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ABSTRACT

At the core of thesis is the following particular Hubbard model

H = �t1
X

hiji�

(t†i�+b†i�)(tj�+bj�)�t0
X

i�

(t†i�bi�+b†i�ti�)+U
X

i

(t†i"ti"t
†
i#ti#+b†i"bi"b

†
i#bi#),

for which there are two large investigations. In both of these a particular symmetry

plays a central role: explicitly the set of local transformations t†i� $ b†i�, one for each

site i in the system. As is with any local symmetry of a Hamiltonian, the basis Hilbert

space must be divided into symmetry sectors Z2 i.e. symmetric or anti-symmetric under

the transformation. We exclusively examine systems for which all basis states are either

symmetric or anti-symmetric and only consider mixed systems as an afterthought.

The first investigation concerns an e↵ectively exact examination of superconductivity

in the limit U = 1. Pairing is shown with binding energy and correlation length cal-

culated exactly. We find that phase diagram of many unconventional superconductors is

qualitatively recreated, and in particularly we find a ferromagnetic phase coexisting with

a superconducting phase. The limit of U = 1 is lifted perturbatively which gives rise to

an anti-ferromagnetic phase at the Mott point.

The second investigation is a new approach for dealing with strongly correlated prob-

lems: we create a non-orthogonal basis which is self consistently solved for. With this we

can calculate particle dispersions, hole dispersions, and the occupation factor. All three

are compared to exact diagonalisation and show great agreement.
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CHAPTER 1

INTRODUCTION

1.1 How to Read This Thesis

A thesis is a strange document to write. We’re expected to write at the level of a recent

graduate in physics but the only people who will ever probably read it are us, our ex-

aminers, and maybe our supervisor. All of whom are expected to be experts in the field.

The result is therefore a document that is written at a level too low for anyone reading

it.

With this in mind I’ve written this thesis in a peculiar manner. I’ve kept the level

low but not laboured the introductory details for which an expert is experienced. I hope

that this has resulted in a more readable thesis for the three, maybe four, people who will

actually read this document.

Additionally the style of writing is very relaxed when compared to a ‘standard scientific

document’. The language is often conversational and humour is sometimes attempted but

often failed. I hope that this makes reading the 300 page tome easier.

The introductory details are important; especially in the rare case a student does

pick this up from the library. For them I’ve written a hefty, detailed appendix. In this,

I go over all the ‘standard’ tools used in this thesis with a fine tooth comb. I detail

how to go from first to second quantisation, modelling materials with physical chemistry,
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CHAPTER 1. INTRODUCTION

the Lanczos algorithm, Hartree-Fock mean field theory, resolvent formalism, perturbation

theory, and Maxwell constructions. The appendices are around one hundred pages of

detailed introduction in topics which are ‘standard’. The result should be a thesis which

is much lighter and easier to parse for the veterans, and detailed enough for the beginners.

So, how do you read this thesis? If you’re a beginner, I recommend reading appen-

dices A and B before reading the first part. This will give a detailed overview on both

conventional and unconventional superconductivity. From this point on you can read the

thesis in order, and dip into the appropriately referenced appendices when standard tech-

niques are used. If you’re a veteran, I recommend reading this thesis in order forgoing

the appendices.

1.2 Actual Introduction

The story of superconductivity is filled with twists & turns, and is still being written.

Much can be said about these macroscopic quantum materials (which will be presented

in the following chapters) but for now know that these materials are perfect diamagnetic

conductors [1]. In the broadest form we can say there are two types of superconductors,

conventional and unconventional [2]. Only the former are well understood, and we are

in a situation where there is a wealth of experimental knowledge but little theoretical

understanding of the latter.

Conventional superconductors are well described by the formation of phonon mediated

Cooper pairs [3]. As described by the BCS solution [4] these condense and for these

materials superconductivity is a solved problem.

This would have been an open and shut case if it wasn’t for scientist’s drive to increase

the superconducting transition temperature. This led to the discovery of a new type of su-

perconductor [5], unable to be described by the conventional BCS theory, and so the field

of unconventional superconductivity was born. Interestingly the original unconventional

superconductors (heavy fermion superconductors) actually had lower absolute transition
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temperatures but high when compared to the bandwidth within these materials [6]. The

later cuprate superconductors (discovered by Bednorz and Muller [7]) had much higher

transition temperatures. To this date, a microscopic theory of unconventional super-

conductivity does not exist. We will present work to hopefully shed some light on this

field.

