprotein lipase (LPL), or late, such 

as glycerol-3-phosphate dehydrogenase (G3PDH) or aP2. The identification of the 

expression of these genes is a commonly used tool to identify the differentiation state 

of adipocytes in vitro. 

 

 

 



 

 

 

 

 

AP‐2

C/EBPβMIX
DEX
INS C/EBPδ

C/EBPα

PPARγ

SP‐1

ligand

RXRα

ADD1
SREBP‐1

Adipocyte Gene Expression 

STAT5

???

 

 

Figure 1-20 The transcriptional regulation of adipogenesis. A complex signal of 

stimulatory and inhibitory stimuli induce differentiation. In vitro this is stimulated by 

(MIX), dexamethasone (DEX) and supraphysiological concentrations of insulin (INS). 

The factors induce the expression of key transcription factors including PPARγ and 

C/EBPα, which result in adipocyte differentiation. Adapted from (Morrison and 

Farmer, 1999) 

 



1.2.3 Hormonal regulation of adipogenesis and adipocyte homeostasis 

1.2.3.1 Glucocorticoid regulation of adipose tissue   

It is well established that glucocorticoids, or the synthetic glucocorticoid, 

dexamethasone (Dex), enhance preadipocyte differentiation in vitro and in vivo 

(Hauner et al., 1989; Hauner et al., 1987; Rubin et al., 1978). Depending on the cell 

model system, glucocorticoid treatment is either required for, or accelerates the 

differentiation process (Avram et al., 2007). Dex treatment induces C/EBPδ 

expression, which may account for some of its adipogenic activity (MacDougald et 

al., 1994; Wu et al., 1996). However, cells that overexpress C/EBPδ still require Dex 

to achieve their full adipogenic potential (Rosen and Spiegelman, 2000) indicating 

that DEX serves more than this purpose. Dex has also been shown to enhance the 

expression of the key regulators of the adipocyte process, C/EBPα and PPARγ 

(MacDougald et al., 1994; Wu et al., 1996). Furthermore, the activated GR also 

associates with Stat 5a, which as described in section 1.2.2.2, promotes adipocyte 

differentiation (Floyd and Stephens, 2003). Dex has also been shown to inhibit 

preadipocyte proliferation via a repression of the expression of pref-1, a negative 

regulator of adipogenesis and consistently anti-sense mediated repression of pref-1 

decreases the dose of Dex required for adipogenesis to occur (Smas et al., 1999).  

1.2.3.2 Sex steroid regulation of adipose tissue  

There is a striking difference in body fat between men and women. Men tend to 

accumulate adipose tissue in the abdomen, and for a similar fat mass, have a two-

fold higher visceral adipose tissue accumulation compared to women (Lemieux et al., 

 



1993). The fact that men have a higher risk of developing cardiovascular disease is 

well established. However, statistical adjustment for visceral adipose tissue area has 

been shown to abolish sex-related differences in cardiovascular disease risk factors 

(Lemieux et al., 1994) suggesting, visceral adipose tissue deposition is a responsible 

for the sex differences in cardiovascular disease risk factors (Despres and Lemieux, 

2006; Yusuf et al., 2004). Such findings have led to the increasing understanding that 

testosterone, DHT and oestradiol, play important roles in the regulation of adipose 

distribution, development and homeostasis. 

1.2.3.2.1 Androgen regulation of adipose tissue  

Numerous cross-sectional and longitudinal studies have shown that abdominal 

obesity correlates with low plasma testosterone levels in men (Khaw and Barrett-

Connor, 1992; Pasquali et al., 1991). In these studies, waist circumference and waist 

hip ratio are also negatively associated with plasma sex hormone binding globulin 

(SHBG) (Khaw and Barrett-Connor, 1992; Pasquali et al., 1991). In support of these 

findings, Boyanov et al have shown that physiological testosterone administration 

decreases waist-to-hip ratio of hypogonadal men (Boyanov et al., 2003), whom 

without treatment have an increased incidence of cardiovascular disease. However, 

other studies investigating the effect of DHT or testosterone administration to 

unaffected men have observed no effect (Marin et al., 1992).   

In contrast, abdominal obesity is thought to be associated with high plasma androgen 

levels in women. Women with PCOS (of which hyperandrogenism is a characteristic) 

and female-to-male transsexuals receiving testosterone treatment, often develop a 

more android adipose tissue distribution pattern (Dunaif, 1997; Elbers et al., 1999a), 

 



and concurrent increase in the associated cardiovascular risk factors (Dunaif, 1997). 

As in men, in women SHBG levels are inversely correlated with waist to hip ratio and 

elevated SHBG levels are inversely associated with features of the metabolic 

syndrome (De Pergola et al., 1994; Ivandic et al., 2002). 

Taken together these findings suggest that physiological concentrations of 

testosterone are associated with a favourable metabolic profile. Conversely, 

testosterone levels outside of the normal physiological range, as observed in 

hypogonadal men (sub-physiological), or female-to-male transsexuals 

(supraphysiological), may have adverse effects on adipose tissue development 

(Elbers et al., 1999a).  

The effects of androgens on preadipocyte proliferation, differentiation, lipid synthesis 

and lipolysis have been studied in vitro and in vivo. Androgens have generally been 

shown to have no effect on preadipocyte proliferation in rodent and human studies 

(Anderson et al., 2001; Dieudonne et al., 2000). However, testosterone treatment 

was shown to prevent the increase in preadipocyte proliferation observed following 

castration in male mice (Garcia et al., 1999). Androgens are considered 

antiadipogenic and have been shown to inhibit preadipocyte differentiation in rodent 

in vitro studies (Dieudonne et al., 2000; Gupta et al., 2008; Singh et al., 2003), 

thought to be due to a reduced level of IGF-1 receptor and C/EBPα expression which 

has been observed in mesenteric and omental preadipocytes following DHT 

treatment (Dieudonne et al., 2000; Gupta et al., 2008) and interaction of the 

androgen receptor with the Wnt signalling pathway (Singh et al., 2006). 

 



Androgens are also known to modulate adipose homeostasis. In men omental fat 

androgen content has been found to be positively correlated with adipocyte lipolytic 

responsiveness in this depot (Belanger et al., 2006). Basal lipolysis of abdominal 

adipose tissue was shown to be increased in female to male transsexuals under 

testosterone treatment (Elbers et al., 1999b). Conversely, hypogonadism in man is 

associated with a significant decrease in lipolytic response to catecholamines 

(Bjorntorp, 1996). In contrast, in SC adipocytes obtained from women T and DHT 

inhibited catecholamine-stimulated lipolysis associated with decreased expression of 

hormone sensitive lipase and β2-adrenoreceptors (Xu et al., 1990; Xu et al., 1993; 

Xu et al., 1991). Consistent with these findings only male androgen receptor 

knockout (ARKO) mice develop a late onset obesity phenotype (Yanase et al., 2008), 

presumed attributable to impaired lipolysis due to a decrease in HSL in these mice.  

The effects of androgens on adipocyte lipid synthesis remain controversial.  In 

subcutaneous adipocytes obtained from women, DHT has been shown to stimulate 

lipoprotein lipase expression (Anderson et al., 2002). Conversely, testosterone 

treatment of adipose tissue obtained from men and male rats was shown to reduce 

fatty acid synthesis, LPL levels and radioactive triglyceride uptake (Hansen et al., 

1980; Marin et al., 1995). 

It is becoming evident that in addition to the adrenal and gonads, adipose tissue can 

contribute to the synthesis and activation of androgens which via intracrine effects 

may modulate adipose tissue development and homeostasis. Quinkler et al. 

demonstrated the expression and activity of AKR1C3, a reductive 17β-HSD isozyme 

responsible for the conversion of androstenedione to testosterone, in human female 

adipose tissue (Quinkler et al., 2004). The expression of AKR1C3 was shown to be 

 



site specific, being greater in sc than om depots, and to increases with adipocyte 

differentiation, suggesting a role for this enzyme in preadipocyte differentiation. 

Functional activity analysis confirmed predominant androgen activation in sc 

adipocytes, indicating that human adipose tissue is capable of androgen synthesis. 

Interestingly the mRNA expression of AKR1C3 was shown to positively correlate with 

BMI, and decrease upon weight loss, suggesting that AKR1C3 plays a site specific 

role in obesity. Furthermore, these findings suggest that the increase in AKR1C3 

expression with differentiation and in sc depots relative to om depots may 

compensate for the reduced expression of the AR in sc adipocytes and highlights the 

importance of understanding the site-specific regulation of sex steroids synthesis and 

action on adipogenesis.      

Consistent with the apparent differing effects of androgens in vitro it appears that 

androgen metabolism in adipose tissue may differ between men and women as 

Blouin et al have shown that in the adipose tissue the expression of AR and AKR1C1 

is higher in the sc adipose depot (Blouin et al., 2003). In contrast the expression of 

17β-HSD2, which was not shown to be expressed in women, was higher in the om 

depot. This study demonstrated higher inactivation of 5α-DHT in mature adipocytes 

compared to adipocytes, which was greater in the om depot. Furthermore, higher 

inactivation rates were observed in obese compared to lean men, again indicating 

that modulation of androgen synthesis may play a site specific role in obesity.  

1.2.3.2.2 Oestrogen regulation of adipose tissue 

Women have approximately 10% more body fat than men (Chumlea et al., 1981b), 

which is generally localised to the gluteal site. The increase in adipose tissue mass 

 



seen in women at puberty is associated with both an increase in both adipocyte 

hyperplasia and hypertrophy (Chumlea et al., 1981a). Indeed, subcutaneous gluteal 

fat has been shown to increase 45% in girls compared to boys at puberty (Chumlea 

et al., 1981a), suggesting that oestrogens may preferentially promote fat 

accumulation in the gluteal region. In contrast, the accumulation of central adipose 

tissue, which is associated with the menopause in women appears to be prevented 

by oestrogens and is reversed with hormone replacement therapy (Cooke and Naaz, 

2004). Furthermore, ERα knockout (ERαKO) mice, or experimental animals following 

ovariectomy develop a large increase in adipose tissue mice adipose tissue 

accumulation (Simpson and McInnes, 2005; Wade et al., 1985). 

The inhibitory effect of oestrogen has been shown to inhibit adipose deposition 

principally by decreasing lipogenesis by the direct inhibition of LPL expression via a 

negatively regulated oestrogen response element (Homma et al., 2000). In addition 

E2 can indirectly affect lipolysis in central adipocytes by inducing the lipolytic enzyme 

hormone sensitive lipase (HSL) and by increasing the lipolytic effects of epinephrine. 

In contrast, oestrogen site specifically attenuates the effects of α2A-adrenergic 

receptors in the subcutaneous adipocytes of humans, decreasing lipolysis (Negishi et 

al., 2001), which could account for some of the site specific effects of oestrogens.  

 



1.3  Aims and Hypotheses 

The aim of this thesis is to investigate the effect of DHEA, and the importance of 

DHEA metabolism, in human disease states. This will be examined in two studies 

investigating: a) the effect of DHEA on, and its metabolism in, human preadipocytes, 

described in chapter three. b) The effect of aberrant DHEA sulfation on DHEA 

downstream metabolism, examined in chapter four. 

1.3.1 DHEA metabolism and action in human adipocytes 

As described in section 1.1.5.3.3 numerous murine studies have demonstrated that 

DHEA has beneficial effects on obesity, preventing high fat diet-induced fat mass 

accretion or diminishing total fat mass of these animals. In vitro studies have 

suggested that these effects are, at least in part, via a direct effect on the adipocyte. 

However as rodents do not express CYP17A1 in the adrenal and therefore have 

circulating levels of DHEA many orders of magnitude lower than that of humans the 

relevance of these findings to humans is questionable. To date no in vitro and limited 

in vivo human studies have been performed with largely inconsistent findings (see 

section 1.1.5.3.3). Recent studies have shown that DHEA inhibits 11β-HSD1 

expression and oxoreductase activity. Therefore the aim of the study described in 

chapter three is to investigate, utilising a human subcutaneous preadipocyte cell line, 

Chub-S7: 

• The metabolism of DHEA in human preadipocytes and adipocytes. 

• The effect of DHEA on preadipocyte adipogenesis. 

 



• The effect of DHEA on human adipocyte glucose uptake. 

• The effect of DHEA on 11β-HSD1 activity and expression. 

I hypothesise that DHEA will attenuate preadipocyte adipogenesis via an inhibitory 

effect on 11β-HSD1 expression and activity, resulting in the attenuation of 

glucocorticoid regeneration. In addition, based on the findings of previous human 

clinical studies I propose that DHEA will enhance human adipocyte glucose uptake. 

1.3.2 Interconversion of DHEA and DHEAS and androgen excess 

As described in section 1.1.6.4 all sulphation reactions, including that of DHEA by 

SULT2A1, require the ubiquitous sulphate donor, PAPS, which is synthesised by 

PAPS synthase of which in humans there are two isoforms, PAPSS1 and PAPSS2. 

In chapter four I describe a patient with compound heterozygous mutations in 

PAPSS2. I aim to confirm the disease causing nature of the mutations by bacterially 

expressing WT and mutant PAPSS2 and performing in vitro analysis of their activity. 

This will be achieved by exploiting the dependence of the enzyme SULT2A1 catalytic 

activity on PAPS bio-availabiliy.  

I hypothesise that the two identified heterozygous mutations will have reduced or no 

activity and therefore explain the phenotype of the patient. 

 

 



2 Chapter 2: Methods 
 

 

 



 

This chapter contains all of the general techniques and protocols utilised in this 

thesis. Specific modifications made to these general protocols are included within the 

relevant chapters. All reagents were obtained from Sigma, Poole, UK all cell culture 

plasticware utilised had a Corning® CellBIND® surface, supplied by Appleton Woods 

Limited, Birmingham, UK, unless otherwise stated. All solutions and reagents were 

stored at room temperature, unless otherwise stated. 

2.1 Cell culture techniques 

2.1.1 General principles of cell culture 

2.1.1.1 Chub-S7 cell line  

The Chub-S7 cell line was derived from human subcutaneous adipose tissue by co-

expression of human telomerase reverse transcriptase and papillomavirus E7 

oncoprotein (HPV-E7) genes (Darimont et al., 2003). The cell line has an unlimited 

life span and the capacity to accumulate lipid without chromosomal alteration. This 

cell line has previously been well characterised by our group and by others (Bujalska 

et al., 2008; Darimont et al., 2003), and represents a human in vitro model. Under 

basal conditions, prior to confluence, these cells resemble preadipocytes. Post 

growth restriction, in chemically defined media, they differentiate into mature 

adipocytes demonstrated by the expression of classical markers of differentiation and 

the accumulation of lipid droplets (Figure 2-1).  

 

 



 

Preadipocytes Mature adipocytes
 

A B

Figure 2-1 The morphological changes of Chub-S7 preadipocytes associated 

with differentiation. Preadipocytes (A) have a fibroblast like morphology. Following 

differentiation mature adipocytes (B) accumulate lipid droplets and develop a more 

rounded appearance. 

2.1.1.2 Cryo-preservation of Chub-S7 cells 

Cells to be preserved were grown in T75 cm2 TC flasks until 70% confluence, as 

described in section 2.1.2.1. Upon reaching 70% confluence cells were trypsinised 

and centrifuged at 300g for 5 min (Centaur 2, MSE, London, UK). The resulting cell 

pellet was resuspended in FCS and the cell number determined, utilising a 

hematocytometer. Cells were then diluted with FCS to a concentration of 5 x 106 

cells/ ml and DMSO was added dropwise, to prevent cellular osmotic shock, to a final 

concentration of 10%. The cell suspension was aliquoted into 1.5 ml cryovials and 

cooled at 1ºC/ min in a cryo-freezing container (Nalgene, Hereford, UK) at -80ºC. For 

long term storage cryo-stocks of cells were kept in liquid nitrogen.  

 



2.1.1.3 Re-establishment of Chub-S7 cells after freezing  

Cells were removed from liquid nitrogen and rapidly defrosted at 37ºC. The cell 

suspension was transferred to a falcon tube, diluted with 5 ml of fresh medium, and 

centrifuged at room temperature for 5 min at 1000 g (Centaur 2, MSE, London, UK). 

The resulting cell pellet was re-suspended in 5 ml of fresh growth media, and 

transferred to a T25 cm2 flask.  The following day the media was replenished.  

2.1.1.4 Cell treatments 

Prior to treatments all cells were washed with serum free medium (SFM) or the 

appropriate buffer. DHEA, androstenediol, faslodex, flutamide, cortisone (E) and 

cortisol (F) were all resuspended in absolute ethanol. DHEAS and RU486 were 

resuspended in dimethyl sulfoxide (DMSO). All control cells were incubated with the 

same concentration of ethanol and DMSO as treated cells, which did not account for 

greater than 0.5% of the total volume of any incubation. 

2.1.2 Assessment of cell proliferation 

2.1.2.1 Cell proliferation 

Chub-S7 cells were cultured in 75 cm2 tissue culture (TC) flasks in Dulbeco’s minimal 

essential medium F-12 (DMEM-F12) containing 10% foetal calf serum (FCS) and 

2mM glutamine (Gibco) at 37ºC in a humidified atmosphere containing 5% CO2. At 

70% confluence cells were trypsined and re- seeded into fresh 75 cm2 TC flasks for 

maintenance of the cell line, or the appropriate format for subsequent assays. 

 



2.1.2.1.1 Solutions  

• DMEM F-12 (Gibco). L-Glutamine was added to a final concentration of 2 mM. 

Stored at 4˚C for up to three months.   

2.1.2.2 3H Thymidine uptake assay 

2.1.2.2.1 Principle  

3H-Thymidine Uptake analysis is based on the principle that the amount of labelled 

thymidine which is incorporated into the DNA of actively dividing cells during S phase 

of mitosis (see Figure 2-2) is directly correlated to the rate of proliferation of the cells. 

During this procedure an optimised number of cells are incubated with 3H-thymidine 

for a pre-determined time period. Following this incubation, whilst the cells are still in 

linear growth, the cellular protein is removed and the labelled DNA extracted in 

NaOH. The amount of 3H-thymidine incorporated into the resultant solubilised nuclear 

material is determined by liquid scintillation counting and subsequently the relative 

rates of proliferation of sub-populations of cells can be determined.  

2.1.2.2.2 Solutions  

• 1 X PBS. 2 tablets of PBS dissolved in 400 ml of distilled water. Autoclaved. 

• 0.1M NaOH, diluted in H20. 

• 3H-Thymidine, (G. E. Healthcare, UK). Specific activity of 80 Ci/mmol. Stored 

at -20˚C for up to 6 months. 

• 5% TCA. 1M TCA diluted in distilled water and stored at 4ºC. 

 



2.1.2.2.3 Method 

Cells were seeded in to 24 well tissue culture (TC) plates (2.5 x 105 cells/well). At the 

pre-optimised time-point (1,3 and 5 days) sub-confluent proliferating cells were 

washed with SFM to remove any traces of protein and 500 µl of SFM was added per 

well. 0.4 µCi of 3H-thymidine (in 10 µL of SFM) was added per well and the cells 

cultured for a further 5 hr at 37˚C in a 5% CO2 incubator to permit the incorporation of 

3H-thymidine. Following the incubation period unbound 3H-thymidine was removed by 

washing the cells with PBS and inversion of the plates. Soluble protein was removed 

by the addition of 1 ml of 10% TCA per well for 10 min while on ice. The TCA was 

aspirated and the cells washed with PBS. 200 µL of 0.1 M NaOH was added to each 

well and the assays incubated at room temperature for 30 min. Cells were scrapped 

and the resulting cell lysate transferred to a scintillation vial. To ensure the removal of 

any remaining residue from the TC plates, a further 200 µl of 0.1 M NaOH was added 

to each well, pipetted up and down, and transferred to the corresponding scintillation 

vial. 4 ml of scintillant was added to each vial and the amount of 3H-thmidine 

determined by liquid scintillation counting (Packard 2500 TR Liquid Scintillation 

Analyzer, Perkin Elmer, UK).           

2.1.2.3 Colorimetric proliferation assay  

2.1.2.3.1 Principle 

The number of viable cells in culture can be determined utilising commercially 

available proliferation assays such as the CellTiter 96 Aqueous One Solution Cell 

Proliferation assay, supplied by Promega. This assay exploits the fact that viable, 

metabolically active cells express dehydrogenase activity and reduce NADP and 

 



NAD to NADPH and NADH respectively. The CellTiter 96 Aqueous One Solution 

contains a tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an 

electron coupling reagent (phenazine ethosulphate; PES). The MTS tetrazolium 

compound is bioreduced by cellular NADH/NADPH to a coloured formazan product 

that is soluble in cell culture media. Thus, the quantity of formazan product, as 

measured at 490nm, is directly proportional to the number of viable cells in culture. 

2.1.2.3.2 Method 

Cells were seeded into a 96 well plate (1 x 104 cells /well in 100 µl of medium) and 

allowed to adhere overnight before treatment. Following treatment, at the timepoints, 

1, 3, 5 and 7 days 20 µl of cellTiter 96 Aqueous One Solution was added to each well 

using a repeat pipette and incubated at 37˚C, 5% CO2, for 2 hr. Following the 

incubation period, absorbance of the colorimetric reagent was measured at 490nm 

with a Victor3 1420 multilabel counter (Perkin Elmer, Beconsfield, Buckinghamshire).   

2.1.2.4 FACS cell cycle analysis 

2.1.2.4.1 Principle 

Cell cycle analysis relies on the principle of flow cytometry, which enables the 

analysis of individual cells or particles as they travel in suspension one by one past a 

sensor. Utilising different fluorescent DNA binding dyes this technique enables the 

distinction of the 3 discrete phases of the cell cycle: namely G1 (gap 1), S (synthesis) 

and G2/M (gap 2/ mitosis), based on the differing nuclear DNA content of each 

phase. As shown in Figure 2-2, cells in G1 phase have a normal complement of 

 



DNA, whilst cells in G2 possess twice the normal content, and cells in S phase, while 

undergoing DNA synthesis, contain a varying DNA content between normal to 

double. To distinguish between these different proliferative phases, the nuclei of 

permeablised cells are stained with a fluorescent DNA binding dye, propidium iodine.  

The fluorescence of the individual cells is subsequently analysed by flow cytometry. 

The intensity of florescence of each nuclei correlates to the content of DNA within the 

nuclei and thus the corresponding phase of cell cycle. Therefore, it is possible to 

determine the percentage of cells at each phase of the cell cycle in a given 

population of cells, providing an indication of their proliferative activity. 

  

 



 

Figure 2-2 Phases of the cell cycle. In the G1 phase cells have a normal 

complement of DNA, whilst cells in G2 phase possess twice the normal content, and 

cells in S phase, while undergoing DNA synthesis, contain a varying DNA content 

between normal to double. 

 

2.1.2.4.2 Solutions 

• FACS buffer, 25 μl NaCl (100 μM), 1 ml sodium citrate (1%), 25 μl Triton-X-

100 (0.1%), 25 μl propridium iodine (10 μg/ml), 24 ml dH20. Stored, protected 

from light, at 4˚C for up to 7 days.  

• 1 X PBS. 2 tablets of PBS dissolved in 400 ml of distilled water. Autoclaved. 

 



2.1.2.4.3 Method 

Chub-S7 preadipocytes were seeded into 6 well TC plates (2.5 x 106 cells/well). and 

cultured overnight at 37˚C, 5% C02, to allow the cells to adhere. The following day, 

cells were treated with 25 µM DHEA and cultured for a further 24 hrs. Prior to cell 

cycle analysis, cells were washed 3 times with PBS. Subsequently cells were 

incubated with 500 μl of FACS buffer, containing propidium iodide, on a shaker for 30 

min at room temperature, protected from light. The resulting cell lysate was 

disaggregated by repeat pipetting, transferred to a FACS tube, and analysed 

immediately using a FACS IV Flow cytometer at a wavelength of 488 nm. 

Approximately 10,000 cells were analysed per injection.  

 



2.1.3 Assessment of preadipocyte differentiation 

2.1.3.1 Differentiation 

2.1.3.2 Solutions 

• Cell culture trypsin, (Gibco). 10 x stock diluted to 1 x with PBS/ EDTA, pH 

8.0. Stored at 4ºC. 

• Human insulin. Diluted to 1mg/ml in glycine buffer (20 mM, pH 2). Stored at 

4˚C for up to six months. Human insulin was added fresh to media on the day 

of use. 

• GW1929, (Camlab, Cambridge, UK). Dissolved in DMSO to a final 

concentration of 1 mM.  Stored at -20ºC. GW1929 was added fresh to media 

on day of use. 

• 3,3',5 Triiodothyronine (T3). Dissolved in NaOH to 0.2 μM  and stored at -

20ºC. T3 was added to differentiation media to a final concentration of 0.2 nM.  

• Biotin. Dissolved in NaOH, stored at 4ºC. Biotin was added to differentiation 

media to a final concentration of 33 µM.  

• Calcium D-Pantothenate. Dissolved in dH20 and stored at -20ºC. Added to 

differentiation media to a final concentration of 17 µM.   

 



• DMEM F-12 (Gibco). Add L-Glutamine to a final concentration of 2mM. Store 

at 4˚C for up to 3 months.  

2.1.3.3 Principle 

For differentiation experiments, cells were seeded into 24 well TC plates (5 x 106 

cells/well) and cultured until 2 days post confluence. Preadipocytes were 

differentiated (up to 21 days) according to Hauner et al (Hauner et al., 1989; Hauner 

et al., 1987),  with 166 nM human insulin, 1 µM rosiglitazone (PPAR  agonist) , 0.2 

nM T3, 17 μM Pantothenic acid, 33 μM Biotin and, as specified, 500 nM cortisone (E) 

or cortisol (F). For all experiments, cells utilised were between passage 23 and 30.  

2.1.4 Analysis of glucose uptake  

2.1.4.1 2-Deoxy-D-[1-3H] glucose uptake assay 

2.1.4.1.1 Principle 

This assay enables the functional analysis of glucose uptake of a population of cells. 

Briefly, following treatment cells are incubated with radiolabelled glucose (2-Deoxy-D-

[1-3H]glucose) for a predetermined optimum incubation period. As with unlabelled 

glucose, 2-Deoxy-D-[1-3H]glucose can enter the cell by facilitated diffusion, mediated 

by glucose transporters (predominantly GLUT4 and GLUT1 in adipose tissue, see 

Figure 2-3). The cells are subsequently washed to remove 2-Deoxy-D-[1-3H]glucose 

which remains in the culture medium and the amount of 2-Deoxy-D-[1-3H]glucose 

which has been taken up into the adipocytes can be assessed by scintillation 

counting. As cellular glucose influx can be independent or dependent of insulin this 

 



assay is generally performed with and without an insulin 'spike', prior to the addition 

of 2-Deoxy-D-[1-3H]glucose. Subsequently, for a given population of cells, insulin 

dependent glucose uptake can be assessed by subtracting glucose uptake which 

occurs in the absence of insulin (basal glucose uptake) from glucose uptake which 

occurs in the presence of insulin. 
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1. The assay is performed in the absence or presence
of insulin. The predominant insulin independent glucose
transporter GLUT 1, and insulin dependent glucose
transporter are bothexpressed by adipocytes.

2. Insulin binds to its cognate receptor, resulting in the
rapid translocation of GLUT 4 to the plasma membrane.

3. 3H glucose is added to the culture medium for the
predetermined optimisedtime period.

4. 3H glucose is transported across the cell membrane
via facilitated diffusion, mediated by both GLUT1 and
GLUT4.

5. The cells are washed to remove 3H glucose which
remains in the culture medium. The relative amount of
3H glucose which has been taken up by the adipocytes is
assessed by scintillation counting.

  
Figure 2-3 The principle of glucose uptake analysis. Cells are incubated with 2-

Deoxy-D-[1-3H]glucose in the presence or absence of insulin. The amount of 2-

Deoxy-D-[1-3H]glucose taken up by the adipocyte is assessed by scintillation 

counting.   

 



2.1.4.1.2 Solutions 

• 1 X PBS. 2 tablets of PBS dissolved in 400 ml of distilled water. Autoclaved. 

• Krebs-Ringer-Hepes (KRP) buffer, 136 mM NaCl, 4.7 mM KCl, 1.25 mM 

CaCl2, 1.25 mM MgS04, 10 mM sodium phosphate buffer, pH 7.4. Autoclaved 

and stored at 4ºC for up to 3 months. 

• Insulin, diluted to 1 mg/ ml in glycerine buffer (20 mM, pH 2.0). Stored at 4ºC 

for up to 6 months. 

• 2-Deoxy-D-[1-3H]glucose (G. E. Healthcare, UK). Specific activity Ci/mmol. 

Stored at -20˚C for up to 6 months. 

• 1% Triton X 100, diluted in distilled H20. 

2.1.4.2 Method 

Fully differentiated adipocytes, cultured in a 24 well TC plate, were washed with PBS 

and pre-treated with various concentrations of DHEA (0-25 µM) in SFM for 2 hr prior 

to the assay. Following pre-treatment, cells were washed with KRP and incubated 

with 0.40 ml or 0.45 ml of KRP (depending on subsequent insulin treatment). 50 µl of 

insulin was added to a final concentration of 12 nM to cell subject to insulin treatment 

and all cells were incubated at 37˚C, 5% CO2, for 20 min. Glucose uptake was 

initiated by the addition of 50µl of KRP containing glucose, to give a total volume of 

0.5 ml, and final concentrations of 0.1 mM glucose and 37MBq/l 2-Deoxy-d-[1-

3H]glucose, and the cells were incubated at 37˚C for the optimised time period. 

Following the incubation period, glucose uptake was terminated by the aspiration of 

 



the KRP solution and the cells washed with ice cold PBS. The cells were lysed by the 

addition of 700 µl of 1% triton to each well and incubated for 20 min at 37˚C, 5% 

CO2.  Cells were then scrapped and the cell lysate transferred to a scintillation tube, 

to which 5ml of scintillant was added. The amount of 2-Deoxy-d-[1-3H]glucose in each 

cell lysate was determined by scintillation counting (Packard 2500 TR Liquid 

Scintillation Analyzer, Perkin Elmer, UK). For all treatments, analysis of both basal 

and insulin stimulated 2-Deoxy-d-[1-3H]glucose uptake was performed.    

2.2 DNA methods 

2.2.1 DNA extraction from agarose gels 

2.2.1.1 Method  

DNA was extracted from agarose gels using the 'QIAquick Gel Extraction Kit' 

(Qiagen), following the manufacturers protocol. All centrifugation steps were 

performed utilising an Eppendorf chilled table-top centrifuge, model 5415R 

(Cambridge, UK) at 21˚C. Following the separation of the PCR product by gel 

electrophoresis, the band of interest was visualized under UV light (Syngene G:Box, 

Geneflow, UK) isolated with a scalpel and weighed. The gel was melted by 

incubation with 3 x volume/ weight of QG buffer, containing guanadine thiocyanate to 

denature the DNA, at 50ºC for 10 min. The dissolved gel was loaded into a 'QIAquick 

Spin Column' and centrifuged for 1 min at maximum speed 13,000 g. The flow-

through was discarded and subsequently 0.75 ml of PE buffer, containing ethanol, 

was added onto the column and centrifuged twice for 1 min at maximum speed, to 

 



wash the DNA sample. The flowthrough was discarded and the sample was 

centrifuged again for 1 min to ensure the complete removal of PE buffer. The DNA 

was eluted by the addition of 30 µl of NFW, and the sample was stored at -20º until 

use. 

 

2.2.2 DNA plasmid purification 

2.2.2.1 Principle 

Vector DNA was purified from bacterial cell culture using the QIAprep Miniprep 

system (Qiagen). This procedure is uses the modified alkaline lysis of bacterial cells 

of Birnboim and Doly. Bacteria are lysed under alkaline conditions to release 

cytoplasmic plasmid DNA. The lysate is subsequently neutralised and adjusted to 

high salt conditions to enable the selective adsorption of DNA onto the silica 

membrane in the miniprep column. Protein, RNA and metabolites are not retained on 

the membrane and are found in the flow-through. The DNA is washed, while bound 

to the column, with a buffer that efficiently removes endonucleases, ensuring that 

plasmid DNA is not degraded. Purified DNA is subsequently eluted utilising a low-salt 

buffer or water. This method has advantages over other methods in that it is simpler 

and quicker as it does not utilise loose resins or slurries and there is no need for 

phenol extraction or ethanol precipitation.  

 



2.2.2.2 Method 

The procedure was carried out according to the manufacturer’s protocol. All steps 

were carried out at room temperature and all centrifugation steps were at 18000 g, 

using an Eppendorf chilled table-top centrifuge, model 5415R (Cambridge, UK),  

unless otherwise stated. Briefly, 5 ml overnight cultures of E. coli in LB were pelleted 

by centrifugation at 6800 g for 3 min. The supernatant was discarded and the 

bacterial cell pellet resuspended in 250 μl of buffer P1. 250 μl of buffer P2, containing 

NaOH, was added to each sample and mixed by gentle inversion to lyse the bacterial 

cells. 350 μl of buffer N3 was added to each sample and mixed by inversion, to 

neutralise the pH of the sample and precipitate the bacterial debris, proteins, and 

genomic DNA, which were subsequently pelleted by centrifugation for 10 min. The 

supernatant containing the plasmid DNA were applied to a QIAprep spin column by 

decanting and centrifuged for 60 sec. The plasmid DNA, bound to the silica 

membrane, was washed twice by the addition of 500 μl of buffer PB and 

centrifugation for 30 sec, followed by 750 μl of buffer PE and a further 60 sec 

centrifugation. Following both washes the flow through was discarded. Residual 

buffer was removed by centrifuging for a further 1 min. Plasmid DNA was eluted by 

the application of 50 μl of nuclease free water to the centre of each QIAprep spin 

column, which was left to stand at room temperature for 1 min and then centrifuged 

for 1 min. The concentration of eluted DNA was calculated using the Nanodrop 

spectrometer (ND-1000, Nanodrop, Wilmington, USA). Plasmid DNA integrity was 

verified by running 4μl on a 2% agarose gel containing 0.15 µl/ml ethidium bromide.               

 



2.2.3 DNA sequencing 

2.2.3.1 Principle 

In this thesis, DNA sequencing was performed utilising fluorescent dye-terminator 

cycle sequencing, a method based on the original Sanger technique, devised in 

1980. The principles are the same as with Sanger sequencing; fluorescently labelled 

dideoxynucleotides (ddNTPs) are incubated with a DNA template, a sequence 

specific primer and further unlabelled nucleotides, and a polymerisation reaction is 

initiated. ddNTPs lack a 3’OH, such that, when they are incorporated into a growing 

nucleotide chain they terminate the reaction, resulting in the production of a set of 

DNA fragments of differing lengths, with a ddNTP at the 3’ terminus of each 

fragment. Due to the high number of DNA molecules included in the reaction, 

synthesised nucleotide chains will include a fragment with a terminal ddNTP at all 

possible bases of the template DNA. The resulting PCR products are subsequently 

separated by gel electrophoresis on a polyacrylamide gel, with the larger nucleotides 

progressing faster. As the different ddNTP bases (ddATP, ddGTP, ddCTP, ddUTP) 

are tagged with different fluorescent labels, the order of the migrating nucleotides as 

they pass a sequencing laser (corresponding to the 5’ to 3’ template DNA nucleotide 

sequence), can be detected. Subsequently the data is compiled and the identified 

DNA sequence expressed as a chromatogram. The key advantage over the original 

Sanger technique is that cycle sequencing employs a thermostable DNA polymerase, 

which, as described in section 2.4.3, allows for the sequencing reaction to be 

repeated numerous times. Therefore, sequencing can be performed to a higher 

degree of accuracy, with less DNA than with conventional sequencing reactions. 

 



2.2.3.2 Plasmid DNA sequencing  

2.2.3.2.1 Method 

Plasmid DNA was purified by Miniprep as described in section 2.12. 3 µg of purified 

plasmid DNA was mixed with 3.2 pmol of sequencing primer (Table 2-1) and 

subjected to direct sequencing on an automated sequencer (ABI 377) at the 

University of Birmingham sequencing facility. Traces were analyzed manually using 

ChromasPro Version 1.5 software (Chromas, UK). 

Table 2-1 Primers used for sequencing of genomic DNA and plasmid DNA 

Primer pair number Gene Forward Reverse 
Genomic sequencing primers    

1 SULT2A1 Exon 1 ggtggctacagttgaaaccc tgcactgaatggacaggaac 
2 SULT2A1 Exon 2 gcgtgagccaccatgtc ggcatatcagtgtttgaaaggc 
3 SULT2A1 Exon 3 tcaaaaagagtgaggattgactg gggtgtcaaaagaggtcgg 
4 SULT2A1 Exon 4 tagactggatgcctgctctc taaggatggtggtgagaggg 
5 SULT2A1 Exon 5 gcccagccttgtctttctc catgcatgccgtgtattctg 
6 SULT2A1 Exon 6 ggtggagacaggtcaaggag caaggacaggagaatcaatgtc 
7 PAPSS1  Exon 1 gccctcctcttgctac gttcttcccacgaacg 
8 PAPSS1  Exon 2 gtggaaagcagtaaacac gttatatgtcgtgatgctc 
9 PAPSS1  Exon 3 gcagagcaagactcttg aacaaagagatggtagctg 

10 PAPSS1  Exon 4 cactaaattggatgagaag tccaagtcactccaatc 
11 PAPSS1  Exon 5 gcgcagatactaacttc cacaacacctcacacac 
12 PAPSS1  Exon 6 tagcactcacagccttc gctaataccacccctg 
13 PAPSS1  Exon 7 ctcatccttacactgtttg agtcttataatgctacctc 
14 PAPSS2  Exon 1 aagggaagtgcgacgtgtc cactcttactcctcctc 
15 PAPSS2  Exon 2 catgtatcagtttcgcaattaaaag catctcccagcctccttctaatg 
16 PAPSS2  Exon 3 gtcatcttaaactatccaggccg cttgcactgtgtgtgggaatcg 
17 PAPSS2  Exon 4 ggctattgaaaaccaaagtacacag caaggaagatttctgaggacag 
18 PAPSS2  Exon 5 gtcaaggatggctgtttgacc gaaatgaaacagcattggtaaaaac 
19 PAPSS2  Exon 6 ggtaggtgaaccggttgtc ggagaagaggttaaaaataacttgg 
20 PAPSS2  Exon 7 catagaaggttctgccctcatc acactgtaaatgatccaaacag 
21 PAPSS2  Exon 7b tgctgtaagattcgtttggt gaactaatagcgattccaactg 
22 PAPSS2  Exon 8 cttggatttgggtcttaatgcttc cattcttccacctaatcccag 
23 PAPSS2  Exon 9 ctgaaggcagttctttaactgtaac gttgcagtgagctgagatcg 
24 PAPSS2  Exon 10 gccagtggataatgaatgcacag cagaaaggatcccagagactca 
25 PAPSS2  Exon 11 gttgactcacattgctgaattac gagagtttttcaaagggccc 
26 PAPSS2  Exon 12 ccattatttcccttctcttctg agcacttcagaaagaaactc 

Plasmid sequencing primers    
27 PAPSS2a  atgtcggggatcaagaag ctggtctgcattaccagc 
28 PAPSS2a cctgaaactcctgagcgtgtgc ccaatttgtccacagtgagtgac 
29 PAPSS2a ggagggtagctatcttacgagac gaccaataccgtctgacacctc 
30 PAPSS2a gatgtgcctctagactggcgg  

 

 



2.2.3.3 Genomic DNA sequencing 

2.2.3.3.1 Method 

Genomic DNA was extracted from peripheral blood leukocytes of EDTA blood, after 

written informed consent from the patient with approval of the South Birmingham 

Research Ethics Committee. The coding sequences, including exon-intron 

boundaries, of the genes to be sequenced were amplified employing specific primers. 

PCR products were purified, as described in section 2.2.1. 6 ng of purified PCR 

product was mixed with 3.2 pmol of primer and subjected to direct sequencing on an 

automated sequencer (ABI 377) at the University of Birmingham sequencing facility. 

Traces were analyzed using Lasergene sequence analysis software (DNASTAR) and 

identified mutations were independently verified, and numbered according to the 

amino acid position in the relevant GenBank protein sequence. 

2.3 Generation and cloning of expression constructs  

2.3.1 PGEX-6P-3 expression vector 

The pGEX-6P vectors possess a multiple cloning site that contains six restriction 

sites, facilitating the unidirectional cloning of cDNA inserts. In addition, the pGEX-6P 

vectors contain a GST gene, so that expression in Eschericia coli (E. coli) yields 

fusion proteins with the 26 kDa glutathione S-transferase (GST). The GST gene, 

which is located upstream of the multiple cloning site, contains an ATG and 

ribosome-binding site and is under control of the tac promoter, which is induced by 

isopropyl beta-D thiogalactosidase (IPTG), and the lac gene product, described in 

greater detail in section 2.5.2.  A translational terminator is present downstream from 

 



the multiple cloning site. In addition, the pGEX-6P-3 expression vector has also been 

engineered to contain an ampicillin resistance gene, Amp, enabling the selection of 

successfully transformed E. coli cells. 

2.3.2 PGEX-6P-3 expression vector wild type and mutant construction 

pGEX-6P-3-PAPSS2 and pGEX-6P-3-SULT2A1 wild type (WT) plasmids were kindly 

provided by Dr Charles Strott, NIH, Bethesda, USA. To generate these constructs, 

human full length PAPSS2 and SULT2A1 cDNA were inserted into the SalI and 

BamHI sites or SalI and NotI sites of the pGEX-6P-3 expression vector (G E 

Healthcare) as previously described (Fuda et al., 2002). To confirm the presence of 

the insert restriction digests were performed as described in section 2.3.3. To ensure 

the correct in frame alignment of the insert and the absence of any sequence 

variations sequence analysis was performed as described in section 2.2.3.2. Utilising 

the pGEX-6P-3-PAPSS2-WT vector as a template, the PAPSS2 mutants (T48R, 

R329X and S475X) were generated using the Quickchange XL site-directed 

mutagenesis kit (Stratagene, Germany), as described in section 2.3.3.3. Resultant 

constructs were sequenced to confirm the successful generation of mutant constructs 

and the absence of any other sequence alterations during this procedure.  

 



2.3.3 Restriction digestion 

2.3.3.1 Principle 

Restriction endonucleases are enzymes that cut double-stranded or single stranded 

DNA at specific recognition nucleotide sequences known as restriction sites. Since 

the isolation of the first restriction enzyme HindII from bacteria in 1970, more than 

3000 restriction enzymes have been identified and more than 600 of these are 

available commercially. Restriction enzymes recognize a specific sequence of 

nucleotides and produce a double-stranded cut in the DNA. Recognition sequences 

differ for each restriction endonuclease and vary widely with differing strand 

orientation and lengths between 4 and 8 nucleotides. However, many of the 

sequences are palindromic, nitrogenous base sequences that read the same 

backwards and forwards. Restriction endonucleases which cut double stranded DNA 

at a base pair produce DNA with ‘blunt ends’.  While restriction endonucleases 

which cut between unpaired bases produce a stretch of unpaired nucleotides, termed 

cohesive ends or sticky ends.  

Restriction enzymes are exploited during gene cloning and protein expression to 

enable the insertion of DNA into plasmid vectors. To clone a gene fragment into a 

vector both plasmid DNA and gene insert are typically cut with the same 

endonuclease to produce ends which can be ‘glued’ together utilising the enzyme 

DNA ligase. Restriction enzymes are also commonly used for restriction fragment 

length polymorphism (RFLP) analysis, a technique which enables the distinction of  

gene alleles by specifically recognizing single base changes in DNA known as single 
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nucleotide polymorphisms (SNPs), without the need for relatively expensive gene 

sequencing.   

2.3.3.2 Method 

In this thesis both dual restriction digestions and sequential digestions were 

performed. For dual restriction digestions a 50 μl reaction was prepared comprising 1 

μg of plasmid DNA, 10 units of each restriction enzyme, 5 μl of 10X buffer, made up 

to 50 μl with NFW, and incubated at the enzyme dependent temperature for 4 hours. 

For sequential digestion reactions a 50 μl reaction was prepared comprising 1 μg of 

plasmid DNA, 10 units of the first restriction enzyme, 5 μl of 10X buffer, made up to 

50 μl with NFW and incubated at the enzyme dependant temperature for two hours. 

Following this incubation the digest was diluted 1:1 with a 50 μl reaction containing 

20 units of the second restriction enzyme, 5 μl of 10X buffer made up to 50 μl with 

NFW, and the 100 μl reaction was incubated at the second restriction ezyme 

dependant  temperature for a further two hours. To inactivate the enzymes the 

reaction was heated to 80˚C for 10 min. An aliquot of the digestion was assayed by 

agarose gel electrophoresis versus non-digested DNA, to confirm successful 

digestion.     

2.3.3.3 Site directed mutagenesis 

2.3.3.4 Principle 

Site-directed mutagenesis is a technique by which a mutation (point-mutation, 

deletion or insertion) can be generated at a defined site in a DNA molecule, usually a 
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plasmid. There are several approaches by which this can be achieved, but the most 

common technique, which was utilised in this thesis, employs PCR (described in 

section 2.4.3). Complementary oligonucleotide primers of at least 20 bases in length 

are designed, which contain the desired sequence alteration in the centre, flanked by 

the known WT sequence. Mutageneic oligonucleotides incorporate at least one base 

change but can be designed to generate multiple substitutions, insertions or 

deletions. Briefly, template DNA is denatured by heating to produce single stranded 

DNA. The reaction is subsequently cooled to permit the mutagenic oligonucleotide to 

anneal to the template DNA. T4 DNA polymerase, using the parental DNA as a 

template synthesises a new complementary strand, which contains the desired 

mutation. Unlike the template DNA, as the DNA containing the DNA is produced in 

vitro it is not methylated. This can be exploited to eliminate the parental DNA by 

enzymatic digestion with a restriction enzyme specific for methylated DNA (Dpn I). 

The synthesised DNA containing the desired mutation is transformed into XL1-Blue 

supercompetent cells to repair nick between the end of the DNA strand and the 

oligonucleotide. The plasmid can subsequently be isolated and used for further 

applications.  

2.3.3.5 Method 

Mutagenesis reactions were carried out using QuikChange XL Site-Directed 

Mutagenesis kit (Stratagene, UK), following the manufacturers protocol, as shown in 

Figure 2-4.  For each mutation to be synthesised two oligonucleotide primers were 

designed, which annealed to the same sequence on opposite strands of the plasmid 

and contained the desired mutation in the centre, flanked by the unmodified 
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nucleotide sequence (Table 2-1). Primers were designed between 25-30 bases in 

length, with a melting temperature equal to or greater than 78˚C; a GC content ≥40% 

and one or more G or C bases on the 3’ end. A master mix was prepared for n+1 

reactions as follows; 5 µl of 10X reaction buffer, 25 ng of dsDNA template, 125 ng of 

each oligonucleotide primer, 1 µl of dNTP mix, 1μl of Pfu Turbo polymerse (25U/μl), 

made up to final concentration of 50 µl with dH20. The reaction was then placed in a 

GeneAmp 9700 thermal cycler on heated to 95ºC for 95 sec, and then 16 cycles of 

95ºC for 30 sec, 55ºC for 1 minute, and 68ºC for 1 min per kb of plasmid length. 

Following thermal cycling the reaction was placed on ice for 2 min. 1μl of Dpn1 

restriction enzyme was added to each sample and incubated at 37˚C for 1 hr, to 

digest the parental template supercoiled DNA. Subsequently, 2μl of the sample was 

transformed into 100μl of XL-1 blue super competent cells (Stratagene, UK), 

following the transformation protocol described in section 2.5.1. The plasmid DNA 

was purified as described in section 2.2.1 and subjected to plasmid sequencing 

(section 2.2.3.2).   

 

 

 



 

Table 2-2 Mutagenic primers used for site directed mutagenesis to generate 

mutant DNA constructs of PAPSS2a (T48R, R329X and S475X). 

Primer 
pair 

number 

Mutation Forward Primer Reverse Primer 

57 T48R TGTACCGTGTGGCTAAGAGGTCTCTCTGGTGCTG CAGCACCAGAGAGACCTCTTAGCCACACGGTACA 

58 R329X GAGGGTAGCTATCTTATGAGACGCTGAATTCTATG TCATAGAATTCAGCGTCTCATAAGATAGCTACCCTC 

59 S475X GGTCCTGGATCCCAAGTAAACCATTGTTGCCATCT AGATGGCAACAATGGTTTACTTGGGATCCAGGACC 

 

 

 

 

 

 



1. Mutant strand synthesis
Perform thermal cycling to:

• denature template DNA
• anneal muatagenic primers containing desired 

mutation
• extend and incorporate primers with PfuUltra

DNA polymerase  

2. Dpn1 digestion of template
Digest parental methylethylated and 
hypermethylethylated DNA with Dpn1

3. Transformation
Transform mutated molecule into competent 
cells for nick repair

 

Figure 2-4 A schematic of the principle of site-directed mutagenesis. Mutagenic 

primers are designed which contain the desired mutation in the centre flanked by wild 

type sequence. The mutant primers are utilised in a PCR reaction which results in 

their incorporation and extension. The methylated parental DNA is digested with Dpn 

1. The mutant DNA constructs are transformed into competent cells for nick repair. 

 

 

 

 



2.4 RNA methods 

2.4.1 RNA extraction 

2.4.1.1 Principle 

The guanidinium thiocyanate-phenol-chloroform method for total RNA extraction was 

originally described by Piotr Chomczynski & Nicoletta Sacchi in 1987. This method 

relies on phase separation upon centrifugation of an organic phase (containing 

chloroform, water-saturated phenol and a denaturing solution (Guanidinium)) and an 

aqueous phase (containing phenol). In this thesis, total RNA was isolated from cells 

using a commercially available modified single step extraction reagent, TRI reagent, 

based on the guanidinium thiocyanate-phenol-chloroform method. This modified 

method is more time consuming than extraction using a column, but has the major 

advantage in that the RNA yield is not reduced.  

2.4.1.2 Solutions 

• 70% Ethanol, diluted in dH20. 

2.4.1.3 Method 

Total RNA was extracted from cell monolayers according to the manufacturers 

protocol, with all steps performed on ice. All centrifugation steps were performed 

utilising an Eppendorf chilled table-top centrifuge, model 5415R (Cambridge, UK) at 

4˚C .Cells were washed with PBS and 0.5ml of TRI reagent added per 10cm2 of 

 



monolayer cells. The resulting cell lysate was passed through a pipette several times 

to form a homogenous cell lysate and transferred to a fresh eppendorf. 0.2 ml of 

chloroform was added per 1 ml of TRI reagent, the sample mixed by inversion, and 

incubated at room temperature for 10 min to allow the complete dissociation of 

nucleotides. The solution was centrifuged at 8500 g for 15 min at 4˚C to separate the 

aqueous phase (containing RNA) from the organic phase (containing DNA) and the 

interface (denatured proteins). The aqueous phase was transferred to a fresh 

eppendorf and an equal volume of isopropanol added. RNA was precipitated at -20˚C 

overnight to ensure the maximal yield. RNA was pelleted by centrifugation at 4˚C, 

1100 g, for 15 min. The supernatant was aspirated and the remaining RNA pellet 

washed with 70% ethanol and centrifuged at 1100 g for 5 min. The ethanol was 

aspirated and the pellet air dried before being resuspended in 30 µl of NFW and 

stored at -80˚C.  