This thesis is formed of four parts. In the first part we set the stage. Here, we give

a history of superconductivity then model both conventional and unconventional super-

conductors. We will find that unconventional superconductors can be modelled by an

ordinary Hubbard model, yet examinations on this model struggle to find superconduc-

tivity [8]. This directly leads us to the second part of this thesis. Here we present a

particular Hubbard model that exhibits superconductivity, even in the limit of divergent

Coulomb repulsion. More interestingly, at finite Coulomb repulsion, this model manifests

the phase diagram of unconventional superconductors. In the third part of this thesis we

develop a new formalism to deal with finite Coulomb repulsion, with remarkable accuracy.

We do this by defining non-orthogonal operators, and self-consistently solving for them.

In the final part we conclude and present appendices.

Let’s move on to the relevant history in the field.
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CHAPTER 2

A HISTORY OF

SUPERCONDUCTIVITY

Superconductivity is a rich field with a lot of history. One could write entire books on

the subject, and people have. We’re left with the di�cult job of condensing down 100

years of history down to tens of pages. As a result, we can not cover everything, but we

can cover the essentials. In this chapter we will review the history of superconductivity,

starting with conventional and moving to unconventional. We will focus on the physics

in this chapter, and the theory in the next.

2.1 Conventional Superconductivity

In 1911 Kammerlingh-Onnes found that the resistivity of mercury dropped to zero very

sharply at about 4K [9]. A resistivity of zero corresponds to a divergent conductivity,

and superconductivity was born. Later experiments showed that the resistivity of the

superconducting state was less than 10�14 of that in the normal state.

Superconductivity is not limited to mercury: many elements and compounds are su-

perconductors. 30 elements superconduct at ambient pressure, and a further 24 at high

pressure [10]. It seems like superconductivity is abundant and at a wide range of temper-

atures. Rhodium superconducts at 35µK [11] and Niobium at 9.26K [12]. The interesting
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Figure 2.1: Resistance vs Temperature: Normal State vs Superconductor
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Schematic resistance vs temperature curves for a normal and superconducting state. For a nor-
mal metal resistance decreases to a finite value at zero temperature, whilst for a superconductor

at a finite temperature TC the resistance sharply drops to zero.

thing is that copper, silver, and gold do not exhibit superconductivity. Indeed there is

a trend that ‘good conductors make bad superconductors’ [13]. This will turn out to be

indicative of the source of superconductivity.

Superconductivity is clearly the phenomenon of perfect conductivity, but is this enough?

No. Theoretically it can be shown that perfect conductors would show history dependent

behaviour. A perfect conductor would expel a magnetic field applied on it. However, if

a magnetic field is applied to a perfect conductor above its transition temperature and

subsequently cooled, we would expect the field to be locked [14]. This is not what we

see. In superconductors the field is always expelled, regardless of cooling before or after

application of the field. This is called the Meissner e↵ect [1], named after the discoverer

of the phenomenon. Superconductors aren’t just perfect conductors, they’re also perfect

diamagnets.

In reality things are more complicated. The magnetic field actually penetrates the
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Figure 2.2: Field Locking vs Expulsion From a Perfect Conductor

In a perfect conductor we expect di↵erent behaviour when applying a field before or after cooling
past the transition temperature.

material and exponentially dies at length scale called the ‘penetration depth’ [15]. Upon

increasing the strength of the field superconductivity either vanishes or permits quantised

flux to pass through the material in ‘vortices’ [16]. In the former case we talk about ‘Type

I’ superconductors and in the latter case they are called ‘Type II’ superconductors. A

plethora of work has been carried out on these, is a field of study in and of itself, and is

a detail of no relevance for the work in this thesis.

In the mean time theorists are working around the clock to explain this phenomenon,

and people do quite well. Honourable mentions go to Fritz and Heinz London [17] who

generated phenomenological equations to explain the Meissner e↵ect. This was surpassed

by a Ginzburg-Landau theory [18], in which a complex order parameter uniformly changes

from zero in the normal state, to non-zero in the superconducting state. Both of these

theories were surpassed by the microscopic BCS theory [4] which will be detailed in the

next chapter.