RNA was quantified by measuring the absorbance at OD260, based on the equation 1 

OD260 unit = 40 µg of RNA/ ml, using a nanodrop spectrometer (ND-1000, Nanodrop, 

Wilmington, USA).  RNA integrity was confirmed by gel electrophoresis on a 1% 

agarose gel with 0.15 µg/ml ethidium bromide. Intact RNA exhibits defined 28S and 

18S rRNA bands, with the 28S band being twice as intense as the 18S.  

2.4.2 Reverse transcription 

2.4.2.1 Principle 

Reverse transcription is the process of synthesising single stranded complimentary 

DNA (cDNA) from single stranded RNA. The enzyme responsible for this process, 

 



reverse transcriptase, was discovered independently by Howard Temin and David 

Baltimore in 1970. The process, outlined in Figure 2-5, involves the heating of 

extracted RNA to denature secondary structures, and the subsequent cooling to 

allow primers (random hexamers or oligo dT primers) to anneal to the single RNA 

strands. Once annealed, the primers are extended by reverse transcriptase in the 

presence of an RNase inhibitor. The resultant single stranded cDNA can then be 

used in a PCR reaction. 

2.4.2.2 Method 

Reverse transcription was performed using the Promega Reverse transcriptase kit, 

following the manufacturer’s instructions. Nuclease free H20 was added to 1 µg of 

RNA, to a final volume of 10 µl, and the sample was incubated at 70ºC for 10 min, to 

denature the RNA. A master mix was prepared, for n + 1 reactions, containing, 2.5 μl 

of 10x reaction buffer, 6 μl of MgCl2 (25 nmol/l), 5μl dNTPs (10 nmol/l), 1.25 μl of 

random hexamers, 0.5 μl RNase inhibitor, 1.55 μl Avian myoblastosis virus (AMV) 

reverse transcriptase, made up to 25μl with NFW. 15 µl of master mix to each sample 

and the reaction incubated in a thermal cycler (Applied Biosystems GeneAmp PCR 

system 2700, California, USA) at 37ºC for 1 hour, to allow the synthesis of cDNA by 

reverse transcriptase, and subsequently, 95ºC for 5 min, to denature the reverse 

transcriptase, terminating the reaction. RNA was stored at -20ºC until use, or at -

80ºC for long-term storage. 
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Figure 2-5 The principle of reverse transcription. The reaction is heated to permit 

DNA primers (oligo dT or random hexamers) to anneal to the single RNA strand. The 

binding of oligo dT primers to the poly A tail of mRNA is shown in the diagram. 

Random primers bind randomly along the length of mRNA. The reaction is cooled to 

the optimum temperature for reverse transcriptase (AMV) activity and the DNA 

primers are extended by reverse transcriptase to generate cDNA.  

 

 



2.4.3 Polymerase chain reaction  

2.4.3.1 Principle 

PCR is a method by which nucleic acid sequence can be amplified exponentially in 

vitro. As shown in Figure 2-6, when performing PCR, small nucleotide sequences 

(primers) complementary to the 3’ and 5' ends of the target sequence for 

amplification are annealed to the template DNA and form an initiation point for the 

elongation of the complementary daughter strand. This process exploits the 

thermostable nature of thermostable bacterial DNA polymerases, which, unlike 

mammalian polymerases can tolerate the relatively high temperatures required for 

separation of DNA double strands. Taq polymerase, an enzyme originally derived 

from the bacterium Thermus aquaticus, was used for all PCR reactions described in 

this thesis. In this thesis conventional PCR has been used to amplify genomic DNA 

prior to sequence analysis and conventional and real-time semi-quantitative PCR 

have been used to evaluate mRNA expression, both of which are described below. A 

modified form of conventional PCR reaction using fluorescently labelled ddNTPs is 

utilised to perform DNA cycle sequencing. This procedure is described in section 

2.2.3.  

2.4.3.2 Conventional PCR 

The principle of conventional PCR is outlined in Figure 2-6. When performing 

conventional PCR, the reaction is heated to 95ºC, above the melting point for double 

stranded DNA, to promote the separation of the two strands of the DNA template. 

 



The reaction in then heated to the primer specific temperature, to allow the primers to 

anneal to the complementary single strand of DNA, and then to 72ºC, for an 

optimised duration, to allow for the synthesis of the new complementary strand by 

Taq polymerase. The reaction is subsequently cycled an optimised number of times 

to allow the exponential generation of specific target DNA fragments. After the final 

cycle the samples are incubated at 72ºC to promote the terminal elongation of the 

daughter strands. 

2.4.3.2.1 Method 

All conventional PCR reactions were performed using Bioline reagents. A PCR 

mastermix was prepared on ice for n + 1 reactions containing, reaction buffer (1x), 

MgCl2 (1-2.5 µM), deoxy-NTPs (0.5 µM), Taq polymerase (0.05 U/µl), forward and 

reverse primers (0.6 µM, Table 2-3), made up to a specific total volume per reaction 

with nuclease free water (depending on the volume of DNA). The master mix was 

aliquoted and 1 µl of synthesised cDNA or 100ng of extracted DNA was added to 

make a final reaction volume of 25 µl. In a thermal cycler (Applied Biosystems 

GeneAmp PCR system 2700, California, USA) the  samples were incubated at 95ºC 

for 5 min and then heated, for an optimised number of  cycles to; 95ºC for 30 sec, the 

primer specific annealing temperature for 30 sec and 72ºC for a variable duration, 

depending on the size of the product. Samples were then incubated for 72ºC for 5 

min.    
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Figure 2-6 The principle of PCR. 1. The double stranded (DS) DNA is denatured by 

heating the reaction to 95˚C. 2. The reaction is cooled to allow the two 

complementary primers to anneal to the DNA template. 3. The reaction is heated to 

72˚C, the optimal temperature for extension by Taq polymerase, which proceeds in 

the 5’ to 3’ direction. 4. These steps are repeated 25-40 times, resulting in the 

amplification of DNA. 5. Subsequent extensions are precisely limited to the region of 

interest.      

 

 

 



Table 2-3 Primer sequences used for conventional PCR 

 
Primer 

pair 
number 

 
Gene 

 
Forward primer 

 
Reverse primer 

31 SULT2A1 caggaagaaccatagagaagatctg Gtcttacacaatgaccccagtc 
32 STS aggacttcccaccgatgagattacctttg Aaaagggtcaggattagggctgctaggaa 
33 PAPSS1 ctgctggcatgcctcatc Gtggtcccctcttgttactag 
34 PAPSS2 cactcccctcaaaggtttc Cagcgtctcgtaagatagc 
35 11β-HSD1 accagagatgctccaaggaa Atgcttccattgctctgctt 
36 AKR1C3 acttcatgcctgtattgggatttg Ctgcctgcggttgaagtttgata 
37 17β-HSD4 agttctctctctttcttgttggctctgga Gcgtcctatttcctcaaatacaaaggtactct 
38 HSD3B1 ggaatctgaaaaacggcggc Ctgagatatagtagaactgtcctcggatg 
39 HSD3B2 gatcgtccgcctgttggtg Ctcttcttcgtggccgttctggatgat 
40 OATP-A ccacaagatttatatgtggaaaatg Catatatccaggtatggcagcc 
41 OATP-B catgggacccaggatagggcca Ggcctggccccatcatggtcactg 
42 OATP-C gttcaacctgaattgaaatcac Gatgtggaattatatgtcctacatgac 
43 OATP-D gctgagaacgcaaccgtggttcc Gacttgagttcagggctgactgtcc 
44 OATP-E gccatgccactgcagggaaatg Ttctggtacaccaagcaggagccc 
45 OATP-F cagaaagacaatgatgtcc Cacatcttttaaatccccatttgaggc 
46 OATP-8 gaataaaacagcagagtcagcatc Gcaatatagctgaatgacagg 
47 OAT-4 ctctgcggtttccacaaacatgacc Ccaccatcagtgtcagtgaactcag 

 

2.4.3.3 Real-time PCR 

Compared to conventional PCR, Real-time PCR has the advantage in that the 

specific PCR product can be detected as it accumulates during the PCR reaction, 

thereby allowing the quantification of mRNA transcripts. To perform real-time PCR an 

oligonucleotide probe is synthesised containing a fluorescent reporter dye on its 5' 

end and a quencher dye on its 3' end (see Figure 2-7). The proximity of the 

quencher dye to the reporter dye in this synthesised structure reduces the 

florescence emitted by the reporter dye by fluorescence resonance energy transfer 

(FRET). During the PCR reaction the probe anneals downstream from one of the 

primer sites, and is cleaved by the 5' nuclease activity of Taq polymerase during 

primer extension, without inhibiting complimentary strand synthesis. The cleavage of 

the probe allows the reporter dye to produce a signal. During each cycle of the PCR 

 



reaction additional annealed probe molecules are cleaved, resulting in an increase in 

the fluorescence intensity directly proportional to the amount of PCR product 

produced. The fluorescence produced is monitored throughout the PCR reaction, 

enabling the identification of the cycle number at which the product is first produced 

(and fluorescence exceeds the calculated threshold value) which is termed the Ct 

value, as shown in Figure 2-8. Therefore the Ct value of a gene is inversely 

proportional to the amount of original template of that gene. Measuring the Ct value 

of a housekeeping gene, of which the expression is kept constant within cells, and 

comparing it to the Ct value of the gene of interest, produces the ∆Ct value. By 

comparing the ∆Ct between different groups, the relative expression of a gene can 

be calculated. 

 



 

Table 2-4 Primer sequences used for real-time PCR 

Primer 
pair 

number 

 
Gene 

 
Forward primer 

 
Reverse primer 

 
Probe 

48 HSD11B1 AGGAAAGCTCATGGGAGGAC
TAG  

ATGGTGAATATCATCATGA
AAAAGATTC  

CATGCTCATTCTCAACCAC
ATCACCAACA  

49 H6PDH CAGGTGTCCTAGTGCACATT
GAC 

GTAGCCCACTCTCTCGTCC
AA 

AAGGCACGCCCTCCCAGC
G 

50 GPD1 
(G3PDH) 

AGGGCCATCTGAAGGCAAAC
GCC 

CCATCAGTTCATCGGCAAG
AT 

TCGTCTACCCCCTTAATAA
GAGATATG 

Assay on demand 
(Applied Biosystems) 

Identification number 

51 LPL Hs00173425_m1 
52 PAPSS1 Hs00193745_m1 
53 PAPSS2 Hs00190682_m1 
54 SULT2A1 Hs00234219_m1 
55 STS Hs00165853_m1 
56 AKR1C3 Hs00366267_m1 

 

 



 

2.4.3.3.1 Method  

In this thesis real-time PCR was carried out using Applied Biosystems reagents and 

expression assays (Applied Biosystems, Warrington, UK), in separate reactions for 

the housekeeping gene and the gene of interest. To analyse housekeeping gene 

expression each reaction contained 10 µl of 2x MasterMix, 18S primers and probes 

(to a final concentration of 25 nM each), 1 µl of cDNA and NFW to a final volume of 

20 µl. To analyse expression of the gene of interest each reaction contained 10 µl of 

2x MasterMix, 1 µl of 20x 'assay on demand' gene expression assay (Table 2-4), 1 µl 

of cDNA and NFW to a final volume of 20 µl. PCR reactions were run utilising a 7500 

real-time PCR system (Applied Biosystems, Warrington, UK). Ct values (cycle 

number at which logarithmic plot crosses the calculated threshold line) were used to 

determine ΔCt values, (Ct of gene of interest – Ct of housekeeping gene) and used 

to perform statistical analysis. To calculate relative gene expression the ΔCt of the 

control reaction was subtracted from the ΔCt of the treatment reaction to give the 

ΔΔCt.   The ΔΔCt value was subsequently transformed through the equations, gene 

expression = 2-ΔΔCt, to calculate relative gene expression as fold change.    
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Figure 2-7. The principle of TaqMan Real-time PCR. 1. The RT step synthesises a 

double stranded cDNA copy of the RNA template. 2. The reaction is heated to permit 

the denaturation of the double stranded cDNA template and the target specific 

primers and probes to anneal. The probe contains a flourescein dye at the 5’ end and 

a quencher at its 3’ end. 3. The reaction is cooled to allow Taq polymerase to 

synthesise the complementary strand. The 5’ nuclease activity of Taq polymerase 

cleaves the probe, physically separating the flourescein and quencher dyes, resulting 

in reporter fluorescence. The increase in signal is directly proportional to the number 

of molecules released during that cycle.         
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Figure 2-8 The analysis of Real-time PCR amplification curves. The Real-time 

PCR amplification curves plot fluorescence signal versus cycle number. 

Representative curves for a ‘housekeeping’ gene and gene of interest are shown. 

The Ct values represent the cycle at which the instrument can first reliably detect 

fluorescence derived from the amplification reaction, and is relative to the amount of 

template. The curve continues to increase over the threshold value due to the 

accumulation of amplified product until the reaction is limited by lack of reagents and 

reaches a plateau. The difference between the Ct value of the gene of interest and 

the ‘houskeeping’ gene is termed the ∆Ct value. By comparing the ∆Ct between 

different treatments, the relative expression of a gene between different treatments 

can be calculated.   

 

 



2.5 Protein methods 

2.5.1 Bacterial plasmid transformation and propagation 

2.5.1.1 Description and genotypes of E.coli host strains 

2.5.1.1.1 α-select bronze efficiency competent cells 

Genotype: F- deoR endA1 recA1 relA1 gyrA96 hsdR17(rk -, mk +) supE44 thi-1 phoA 

Δ(lacZYA argF)U169 Φ80lacZΔM15 λ- 

Alpha–select bronze efficiency competent cells were used for maintenance of the 

vectors. This strain of E. coli has a medium level of competency, resulting in a 

mediocre transfection efficiency. Alpha–select competent cells have a mutation in the 

rec A gene (recA1), which is involved in recombination. The mutant gene limits 

recombination of the plasmid with the E. coli genome, improving insert stability. This 

strain also carries an inactivating mutation in the endonuclease I (endA) gene, which 

rapidly degrades plasmid DNA isolated by most miniprep procedures, thus enhancing 

plasmid purification. 

2.5.1.1.2 BL21-Gold (DE3) 

Geneotype: E. coli B F– ompT hsdS(rB– mB–) dcm+ Tetr gal λ(DE3) endA Hte 

BL21-Gold(DE3) cells were used for all protein expression applications. Derived from 

Escherichia coli B, this strain naturally lack the Lon protease, which can degrade 

recombinant proteins. In addition, BL21-Gold(DE3) cells are engineered to be 

deficient for a second protease, the OmpT protein and therefore, once transformed, 

 



produce a high level of protein expression and stability. BL21-Gold(DE3) cells 

incorporate major improvements over the original BL21 strain the Hte phenotype, 

which increases the transformation efficiency of the BL21-Gold cells. In addition, 

similar to alpha-select competent cells, in BL21-Gold(DE3) cells the endonuclease I 

(endA) gene, is inactivated, improving the quality of DNA purification.  

2.5.1.2 Principles 

Transformation is the genetic alteration of a cell resulting from the uptake, and 

expression of foreign naked DNA molecules. Transformation of eukaryotic cells in 

tissue culture is usually termed transfection. The ability of a cell to take up 

exogenous DNA from the environment is referred to as competence. Some bacteria 

have natural competence, in that they are naturally capable of taking up DNA, 

however in the majority of species of bacteria, to perform transformation, artificial 

competence has to be induced. The most common way to induce bacterial 

competence is chilling cells in the presence of divalent cations such as Ca2+ (In 

CaCl2). This causes holes to form in the cell membrane of bacterial cells, thus 

making them permeable to hydrophilic DNA. 

2.5.1.3 Solutions  

• LB, 25 g of LB dissolved in 1 L of dH20. Autoclaved and stored at 4ºC 

• Carbenicillin, diluted to 50 mg/ml in dH20 and stored at -20ºC. Added fresh to 

LB to a final concentration 50 µg/ml. 
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2.5.1.4 Method 

Transformation of alpha-select and BL21 strains of E coli were performed as 

described in the Bioline manual. Immediately prior to transformation β-ME was added 

to BL21 cells to a final concentration of 25 mM, to increase transformation efficiency. 

50 μl of cells, thawed on ice, were gently mixed with 1 μl of plasmid DNA and 

incubated on ice for 30 min. Cells were ‘heat shocked’ at 42˚C for 30 sec and then 

incubated on ice for a further 2 min. Reactions were diluted by the addition of 200 μl 

of LB and incubated at 37˚C for 60 min. The cell transformation mixture was spread 

on LB agar plates containing the appropriate antibiotic and incubated at 37˚C 

overnight.  

A single colony was picked and used to inoculate 10ml of Luria broth (LB) 

supplemented with 50 μg/L of Carbenicillin, a more stable ampicillin analogue. Alpha-

select cells were cultured overnight at 37 ˚C in an elliptical incubator, prior to mini-

prep plasmid DNA extraction as described in section 2.12. BL21-Gold (DE3) cells 

were cultured overnight at 26˚C in an elliptical incubator and subsequently diluted to 

1 L with LB containing amplicillin (50 μg/l), until the OD60 of the cultures reached 0.4 

2.5.2 Induction of fusion protein expression 

2.5.2.1 Principle 

Expression of inserts cloned into a pGEX vector is under the control of the inducible 

tac promoter. All pGEX vectors are also engineered with an internal LacIq gene, the 

product of which is a repressor protein that binds to the operator region of the tac 

 



promoter preventing 'leaky' gene expression. This inhibition can be relieved by the 

lactose analogue, IPTG, which allosterically interacts with the repressor molecule, 

resulting in a 300 fold reduction in the repressor molecule's affinity for the operator 

sequence. Thereby the PGEX vectors allow high levels of expression in the presence 

of IPTG, while maintaining tight control over expression of the GST-fusion protein in 

the absence of IPTG.        

2.5.2.2 Solutions 

• IPTG, diluted to 1M in NFW and stored at 4˚C.  

2.5.2.3 Method 

BL21 cells were transformed and propagated in 1L cultures, as described in section 

2.5.1, until the OD60 of the cultures reached 0.4. The induction of PAPSS2A-GST 

and SULT2A1-GST fusion protein expression was carried out as previously 

established. Briefly, IPTG was added to the bacterial cultures to a final concentration 

of 50mM or 1 μM for PAPSS2a and SULT2A1, respectively. Cultures were incubated 

for 16 hr at 26˚C to minimise the expression of proteins as inclusion bodies. The 

following day the cellular cytosolic fraction was isolated and the target fusion protein 

purified as described in section 2.5.4. 

 



2.5.3 Preparation of cytosolic bacterial cell lysates  

2.5.3.1 Principle 

Expression of pGEX constructs in E.coli usually yields fusion proteins which 

accumulate in the cytoplasm of the host cell. Therefore, to assess the functional 

enzymatic activity of the fusion proteins, the cells have to be lysed and the 

cytoplasmic fraction, where the proteins reside, isolated. Bacterial cell lysis can be 

performed using commercially available lysis reagents or methods such as freeze-

fracture, french pressing or sonication. The use of the total cell lysate for further 

assays is methodologically much quicker and easier than protein purification. 

However, it has the disadvantage that you cannot quantify specific protein expression 

and in some cases the enzymatic activity of the protein can be lost when fused to the 

GST tag. 

2.5.3.2 Solutions 

• Lysis buffer- PBS/triton. 2 tablets of PBS dissolved in 400 ml of dH20 and 

autoclaved. 1 Complete Mini, EDTA-free, protease inhibitor tablet (Roche) was 

added per 10ml of PBS and Triton X 100 was added to 0.1%. 

• Lysis buffer- Commercially available. 1 Complete Mini, EDTA-free, 

protease inhibitor tablet (Roche) was added per 10ml of Bugbuster (Merck, 

Nottingham, UK). 

 



2.5.3.3 Method 

Transformed BL21 cells were cultured and GST fusion protein expression was 

induced, as described in sections 2.5.1 and 2.5.2, respectively. A 1 L bacterial cell 

culture was centrifuged at 6,500 g for 15 min at 4ºC (Avanti J-20XP centrifuge, 

Beckman Coulter, High Wycombe, UK). The supernatant was discarded and the 

remaining cell pellet was lysed in PBS/1% Triton X 100 or 10 ml of Bugbuster (Merck, 

Nottingham, UK), containing protease inhibitors. Cell lysate was transferred to 15 ml 

falcon tubes and rapidly 'freeze-thawed' twice in a dry ice/methanol slurry and at 

37ºC in a waterbath, and subsequently subjected to two cycles of sonication (2 x 10 

Sec; Diagenode Bioruptor, Diagenode, Belgium) and cooling on ice. The cytosolic 

fraction of the cell lysate was isolated by centrifugation at 16,000 g for 15 min at 4ºC 

(Avanti J-20XP centrifuge, Beckman Coulter, High Wycombe, UK). The resulting 

cytoplasmic cell lysate was aliquoted and stored at -80ºC until use. Cell lysates 

subjected to subsequent fusion protein purification were handled as described in 

section 2.5.4. The cell membrane fraction was retained if to be analysed by 

subsequent western blot analysis, as described in section 2.5.8. 

2.5.4 Purification of GST fusion proteins  

2.5.4.1 Principle 

The use of the glutathione affinity tag was first introduced in 1988 and is now widely 

used for the purification of recombinant proteins. In most organisms glutathione S-

transferase (GST) occurs as a natural protein that can catalyse the conjugation of 

reduced glutathione via the sulfhydryl group to electrophillic centres on a wide variety 

 



of substrates. In vivo, this activity is useful in the detoxification and metabolism of 

endogenous compounds and xenobiotics. In vitro, this property can be exploited to 

purify GST fusion proteins from bacterial lysates by affinity chromatography using 

glutathione immobilised to a matrix such as sepharose (Figure 2-8). When applied to 

the affinity medium, fusion proteins bind to the ligand, and impurities are removed by 

washing with binding buffer. The binding of fusion proteins to the ligand is reversible 

and can be eluted from the glutathione sepharose under mild, non-denaturing 

conditions that preserve both protein antigenicity and function. Expression of a 

pGEX-insert construct in E. coli yields fusion proteins with Schistomsoma japonicum 

GST, which has a Mr of 26,000. 

2.5.4.2 Solutions 

• 50% Glutathione Sepharose 4B slurry. 1.33 ml of the original 75% 

Glutathione Sepharose 4B slurry (G.E.Healthcare) washed with 1 x PBS and 

resuspended in 1 ml 1 x PBS. 

• Wash buffer, 50 mM Tris-HCl (pH 7.0), 150mM NaCl. Stored at 4˚C. 

• Elution buffer, 50 mM Tris-Hcl, 10 mM reduced glutathione, (pH 8.0). Stored 

at 4˚C. 

2.5.4.3 Method 

Transformed BL21 cells were cultured and GST fusion protein expression was 

induced, as described in section 2.5.2. The bacterial cytosolic cell fraction was 

isolated utilising Bugbuster, a commercially available lysis buffer as described in 

 



section 2.5.3. The cell membrane fraction was retained for subsequent western blot 

analysis and the cytosolic fraction was incubated with 1 ml of pre-washed 

Glutathione Sepharose 4B (GE Healthcare) 50% slurry, under constant agitation for 

between 1 and 14 hr. Following the incubation period the fusion protein was cleaved 

as described in section 2.5.5 or purified as follows. The gel with adsorbed protein 

was transferred to a disposable column and the flowthrough collected for subsequent 

SDS-PAGE and western blot analysis. The column was then washed with 5 ml of 

wash buffer and then 2 ml of PBS. The protein was then eluted in 3 ml of elution 

buffer. Samples were collected at all stages of the purification in 1 ml fractions to 

prevent the dilution of the protein and analysed by SDS-PAGE coomassie staining 

and western blot analysis. 

 



 

1. Affinity medium is equilibrated in binding 
buffer.

2. Sample is applied under conditions that favor specific
binding of the target molecule(s) to a complementary 
binding substance (the ligand). Target substances bind 
specifically, but reversibly, to the ligand and unbound 
material washes through the column.

3. Target protein is recovered by changing conditions to
favor elution of the bound molecules. Elution is 
performed specifically, using a competitive ligand, or non-
specifically, by changing the pH, ionic strength or 
polarity. Target protein is collected in a purified, 
concentrated form.

4. Affinity medium is re-equilibrated with binding buffer.

 

 

Figure 2-9 The mechanism of affinity chromatography. The affinity medium is 

equilibrated in the column in binding buffer. The sample is applied to the column 

under conditions that favour the specific but reversible binding of the target molecule. 

Unbound sample is washed through the column. The concentrated target protein is 

eluted from the column with an elution buffer which contains a competitive ligand or 

different pH. Adapted from www.gelifesciences.com. 

 



 

2.5.5 Removal of GST fusion tag by enzymatic cleavage 

2.5.5.1 Principle 

If removal of the GST affinity tag is desired, the fusion protein can be digested with 

an appropriate site-specific protease while the fusion protein is bound to the 

glutathione sepharose or following elution from the medium. The specific protease 

compatible with the pGEX-6P-3 expression vector is PreScission Protease (GE 

Healthcare).  PreScission Protease is a fusion protein of GST and human rhinovirus 

3C protease. The protease specifically recognises the amino acid sequence Leu-Glu-

Val-Leu-Phe-Gln‖Gly-Pro, cleaving between the Gln and Gly residues. Since the 

protease is fused to GST it can be removed from cleavage reactions using 

glutathione sepharose. The protease is maximally active at 4ºC so cleavage can be 

performed at low temperatures, improving the stability of the target protein. 

2.5.5.2 Solutions 

• PreScission Protease buffer, 50 mM Tris-HCl, 100 mM NaCl, 1mM EDTA, 

1mM DTT, pH 8.0. 

2.5.5.3 Method  

In this thesis removal of the GST tag was performed while the fusion protein was 

bound to glutathione sepharose, as recommended in the manufacturers manual. 

 



GST-fusion protein was bound to glutathione sepharose 4B as described in section 

2.4.5. Following this incubation, the fusion-protein bound glutathione sepharose was 

loaded onto a column and washed with 5 ml of PreScission Protease buffer and 

subsequently incubated with 80 µl (160 units) of PreScission Protease in 920 µl of 

PreScission Protease buffer, at 4ºC for between 1 hr and 16 hr. Following incubation, 

the gluathione sepharose suspension was centrifuged at 10000 x g for 5 min at 4˚C 

(Eppendorf chilled table-top centrifuge, model 5415R, Cambridge, UK) to pellet the 

glutathione sepharose, and the elute, containing the protein of interest, transferred to 

a new tube. The elute, alongside samples taken at various stages of the procedure 

were analysed by SDS-PAGE analysis to verify the presence of the protein (in the 

elute) and to estimate the yield, purity and the extent of the digestion.   

2.5.6 Protein extraction from cell culture  

2.5.6.1 Principle 

The extraction of proteins from monolayer cells can be achieved by lysing the cells in 

a buffer which preserves protein integrity. The cellular lysate is subject to freeze thaw 

cycles to further aid lysis. The membrane and the soluble fractions can be 

subsequently isolated by centrifugation.  

2.5.6.2 Solutions 

• RIPA buffer, 50 mM Tris pH 7.4, 1% NP40, 0.25% SDS, 150 nM NaCl, 1 mM 

EDTA. Store at -20ºC. Add 1 tablet of complete protease inhibitor cocktail 

(Roche) per 10 ml of RIPA buffer on before use. 

 



2.5.6.3 Method 

All steps of this procedure were performed on ice. Monolayer cells were washed with 

PBS before the addition of 30 µl of RIPA buffer per well of a 24 well plate. Cells were 

scraped and the cell lysate transferred into an eppendorf. Cell lysates were incubated 

at -80ºC for 10 min and then thawed on ice. The cytosolic fraction was obtained by 

centrifugation at 8000g for 5 min, and the supernatant containing the soluble 

proteins, transferred to a fresh eppendorf. The protein concentration was determined 

as described below (2.5.7), aliquoted, and stored at -80ºC until use.    

2.5.7 Quantification of protein concentration 

2.5.7.1 Principle 

The total soluble protein concentration of a sample can be measured using a 

colourimetric assay. In this thesis the Bio-Rad DC protein assay (Bio-Rad 

Laboratories, GmbH, Germany); a modified version of the well documented Lowry 

assay (Lowry et al., 1951) was used to measure the total soluble protein 

concentration of cell extracts. The Lowry assay employs two colour forming 

reactions. The first being a Biuret reaction, in which, under alkaline conditions 

divalent copper ions react with the peptide bonds of proteins to produce monovalent 

copper ions (Cu+), resulting in the formation of a purple colour. The second exploits 

Folin-Ciocalteu chemistry, in which monovalent copper ions and the radical groups of 

tyrosine, tryptophan and cysteine react with phosphomolybdotungstate to produce an 

unstable product that becomes reduced to molybdenum/tungsten blue with 

absorption maximum of around 660 nM. Thus the concentration of protein in a 

 



sample is directly proportional to the colour produced via these two reactions and can 

be quantified by measuring the absorbance at 650-750 nM. The Lowry assay is 

superior to other protein assays as it has a low sensitivity limit (10 µg/ ml). 

Furthermore, the Biorad assay contains SDS which separates membrane proteins 

from contaminating membrane constituents and denatures the proteins allowing 

more reproducible results. 

2.5.7.2 Method  

Mammalian monolayer cellular protein or bacterial cellular protein was obtained as 

described in sections 2.5.3 and 2.5.4, respectively. 5 µl of sample was added, in 

duplicate, to a 96 well plate. A range of protein concentrations of  BSA standard were 

made (0 mg/ ml, 0.25 mg/ ml, 0.5 mg/ ml, 1.0 mg/ ml and 2.0 mg/ ml) and were 

added in duplicate to a 96 well plate adjacent to the protein samples to be quantified. 

Using an automated pipette, 25 µl of reagent A and 200 µl of reagent B were added 

to each well. The plate was then placed on a shaker for 10 min to allow a uniform 

reaction to take place and resulting colour formation to occur. Absorbance at OD690 

nm was measured using a Victor3 1420 multilabel counter (PerkinElmer, Beconsfield, 

Buckinghamshire). A standard curve was plotted as µg of protein (x axis) against 

OD690 (Y axis). The protein concentrations of samples were then determined using 

the standard curve coefficients. To ensure that the protein concentrations were within 

the standard curve range a predetermined dilution of protein extract was used. 

 



2.5.8 Western blot analysis 

2.5.8.1 Principle 

Western blotting is a technique by which the relative amounts of a specific protein 

can be measured, from a heterogeneous protein extract. In this thesis, proteins have 

been separated utilising SDS-PAGE, which denatures the proteins so that they are 

separated dependant on their size. The separated proteins are then transferred to a 

membrane, usually nitrocellulose or polyvinylidene diflorise (PVDF). The membrane 

is then blocked by incubation with a dilute solution of protein, typically non-fat dry 

milk or bovine serum albumin, to prevent non-specific binding of   antibody to the 

membrane. To detect the protein of interest the membrane is first incubated with a 

primary antibody which specifically binds to the protein. The membrane is then 

washed to remove the excess primary antibody and subsequently incubated with a 

secondary antibody, which specifically binds the primary antibody. The secondary 

antibody is conjugated to an enzyme, usually horseradish peroxidase, which in the 

presence of a chemiluminescent agent results in the generation of light, proportional 

to the amount of protein on the membrane. This reaction can be recorded by various 

methods, such as the use of photographic film or camera, and the signal strength 

semi-quantified by imaging software. If this technique is being used to analyse the 

relative expression of a protein between samples, the same membrane can be re-

probed with an antibody against a housekeeping gene, to ensure the quantity of 

protein loaded has been kept constant.   

 



2.5.8.2 Solutions  

• Loading buffer (4X). 50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 1% 14.7 

M β-mercaptoethanol, 12.5 mM EDTA, 0.02% bromophenol blue.  

• Running buffer, 20 X NuPAGE MOPS SDS running buffer (Invitrogen). Dilute 

1:20 with dH20. 

• Transfer buffer 10X. 30.3 g Tris base, 144g glycine diluted in I L of distilled 

H20, adjusted using HCL to pH 8.3.    

• Transfer buffer (working solution), for 1 L, 100 ml 10X, 200 ml absolute 

methanol, 700 ml H20  

• Washing solution, 0.1% tween in PBS.  

• Blocking solution, 5% non-fat resuspended dried milk (Marvel), in washing 

solution. 

• Stripping solution, 100 mM 2-βmercaptoethanol, 2% SDS, 62.5 mM Tris-HCL 

Ph 6.7. 

2.5.8.3 Method 

SDS-PAGE and protein transfer were carried out using Xcell Sure Lock™ Mini-Cell 

(Invitrogen), according to the manufacturer’s instructions. A pre-determined quantity 

of protein sample was added to the appropriate amount of 4 x protein loading buffer 

and boiled at 95ºC for 7 min. Samples were loaded onto a pre-cast 1.0mm thick 10% 

 



NuPAGE® Bis-Tris SDS-PAGE gel (Invitrogen), and run at 200V for 50 min, 

immersed in running buffer.   Proteins were subsequently transferred onto a Hybond 

ECL nitrocellulose membrane (G.E Healthcare) at 30V for 1 hour, immersed in 

transfer buffer. To confirm successful and efficient running and transfer, protein was 

visualised by incubation of the membranes with a reversible protein stain, ponceau S 

red at room temperature for 1 min. Excess ponceau was decanted and the 

membrane washed with H20 to visualise bands of protein. The membrane was 

blocked for 1 hr on a horizontal shaker, prior to repeated washing with PBS 0.1% 

tween and incubation of the membrane with the primary antibody at an optimised 

dilution, overnight at 4ºC under constant agitation. The membrane was repeatedly 

washed with PBS 0.1% tween and then incubated with the appropriate secondary 

antibody for 1 hour at room temperature, under constant agitation. The membrane 

was washed as above and incubated with 1 ml of ECL chemiluminescent detection 

reagents (G.E. Healthcare) for 1 min, according to the manufacturer’s instructions. 

The resultant luminescent signal was recorded by exposure of the membrane to light 

sensitive kodak MXB photographic film (G.R.I, Rayne, UK) for between 2 sec and 1 

hour.  Photographic film was developed using a compact X4 developer (Xenograph 

Imaging Systems, Gloucestershire, UK). If the relative quantification of samples was 

to be performed the membranes were stripped by incubating the sample in stripping 

buffer at 50˚C for 30 min. The membrane was then washed once and re-probed with 

an antibody against β-actin, as described above.  

 

 



 

Figure 2-10. Schematic of the principle of western blot analysis. 1. The protein 

sample (red) is loaded onto the gel, parallel to a protein ladder (blue). 2. The mixed 

protein sample and ladder are separated by electrophoresis. 3. The proteins are 

transferred onto nitrocellulose membrane.4. The membrane is first incubated with a 

primary antibody which recognises and binds the protein of interest, and 

subsequently (5) with a fluorescently tagged secondary antibody, which binds to the 

primary antibody. 6. The antibody is detected by exposure to x-ray film.    

 

 



Blotting Pad

Filter Paper
Transfer Membrane
Gel

Cathode Core (-)

+

 

Figure 2-11 Schematic diagram of transfer procedure. The diagram shows how 

the transfer procedure is set up for a double transfer using the X Cell II Blot Module 

(Invitrogen). While submerged in transfer buffer the SDS-gel the transfer membrane 

is lay on top of the gel, sandwiched between blotting paper and filter paper. The gel 

is placed in the module closest to the anode(+), with the transfer membrane nearer 

the cathode (-), resulting in the transfer of proteins from the gel to the membrane.     

2.5.9 Coomassie staining 

2.5.9.1 Solutions  

• Coomassie blue. 0.2% coomassie blue, 7.5% acetic acid, 50% ethanol, made 

up with H20.  

• Destain. 40% glacial acetic acid, 10% methanol, 50% H20. Solution can be 

recycled by passing through activated carbon. Store at room temperature.  

 



2.5.9.2 Method 

Proteins were separated by SDS-PAGE as described in section 2.5.8. Following 

electrophoresis the gel was submerged in coomassie blue, under constant agitation, 

overnight. The following day the gel was repeatedly incubated in de-satin solution 

until distinct bands were visible. 

2.6 Enzymatic activity assays 

2.6.1 Principle 

The functional activity of an enzyme in intact cells, or purified protein, can be 

quantified by incubation of the sample with the substrate and necessary co-factors of 

that enzyme, and measuring the amount of product produced. Steroids can be 

extracted from a reaction mixture using an organic solvent and separated from one 

another by thin layer chromatography (TLC) using an optimised mobile phase. If a 

known concentration of radiolabelled substrate is used, the amount of product 

produced can be quantified by measuring the radiation of the separated steroid. 

Below is a sample trace obtained by the analysis of a TLC plate with a Bioscan 

imaging detector (Bioscan, Washington, DC, USA). The protein content of the 

sample can be calculated and the fractional conversion of the cells calculated as 

pmols of product per mg of protein per hour.  

This principle can also be applied to cases where the primary functional enzyme(s) in 

a cell are not known. The unknown product(s) of the reaction can be identified by 

TLC by co-migration with unlabeled steroid standards. The location of the steroids on 

 



the TLC plate can be identified by visualisation under UV light, or using Lieberman-

Buchard reagent, as described in section 2.6.6. This technique therefore enables the 

identification of functional enzymes within the target cells.  

 

 

 

 

Figure 2-12 Representative TLC trace. Extracted radiolabelled unknown steroids 

were spotted on TLC plate adjacent to known steroids, and developed using a 

solvent system consisting of chloroform/methanol/acetone/acetic acid/water 

(8:2:4:2:1). Steroids were quantified using a Bioscan 2000 image analyzer (Lablogic, 

Sheffield, UK). Due to the differing retention distance of steroids, each steroid 

produces a distinct peak.    

 



2.6.2 11β-HSD1 activity assay 

2.6.2.1 Solutions 

• 10-2 M cortisone/cortisol stock, dilute 3.6mg of cortisol/cortisone in 1 ml of 

absolute ethanol, stored at 4˚C for up to 2 months. Steroids were diluted to a 

desired concentration in medium on the day of the experiment. 

• 3H-Cortisol stock, Specific activity 100Ci/mmol (Du Pont, NEN, The 

Netherlands). Store at -20 ˚C for up to 2 months.  

• 3H-Cortisol working solution, 5μl of 1mCi/ml stock of 3H-cortisol into 200μl 

ethanol, store at -20 C for up to 2 months.  

• 3H-Cortisone working solution, synthesised as described in section 2.24 to 

a concentration of 1000 cpm/ µl. Store at -20 ˚C for up to 2 months. 

2.6.2.2 Method 

Confluent monolayers of Chub-S7 mature adipocytes were washed with PBS, and 

11β-HSD1 dehydrogenase activity was assessed by incubating cells in 1 ml of serum 

free DMEM/F12 supplemented with 100 nM F (for dehydrogenase activity) or E (for 

oxo-reductase activity) with appropriate tritiated tracer – 3H F (Du Pont, Stevenage, 

UK) or 3H E (0.02 µCi/reaction) for 3 hours at 37˚C in 5% CO2. Following incubation 

culture medium was transferred to 10 ml borosilicate glass tubes and steroids were 

extracted with 8 ml of dichloromethane, by shaking horizontally for 15 min and 

 



centrifugation for 15 min at room temperature at 100g, to separate the aqueous and 

organic phases. The aqueous phase and protein containing interphase were 

aspirated, leaving the inorganic phase, containing the steroids. Steroids were 

subsequently concentrated by evaporating the dichloromethane at 55˚C for 45 min 

under a constant stream of air. Steroids were then resuspended in 80 μl of 

dichloromethane and spotted on silica TLC plates (Silica gel/TLC plates; Fluka) along 

with one drop of unlabelled standard steroid solution (1 x 10-2 M of cortisol or 

cortisone in ethanol). The steroids were separated by TLC using chloroform: ethanol 

(92:8) as the mobile phase in a total volume of 200 ml, for 1 hour, and the retention 

factor of the unlabelled steroid standards determined by visualisation using UV light. 

The location and amount of radiation on the TLC plate was assessed using a 

Bioscan imaging detector (Bioscan, Washington, DC, USA), and the fractional 

conversion of steroids calculated. Percentage conversion was calculated using the 

regional counts of the individual peaks. The protein content of individual wells was 

quantified as described in section 2.5.7 and activity was calculated as pmol per mg of 

protein per hr.  

2.6.3 DHEA metabolism assay  

2.6.3.1 Solutions 

• 10-2 M steroid stock (DHEA metabolites) stored at 4 ˚C.  

• 3H-DHEA stock, Specific activity 100Ci/mmol (Du Pont, NEN, The 

Netherlands). Store at -20 ˚C for up to 6 months.  

 



• 3H-DHEA working solution, 5μl of 1mCi/ml stock of 3H-cortisol into 200μl 

ethanol, store at -20˚C for up to 6 months.  

2.6.3.2 Method 

Confluent monolayers of Chub-S7 preadipocytes or mature adipocytes were washed 

with PBS, and incubated with serum free DMEM supplemented with cold DHEA 

(20nM) and radiolabelled DHEA (0.2µCi per well) at 37˚C, 5% CO2 for 24 hrs. 

Following incubation, culture medium was transferred to 10 ml borosilicate glass 

tubes and steroids were extracted with 8 ml of dichloromethane, by shaking 

horizontally for 15 min and centrifugation for 15 min at room temperature at 100g, to 

separate the aqueous and organic phases. The aqueous phase and protein 

containing interphase were aspirated, leaving the inorganic phase, containing the 

steroids. Steroids were subsequently concentrated by evaporating the 

dichloromethane at 55˚C for 45 min under a constant stream of air. Steroids were 

then resuspended in 80 μl of dichloromethane and spotted on silica TLC plates 

(Silica gel/TLC plates; Fluka), adjacent to a mixture of unlabelled steroid standards, 

with known retention factors. (1 x 10-2 M in ethanol). The steroids were separated by 

TLC using using n-hexane/1-hexanol (75:25) as the mobile phase in a total volume of 

200 ml. The location and amount of radiation of individual peaks on the TLC plate 

was assessed using a Bioscan imaging detector (Bioscan, Washington, DC, USA). 

The retention factor of the unlabelled steroid standards was visualised by exposure 

to UV light or Lieberman-Buchard reagent, enabling the identification of the products, 

and the fractional conversion of steroids to be calculated.   

 



2.6.4 PAPSS activity assay 

2.6.4.1 Method 

Purified bacterially expressed SULT2A1-GST and PAPSS2a-GST fusion proteins 

were prepared as described in section 2.5.4 or the cytosolic fractions of WT 

SULT2A1 and WT and mutant (T48R, R329X and S475X) PAPSS2 expressing BL21 

E.Coli cells were prepared as described in section 2.5.3. The total protein content of 

the samples was quantified using a BioRad Bradford protein assay, as described in 

section 2.5.7 and samples were subsequently diluted with PBS to achieve the same 

protein concentration. Consistent expression of PAPSS2A between the samples was 

ensured by western blot analysis, section 2.5.8.  

For functional activity assays a master mix was prepared on ice containing assay 

buffer (150 nM Tris-HCl (pH 7.0), 50 mM KCl, 15 mM MgCl2, 3 mM EDTA, 45 mM 

dithiothreitol), supplemented with ATP (final concentration 5mM) and sodium 

sulphate (final concentration 10mM). 145 µl of master mix was aliquoted into glass 

tubes. To each tube 3H DHEA was added to a final concentration of 5 µM and 

reactions were initiated by the addition of 25 µl of WT SULT2A1-GST and WT or 

mutant PAPSS2a-GST (T48R, R329X and S475X) for 1 hour at 30˚C. Steroids were 

extracted with 8 ml of dichloromethane, by shaking horizontally for 15 min, vortexing 

for 20 seconds and centrifugation for 15 min at room temperature at 100g, to 

separate the aqueous and organic phases. The aqueous phase and protein 

containing interphase were aspirated, leaving the inorganic phase, containing the 

steroids. Steroids were subsequently concentrated by evaporating the 

dichloromethane at 55˚C for 45 min under a constant stream of air. Steroids were 

 



then resuspended in 80 μl of dichloromethane and spotted on PE SIL G/UV silica gel 

plates (Whatman, Maidstone, Kent, UK). Steroids were separated by TLC using a 

solvent system consisting of chloroform/methanol/acetone/acetic acid/water 

(8:2:4:2:1). Steroids were quantified using a Bioscan 2000 image analyzer (Lablogic, 

Sheffield, UK).  

2.6.5 Synthesis of 3H cortisone 

In contrast to tritiated cortisol (3H-F), tritiated cortisone (3H-F) is not available 

commercially. Therefore a protocol has been optimised for the in-house synthesis of 

3H-E ([1,2,6,7-3H]-E) from 3H-F (1,2,6,7-3H]-F), utilising the high 11β-HSD2 

dehydrogenase activity of human placenta.  

2.6.5.1 Solutions 

• 0.1M Phosphate buffer (pH 7.4). Mix 57 ml of 0.2 M sodium phosphate 

monobasic and 243 ml of 0.2 M sodium phosphate dibasic heptahydrate. 

Make up to 600ml with dH20. 

2.6.5.2 Method 

20 µl of 3H-F was incubated with 250 µg of protein from homogenised human term 

placenta in a 500 µl total volume of 0.1 M phosphate buffer (pH 7.4), with 500 µM 

NAD+ as a cofactor, for 3 hr at 37ºC. Tritiated steroids were then extracted in 7 ml of 

dichloromethane by shaking tubes for 15 min followed by centrifugation for 15 min at 

1000g to separate the aqueous and organic phases. The upper aqueous phase was 

 



aspirated and the remaining organic phase was evaporated at 55ºC under air using a 

sample concentrator. Tritiated steroids were then resuspended in 80µL 

dichloromethane and spotted on a silica TLC plate (Silica gel/TLC plates; Fluka) 

adjacent to E and F standards. Steroids were separated by TLC with chloroform: 

ethanol (92:8) as the mobile phase until the solvent front had reached the top of the 

plate (~1 hour). The plate was placed under a UV lamp to visualise the location of the 

standard steroids and then scanned using the Bioscan 200 imaging scanner 

(Lablogic, Sheffield UK) to detect the retention factor of the extracted steroid, which 

was compared against the steroid standard to confirm the conversion to 3H-E. Once 

the location of 3H-E had been established the silica in that location was scrapped into 

a glass tube and 3H-E was eluted from the silica for 12 hr at 4ºC in 300 µl of ethanol. 

Following the incubation the silica and eluted 3H-E were separated by centrifugation 

at 100g for 5 min and the 3H-E solution transferred to a fresh glass tube. To 

determine the concentration of synthesised 3H-E, 5 µl of the solution was spotted 

onto a TLC plate and separated and analysed as described above (section 2.6.2). 

The solution was subsequently diluted in ethanol to 1000 cpm/ µl and stored at -20ºC 

until use. 

2.6.6 Visualisation of steroids utilising Liberman Buchard reagent  

2.6.6.1 Principle 

The use of Lieberman-Burchard reagent enables the identification of steroids which 

cannot be visualised by other methods, such as under UV light. When concentrated 

sulfuric acid is added to a steroid derivative of cholesterol, the steroid is oxidised, 

 



resulting in a polymer product containing a chromophore, which produces a 

colouration. For example, the addition of sulphuric acid to cholesterol results in the 

removal of a water molecule from C3 of cholesterol molecule, and it is oxidised to 

form, 3,5-cholestadiene, containing a chromophore, which produces a green colour. 

The resultant chromophore, and thus the colour produced, differs between steroids, 

and can therefore facilitate the identification of unknown steroid products. An 

example of steroids separated by TLC and visualised utilising Lieberman-Burchard 

reagent is shown in Figure 1-12. 

 

2.6.6.2 Solutions 

• Lieberman-Burchard reagent (for 100ml; 2ml acetic Acid, 8ml sulfuric acid, 

24ml ethanol)  

 

 



 

Figure 2-13 A representative photograph of a steroids separated by TLC and 

visualised by Lieberman-Burchard reagent. Known reference steroid samples 

were spotted on to a TLC plate and separated by TLC using n-hexane/ 1-hexanol as 

the solute for 3 hours. The TLC plate was sprayed with Lieberman-Burchard reagent 

and heated at 100˚C, which oxidises the steroids resulting in a colour to be produced. 

The distance migrated of a known steroid in a given solute phase can be used to 

identify unknown steroids. The chromophore of a steroid, and thus the colour 

produced differ between steroids, which also aids identification.  

 

2.6.6.3 Method 

A TLC plate (Silica gel/TLC plates; Fluka) was spotted with known reference steroid 

metabolites of DHEA which were then separated by TLC as described in section 

2.6.3. Plates were sprayed with a thin layer of Liberman-Burchard reagent and 

 



heated to 100ºC, until the resultant coloured regions could be visualised. The location 

and colour of the known reference spots were used to identify unknown steroid when 

this procedure was repeated on subsequent TLC plates. 

 



 

3 Chapter 3: DHEA metabolism and action in human 
adipocytes  

 



 

3.1 Introduction 

As described in section 1.2.3, the development of adipose tissue is potently regulated 

by hormonal factors that include glucocorticoids and sex steroids. Glucocorticoids are 

well characterised key regulators of adipose tissue hyperplasia, hypertrophy and 

insulin sensitivity, playing a permissive role in adipose tissue differentiation. 

Consequently, glucocorticoid excess is characteristically associated with central 

obesity and insulin resistance, as exemplified in Cushing’s syndrome (section 

1.1.4.6.2.1). The local reactivation of glucocorticoids represents an important 

mechanism mediating glucocorticoid action. As described in section 1.1.4.5, the 

enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) efficiently converts 

inactive cortisone to active cortisol via its oxoreductase activity in a variety of tissues, 

importantly including liver and adipose, major sites involved in the regulation of 

insulin sensitivity. The clinical significance of local glucocorticoid activation in the 

context of the metabolic syndrome has been conclusively demonstrated during 

recent years by a multitude of in vitro, in vivo and clinical studies (Tomlinson et al., 

2004). In addition, the selective inhibition of 11β-HSD1 activity emerges as an 

exciting, novel therapeutic approach in type 2 diabetes and the metabolic syndrome 

(Stewart and Tomlinson, 2009). 