The following is a very brief physical overview of BCS theory. Phonons couple opposite
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spin and momentum particles to form Cooper pairs. These condense, opening up a gap

in the spectrum. This gap forces a finite energy cost of creating an excitation, which is

the basic explanation for superconductivity.

The race for room temperature superconductivity is now on. Scientists from around

the world are trying to create compounds with higher and higher transition temperatures,

and they succeed. They get up to 23.2K with Nb3Ge [19]. Then Bednorz and Muller

discover a superconductor with transition temperature 38K [7]; except with this one there

is more than meets the eye.

2.2 Unconventional Superconductivity

Unconventional superconductors are simply materials where the source of superconduc-

tivity is not phonon mediated [20]. Bednorz and Muller were not the first people to find

unconventional superconductivity, but they were the first to find one with such a high

transition temperature. This was the first of many high temperature superconductors,

and the one with the highest transition temperature (at ambient pressure) to date being

in one such material, HBCCO (HgBa2Ca2Cu3Ox) [21].

This set of materials are called the cuprates, named after the superconducting copper

oxide layers that reside within them. All the cuprates share a few common traits. Each one

is associated with a non-doped ‘parent compound’ that is always an anti-ferromagnetic

Mott insulator [22]. Close to zero temperature, when this compound is doped (with

particles or holes), this anti-ferromagnetism dies and gives rise to superconductivity. Upon

further doping this superconductivity dies and gives rise to a normal metal [23].

Again things are more complicated than they first seem. The phase diagram is not

particle hole symmetric [24]. Anti-ferromagnetism extends to higher doping on the particle

side, and the superconducting range is smaller. Moreover, two strange phases exist on the

hole doped side, the pseudogap and strange metal, and not on the particle doped side.

This is depicted in figure 2.3 on page 9. This entry level knowledge of the phase diagram
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Figure 2.3: Phase Diagram of Cuprate Superconductors

The cuprate phase diagram taken from [25]. All parent compounds are anti-ferromagnetic Mott
insulators. The phase diagram is almost particle hole symmetric except for the extent of the

anti-ferromagnetism and pseudogap.

is all that is required for this thesis.

Another set of unconventional superconductors are the heavy fermion superconduc-

tors [6]. They were discovered before the cuprates and had low transition temperatures.

For example CeCu2Si2, the first heavy fermion superconductor, has a transition temper-

ature of 0.7K [26]. These materials are usually formed of rare earths or actinides which

have very localised f-electrons, which hybridise with the normal conduction electrons,

giving rise to high quasiparticle mass.

All unconventional superconductors have the following in common: a strongly corre-

lated electron system and small correlation lengths [20]. Compare this to conventional

superconductors where they are weakly correlated and the correlation length is large [27].

At this point I would like to highlight targets that our work would like to achieve:

1. A zero temperature phase diagram for cuprates that includes anti-ferromagnetism,

superconductivity, and metal in that order
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2. Coexistence of superconductivity and ferromagnetism (in some unconventional su-

perconductors)

3. A short correlation length

4. High transition temperature

These are physically motivated targets that theoretical attempts to describe unconven-

tional superconductivity should aim to achieve.

2.3 Ladder Compounds

As the central work in this thesis is done on a model which can be represented as a

one dimensional ladder (see figure 7.2 on page 49), we will do a brief review of the key

background in the field. Most of the work, both theoretical and experimental, has focused

on magnetism in ladder compounds [28]. This is particularly interesting in our case, as

the short range anti-ferromagnetic correlations that exist in the cuprates also exist in

these ladder compounds. For example, vanadyl pyrophosphate is a two rung ladder with

confirmed Heisenberg antiferromagnetic correlations [29]. A more relevant material is

SrCu2O3, which is a quasi-one dimensional spin ladder system. It is a cuprate system,

much like the superconducting systems mentioned earlier, and has anti-ferromagnetic

correlations [30], but is not superconducting even under pressure [31].

The most relevant ladder compound for this work is the so called “telephone number

compound” Sr3Ca11Cu24O41, named due to the large amount of numbers in its structure.