As described in section 1.2.3.2 the effects of active sex steroids on adipocyte 

development are also relatively well established. In addition, evidence is emerging 

that the sex steroid precursor, DHEA, may also regulate adipose tissue development. 

Several in vitro studies have demonstrated that in contrast to glucocorticoids, DHEA 

 



has inhibitory effects on preadipocyte proliferation (Gordon et al., 1987; Lea-Currie et 

al., 1998) and differentiation (Gordon et al., 1986; Lea-Currie et al., 1999; Lea-Currie 

et al., 1998; Lea-Currie et al., 1997b) while enhancing glucose uptake (Ishizawa et 

al., 2001; Ishizuka et al., 1999; Ishizuka et al., 2007; Kajita et al., 2000; Perrini et al., 

2004). Furthermore murine in vivo studies have revealed that DHEA treatment 

attenuates weight gain and ameliorates hyperglycaemia and hyperinsulinemia in 

murine models of obesity and diabetes (Cleary and Zisk, 1986; Coleman, 1988; 

Coleman et al., 1982). Interestingly, recent studies have demonstrated that DHEA 

may modulate 11β-HSD1 (Apostolova et al., 2005; Gu et al., 2003), suggesting an 

anti-glucocorticoid mechanism by which DHEA may act. Apostolova et al have 

demonstrated that DHEA inhibits 11β-HSD1 expression and oxoreductase activity in 

3T3-L1 cells and murine adipocytes (Apostolova et al., 2005). While, a recent cDNA 

analysis has revealed that 11β-HSD1 is one of the genes whose expression is 

inhibited by DHEA in the liver of treated animals (Gu et al., 2003). However, the 

above studies employed almost exclusively rodents or the murine preadipocyte cell 

line 3T3-L1. As rodent adrenals lack the ability to synthesize DHEA and 

consequently have circulating DHEA levels several orders of magnitude lower than 

that of humans, the relevance of these findings to human physiology is questionable.  

Therefore, we have examined the effects of DHEA on adipocyte proliferation, 

differentiation and glucose uptake, employing a human cell model, the subcutaneous 

preadipocyte cell line Chub-S7, with the aim of investigating the underlying 

mechanisms.   

 

 



3.2 Results 

3.2.1 The metabolism of DHEA human adipose cells  

3.2.1.1 The mRNA expression of steroidogenic enzymes in human 
preadipocytes and adipocytes  

The key pathways of DHEA metabolism include its sulfation to inactive DHEAS 

catalysed by SULT2A1 and the conversion of DHEA towards the active androgen 

precursors, androstenediol and androstenedione, by 17β-HSDs and 3β-HSD, 

respectively (Figure 1-15). Therefore, I first examined the potential intracellular 

conversion of DHEA by analyzing the mRNA expression of key DHEA metabolizing 

enzymes in our cellular model, the human preadipocyte cell line Chub-S7, and 

human subcutaneous and omental primary adipocytes. Total RNA was extracted 

from Chub-S7 cells and human subcutaneous and omental primary preadipocytes 

and adipocytes as described in section 2.4.1. Reverse transcription and conventional 

PCR were performed as described in section 2.4.2 and 2.4.3.2 respectively utilising 

gene specific primers (Table 2-3, primer pairs 31-32 and 35-39). Following 

amplification, PCR reactions were assayed by agarose gel electrophoresis as 

described in section 2.4.3.2.  

PCR amplification of SULT2A1 failed to produce any detectable product in all of the 

samples analysed, indicating that human subcutaneous preadipocytes and 

adipocytes and our cellular model do not express SULT2A1. This confirms that 

DHEA cannot be inactivated by sulfation to DHEAS within preadipocytes or 

adipocytes (Figure 3-1). In contrast, the successful amplification of STS was 

 



confirmed by the identification of a band of the expected size in all of the samples, 

indicating there is abundant expression of STS, responsible for the conversion of 

DHEAS to DHEA, in both preadipocytes and mature adipocytes (Figure 3-1). 

DHEAS is hydrophilic and therefore requires active trans-membrane influx transport, 

which is facilitated by members of the organic anion transporter polypeptide (OATP) 

family. I studied mRNA expression of all OATP isoforms previously implicated in 

DHEAS trans-membrane transport, including OATP–A, -B, -C, -D, -E and -8. 

Amplification of OATP-D resulted in a band of the correct size for all of the samples 

(Figure 3-1), whereas products were not detected for any other reaction (data not 

shown), confirming the selective expression of OATP-D in preadipocytes and 

adipocytes. 

DHEA can be converted downstream to active androgens via two mechanisms: the 

conversion to androstenedione via 3β-HSD activity or conversion to androstenediol 

via oxidative 17β-HSD activity (Figure 1-15). Amplification of the genes encoding the 

two human 3β-HSD isoforms, HSD3B1 and HSD3B2, resulted in no detectable 

products, indicating that human preadipocytes and adipocytes do not express 3β-

HSD1 and 3β-HSD2.  In contrast, the amplification of AKR1C3 produced a band of 

the correct size, indicating the expression of 17β-HSD type 5 in all the samples 

examined (Figure 3-1). To further investigate AKR1C3 expression I performed 

quantitative mRNA expression analysis as described in section 2.4.3.3 using gene 

specific primers and probe (Table 2-4, primer pair number 56). Data obtained from 

three independent triplicate experiments are presented as arbitrary units (AU), 

calculated using the equation AU = 2-ΔCt x 1000. The mRNA expression of AKR1C3 

in preadipocytes was relatively low and greatly increased following adipocyte 

 



differentiation (Figure 3-2). This was observed in all three cell lines examined, i.e. 

primary human sc and om preadipocytes and Chub-S7 preadipocytes, further 

confirming Chub-s7 as a suitable model to study human adipogenesis.  

3.2.1.2 DHEA metabolism in human preadipocytes and adipocytes  

I subsequently assessed the functional significance of the observed steroidogenic 

gene expression in the Chub-S7 human cell line. Enzymatic activity assays were 

performed as described in section 2.6.3, investigating the conversion of DHEA, 

during a 24 hour incubation period in both preadipocytes and mature adipocytes. 

Metabolites were identified by co-migration with unlabelled reference steroids which 

were visualised by exposure to Lieberman-Burchard reagent as described in section 

2.6.6. Activity was normalised to cellular protein content, assessed as described in 

section 2.5.7, and calculated per hour of incubation. Data obtained from four 

independent triplicate experiments are expressed as mean pmol/mg protein/ hour 

conversion.  

While there was no appreciable conversion of DHEA in preadipocytes, significant 

conversion of DHEA to androstenediol was detected in fully differentiated adipocytes 

(p<0.001; Figure 3-3), in consistence with our mRNA expression data (Figure 3-2). 

Interestingly, despite the detection of mRNA transcripts encoding STS in both 

preadipocytes and mature adipocytes, a lack of functional activity of STS was noted, 

evidenced by no detectable conversion of DHEA to DHEAS.  
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Figure 3-1 The mRNA expression analysis of steroidogenic genes in human 

adipocytes. The expression of key steroidogenic enzymes and transporters was 

assessed by conventional PCR in human omental preadipocytes (Om Pre) and 

adipocytes (Om Adip); human subcutaneous preadipocytes (Sc Pre) and adipocytes 

(Sc Adip); and Chub-S7 preadipocytes (Chub Pre) and adipocytes (Chub Adip). No 

expression of SULT2A1 was observed in any cells. In contrast transcripts for STS, 

OATP-D and 17β-HSD5 encoded for by AKR1C3 were detected in all cells 

examined. Positive control (Pos) reactions, utilising cDNA in which the gene of 

interest is expressed, confirmed amplification. Negative control (Neg) reactions, in 

which cDNA was excluded, confirmed the bands visualized were not artefacts.   
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Figure 3-2 The mRNA expression of AKR1C3 in human preadipocytes and 

adipocytes. The mRNA expression of AKR1C3 in human omental preadipocytes 

(Om Pre) and adipocytes (Om Adip); human subcutaneous preadipocytes (Sc Pre) 

and adipocytes (Sc Adip); and Chub-s7 preadipocytes (Chub Pre) and adipocytes 

(Chub Adip) was examined by real-time PCR. The expression of AKR1C3 in chub-S7 

and human adipose tissue was increased in differentiated adipocytes relative to 

preadipocytes. Data obtained from three independent triplicate experiments are 

presented as arbitrary units, with ΔCt given in the table. Statistical significance of 

expression by adipocytes vs. preadipocytes was assessed utilising Student’s t-test. 

**, P< 0.01; ***, P< 0.005 
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Figure 3-3 The activity of AKR1C3 in Chub-S7 preadipocytes and adipocytes. 

The conversion of DHEA in Chub-S7 preadipocytes and adipocytes was assessed 

via co-incubation with 3H DHEA for 24 hours and extraction, separation and 

identification of the metabolites. Appreciable conversion of DHEA to androstenediol 

was observed in adipocytes, but not proliferating preadipocytes. Data are presented 

as mean conversion in pmol/ mg of protein/ hour, obtained from four independent 

triplicate experiments. Statistical significance was assessed utilising unpaired 

Student’s t-test.  ***, P<0.005   

 

 

 



3.2.2 The effect of DHEA, androstenediol and DHEAS on human preadipocyte 

proliferation 

3.2.2.1 DHEA and androstenediol inhibit preadipocyte proliferation 

As the acquisition of adipose mass in vivo requires both preadipocyte proliferation 

and differentiation, the effects of DHEA on both of these processes were examined. 

Sub-confluent preadipocytes were incubated with various concentrations (100 nM, 1 

μM, 10 μM, 100 μM) of DHEA, DHEAS or androstenediol for up to 120 hrs.  

Preadipocyte proliferation was assessed by thymidine uptake analysis or colorimetric 

analysis as described in sections 2.1.2.2 and 2.1.2.3 respectively. Thymidine uptake 

analysis revealed that DHEA (≥1µM) significantly reduced the amount of tritiated 

thymidine incorporated into actively proliferating cells during the incubation period, 

indicating that DHEA inhibits preadipocyte proliferation (Figure 3-4, A). 

Androstenediol (≥10µM) inhibited preadipocyte proliferation to a lesser, but still 

notable, extent (Figure 3-4, B) whereas DHEAS had no effect (Figure 3-4, C). The 

inhibitory effects of DHEA and androstenediol were time and dose dependent, with 

maximal inhibition being observed following 120 hrs incubation with the maximum 

concentrations of steroid (Figure 3-4). 

Similar findings were observed utilising colorimetric assay analysis (Figure 3-5). 

DHEA (≥1µM) significantly inhibited the number of viable cells in culture (assessed 

by absorbance at 490nm), compared to control incubations, indicating that DHEA 

inhibited preadipocyte proliferation (Figure 3-5, A). Androstenediol treatment 

(≥10µM) resulted in a significant but lesser effect (Figure 3-5, B), while DHEAS had 

 



 

no significant effect (Figure 3-5, C). Again, the effects of DHEA and androstenediol 

were dose and time dependent.   
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Figure 3-4 Dose-dependent inhibition of Chub-S7 preadipocyte proliferation by 

DHEA and androstenediol. Sub-confluent Chub-S7 preadipocytes were incubated 

with DHEA, androstenediol or DHEAS (0-100 µM) for 24, 48 or 72 hours. Proliferation 

was analysed by incubation with incubated with 0.2μCi 3H-thymidine for the last 6 

hours of culture incubation. At 72 hrs, DHEA (≥1μM, panel A) and androstenediol 

(≥10µM, panel B) significantly inhibited preadipocyte proliferation. DHEAS did not 

significantly affect proliferation, (panel C). Statistical significance was assessed using 

one way ANOVA on ranks. *, P< 0.05; **, P< 0.01.  
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Figure 3-5 The dose-dependent inhibition of Chub-S7 preadipocyte 

proliferation by DHEA and androstenediol, assessed by colorimetric analysis 

Sub-confluent Chub-S7 preadipocytes were incubated with DHEA, DHEAS or 

androstenediol for 24, 72 or 120 hrs.  At 120 hrs DHEA (≥1μM; A) and androstenediol 

(≥10µM; B) significantly inhibited preadipocyte proliferation. DHEAS (C) produced no 

significant effect. Data represent the means ± SE and were obtained from three 

independent experiments. Statistical significance was assessed using one way 

ANOVA on ranks. *, P< 0.05; **, P< 0.01.  

 



3.2.2.2 The effect of DHEA on preadipocyte proliferation in the presence of sex 
steroid antagonists 

To assess if the inhibitory effect of DHEA on preadipocyte proliferation was mediated 

by sex steroid receptors, Chub-S7 preadipocytes were treated with an androgen 

receptor antagonist, flutamide, and an oestrogen receptor antagonist, ICI 182780 

(Faslodex) , 2 hrs prior to and during DHEA treatment. Preadipocyte proliferation was 

assessed by colourimetric analysis following 24, 72 and 120 hours incubation, as 

described in section 2.1.2.3. Co-incubation with the AR and ER antagonists failed to 

reverse the inhibitory effect of DHEA on preadipocyte proliferation at any timepoint 

(120 hrs, Figure 3-8) indicating that the observed effects are not mediated via DHEA 

downstream conversion to sex steroids. Treatment with the antagonists alone did not 

affect preadipocyte proliferation, confirming that the inhibition of proliferation 

observed was not due to the addition of the antagonists to the culture medium.  
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Figure 3-6 The inhibitory effect of DHEA on preadipocyte proliferation is 
independent of the AR and ER. Sub-confluent Chub-S7 preadipocytes were co-

incubated with DHEA and an antagonist of the androgen receptor, or oestrogen 

receptor and proliferation was assessed by colorimetric analysis at 120 hours. The 

inhibitory effect of DHEA was not diminished when cells were co-incubated with 

either antagonist. Incubation of cells with the androgen receptor or oestrogen 

receptor alone did not effect proliferation compared to control. Data represent means 

± SE obtained from at least three independent experiments. Statistical significance 

(vs. ctr) was assessed by Student’s t-test. ***,  P< 0.005. 

 



3.2.2.3 The effect of DHEA on the cell cycle 

As cellular toxicity was not evident following steroid treatment it was hypothesized 

that the inhibitory effect of DHEA was due to aberrant cell cycle progression. To test 

this hypothesis sub-confluent preadipocytes were incubated with 25 μM DHEA and 

the number of cells in each stage of the cell cycle quantified by FACS utilising flow 

cytometery as described in section 2.1.2.4. DHEA treatment caused a significant 

increase in the number of cells in the G1 phase (treatment, 63% of cells vs. control, 

54% of cells), while concurrently significantly reducing the proportion of cells in G2 

phase (19 vs. 21%) and S phase (16 vs. 27%)  (Figure 3-7).  
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Figure 3-7 DHEA results in inhibition of preadipocyte proliferation via growth 

arrest in G1 phase. Treatment of sub-confluent proliferating Chub-S7 cells with 

25µM DHEA significantly increased the number of cells in G1 phase (63 vs. 54% in 

untreated control cells) and decreased the number of cells in S phase (16 vs. 27%) 

and G2 phase (19 vs. 21%). Data represent means ± SE derived from five 

independent triplicate experiments. Statistical significance was assessed by 

Student’s t-test.* P< 0.05. 

 



3.2.3 The effects of DHEA, androstenediol and DHEAS on preadipocyte 

differentiation  

3.2.3.1 The effect of DHEA on cell morphology during preadipocyte 
differentiation  

The effect of DHEA on preadipocyte differentiation was assessed by 

observing cell morphology. Cells were cultured to 100% confluence in 24 well 

plates and differentiated for 21 days in chemically defined medium, including 

500nM cortisone, as described in section 2.1.3.1. Cells were treated with 

various concentrations of DHEA (10 nM, 100 nM, 1 μM, 10 μM, 25 μM, 50 μM, 

100 μM) throughout the differentiation procedure.  Photographs were taken of 

the cells at 7, 14 and 21 days to document their morphology. Control cells 

(Figure 3-8, B) displayed a differentiated morphology, with the acquisition of 

lipid droplets and the loss of a fibroblast- like appearance. Cells treated with 

≤10µM DHEA (Figure 3-8 , C) did not appear to differ morphologically from 

control cells. In contrast, cells treated with 25 µM DHEA (Figure 3-8, D) 

appeared more fibroblast-like than control cells, with an elongated shape and 

displayed less lipid accumulation. However, cells treated with 50µM DHEA or 

greater, appeared spherical and un-attached cells were visible in the media 

(Figure 3-8, E), suggesting that DHEA at these high concentrations was 

producing toxic effects. Therefore, 25µM was the highest concentration used 

for all further experiments. 
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Figure 3-8 DHEA attenuates morphological changes associated with 

preadipocyte differentiation in Chub-S7 cells. Confluent Chub-S7 preadipocytes 

(A) were differentiated in chemically defined media for 21 days in the presence of 

DHEA (0-50μM). Control cells (B) displayed a differentiated morphology, with the 

acquisition of lipid droplets and the loss of a fibroblast- like appearance. Cells treated 

in 10µM DHEA (C) did not appear to differ morphologically from control cells. In 

contrast, cells treated with 25 µM DHEA (D) appeared more fibroblast-like than 

control cells, with an elongated shape and contained much fewer lipid droplets. 

Treatment with ≥ 50 μM DHEA (E) induced toxicity. 

 



 

3.2.3.2 The effect of DHEA, androstenediol and DHEA on the expression of 
adipocyte differentiation markers 

To gain further insight into the apparent inhibitory effect of DHEA on preadipocyte 

differentiation I analyzed the mRNA expression of the early adipocyte differentiation 

marker lipoprotein lipase (LPL), the late differentiation marker glycerol-3-phosphate 

dehydrogenase (G3PDH) and the expression of hexose-6-phosphate dehydrogenase 

and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which play a key role in 

mediating the effects of glucocorticoids on preadipocyte differentiation. Cells were 

cultured to 100% confluence in 24 well plates and differentiated for 21 days in 

chemically defined medium, including 500nM cortisone, as described in section 

2.1.3.1. Cells were treated with various concentrations (10 nM, 100 nM, 1 μM, 10 μM 

and 25 μM) of DHEA, androstenediol or DHEAS throughout the differentiation 

procedure. At days 7, 14 and 21 total RNA was extracted as described in section 

2.4.1, reverse transcribed to cDNA as described in section 2.4.2, and the mRNA 

expression of adipocyte differentiation markers was assessed by real-time PCR as 

described in section  2.4.3.3, utilising gene specific primers and probes, (Table 2-4, 

48-51). DHEA co-incubated with cortisone significantly inhibited the mRNA 

expression of all LPL (≥10µM), G3PDH (≥10µM) and even more pronounced of 

H6PDH (≥100nM) and 11β-HSD1 (≥1µM) in a dose dependent manner. Interestingly, 

androstenediol treatment also resulted in a significant inhibition of differentiation 

markers, albeit less pronounced (LPL, G3PDH, 11β-HSD1 ≥25µM) while 

differentiation assays with DHEAS did not produce any detectable effect.  
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Figure 3-9 DHEA inhibits the induction of LPL and G3PDH mRNA expression 

during preadipocyte differentiation. The expression of the early differentiation 

marker LPL and the late differentiation marker G3PDH was analysed by real-time 

PCR in Chub-S7 preadipocytes differentiated in the presence of DHEA and 500 nM 

cortisone for 7, 14 or 21 days. Data are presented as mean ΔCt obtained from four 

independent triplicate experiments. At day 7 G3PDH expression was not detectable 

by real-time PCR. Statistical significance (vs. control) was assessed by one way 

ANOVA on ranks.  
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Figure 3-10 DHEA inhibits the induction of 11β-HSD and H6PDH mRNA 

expression during preadipocyte differentiation. The expression of 11β-HSD1 and 

H6PDH was analysed by real-time PCR in Chub-S7 preadipocytes differentiated in 

the presence of DHEA and 500 nM cortisone for 7 , 14 or 21 days. Data are 

presented as mean ΔCt obtained from four independent triplicate experiments. 

Statistical significance (vs. control) was assessed by one way ANOVA on ranks. 
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Figure 3-11 Androstenediol inhibits the induction of LPL and G3PDH mRNA 

expression. The expression of the early differentiation marker LPL and the late 

differentiation marker G3PDH was analysed by real-time PCR in Chub-S7 

preadipocytes differentiated in the presence of androstenediol and 500 nM cortisone 

for 7, 14 or 21 days. Data are presented as mean ΔCt obtained from four 

independent triplicate experiments. At day 7 G3PDH expression was not detectable 

by real-time PCR. Statistical significance (vs. control) was assessed by one way 

ANOVA on ranks. *, P<0.05; **, P<0.01. 

 

 

  

       
Δct 23.2 23.2 23.3 23.5 23.6 23.6 

± SE 0.6 0.7 0.6 0.8 0.6 0.7 
P val - ns ns  ns ns <0.05 

       

23.2      

0.59      

-      

Day 7 

Δct 20.9 21.0 21.0 21.0 21.2 21.3 
± SE 0.4 0.4 0.4 0.4 0.6 0.5 
P val - ns ns ns ns <0.05 

Δct 18.3 18.6 18.8 19.0 19.4 19.6 
± SE 0.4 0.6 0.5 0.4 0.5 0.5 
P val - ns ns ns ns <0.05 

              
Δct 16.3 16.3 16.5 16.5 16.6 16.7         Δct 16.4 16.4 16.4 16.4 16.7 16.8 

± SE 0.7 0.7 0.6 0.7 0.6 0.6        ± SE 0.3 0.3 0.3 0.4 0.3 0.3 
P val - ns ns ns ns <0.05        P val - ns ns ns ns <0.05 

Day 21 

Ctr 10nM 100nM 1μM 10μM 25μM
0.00

0.25

0.50

0.75

1.00

Fo
ld

 C
ha

ng
e

11β-HSD1 expression 

Ctr 10nM 100nM 1μM 10μM 25μM
0.00

0.25

0.50

0.75

1.00

Fo
ld

 C
ha

ng
e

C tr 10nM 100nM 1μM 10μM 25μM
0.00

0 .25

0 .50

0 .75

1 .00

Fo
l

ng
e

d 
C

ha

0 00

0.25

0.50

0.75

1.00

 C
ha

ng
e

Fo
ld

Day 7 

Day 14 

0.75

Ctr 10nM 100nM 1μM 10μM 25μM
0.00

0.25

0.50

1.00

Fo
ld

an
ge

 C
h



 

 
       

Δct 17.4 17.4 17.6 17.7 17.8 17.9 
± SE 0.4 0.4 0.5 0.7 0.4 0.5 
P val ns ns ns ns ns <0.05 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3-12 Androstenediol inhibits the induction of 11β-HSD mRNA 

expression during preadipocyte differentiation. The expression of 11β-HSD1 was 

analysed by real-time PCR in Chub-S7 preadipocytes differentiated in the presence 

of various concentrations of androstenediol (0- 25 μM) and 500 nM cortisone for 7, 14 

or 21 days. Data are presented as mean ΔCt obtained from four independent 

triplicate experiments. At day 7 G3PDH expression was not detectable. Statistical 

significance (vs. control) was assessed by one way ANOVA on ranks. 
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Table 3-1 DHEAS does not effect 11β-HSD1 expression during preadipocyte 

differentiation. The expression of 11β-HSD1 was analysed by real-time PCR in 

Chub-S7 preadipocytes differentiated in the presence of various concentrations of 

DHEAS (0- 25 μM) and 500 nM cortisone for 7 (A), 14 (B) or 21 (C) days. DHEAS 

treatment failed to produce any significant effects.     

 LPL G3PDH 11β-HSD1 
  Δct  SE ± Δct  SE ± Δct  SE ± 

Ctr 23.4 0.5 17.9 0.6 
10 nM 23.4 0.3 18.0 0.9 

100 nM 23.3 0.6 18.1 0.8 
1 μM 23.4 0.3 18.0 1.4 
10 μM 23.4 0.7 18.1 1.4 

 
 

Day 7 

25 μM 23.5 0.6 

 
Undetected 

18.1 0.9 
Ctr 19.2 1.2 20.7 0.6 15.7 1.2 

10 nM 19.2 1.1 20.7 0.4 15.8 0.7 
100 nM 19.1 0.8 20.9 0.6 15.7 0.7 
1 μM 19.3 1.4 20.8 0.9 15.7 0.7 
10 μM 19.2 0.7 20.7 0.4 15.8 0.6 

 
 

Day 14 

25 μM 19.2 1.1 20.7 0.6 15.6 1.0 
Ctr 16.3 0.8 16.4 0.8 13.4 1.4 

10 nM 16.4 0.9 16.4 0.6 13.6 1.6 
100 nM 16.3 0.8 16.3 0.9 13.5 1.1 
1 μM 16.3 1.4 16.5 0.8 13.5 0.6 
10 μM 16.5 0.9 16.6 0.5 13.6 1.2 

 
 

Day 21 

25 μM 16.4 0.9 16.6 0.7 13.5 1.0 

 



3.2.3.3 The effect of DHEA on basal and insulin dependent glucose uptake  

In the mature adipocyte, cross-membrane glucose influx is a process critical for the 

provision of glucose, which via the pentose phosphate pathway is an important 

substrate for triglyceride synthesis, therefore contributing to adipocyte hypertrophy. 

The effect of DHEA on adipocyte glucose uptake, in both the basal and insulin 

stimulated states was therefore examined.  

Preadipocytes were differentiated for 21 days as described in section 2.1.3.1. Cells 

were treated with DHEA for 2 hrs prior to and during 2-deoxy-D-[1-3H]-glucose 

uptake analysis, performed as described in section 2.1.4.1. DHEA treatment (≥ 1μM) 

significantly increased glucose uptake in the absence and presence of insulin 

(P<0.05; Figure 3-13). Glucose uptake in the presence of insulin accounts for both 

basal and insulin stimulated uptake. Therefore insulin stimulated uptake was 

calculated by subtracting basal glucose uptake from total glucose uptake in the 

presence of insulin and is shown in Table 3-1. There was no significant effect of 

DHEA on insulin stimulated glucose uptake. Data were obtained from five 

independent triplicate experiments and statistical significance vs. control was 

assessed by one way ANOVA on ranks. 
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Figure 3-13 DHEA stimulates basal glucose uptake. Preadipocytes were treated 

with DHEA for 2 hrs prior to and during, 2-deoxy-D-[1-3H]-glucose uptake analysis, 

which was performed in absence (-) or presence (+) of insulin. DHEA (≥ 1µM) 

significantly increased basal glucose uptake and glucose uptake in the presence of 

insulin. Data are presented as mean glucose uptake (in DPM) ± SE, obtained from 

five independent triplicate experiments. Statistical significance vs. control was 

assessed by one way ANOVA on ranks. *, P<0.05; **, P<0.01 vs. control with 

corresponding insulin treatment. 

 



 
 

 

 

 

 

Table 3-2 DHEA does not modulate insulin stimulated glucose uptake. Insulin 

stimulated glucose uptake for each DHEA treatment was calculated by subtracting 

glucose uptake in the absence of insulin (basal) from glucose uptake in the presence 

of insulin. DHEA treatment had no significant effect on insulin stimulated glucose 

uptake. Data are presented as mean insulin stimulated glucose uptake (in DPM) ± 

SE, obtained from five independent triplicate experiments. Statistical significance vs. 

control was assessed by one way ANOVA on ranks. ns, not significant.  

 

DHEA Treatment Mean insulin stimulated 
glucose uptake ± SE 

Statistical significance 
versus control 

Ctr 5245 ± 634 ns 

0.1 μM 5004 ± 523 ns 

1 μM 5732 ± 732 ns 

10 μM 5622 ± 691 ns 

100 μM 5843 ± 644 ns 

 

 



 

3.2.3.4 The effect of DHEA on adipocyte 11β-hydroxysteroid dehydrogenase 
type 1 oxo-reductase and dehydrogenase activity 

Glucocorticoids (GC), key regulators of adipose differentiation are reactivated locally 

by 11β-HSD1 oxidoreductase activity, the expression of which increases with 

adipocyte differentiation. As I have shown that DHEA inhibits 11β-HSD1 expression 

and adipocyte differentiation, I postulated that DHEA may mediate its inhibitory effect 

on differentiation via the attenuation of the local regeneration of GC. I therefore 

assessed the effect of DHEA on 11β-HSD1 activity, to find out if the observed 

reduction of 11β-HSD1 mRNA expression by DHEA had functional significance. 

Preadipocytes were differentiated in chemically defined medium, including 500 nM 

cortisone and co-incubated with various concentrations of DHEA (10 nM, 100 nM, 1 

μM, 10 μM, 25 μM), as described in section 2.1.3.1. 11β-HSD1 enzymatic activity 

was assessed by co-incubation with 100 nM cortisone or cortisol and the respective 

radiolabelled steroid (50,000 cpm/well) for three hours as described in section 2.6.2. 

Activity was normalized to cellular protein content, assessed as described in section 

2.5.7, and calculated per hour of incubation. Data, obtained from four independent 

triplicate experiments, are expressed as mean pmol/mg protein/ hour conversion. 

DHEA treatment (≥1μM) resulted in a marked reduction in the conversion of 3H E to 

3H F, in a dose dependent manner, indicating that DHEA attenuated the 11β-HSD1 

oxo-reductase activity. (Figure 3-14, A). 11β-HSD1 is a bi-directional enzyme, 

possessing both oxo-reductase and dehydrogenase activity. However, in vivo this 

isoform acts predominantly as an oxo-reductase, converting cortisone to cortisol. 

Concurrent to the DHEA induced inhibition of 11β-HSD1 oxo-reductase activity, a 

 



significant increase in the conversion of 3H F to 3H E was observed, indicating that 

DHEA (≥25μM) increases 11β-HSD1 dehydrogenase activity (Figure 3-14, B).     
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Figure 3-14 DHEA attenuates Chub-S7 11β-HSD1oxo-reductase activity. Cells 

differentiated for 21 days in the presence of DHEA (0-25μM) were incubated with 

serum-free DMEM containing 100 nM cortisone or cortisol and 3H-cortisone or 3H-

cortisol, respectively (50,000 cpm/ml) for 3 hours. Individual well protein 

concentrations were calculated and used as an internal control. DHEA (≥ 1 μM) 

significantly inhibited 11β-HSD1 oxoreductase activity, while DHEA (25 μM) 

significantly increased 11β-HSD1 dehydrogenase activity. Data is expressed as the 

means ± SEM of three independent triplicate experiments. Statistical significance 

was assessed by one way ANOVA on ranks. * P < 0.05, ** P < 0.01 vs. control  

 



3.2.3.5 The effect of DHEA co-incubated with cortisol on preadipocyte 
differentiation. 

To further test the hypothesis that DHEA attenuates adipocyte differentiation via an 

inhibitory effect on 11β-HSD1, I analysed the effect of DHEA on adipocytes 

differentiated in the presence of the active glucocorticoid, cortisol, thus negating the 

requirement for 11β-HSD1 activity for differentiation. Preadipocytes were 

differentiated in chemically defined medium as previously, but with 500 nM cortisol 

substituted for cortisone (section 2.1.3.1). Cells were differentiated for a shorter 

period with cortisol (18 days vs. 21 days with cortisone) due to the greater adipogenic 

potency of cortisol. At days 9 and 18 total RNA was extracted as described in section 

2.4.1 and reverse transcribed to cDNA as described in section 2.4.2. The mRNA 

expression of adipocyte differentiation markers was assessed by real-time PCR as 

described in section 2.4.3.3, utilising gene specific primers and probes (Table 2-4, 

primer pairs 48-51). DHEA co-incubated with cortisol significantly inhibited the mRNA 

expression of all genes analysed, LPL (25 µM), G3PDH (25 µM) H6PDH (≥100nM) 

and 11β-HSD1 (25 µM) at both timepoints analysed (day 9 and day 18). However, 

consistent with our hypothesis, the inhibitory effect of DHEA was significantly less 

than achieved by DHEA co-incubated with the inactive glucocorticoid cortisone, again 

at both time-points. Expression analyses for the two treatments were compared at 

the time-point when the control group of each treatment had comparable gene 

expression, suggesting a similar differentiation state of the control cells. No 

significant difference in gene expression between control groups was confirmed 

using unpaired Student’s t-test.  At 10µM DHEA, LPL expression was reduced by 

52% in differentiation assays with cortisone as compared to 28% when co-incubated 

 



with cortisol; similar effects were observed for G3PDH (DHEA+ cortisone 68%, 

DHEA+ cortisol 37%) and 11β-HSD1 (DHEA+ cortisone 68%, DHEA+ cortisol 43%) 

(Figure 3-15). Interestingly, co-incubation with cortisol did not significantly alter the 

level of DHEA-induced inhibition of H6PDH expression (Figure 3-15).  
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Figure 3-15 DHEA inhibits preadipocyte differentiation via inhibition of 11β-

HSD 1 oxo-reductase activity. Chub-S7 cells were differentiated in the presence of 

DHEA (0-25µM) and 500nM cortisone (black bars) or 500 nM cortisol (white bars). 

mRNA expression analysis is presented at the timepoint where the most significant 

effect of DHEA co-incubated with cortisone was observed; LPL and H6PDH, day 14; 

G3PDH and 11β-HSD1, day 21. The mRNA expression of the corresponding gene 

was determined by quantitative PCR and expressed as percentage decrease of 

control. Data was obtained from three independent experiments. Statistical analysis 

was performed on Δct values. DHEA co-incubated with inactive cortisone significantly 

inhibited LPL, G3PDH and 11β-HSD1 expression to a greater extent than when co-

incubated with active cortisol. In contrast, there was no significant difference in 

H6PDH expression between treatments. * P < 0.05, ** P < 0.01     

 



3.3 Discussion 

Previous murine studies have demonstrated beneficial anti-adipogenic and anti-

diabetic effects of DHEA both in vitro and in vivo. However, as rodent adrenals lack 

the ability to synthesize DHEA and consequently have circulating DHEA levels 

several orders of magnitude lower than that of humans, the relevance of these 

findings to human physiology is questionable. Despite this significant discrepancy, to 

date no in vitro and limited in vivo human studies have been performed (Arlt, 2004b; 

Arlt and Allolio, 2003; Arlt et al., 1999; Gurnell et al., 2008; Johannsson et al., 2002; 

Lovas et al., 2003; Villareal and Holloszy, 2004). Here, utilising a human 

immortalised subcutaneous preadipocyte cell line, Chub-S7 (Darimont et al., 2003) I 

have demonstrated that DHEA attenuates preadipocyte proliferation and 

differentiation, and increases adipocyte glucose uptake, opposing the effects of 

glucocorticoids. To our knowledge, this is the first time the effect of DHEA on these 

parameters has been investigated in a human model. I have demonstrated that the 

Chub-S7 cell line, which has previously been extensively characterised by us and 

others, exhibits a level of expression of steroidogenic enzymes comparable to that of 

human primary subcutaneous adipocytes. This further confirms that this cell line is a 

suitable and valuable model for our studies, particularly due to the relative difficulty in 

obtaining the required number of human adipocytes for primary culture.  

I have shown that DHEA (≥1μM) and androstenediol (≥10μM) attenuate preadipocyte 

proliferation, while the sulphate ester of DHEA, DHEAS, produced no significant 

effect. I have shown that the subcutaneous preadipocytes express OATP-D, a 

member of the OATP superfamily, implicated in the cross membrane transport of 

DHEAS (Hsiang et al., 1999; Kullak-Ublick et al., 1998; Ugele et al., 2003). This 

 



finding, in contrast to previous studies, implies that the differential effect of 

hydrophilic DHEAS is not due to its inability to cross the cell membrane. Our finding 

for DHEA is similar to those of previous murine in vitro studies (Lea-Currie et al., 

1999; Lea-Currie et al., 1998) which have shown that DHEA inhibits the proliferation 

of 3T3-L1 cells at 5 μM or greater. I have shown the anti-proliferative effect of DHEA 

to be, in part, via growth arrest in the G1 phase of the cell cycle. Interestingly, Schultz 

et al (Schulz et al., 1992) have demonstrated that DHEA treatment of a human 

colonic adenocarcinoma cell line results in G1/S phase cell cycle arrest, suggesting 

that this inhibitory effect of DHEA may not be tissue specific.  

Previous studies have proposed that the anti-adipogenic actions of DHEA are 

mediated by its downstream conversion to active metabolites. However I have shown 

the inhibitory effect of DHEA to be direct as no significant conversion of DHEA within 

Chub-S7 preadipocytes was detected. Furthermore, failure of antagonists of the 

androgen and oestrogen receptor to relieve the inhibitory effect of DHEA, exclude the 

possibility that DHEA acts via these receptors.  

Interestingly the observed anti-proliferative effect of DHEA opposes that of 

glucocorticoids. Evidence is emerging that glucocorticoids may stimulate 

preadipocyte proliferation in a depot specific manner, enhancing preadipocyte 

proliferation in the subcutaneous depot ((Bader et al., 2002), our own unpublished 

observations). However, an anti-glucocorticoid mechanism of DHEA regulating 

proliferation has failed to be identified.  

In contrast to preadipocytes, significant metabolism of DHEA to androstenediol was 

observed in mature adipocytes, putatively catalysed by the observed increase in 

 



AKR1C3 expression with differentiation of Chub-S7 cells. This finding is consistent 

with one previous study which examined the conversion of DHEA in human 

adipocytes by LCMS analysis. I have demonstrated that DHEA, and to a lesser 

extent androstenediol, attenuate human preadipocyte differentiation. DHEA treatment 

resulted in marked retardation in differentiation, characterised by a more fibroblast-

like cellular morphology, a reduction in the accumulation of lipid droplets, and 

reduced expression of LPL and G3PDH- well characterised markers of adipocyte 

differentiation. Some previous murine studies have also alluded to an inhibitory effect 

of DHEA on preadipocyte differentiation. Lea-Curie et al observed that 30 μM DHEA 

attenuated TAG accumulation in differentiating 3t3-L1 cells. While, Kajita et el have 

reported that DHEA treatment of rodents decreased the expression of PPARγ, a 

regulator of adipocyte differentiation, in the adipose tissue of these animals. However 

these previous studies have failed to provide a mechanistic insight into the effects of 

DHEA.  

I propose that the inhibitory effect of DHEA on preadipocyte differentiation is via an 

anti-glucocorticoid mechanism. It is well recognised that glucocorticoids, which are 

reactivated locally by the oxo-reductase activity of 11β-HSD1, play a vital permissive 

role in inducing preadipocyte differentiation (Bujalska et al., 1999; Gregoire et al., 

1991; Hauner et al., 1987; Wolf, 1999). I have demonstrated that DHEA attenuates 

the local regeneration of glucocorticoids in adipocytes by two concerted 

mechanisms- attenuation of the induction of 11β-HSD1 during differentiation, and 

inhibition of expression of H6PDH, the enzyme which regenerates the co-factor 

NADPH, required for 11β-HSD1 oxo-reductase activity (Hewitt et al., 2005). Inhibition 

of 11β-HSD1 oxoreductase activity was associated with concurrent increase in 

 



dehydrogenase activity, suggesting the specific inhibition of the oxo-reductase 

activity of 11β-HSD1, which I propose to be due to the observed inhibition of H6PDH. 

However, the increase in dehydrogenase activity was only significant at the highest 

concentration of DHEA treatment (25 μM), while and inhibition in 11β-HSD1 

oxoreductase activity was observed at 1 μM DHEA, suggesting that the observed 

reduction in 11β-HSD1 mRNA expression is also likely to contribute. 

Co-incubation with the active glucocorticoid cortisol confirmed that DHEA mediates 

the inhibition of adipocyte differentiation at least in part via the attenuation of the local 

amplification of glucocorticoids. However, it is also clear that DHEA additionally acts 

via glucocorticoid independent mechanisms. Co-incubation with cortisol still resulted 

in inhibition of preadipocyte differentiation, although the effect of DHEA was 

significantly diminished.      

In addition, I have shown DHEA to stimulate basal glucose uptake, mimicking the 

action of insulin, consistent with the amelioration of hyperglycaemia and insulin 

resistance observed upon DHEA treatment in vivo. Again this effect of DHEA 

opposes that of glucocorticoids, which are well known to induce insulin resistance in 

preadipocytes. The underlying mechanisms by which glucocorticoids modulate 

insulin signalling remain unclear but appear to involve the conventional PKCs. In 

direct contrast, it has been demonstrated utilising rat adipocytes that DHEA may 

mimic or enhance insulin action via PI3-kinase and atypical PKC activation (Kajita et 

al., 2000). In support of our finding that DHEA predominately mimics rather than 

enhances the actions of insulin, DHEA has been shown to activate the insulin 

signalling pathway at the level of P13-kinase, independent of either the insulin 

receptor or AKT phosphorylation. This has been shown to result in increased 

 



translocation of the glucose transporters, GLUT1 and GLUT4 to the plasma cell 

membrane (Perrini et al., 2004).  Furthermore these findings are consistent with the 

rapid (2 hrs) stimulatory effect of DHEA observed in this study, which suggests that 

DHEA is acting via a non-genomic mechanism.  

In summary our findings establish that DHEA exerts anti-glucocorticoid action in the 

adipocyte compartment, antagonizing the effects of cortisol on proliferation, 

differentiation and glucose uptake. Our findings are consistent with those of previous 

murine in vivo studies, suggesting a potential beneficial effect of DHEA on adipocyte 

proliferation and differentiation and insulin sensitivity in humans that warrants further 

studies, e.g. employing human primary cells and in vivo. Of particular interest is the 

conversion and effect of DHEA in adipocytes from PCOS patients, who have 

elevated DHEA levels, yet display central obesity and insulin resistance.  It is 

currently unclear if the expression of DHEA metabolizing enzymes differs in this 

population, as has been previously shown to occur in PBMC cells with aging.  

 

 



 

4 Chapter 4: Interconversion of DHEA and DHEAS and 
androgen excess 

 



 

4.1 Introduction 

The principle way in which DHEA produces physiological effects is via its 

downstream conversion into potent androgens and oestrogens in peripheral target 

tissues. As described in section 1.1.5.3, only uncongugated DHEA can be 

metabolised in this way, whereas conversion of DHEAS to androgens first requires 

cleavage of the sulfate moiety, catalysed by the microsomal enzyme STS. 

Conversely, DHEA can be inactivated by sulfation, catalysed by the cytosolic enzyme 

SULT2A1. Therefore the expression and activity of STS and SULT2A1 determines 

the bioavailability of DHEA.  

Based on previous studies, which determined the pharmokinetics of DHEA and 

DHEAS following oral DHEA administration, it was generally accepted that DHEA 

and DHEAS interconvert freely and continuously. However, a more recent study in 

which oral DHEA and intravenous DHEAS was administered to healthy young men 

indicates that the predominant direction of DHEA and DHEAS interconversion to be 

of sulfation (Hammer et al., 2005b). In this study, as expected, DHEA administration 

resulted in an increase in circulating DHEAS, whereas, administration of DHEAS 

surprisingly failed to result in any significant production of DHEA. Therefore the 

crucial rate limiting step regulating circulating DHEA levels appears to be that of 

DHEA sulphotransferase rather than STS. If this paradigm is correct, increased 

sulfation of DHEA to DHEAS can be predicted to limit the amount of DHEA available 

for androgen synthesis, whilst impaired sulfation would increase DHEA and 

consequently the level of active androgens.  

 



As described in section 1.1.7, androgen excess is the most common endocrine 

disorder and a key diagnostic trait of PCOS, which accounts for the majority of cases 

and is estimated to affect 5-10% of women of child-bearing age (Franks, 2006; 

Norman et al., 2007; Trivax and Azziz, 2007). PCOS is associated with a range of 

metabolic and endocrine dysregulations including obesity, type II diabetes mellitus, 

arterial hypertension and infertility (Barber et al., 2006; Norman et al., 2007). Recent 

studies have suggested that premature adrenarche, defined by an early increase in 

DHEA/DHEAS circulating levels, and its clinical manifestation, premature pubarche, 

may be early clinical predictors of the subsequent development of PCOS and its co-

morbidities (Blank et al., 2008; Ibanez et al., 2000; Ibanez et al., 1998a; Ibanez et al., 

1998b).  

All sulfation reactions, including that of metabolically active DHEA to inactive DHEAS, 

catalysed by SULT2A1, require the universal sulphate donor 3’-phosphoadenosine 

5’-phosphosulfate, PAPS. In humans, PAPS is synthesised by two isoforms of PAPS 

synthase, PAPSS1 and PAPSS2 (Xu et al., 2000). Two variants of the PAPSS2 

isoform exist due to alternate splicing, PAPSS2a and PAPSS2b, which differ in an 

additional five amino acid segment (GMALP) in the ATP sulfurylase domain of the 

PAPSS2b protein. As described in section 1.1.6.4.1 a homozygous mutation in the 

human PAPSS2 enzyme (S475X) has previously been described in several 

individuals from large Pakistani kindred (ul Haque et al., 1998). This mutation has 

been shown to be linked with spondyloepimetaphyseal dysplasia (SEMD) Pakistani 

type (OMIM +603005) (ul Haque et al., 1998), thought to result from impaired 

sulfation of cartilage proteoglycan in growth plate chondrocytes, an essential process 

for normal bone development.  

 



In this chapter I describe the case of a girl with androgen excess, premature 

pubarche, hyperandrogenic anovulation, and serum DHEAS levels below the limit of 

detection. Using an in vitro DHEA/DHEAS shuttle model I have investigated the 

molecular cause of the observed androgen excess in this patient, hypothesizing that 

a defect in DHEA sulfation may explain her phenotype. 

4.2 Case report  

An 8 year old girl, the daughter of nonconsanguineous parents of Turkish origin, was 

referred to the Endocrine Unit of the Department of Paediatrics, Radboud University 

Nijmegen Medical Centre, for evaluation of premature pubarche based on pubic and 

axillary hair growth which had been observed since the age of 6 years. Pubic-hair 

development was classified as Tanner stage 4 and breast development as Tanner 

stage 2. Blood pressure was normal at 115/85 mm Hg. The patient’s bone age was 

advanced without evidence of accelerated growth velocity in the growth curve.  

Biochemical analysis revealed DHEAS was below the lower limit of detection, while 

plasma DHEA was close to the upper limit of the normal range (Table 4-1) and 

circulating androstenedione and testosterone were both increased approximately 2-

fold (Table 4-1). Dexamethasone (0.5 mg administered every 6 hours for 48 hours) 

suppressed the plasma cortisol level to less than 0.02 nmol per litre and reduced the 

DHEA level from 15.0 to 1.6 nmol per litre and reduced the androstenedione level 

from 4.1 to 2.9 nmol per litre, findings that ruled out autonomous steroid production 

by adrenal or gonadal tumour. Plasma 17-hydroxyprogesterone was normal at 

baseline and 60 min after cosyntropin 250 µg i.v. excluding 21-hydroxylase 

deficiency. Gonadotrophins were within the normal prepubertal range at baseline (LH 

 



<0.2 U/L, FSH 0.7 U/L) and after GnRH 100 µg i.v. (LH 4.5 U/L, FSH 8.5 U/L) as was 

17β-estradiol (36 pmol/l, normal range <18-52 pmol/L). The absence of a clearly 

pubertal response of levels of oestradiol or luteinizing hormone to the administration 

of gonadotrophin-releasing-hormone, as well as the short history of breast budding 

argued against the possibility that central precocious puberty was a major contributor 

to the patient’s advanced bone age. Magnetic resonance imaging of the adrenals 

revealed normal size, shape and location of both adrenal glands. Following this initial 

presentation there was progression of pubic hair growth and breast development and 

menarche occurred at the age of 11 years.  

The findings of a follow up assessment were largely similar to those made at 8 years 

of age, with a 2-fold increase in 2-fold increased androstenedione and testosterone 

levels, DHEA at the upper limit of normal and again DHEAS levels below the limit of 

detection (Table 4-1). Reassessment with a more sensitive assay showed plasma 

DHEAS levels at 0.27 μmol per litre (99.5 ng per litre). DHEAS remained below 0.4 

μmol per litre throughout a cosyntrophin stimulation test, whereas plasma DHEA 

levels increased during the test. Analysis of urinary steroid metabolites over a 24-

hour period showed increased excretion of the major androgen metabolite 

androsterone (5376 μg per 24 hours; normal range 287 to 2215). 

At 12 years the patient had pubic-hair development at Tanner stage 5, breast 

development at Tanner stage 4 and clinically significant hirtuism and acne. Her bone 

age was 16.5 years, her height was 139.0 cm, short for her chronological age and 

bone age (standard deviation score, for chronological age, -2.4, and for bone age, -

4.6).  Her body mass index (the weight in kilograms divided by the square of the 

height in meters) was 30.2. X-rays revealed mild lumbar sclerosis, flattened vertebrae 

 



(platyspondyly) with irregular vertebral end plates in the thoracolumbar region 

(Figure 4-1).  

At 13 years of age she developed secondary amenorrhea, but polycystic ovaries 

were not evident. Her thyroid function, fasting plasma glucose and insulin levels all to 

be normal and all known conditions which present with hyperandrogensim were 

excluded. The patients height at 14.5 years remained at 139.0 cm (standard 

deviation score, -4.1). The father reported having had normal height and pubertal 

development and the mother reported normal pubarche and menarche. But when 

she was in her early 30’s, obesity, oligomenorrea and hirsutism had developed. 

All clinical and biochemical analyses were performed by the team of Dr Cees 

Noordam from the Department of Paediatrics- Metabolic and Endocrine Disorders 

and the Department of Chemical Endocrinology, Radboud University Nijmegen 

Medical Center, Nijmegen, The Netherlands.   

 

 



 
Table 4-1 Circulating hormone concentrations and respective sex- and age-

specific reference ranges in the patient as measured at the initial assessment 

(8 years of age) and at the follow-up assessment (12 years of age). GnRH 

denotes gonadotrophin releasing hormone.  

 
 
Serum hormone parameter 

Patient 
at age 8   

years 

Sex- and age-
specific reference 

range 

Patient at 
age 12 
years 

Sex- and age-
specific 

reference range 
 

 
DHEAS (µmol/L) 
 

 
<0.40 

 
0.6-4.6 

 
<0.40 

 
1.4-10.4 

 
DHEA (nmol/L) 15.0 1.3-18.0 20.0 

(43.0)* 
 

2.0-22.0 
 

Androstenedione (nmol/L) 4.1 0.14-2.4 27.0 <12.0 
 

Testosterone (nmol/L) 
 
Dihydrotestosterone 
(nmol/L) 

1.2 0.03-0.65 2.1 
 

0.36 

0.51-1.26 
 

0.05-0.25 
 

LH (IU/L) <0.2 
(4.5)† 

 

<0.2-1.3 
 

3.2 <0.05-20.2 

FSH (IU/L) 2.0 
(8.5)† 

<0.2-3.7 
 

5.2 0.14-8.8 

17β-estradiol (pmol/L) 
 

36 <18-52 220 110-370 

Estrone (pmol/L) 
 

  260 65-220 

17-hydroxyprogesterone 
(nmol/L) 

1.30 
(3.1)* 

0.2-5.8 
(<20)* 

  

17-hydroxypregnenolone 
(nmol/L)  
 

  2.9 
(15.1)* 

0.3-6.1 
(<40)* 

11-deoxycortisol (nmol/L)   <0.17 
(1.70)* 

<0.17 
(<7)* 

     
Cortisol (nmol/L)   140 

(650)* 
100-500 
(>500)* 

     
 
*  at baseline (60 min after cosyntropin 250 µg i.v.) 
† at baseline (30 min after GnRH 100 µg i.v.) 

 



A

C

B

D

 
 
Figure 4-1 Skeletal X-rays taken in the patient at the age of 12 years. Spinal x-

ray depicting flattened vertebrae (platyspondyly) with reduced intervertebral disk 

space and slightly irregular end plates within the thoraco-lumbar region. By contrast 

x-ray analysis of the long bones did not (B and C, left leg; D, left arm) did not reveal 

any evidence of metaphyseal or epiphyseal changes.   
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Figure 4-2 Urinary androgen metabolite excretion. Analysis of urinary steroid 

metabolites of the patient (at age 12 years) over a 24-hour period showed increased 

excretion of the major androgen metabolite androstenedione (5376 μg per 24 hours, 

represented as red diamond; normal range, 287- 2215 μg per 24 hours, represented 

as blue box). Etiocholanolone and DHEA excretion was in the upper-normal and 

normal range, respectively. 

 



4.3 Results  

4.3.1 Genetic analysis of the genes encoding the human DHEA sulfation 

system 

We hypothesised that the patient’s phenotype of androgen excess and concurrent 

low DHEAS levels may be due to a defect in DHEA sulfation. Therefore I sequenced 

the genes encoding the key enzymes involved in this process (SULT2A1, PAPSS1 

and PAPSS2) in the affected individual and her immediate family. Genomic DNA was 

isolated from peripheral blood leucocytes of the patient, her parents and her sibling, 

following written informed consent from the parents and verbal consent from the 

patient, with approval of the South Birmingham Research Ethics Committee.  

The coding sequences of human SULT2A1, PAPSS1 and PAPSS2 including exon-

intron boundaries were amplified and subsequent automated sequence analysis was 

performed as described in section 2.4.3.2 and section 2.2.3.3 respectively, employing 

gene specific primers (listed in Table 2-1, 1-26). Initial sequencing of SULT2A1, 

revealed previously identified single nucleotide polymorphisms (SNPs), which have 

been shown to not affect enzyme function, but no mutations. Likewise, sequencing of 

PAPSS1 failed to identify any mutations. However, sequencing of PAPSS2 gene 

revealed a heterozygous substitution of cytosine for guanine at nucleotide position 

143 (143C>G) in exon 2 of genomic DNA obtained from the patient and her father 

(Figure 4-3, A). This missense mutation substitutes an arginine for threonine at 

position 48 of the PAPSS2 protein (T48R), which is located in immediate proximity to 

the P loop structure within the APS kinase domain of the enzyme. This region has 

previously been identified as critical for APS kinase activity and is highly conserved 

 



across species (Figure 4-3, B). In addition, sequencing analysis revealed a 

heterozygous substitution of cytosine for thymidine in position 985 (c.985C>T) in 

exon 8 of the PAPSS2 gene in genomic DNA obtained from the patient and mother. 

This mutation introduces a premature stop codon within the ATP sulfurylase domain 

of the PAPSS2 protein and truncating the protein at position 329 (R329X). The 

proposed crystal structure of these mutant proteins, in addition to WT PAPSS2a and 

the previously Identified mutation in PAPSS2 (S475X, see section 1.1.6.4.1) are 

shown in Figure 4-4. The mutation which I refer to as S475X was originally reported 

as S438X, but translates to S475X according to the current PAPSS2a protein 

sequence NP_004661. Identified mutations were independently verified and 

numbered according to the amino acid position in the protein sequence of the human 

PAPSS2a protein (GenBank accession number NP_004661).  
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Figure 4-3 A, Location of the identified PAPSS2 mutations within the PAPSS2 

gene locus and the two functional domains of the PAPSS2 protein. The patient (P) is 

compound heterozygous while father (F) and mother (M) are heterozygous carriers. 

B, Cross-species alignment of the PAPSS2 region containing missense mutation 

T48R and schematic depiction of the respective protein secondary structures. Protein 

sequence alignments were generated using clustalX2 (www.clustal.org) and the 

deposited sequences for Human (NP_004661), Mouse (NP_035994), Yeast 

(CAA46252; CAA60932), Bacteria (A1AEU4; AAG57859) and Plant PAPSS2 

(CAA53426; CAB78510). 

 

http://www.clustal.org/


 

 

Figure 4-4 Three-dimensional modelling of wild-type and mutant PAPSS2 

proteins. PAPSS2 contains two functional domains, ATP sulfurylase and APS 

kinase. Previously reported mutant S475X and R329X on the maternal PAPSS2 

allele in our patient result in early truncation of the ATP sulfurylase domain while the 

paternally inherited missense mutation T48R affects an amino acid immediately 

adjacent to the central P loop structure (highlighted in blue) within the APS kinase 

domain, an area crucial for ATP cleavage and thus APS kinase activity. The x-ray 

structure of human PAPSS1 (http://www.expasy.org/cgi-bin/dbxref?SMRO95340), 

which shares 80% sequence identity to human PAPSS2, served as the template for 

three-dimensional modelling of human PAPSS2 wild-type and mutant proteins, 

generated using DeepView/Swiss-PDB Viewer (www.expasy.org/spdbv/) and 

POVRAY (www.povray.org). Generated by Dr Vivek Dhir 

 

http://swissmodel.expasy.org/repository/smr.php?sptr_ac=O95340&csm=52F4B6D972DDA91E


4.3.2 In vitro constitution of the DHEA sulfation system  

With the aim of confirming the disease causing nature of the identified mutations I 

generated an in vitro model of the DHEA/DHEAS shuttle, as described in section 

2.6.4, by co-incubating bacterially expressed wild type (WT) SULT2A1 and WT or 

mutant PAPSS2a proteins. In this system the dependence of SULT2A1 activity (the 

sulfation of DHEA to DHEAS) on the provision of PAPS by PAPSS can be exploited 

to determine the functional activity of bacterially expressed WT and mutant 

PAPSS2a.   

4.3.2.1 Confirmation of pGEX-construct sequences 

WT plasmids (pGEX-6P-3-PAPSS2a and pGEX-6P-3-SULT2A1), kindly provided by 

Dr Charles Strott, NIH Bethesda, USA, were used to bacterially express SULT2A1 

and PAPSS2. To generate these constructs, human full length PAPSS2a and 

SULT2A1 cDNA were inserted into the SalI and BamHI sites or the SalI and NotI 

sites, respectively, of the pGEX-6P-3 expression vector (G.E Healthcare) as 

described previously (Fuda et al., 2002) or via personnel communication.  

Restriction digestion of the vectors was executed as described in 2.3.3 employing 1 

μg of plasmid DNA, to confirm the presence of the insert. A dual digest was 

performed to digest pGEX-6P-3-SULT2A1, employing the restriction enzymes SalI 

and NotI; the optimal buffer for these enzymes, buffer D and optimum enzyme 

specific reaction temperature of 37˚C for 4 hours. Sequential digestion reactions 

were performed to digest pGEX-6P-3-PAPSS2a, as described in section 2.3.3 using 

the restriction enzymes SalI and BamHI; their respective optimal buffers, buffer D and 

 



buffer 3, and optimum enzyme specific reaction temperature of 37˚C for 2 hours for 

each reaction. Assay of the digestions by gel-electrophoresis, alongside undigested 

vector, confirmed the presence of the inserts. Analysis of the pGEX-6P-3-PAPSS2a 

digestion revealed a band of the appropriate size for PAPSS2a, 1,600 bp, and a 

band of 5,000 bp, which correlated to linear pGEX vector (Figure 4-4, A). Undigested 

vector revealed bands corresponding to nicked and supercoiled DNA. Analysis of the 

pGEX-6P-3-SULT2A1 digestion revealed a band of the appropriate size for 

SULT2A1, 850 bp, and a band of 5,000 bp corresponding to the linear pGEX vector 

(Figure 4-4, B). Again, analysis of undigested vector revealed bands corresponding 

to nicked and supercoiled DNA.  

Sequence analysis of the constructs was performed as described in section 2.2.3.2 

utilising 3 μg of purified plasmid DNA and 3.2 pmol of primer (Table 2-1, primer pairs 

27-30) per reaction. Comparison of plasmid sequences to WT sequences confirmed 

the correct in frame alignment of the insert and the absence of any sequence 

variations.  
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Figure 4-5 Restriction digestion of the WT pGEX-PAPSS2 and WT pGEX-

SULT2A1 vector constructs. A, Restriction digestion of pGEX-PAPSS2 vector (D) 

revealed a band of 1,600 bp, the appropriate size for PAPSS2a, and a band of 5,000 

bp, corresponding to the linear pGEX vector. B, Restriction digestion of pGEX-

SULT2A1 vector (D) revealed a band of 850 bp, the appropriate size for SULT2A1, 

and a band of 5,000 bp corresponding to the linear pGEX vector, confirming that both 

vectors contained an insert. Analysis of the undigested plasmids revealed bands 

corresponding to nicked and supercoiled DNA.  



4.3.2.2 Confirmation of generation of PGEX-mutant PAPSS2 constructs. 

 Utilising the pGEX-6P-3-PAPSS2a-WT vector as a template, the PAPSS2a mutants 

(T48R, R329X and S475X) were generated using the Quickchange XL site-directed 

mutagenesis kit, as described in section 2.3.3.3. Specific primers were designed with 

the desired mutation in the centre, flanked each side by the unmodified WT 

sequence, as described in section 2.3.3.3  and are listed in (Table 2-2, primer pair 

57-59). SDM reactions were performed utilising primer specific annealing 

temperatures and a final elongation of 68˚C for 5 minutes. Resultant constructs were 

sequenced as described in section 2.2.3.2, and compared to WT PAPSS2a, 

confirming the successful generation of mutant constructs and the absence of any 

other sequence alterations during this procedure. 

4.3.3 Expression of WT-pGEX-6P-3-PAPSS2 and WT-pGEX-6P-3-SULT2A1 

proteins 

To amplify the WT constructs E. coli strain Alpha-select were transformed with WT-

pGEX-PAPSS2a and WT-pGEX-SULT2A1 and cultured as described in section 

2.5.1. Plasmid DNA was purified, as described in section 2.2.2. In order to express 

the fusion proteins the purified vectors were subsequently transformed into E. coli 

BL21 (DE3) cells (section 2.5.1), and protein expression induced by incubation with 

50 nM or 1 mM IPTG, for the PAPSS2 and SULT2A1 cultures, respectively for 16 

hours (section 2.5.1). For initial experiments bacterial cells were lysed utilising a 

commercially available lysis reagent (BugBuster, Novagen) and the cytosolic and 

membrane fractions isolated via centrifugation as described in section 2.5.3.  

 



The induced soluble fractions were assayed by western blot analysis as described in 

section 2.5.8, utilising polyclonal specific antibodies for PAPSS2 and SULT2A1. 

Samples were assayed by SDS-electrophoresis adjacent to mouse adrenal total 

protein, which expresses SULT2A1 but not PAPSS2a, as a positive and negative 

control, respectively. Soluble fractions from both cultures were incubated with both 

specific antibodies (against PAPSS2 and SULT2A1). A distinct band of the correct 

size (~62 KDa; SULT2A1 protein 36 KDa, GST 26 KDa) was visualised in the 

supernatant fraction of the SULT2A1 culture (Figure 4-6, A), confirming the 

expression of the fusion protein, in this fraction. A larger band of ~70 KDa was also 

observed. No band of the appropriate size was observed in the mouse adrenal total 

protein negative control, however an unspecific band was visable (~62 KDa). 

Similarly, a distinct band of the expected size (~96 KDa; PAPSS2a protein 70 KDa, 

GST 26 KDa) was visible in the supernatant fraction of the PAPSS2a culture (Figure 

4-6, B), confirming the successful expression of the fusion protein in this fraction. A 

smaller band (~75 KDa), which was of the expected size for native mouse PAPSS2 

protein, without a GST tag, was visible in positive control. The absence of visible 

bands in the soluble fraction incubated with the alternate antibody (i.e, PAPSS2a 

incubated with the specific antibody against SULT2A1 and visa versa) confirmed that 

the antibodies were specific and did not cross-react with the GST tag present on both 

fusion proteins (Figure 4-6).   
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Figure 4-6 Western blot showing WT SULT2A1 and WT PAPSS2a expression. 

Panel A, Incubation with antibody against SULT2A1. A distinct band of ~60 KDa, 

the expected size of SULT2A1-GST fusion protein, was detected in the induced 

soluble fraction of SULT expressing cells, confirming the expression of SULT2A1-

GST fusion protein in this fraction. No band of the appropriate size was visible in the 

SULT2A1 negative (-) control. However, an unspecific band of ~62 KDa was 

observed. No band was visible in the soluble fraction of PAPSS2a-GST expressing 

cells, indicating that the antibody is specific and does not cross react with GST. 

Panel B, Incubation with antibody against PAPSSA. Similarly, a distinct band of 

~96 KDa, the expected size of PAPSS2a-GST fusion protein, was visible in the 

soluble fraction of PAPSS2a-GST expressing cells and a smaller band of ~80 KDa, 

the expected MW of native mouse PAPSS2 protein (without GST tag), was detected 

in the PAPSS2a positive (+) control. This confirms expression of the PAPSS2a-GST 

fusion protein in the soluble fraction of PAPSS2a expressing cells. Again no band 

was visible in the soluble fraction of PAPSS2a-GST fusion protein expressing cells, 

indicating that the antibody is specific.  

 



4.3.4 Purification of the WT fusion proteins 

The SULT2A1-GST and PAPSS2a-GST fusion proteins were isolated from bacterial 

cell lysates as described in section 2.5.4, exploiting the affinity of the GST tagged 

fusion proteins for glutathione. Samples were washed with 4 ml of wash buffer and 

eluted into 2 ml (section 2.5.4). Samples were collected in 1 ml fractions during the 

purification procedure to prevent the dilution of the protein. Fractions were analysed 

by SDS-PAGE and coomassie blue staining (2.5.9). Analysis of fractions isolated 

from the soluble fraction of SULT2A1-GST expressing bacterial cells revealed a 

distinct band at ~62 KDa, the expected MW of SULT2A1-GST fusion protein in the 

elute and PBS wash fractions. This confirmed the presence a single isolated protein, 

which was thought to be SULT2A1-GST in these fractions (Figure 4-7). Similarly, 

analysis of the fractions isolated from the soluble lysate of PAPSS2a-GST 

expressing cells revealed a band of the appropriate MW of PAPSS2a-GST (~96 

KDa) in the second elute and PBS wash fractions, (Figure 4-8, A), confirming the 

presence of a single isolated protein in these fractions. Western blot analysis of the 

fractions, using a polyclonal specific antibody against PAPSS2a (section 2.5.8) 

confirmed the protein in this fraction to be PAPSS2a (Figure 4-8, B). 
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Figure 4-7 Purification of SULT2A1-GST fusion protein. Purification fractions 

isolated from the soluble fraction of SULT2A1-GST expressing bacterial cells were 

assayed by SDS-electrophoresis and coomassie blue staining. A distinct band of the 

expected size of SULT2A1-GST (~62 KDa) was visible in the elute and PBS wash 

fractions, confirming the presence of a single isolated protein in these fractions.    
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Figure 4-8 Purification of PAPSS2a -GST fusion protein. A, Purification fractions 

isolated from the soluble fraction of PAPSS2a-GST expressing bacterial cells were 

assayed by SDS-electrophoresis and coomassie blue staining. A distinct band of the 

expected size of SULT-2A1-GST (~96 KDa) was visible in the elute and PBS wash 

fractions, confirming the presence of a single isolated protein in these fractions. B, 

Western blot analysis, utilising a specific antibody against PAPSS2a, confirmed the 

purified protein identified by coomassie staining to be PAPSS2a. B= beads following 

purification; FT= flow through. 

 



4.3.5 Functional analysis of purified WT SULT2A1-GST fusion protein  

The functional activity of the purified bacterially expressed putative WT SULT2A1-

GST fusion protein was assessed via co-incubation with a tritiated form of the 

enzymes principle substrate, DHEA, and commercially available PAPS as described 

in section (2.6.4). Analysis of extracted steroids revealed production of the sulphated 

product, 3H DHEAS (Figure 4-9), confirming that the purified protein was as 

expected SULT2A1 and that the purified protein retained enzymatic activity. Negative 

control reactions were performed in parallel, as other reactions but without the 

addition of SULT2A1-GST, which revealed no conversion of 3H DHEA to 3H DHEAS, 

confirming that SULT2A1 is required for conversion.    
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Figure 4-9 Enzymatic activity of purified SULT2A1-GST fusion protein. The 

enzymatic activity of the isolated putative SULT2A1-GST protein was assessed via a 

DHEAS generation assay. Co-incubation of the isolated protein and 3H DHEA 

resulted in the generation of 3H DHEAS, confirming that the protein was SULT2A1 

and that the isolated protein preparation retained functional activity. 

 



4.3.6 Functional analysis of purified WT PAPSS2-GST fusion protein 

Similarly, the functional activity of WT PAPSS-GST fusion protein was assessed by 

co-incubation with the confirmed active WT SULT2A1-GST purified fusion protein 

and a source of sulphate (S2SO4) as the substrate for the sulfation reaction. This 

coupled assay exploits the dependence of the catalytic activity of SULT2A1 on PAPS 

bio-availability, as described in section 2.6.4. However, following co-incubation of the 

purified fusion proteins, extraction and analysis of the steroids revealed the absence 

of DHEAS in the reaction mixture indicating that conversion of DHEA to DHEAS had 

not occurred. This suggested that the purified PAPSS2-GST fusion protein was 

inactive (Figure 4-10). Unfortunately PAPSS protein or APS (the intermediate 

product of PAPS synthesis) are not available commercially, so a positive control 

reaction could not be performed. However, as described above (section 4.3.5) 

SULT2A1 activity assays confirmed that the second step of the coupled reaction (the 

sulfation of DHEA to DHEAS) to be functional and the successful extraction and 

identification of DHEA and DHEAS, suggesting that a failure of the initial step of the 

reaction (the synthesis of PAPS by PAPSS2a, catalysed by PAPSS) was 

accountable for the lack of DHEAS generation. 
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Figure 4-10 Purified WT PAPSS2a lack enzymatic activity. The enzymatic activity 

of purified PAPSS2a-GST fusion protein was assessed via a coupled assay. Co-

incubation of equal amounts of purified PAPSS2a-GST and SULT2A1-GST did not 

result in the generation of DHEAS from DHEA, confirming that the purified PAPSS2a 

protein was inactive. 

 

 

 

 



 

4.3.7 Cleavage of the WT PAPSS2a-GST fusion protein 

I hypothesised that the purified PAPSS2-GST fusion may not have functional activity 

due to the presence of the GST tag, which may result in incorrect protein folding. 

Therefore I attempted to cleave the fusion protein utilising a specific protease, to 

result in the purified unlabeled protein moiety. Recombinant PAPSS2-GST was 

induced and purified as above and described in section 2.5.1. Whilst still bound to 

glutathione sepharose the purified protein was co-incubated with PreScission 

protease (the specific protease for the pGEX system) as described in section 2.5.5, 

utilising 80 units of PreScission protease in 960 μl of PreScission protease buffer 

(see 2.5.5.2) (per 1 L of original bacterial culture). The reaction was incubated at 4˚C 

for four hours, as recommended by the supplier (G.E. Healthcare). The beads and 

supernatant were separated by centrifugation (section 2.5.5) Analysis of the fractions 

by SDS-electrophoresis and coomassie blue staining indicated the absence of 

unlabelled protein in the supernatant fraction (Figure 4-10).  

A band of ~26 KDa, correlating to free GST, was detected in the pelleted fraction, 

suggesting that cleavage of the fusion protein had been successful. However, no 

band was visible at ~70 KDa, the MW of free PAPSS2a protein. In addition, some 

uncleaved PAPSS2a-GST fusion protein (~96 KDa) was identified in the pelleted 

fraction, showing that the reaction was not efficient. In an attempt to optimize the 

reaction the procedure was repeated with different  incubation times (2 hours, 8 

hours, 16 hours) and an increased concentration of PreScission protease (160 units/ 

reaction). However, all further reactions were also unsuccessful, producing similar 

 



findings (data not shown). For all time-points analysed control reactions (which did 

not include precision protease) were performed and analysed as described above, 

adjacent to samples. A band of ~96 KDa correlating to uncleaved PAPSS2a-GST 

fusion protein was visible in the pelleted fraction of control reactions. However, no 

band at ~26 KDa was identified, indicating the absence of cleaved GST in the 

pelleted fraction. This confirmed that, as expected, in the absence of PreScission 

protease a cleavage reaction did not occur.     
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Figure 4-11 Cleavage of GST-PAPSS2a fusion protein. PAPSS2a-GST fusion 

protein bound to glutathione sepharose beads was incubated with PreScission 

protease for 4 hours at 4˚C. The supernatant fraction (S), where uncleaved protein 

should reside, and the pelleted fraction (P), containing glutathione beads and bound 

protein, were isolated by centrifugation. A band of ~26 KDa, correlating to free GST, 

was detected in the pelleted fraction, suggesting that cleavage of the fusion protein 

had been successful. However, no band was visible at ~70 KDa, the MW of free 

PAPSS2a protein. In addition, some uncleaved PAPSS2a-GST fusion protein (~96 

KDa) was identified in the pelleted fraction. Control reactions, performed as other 

experiments but without the addition of PreScission protease, had only one 

detectable band at ~96 KDa, correlating to uncleaved PAPSS2a-GST fusion protein, 

confirming that the protease was necessary for cleavage to occur. 

 



4.3.8 Functional activity of WT PAPSS2a expressing bacterial cell lysates  

Following the absence of observed functional PAPSS2a-GST fusion protein activity 

via the in vitro co-incubation assay and the unsuccessful cleavage of the GST moiety 

from the PAPSS2a-GST fusion protein, co-incubation assays were performed with 

the soluble fractions of PAPSS2a expressing E.coli. This decision was based on the 

hypothesis that the functional activity of the proteins may be lost during the 

purification procedure, and not as a consequence of the presence of the GST tag. In 

addition, consistent with this decision, we had previously detected PAPSS2a fusion 

protein in the soluble fraction of the bacterial cell lysates (section 4.3.3).  

E.coli strain BL21 were transformed with pGEX-6P-3-PAPSS2a and pGEX-6P-3-

SULT2A1, cultured and induced as described above and section 2.5.1. To enable the 

direct use of bacterial cell lysates in subsequent reactions, the cells were lysed with 

PBS/triton, and the soluble and membrane fractions separated by centrifugation as 

described in section 2.5.3. The total protein content of the bacterial soluble cell 

lysates were quantified (section 2.5.7) and 25 μg of each bacterial cell lysate (from 

WT PAPPS2a-GST and WT SULT2A1-GST expressing bacterial cells) was utilized to 

analyse PAPSS2a enzyme activity. This was performed, as described in 2.6.4, 

exploiting the dependence of the catalytic activity of SULT2A1 on PAPS bio-

availability. Identification of extracted steroids revealed the generation of detectable 

3H DHEAS (Figure 4-12), indicating that the enzymes were both active. The soluble 

fraction of BL21 cells transformed with empty pGEX-6P-3 vector and cultured and 

induced as described above and in section 2.5.1, were utilised for negative control 

reactions, which were performed in parallel to experiments. The extraction and 

 



identification of steroids from the negative control reaction revealed a lack of 

conversion of DHEA to DHEAS, confirming that the observed functional activity was 

not of bacterial origin. 
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Figure 4-12 Enzymatic activity of bacterially expressed PAPSS2a-GST and 

SULT2A1-GST fusion proteins. The soluble fractions of bacterial cells expressing 

PAPSS2a-GST and SULT2A1-GST were isolated by centrifugation. The activity of 

PAPSS2a-GST fusion protein, present in the bacterial soluble fraction, was assessed 

via a DHEAS generation assay, exploiting the requirement of SULT2A1 activity on 

the provision of PAPS by PAPSS. Extraction and identification of steroids following 

the reaction confirmed the conversion of DHEA to DHEAS, indicating that both 

PAPSS2a-GST and SULT2A1-GST proteins had functional activity.   

 



4.3.9 Functional activity of bacterially expressed mutant PAPSS2a  

To confirm the disease causing nature of the mutations identified in the affected 

patient (T48R and R329X) and assess the effect of the previously described 

PAPSS2a mutation (S475X) on DHEA sulfation, E.coli strain BL21 were transformed 

with the generated mutant constructs and cultured and induced as described in 

section 2.5.1. The soluble fractions of the bacterial cultures were isolated as 

described above and in section 2.5.3. To ensure the use of similar amounts of 

PAPSS2a proteins for in vitro analysis, the total protein content of the samples was 

quantified (section 2.5.7) and western blot analysis was performed as described in 

section 2.5.8, utilising a monoclonal human antibody to GST (Figure 4-13).  

To assess the activity of the mutant proteins (T48R, R329X and S475X) co-

incubation assays were performed as described in section 2.6.4 including 25 μg of 

WT or mutant PAPSS2a protein and 25 μg SULT2A1 protein. Quantification of the 

extracted steroids revealed reduced conversion of DHEA to DHEAS by the mutant 

proteins, confirming the inactivating nature of the mutations. No activity was detected 

for R329X and S475X and only minor residual activity for T48R (6.0±0.6% of wild-

type PAPSS2 activity; Figure 4-13).  
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Figure 4-13 Confirmation of the inactivating nature of the PAPSS2 mutants by 

an in vitro DHEAS generation assay. A, a representative Western Blot confirming 

equal PAPSS2 protein content for wild-type and mutant PAPSS2a preparations. 

Mutants R329X and S475X result in shorter proteins due to truncations within the 

early ATP sulfurylase domain of PAPSS2a.  B, The enzymatic activity of bacterially 

expressed WT and mutant PAPSS2a was assessed using a coupled assay. Equal 

amounts of human DHEA sulfotransferase (SULT2A1) protein and human wild-type 

or mutant PAPSS2a proteins were co-incubated and the generation of DHEAS 

assessed. No activity was detected for R329X and S475X and only minor residual 

activity for T48R (6.0±0.6% of wild-type PAPSS2 activity), confirming the inactivating 

nature of the mutations.    

 



4.3.10  Analysis of PAPSS and SULT2A1 mRNA expression in foetal 

chondrocytes 

The previously identified homozygous PAPSS2 mutation, S475X, manifests in 

affected individuals as Spondyloepimetaphyseal dysplasia (SEMD), Pakistani type (ul 

Haque et al., 1998),thought to be due to impaired proteoglycan sulfation in 

chondrocytes. However the expression of key enzymes of the DHEA/DHEAS shuttle 

have not been characterised within human chondrocytes. Therefore I examined the 

mRNA expression of SULT2A1, PAPSS1 and the two splice variants of PAPSS2, 

PAPPSS2a and PAPSS2b, in human foetal chondrocytes, in addition to human adult 

liver and adult and foetal adrenal, key sites of DHEA sulfation. Total RNA extraction 

was performed as described in section 2.4.1 and reverse transcribed as described in 

section 2.4.2. Conventional PCR was performed as described in section 2.4.3.2 

using gene specific primers and conditions Table 2-3, primer pairs 52-54. Reactions 

were assayed by agarose gel electrophoresis as described in section 2.4.3.2. 

Amplification of PAPSS2 results in two distinct bands, corresponding to the two 

splice variants, PAPSS2a and PAPSS2b, which differ in size by five amino acids.   

Amplification of PAPSS1 resulted in a band of the expected size for in all samples, 

indicating that this isoform is expressed in all tissues examined. Amplification of 

SULT2A1 resulted in a band of the correct size in adult liver and adult and foetal 

adrenal reactions, indicating that this enzyme is expressed in these tissues. A single 

band of the expected size for PAPSS2b was observed in adult liver, while a single 

band for the alternate isoform PAPSS2a, confirming only one splice variant is 

exclusively expressed in these tissues. In contrast, the amplification of PAPSS2 

 



resulted in two detectable bands in the adult and foetal adrenal samples, indicating 

that the adrenal expresses both splice variants. 
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Figure 4-14 Tissue specific expression of the DHEA sulfation system. The 

mRNA expression of key enzymes of the DHEA sulfation system was analysed by 

conventional PCR in human adult liver, adult and foetal adrenal, and foetal 

chondrocytes from three sites (femur, rib, digital). PAPSS1 expression was observed 

in all tissues examined. PAPSS2b was exclusively expressed in adult liver, while 

foetal chondrocytes express exclusively PAPSS2a. In contrast adult and foetal 

adrenal express both splice variants of PAPSS2. SULT2A1 expression was observed 

in adult liver and adult and foetal adrenal but not chondrocytes.   

 



 

4.3.11 Analysis of PAPSS and SULT2A1 mRNA expression in human tissues 

I have demonstrated that the identified mutations in PAPSS2 impair SULT2A1 

activity, resulting in the phenotype of the patient. However, it is unclear why PAPSS1, 

which is unaffected in the patient, cannot compensate for the loss of PAPSS2, 

preventing the clinical manifestation of androgen excess. I hypothesised that a 

possible explanation was the differential tissue expression of the two isoforms of 

PAPSS and SULT2A1.  

The expression of SULT2A1 and the two PAPSS isoforms, PAPSS1 and PAPPS2 

was examined in human adrenal, liver, ovary and testis. For these tissues 

commercially available pooled adult total RNA was obtained from Clontech, USA and 

reverse transcription was performed as described in section 2.4.2. Quantitative 

expression analysis was performed as described in section 2.4.3.3, utilising gene 

specific primers and probes, given in Table 2-4, primer pairs 29-32.     

I observed that the adrenal and liver express abundant levels of SULT2A1 (dct ± SD; 

adrenal, 11.9 ± 0.1; liver, 11.3 ± 0.1), while the testis and ovary express relatively low 

levels (dct ± SD; testis, 18.6 ± 0.0; ovary, 20.8 ± 0.1). A similar expression pattern 

was observed for PAPSS2 (dct ± SD; adrenal, 12.7 ± 0.0; liver, 15.6 ± 0.1, testis, 

16.5 ± 0.1; ovary, 14.9 ± 0.0) confirming the adrenal and liver are key sites of DHEA 

sulfation, co-expressing PAPPS2 and SULT2A1 at high levels. Conversely, I found 

the level of PAPSS1 expression to be highest in the gonads (dct ± SD; testis, 16.0 ± 

0.0; ovary, 16.3 ± 0.0), while the adrenal and liver expressed relatively low levels (dct 

± SD; adrenal, 17.4 ± 0.0; liver, 19.7 ± 0.2) of this isoform.   



SULT2A1 PAPSS2 PAPSS1

Adrenal 11.9 ± 0.1 12.7 ± 0.0 17.4 ± 0.0

Liver 11.3 ± 0.1 15.6 ± 0.1 19.7 ± 0.2

Testis 18.6 ± 0.0 16.5 ± 0.1 16.0 ± 0.0

Ovary 20.8 ± 0.1 14.9 ± 0.0 16.3 ± 0.0
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Figure 4-15 Quantitative analysis of mRNA expression of SULT2A1, PAPSS1 

and PAPSS2. Adrenal and liver co-express relatively high levels of SULT2A1 and 

PAPSS2, confirming these tissues as key sites of DHEA sulfation. Conversely, ovary 

and testis express relatively low SULT2A1 and PAPSS2 mRNA levels, but contain 

high levels of PAPSS1 mRNA, that is found at much lower abundance in adrenal and 

liver. Results are expressed as arbitrary units (AU); ΔCt values are given in the table.

 



4.4 Preliminary results 

4.4.1 siRNA mediated knockdown of PAPSS1 and PAPSS2 

I have shown that mutations in PAPSS2 may manifest as the phenotype of our 

patient due to the inability of PAPSS1 to compensate, possibly because of the tissue 

specific expression of the isoforms and SULT2A1. Another potential mechanism is 

that the relative importance of the PAPSS isoforms on DHEA sulfation could differ. In 

our future project I aim to further explore the potentially differential dependence of 

SULT2A1activity on the two PAPSS isoforms in a mammalian model system, utilising 

a shRNA approach. As I have shown the human adrenal expresses the complete 

DHEA sulfation system (PAPSS1, PAPSS2a, PAPSS2b and SULT2A1), making it a 

suitable model for our study, an adrenal cell line, NCI H295R has been used.   

To validate DNA target sequences for subsequent shRNA knockdown, transient 

transfections were been performed using siRNA against PAPSS1 and PAPSS2. 48 

hours post transfection, cells were harvested and total RNA was extracted as 

described in section 2.4.1, and reverse transcribed as described in section 2.4.2. 

Gene expression of PAPSS1 and PAPPS2 was assessed via real-time PCR, as 

described in section 2.4.3.3, utilising gene specific primer and probe (Table 2-4, 

primer pairs 52-54). Statistical significance was assessed on raw ΔCt values and not 

transformed fold-changes by unpaired Student’s t-test. Real-time mRNA analysis 

confirmed the specific knockdown of PAPSS1 and PAPSS2, 0.34 fold and 0.39 fold, 

respectively (Figure 4-16). Interestingly knockdown of one isoform results in the 

induction of the alternative isoform (PAPSS1, 1.48 fold; PAPSS2, 1.53 fold).   
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Figure 4-16 siRNA mediated knockdown of PAPSS isoforms. NCI-H295R cells 

were transiently transfected with siRNA against PAPSS1 or PAPSS2. Gene 

expression was analysed 48 hours post transfection. A, Knockdown of PAPSS1. 

Real-time mRNA expression analysis confirmed specific knockdown of PAPSS1. 

Interestingly, knockdown of PAPSS1 resulted in the induction of PAPSS2 expression. 

B, Knockdown of PAPSS2. Similarly, mRNA analysis confirmed the knock-down of 

PAPSS2, which resulted in the induction of PAPSS1. Statistical significance (vs. 

scramble control) was assessed via Student’s t-test. * P < 0.05, ** P < 0.01   

 



4.5 Discussion 

In this chapter I have described our identification of a compound heterozygous 

mutation in PAPSS2 as a novel monogenic cause of androgen excess. PAPSS2 

encodes human PAPS synthase 2, an enzyme which generates PAPS, the universal 

sulfate donor required for all sulfation reactions, including the sulfation of 

metabolically active DHEA to inactive DHEAS, catalysed by SULT2A1. As only 

unconjugated DHEA can be directly converted to androgens, our findings highlight 

the crucial role of DHEA sulfation by SULT2A1 as the regulator of human androgen 

synthesis, by showing that impaired sulfation increases the DHEA pool available for 

androgen synthesis. Although it has been speculated for some time, this is the first 

time it has been demonstrated in vivo that a deficiency in activity of SULT2A1 causes 

increased androgen production. Furthermore, our findings question the common use 

of elevated DHEAS levels as a determinate of androgen excess of adrenal origin and 

high androstenedione levels for diagnosing ovarian androgen excess. Using these 

criteria for our patient would have resulted in the incorrect diagnosis of androgen 

excess of ovarian origin, although her androgen excess results from a steroidogenic 

defect of the adrenal.  

Our in vitro analysis included the heterogeneous mutations identified in our patient, 

T48R and R329X, and the previously described homozygous mutation, S475X (ul 

Haque et al., 1998). The previous mutation was identified in a large Pakistani Kindred 

affected by Spondyloepimetaphyseal dysplasia (SEMD), Pakistani type. In these 

patients, the homozygous S475X mutation manifests as significant, immediately 

apparent, short stature associated with short, bowed lower limbs, enlarged knee 

joints, kyphoscoliosis, and generalized brachydactyly, proposed to be due to a lack of 

 



sulfation of proteoglycans, a key process of extracellular matrix formation (ul Haque 

et al., 1998) and therefore bone development and growth. Some features of the bone 

phenotype of our patient resemble those observed in the kindred, although the bone 

changes were much milder and only evident on follow-up examination. In addition, 

our patient had no long bone epiphyseal or metaphyseal changes. 

I hypothesise that the difference in severity of the bone phenotype between the 

Pakistani kindred and our patient might be explained by the Pakistani kindred 

homozygously carrying the completely inactivating S475X mutation, while our patient 

has compound heterozygous mutations in different domains of the PAPSS2 protein. 

The maternally inherited mutation, R329X, results in a premature truncation of the 

ATP sulfurylase domain and thus renders the PAPSS2 protein void of activity as 

demonstrated by our in vitro functional assay. The paternally inherited mutation, 

T48R, is located in immediate proximity to the P loop structure within the APS kinase 

domain, a region previously identified as critical for ATP cleavage and thus for APS 

kinase activity, although our functional in vitro assessment demonstrated that the 

mutant retains about 5% of residual activity. This residual activity alone might 

account for the seemingly apparent less severe phenotype observed in our patient 

compared to the phenotype of the Pakistani kindred with a completely inactivated 

protein resulting from the homozygous S475X mutation.  

In addition, as the mutations our patient possesses are in different domains we 

hypothesize that the unaffected domain of each allele may be functional, and enable 

the generation of PAPS by the concerted action of two separate semi-function protein 

molecules. This would result in a situation analogous to that of lower organisms, 

where ATP sufurylase and APS kinase are separate proteins encoded for by 

 



separate genes. I am yet to establish if this hypothesis is correct, but hope to 

investigate this in future experiments, as described in chapter 5. 

Our patient presented with androgen excess, premature pubarche, hyperandrogenic 

anovulation, and serum DHEAS levels below the limit of detection. Unfortunately the 

previous study was unable to ascertain if the affected females of the Pakistani 

kindred exhibited an androgen excess phenotype as the affected patients lived in an 

area difficult to access, the Afghanistan-Pakistani border, and provided only limited 

access to the female family members (Cohn DH, University of California, Los 

Angeles: personal communication).  

As in humans there are two isoforms of PAPSS, PAPSS1 and PAPSS2 (Xu et al., 

2000), it is currently unclear why ubiquitously expressed PAPSS1 cannot 

compensate for a loss of PAPSS2 activity and abrogate the presentation of a 

phenotype, despite 80% amino acid identity, identical domain structure and similar 

tertiary structure (Xu et al., 2000). However, previous in vitro expression studies have 

demonstrated a 10- to 15-fold higher catalytic efficiency for PAPSS2 (Fuda et al., 

2002) and it is therefore possible that PAPSS1 alone is not sufficient for PAPS 

provision in tissues with a high rate of sulfation, such as adrenal and liver, in which  I 

have demonstrated that PAPSS2 mRNA expression is considerably higher than that 

of PAPSS1. Interestingly, the opposite was observed to be true in gonads, with ovary 

and testis expressing relatively high levels of PAPSS1 mRNA and low levels of 

SULT2A1 and PAPSS2. The complexity of this situation is further increased when 

the cellular localization of key enzymes of the DHEA/ DHEAS shuttle are considered. 

Recently, Besset et al. have demonstrated that in yeast ectopically expressed human 

PAPSS1 localizes to the nucleus of yeast, mediated by a catalytically dispensable 21 

 



amino acid sequence at the amino terminus. In contrast, ectopically expressed 

PAPSS2 localises to the cytoplasm, the site of SULT2A1 expression, but 

translocates to the nucleus when co-expressed with PAPSS1. To date the relative 

importance of the two isoforms of PAPSS on DHEA sulfation has not been 

investigated. Furthermore, it is unclear if a PAPS translocase enables influx to the 

nucleus, as it does from the golgi apparatus (Ozeran et al., 1996a; Ozeran et al., 

1996b), or furthermore, if  the nucleus is a site of PAPS utilization by 

sulphotransferases, which is currently only known to occur in the cytoplasm and golgi 

apparatus (Negishi et al., 2001). However, it is possible that co-localisation is 

necessary for PAPSS to play a role in SULTA1 activity. I aim to investigate this 

hypothesis in future experiments. 

Our preliminary findings utilising an adrenal cell model demonstrate that siRNA 

mediated knockdown of one isoform of PAPSS results in a putatively compensatory 

increase in expression of the alternate isoform. Interestingly, very recently, Fu et al 

have demonstrated that transient knockdown of PAPSS2 in HepG2 cells results in 

the induction of SULT2A1 via the nuclear receptor LXR. I aim to establish if this 

finding is mirrored in an adrenal cell model, and is true for both isoforms. 

Furthermore, it is currently unclear if a compensatory increase in SULT2A1 and the 

alternate PAPSS isoform, can maintain SULT2A1 activity. Again, I hope to 

investigate some of these complexities in future investigations, proposed in chapter 

5. 

In addition, the relevance of the two splice variants of PAPSS2 on DHEA sulfation, or 

normal bone physiology is yet to be determined. mRNA analysis has demonstrated 

that the major sites of DHEA sulfation, the adrenal and liver, express SULT2A1 and 

 



PAPSS2b. While the shorter variant, lacking exon 7B, is expressed only in the 

adrenal. By contrast foetal chondrocytes from three different locations of the skeletal 

system only expressed PAPSS2a, but not PAPSS2b and also lacked SULT2A1 

expression. PAPSS1 was expressed in all tissues examined. Unfortunately the 

limited difference between the two splice variants (5 amino acids) prohibits the 

selective knockdown of the varients and hinders their identification by western blot 

analysis.   

Initially I purified PAPSS2 and SULT2A1 for functional analysis with the DHEAS 

generation assay. However, I was subsequently unable to detect any activity. It is 

unclear why this is the case as protein quantification and western blot analysis 

revealed significant concentrations of the purified proteins and no detectable 

degradation products. However, I was able to overcome this problem by quantifying 

total protein concentrations, and confirming consistent quantities of the over-

expressed protein by western blot analysis. I also had difficulty, cleaving the GST 

moiety of the fusion protein to result in an untagged protein. However, further 

analysis with cytosolic cell lysates revealed this not to be necessary for protein 

function. As the individual GST moiety was detectable I propose this was due to 

degradation of the protein, possibly due to incorrect protein folding. 

In conclusion, in this chapter I have presented our finding of a novel molecular cause 

of androgen excess- inactivating mutations in the sulfate donor enzyme PAPSS2. 

These findings highlight the critical role of DHEA sulfation in the regulation of human 

androgen synthesis. Our patient presented with androgen excess manifesting with 

premature pubarche and later with hirsutism, acne and secondary amenorrhea, thus 

fulfilling current diagnostic criteria for polycystic ovary syndrome and supportive of a 

 



previously suggested link between premature pubarche and polycystic ovary 

syndrome. Future studies are needed to determine the frequency and functional 

consequences of PAPSS2 sequence variants in well characterized cohorts of 

patients with premature pubarche and polycystic ovary syndrome, to further define 

the role of PAPSS2 in the pathogenesis of these androgen excess disorders. 

 

 



5 Chapter 5: Final conclusions and future directions 
 

 



5.1 Final conclusions 

This thesis proficiently demonstrates the importance of the regulation of DHEA 

bioavailability. In humans this is performed in a tissue-specific manner, via the 

interconversion of DHEA with inactive DHEAS and the downstream metabolism of 

DHEA to active sex steroids and their precursors. Via the identification of a novel 

monogenic cause of androgen excess, I have demonstrated that abrogation of DHEA 

metabolism can result in the manifestation of pathophysiological conditions. This 

thesis also supports the concept, that in contrast to previous dogma, DHEA and 

DHEAS have tissue-specific direct effects, further highlighting the importance of the 

regulation of the circulating and local levels of these hormones.  

5.2 Future directions 

The work presented in this thesis demonstrates that DHEA has profound effects on 

the human adipocyte, attenuating adipogenesis, while enhancing glucose uptake, 

opposing the effects of glucocorticoids. These findings suggest that DHEA may have 

potent effects on human energy homeostasis in vivo and thereby be a promising 

therapeutic strategy for the treatment of obesity and diabetes. However, prior to 

future studies in vivo it would be of interest to further investigate the effects of DHEA 

in vitro which would provide a greater understanding of the molecular mechanisms of 

DHEA action and aid a more accurate prediction of the metabolic effects of DHEA. In 

addition to adipogenesis, adipocyte tissue homeostasis is also dependent on the 

hypertrophy of pre-existing adipocytes, which involves numerous metabolic 

processes such as fatty acid influx, lipogenesis (triglyceride accumulation), lipolysis 

 



(triglyceride mobilization) and β-oxidation, all of which are regulated by 

glucocorticoids to some degree (Berdanier, 1989; Mantha et al., 1999; Samra et al., 

1998). I propose that DHEA, via the inhibition of the local amplification of 

glucocorticoids, will modulate these processes. Therefore, firstly it would be of 

interest to investigate the effect of DHEA on these pathways, which could be 

performed using radiolabelled substrates for these reactions, and analysing their 

incorporation or metabolism. This would elucidate the effect of DHEA on mature 

adipocytes in addition to preadipocytes and identify the pathway by which glucose 

DHEA stimulated increased uptake of glucose is metabolised, ultimately establishing 

the net effect of DHEA on adipose tissue homeostasis, and thus help predict if the 

beneficial effects of DHEA presented in this thesis are likely to be maintained in vivo.   

Glucocorticoid excess, androgen excess and the metabolic syndrome are associated 

with a bias for increased intra-abdominal adipose tissue mass, which itself is 

associated with increased cardiovascular disease risk factors. Therefore a successful 

pharmaceutical therapy for these conditions would be required to target the visceral 

adipose depot exclusively or in addition to the subcutaneous depot. The work in this 

thesis has been performed utilising Chub-S7 cells, a subcutaneous cell line. It is 

known that the expression of 11β-HSD1 and GR is greater in omental than 

subcutaneous adipose tissue depot (Bujalska et al., 2006) and therefore it is likely 

that DHEA may have an even more potent antiadipogenic effect at this site. Further 

studies using human primary cultures of subcutaneous and omental adipocytes 

would identify the depot specific effects of DHEA, confirming if this hypothesis is 

correct, which would help to establish the effects of DHEA in vivo, and if DHEA, or an 

analogous compound, would be a suitable treatment for these conditions.   

 



Previous in vivo murine studies have shown that DHEA has beneficial effects on 

obesity and insulin sensitivity (Cleary and Zisk, 1986; Coleman, 1988; Coleman et 

al., 1982; Lea-Currie et al., 1997a; Lea-Currie et al., 1997b; Mohan et al., 1990; 

Shepherd and Cleary, 1984; Tagliaferro et al., 1986), however it is unclear if these 

beneficial effects are mediated exclusively via a direct effect on the adipocyte or via 

effects on other metabolic tissues, namely skeletal muscle and liver, which also 

contribute to the pathogenesis of these conditions. Furthermore it is unclear if DHEA 

modulates adipocyte homeostasis in vivo, indirectly via an alternate tissue, in 

addition to the direct effects I have observed in vitro. Therefore it would be interesting 

to evaluate the direct effect of DHEA on these tissues, which would contribute to a 

metabolic phenotype in vivo, and the indirect effect of DHEA on adipose tissue via 

these tissues. These experiments could be performed using primary cultures of 

human cells or human cell lines and the indirect effects of DHEA on these tissues 

could be assessed by co-culturing different cell types. This would provide a greater 

understanding of the physiological effects of DHEA in vivo.  

The work in this thesis has shown that the tissue specific metabolism of DHEA is an 

important regulator of its local effects. It would therefore be interesting to characterise 

the conversion of DHEA in adipose tissue from different disease states, such as 

PCOS, obesity and diabetes, to see if the expression or activity of DHEA 

metabolising enzymes is altered in the affected individuals, as is known to occur in 

aging (Hammer et al., 2005a). Of particular interest would be PCOS patients, who 

paradoxical to our findings have elevated circulating levels of DHEA, but display 

central obesity. This would help identify the molecular pathogenesis of these 

conditions and potentially identify a novel therapeutic target for their treatment. 

 



The work in this thesis has identified a novel monogenic adrenocortical cause of 

androgen excess. The phenotype of our patient differs from the previously identified 

homozygous PAPSS2 mutation (S475X) which I propose may be due to the patient 

identified in this thesis having compound heterogeneous mutation in PAPSS2 gene, 

which are in differing domains. Each unaffected allele may be functional, and enable 

the generation of PAPS by the concerted action of two separate semi-function protein 

molecules, in a situation analogous to that of lower organisms, where ATP sufurylase 

and APS kinase are separate proteins encoded for by separate genes (Lyle et al., 

1994b). This could be investigated by performing co-incubation assays of the two 

mutant proteins, R329X and T48R, and WT SULT2A1 and assessing the effect of the 

mutants on SULT2A1 activity, as performed in this thesis. This would also provide a 

greater understanding of PAPSS2 activity and thus androgen synthesis in humans, 

which will assist the identification of further genetic causes of androgen excess and 

PCOS, and identify targets for potential therapeutic intervention. 

The work in this thesis has identified a mutation in PAPSS2 gene and shown that a 

loss of function results in androgen excess. However, it is not fully clear why 

unaffected PAPSS1 cannot compensate for the loss of PAPSS2. I propose this may 

be due to the differential importance of the two isoforms on SULT2A1 activity and 

have begun to investigate this utilising siRNA specific knockdown of the two 

isoforms, with the preliminary data presented in chapter 4. Our initial findings show 

that knockdown of the one isoform of PAPSS1 appears to increase the expression of 

the second isoform. In addition, very recently, Fu et al have demonstrated that siRNA 

mediated knockdown of PAPSS2 in HepG2 cells results in induction of SULT2A1 via 

the nuclear receptor LXR (Fu J). Therefore it would be very interesting to identify 

 



firstly, if SULT2A1 expression is also increased in an adrenal cell model by 

knockdown of PAPSS2, secondly if this putative increase occurs following the 

knockdown of PAPSS1, and thirdly, if the putative compensatory increase in 

expression of the opposing isoform and SULT2A1 maintains SULT2A1 activity. 

However, it is possible that the localisation of the two PAPSS isoforms, in addition to 

their expression is also important for the provision of PAPS to different 

sulphotransferases. A recent study investigating the localisation of the two PAPSS 

isoforms in mammalian cells has reported that PAPSS1 is localised to the nucleus, 

as is PAPSS2 when co-expressed with PAPSS1 (Besset et al., 2000). However 

PAPSS2 expression, in the absence of PAPSS1 is localised to the cytoplasm. 

Therefore, I aim to investigate the localization of the two isoforms of PAPPS in an 

adrenal cell line. It is currently unclear if the co-localisation of PAPSS and SULT2A1 

is necessary for or modulates SULTA1 activity. Therefore, if differing PAPSS 

expression is detected I aim to investigate how this impacts on SULT2A1 activity via 

enzymatic activity assays. Again, these studies will help elucidate the molecular 

mechanisms of human androgen synthesis and therefore may assist the identification 

of therapeutic targets for the treatment of diseases with altered androgen synthesis.  
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