This family of compounds (in particular Sr0.4Ca13.6Cu24O41) was first shown to exhibit

superconductivity under pressures of between 3GPa and 4.5GPa [32]. It has a similar

phase diagram to the layered cuprates, but the structure contains ladders of copper oxide

chains, similar to that of our model.

This material also exhibits an increase in the superconducting transition temperature

when uniaxial pressure is applied [33]. The action of pressure on a solid state condensed

10



2.3. LADDER COMPOUNDS

matter system [34] is to bring atoms closer together. Of course, electrostatic pressure

is many orders of magnitude higher than what can be applied in the lab, therefore the

action of pressure is a perturbation on the original structure. This perturbation changes

the hopping parameters slightly. When the pressure is applied uniaxially, some parameters

can be controlled while others are changed. This is of particular interest, as we will be

tuning parameters and seeing their e↵ects in the results (chapter 11), and in particular

find that superconductivity can be strengthened.

In this chapter we gave a historical physical overview of both conventional and un-

conventional superconductivity, stated the key di↵erences between the two, and gave an

overview of ladder compounds in condensed matter physics. In the following chapter we

will dive into the mathematics, and model conventional superconductivity.
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CHAPTER 3

MODELLING CONVENTIONAL

SUPERCONDUCTORS

Modelling conventional superconductivity is a rather simple process. If physical chemistry

is unknown to you, please see appendix B.8. In this chapter we will model conventional

superconductors, solve the Cooper problem, and then the BCS model. In essence we will

show that pairs of particles bind, and these pairs condense manifesting superconductivity.

We’re going to start with a tight binding model for the electrons as these materials

are metallic, even if they are bad metals. The Coulomb repulsion has been set to zero,

thanks to screening due to the background positive lattice.

Even if there is no repulsion between electrons, the tight binding model does not

exhibit superconductivity. We need something more. The electrons need an attraction

mechanism. In 1950 Frolich proposed an e↵ective interaction mediated by the lattice [35].

As an electron passes through the lattice, the background positive lattice is attracted to

it. This forms a local density of increased positive charge. Due to the mass di↵erence

between the ions and electrons, the ions do not relax as fast as the electrons. Therefore,

the positive charge density remains long after the electron has left. This positive charge

forms a site for attraction for a nearby electron. This process is depicted in figure 3.1 on

page 14
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Figure 3.1: Cartoon of Lattice Distortion Mediating E↵ective Electron Attraction

Cartoon of the lattice distortion that attracts two electrons together. As electrons are negative
they distort the positive lattice creating a higher density of positive charge. The relaxation time
of the lattice is larger than that of the electrons causing an e↵ective attractive field for nearby

electrons.

The deformation and relaxation of the ionic lattice is described by the mediation of

phonons. These phonons couple electrons together. This explains the ‘good conductors

make bad superconductors’ phenomenon, as at room temperature strong electron phonon

coupling is a resistance inducing phenomenon [13].

This picture produces two predictions: a large correlation length [36] and the isotope

e↵ect [37]. Since the typical electron speed is of the order of the Fermi velocity vF ⇡ 106,

whilst the lattice relaxation time is ⌧ ⇡ 2⇡
wD

⇡ 10�13s where wD is the Debye frequency.

From this we can find a characteristic length called the correlation length ⇠ ⇡ vF ⌧ ⇡

10�7m representing the size of the pair. The characteristic size of this pair is around

1000 atom spacing and is experimentally verified [38]. Moreover, from this picture we

expect the superconducting transition temperature to depend on the ionic mass via wD,

and indeed this is what we see

TC / 1

wD
⇡ 1p

M
, (3.1)

this is called the isotope e↵ect.

This physical modelling is boasting a lot of success. In the next section we will examine

this picture mathematically and find the Fermi surface is unstable to pair formation.
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3.1 Cooper Pairs — Instability at the Fermi Surface

We have already seen why electrons may be attracted to one another, in this section we

will show that the Fermi surface is unstable to pair formation with the presence of an

attraction [39].

This model assumes a constant uniform attraction �V in a ‘skin’ of wD width around

a spherical Fermi surface depicted in figure 3.2 on page 16. The Schrodinger equation for

this pair is

� ~2
2m

r2
1 � ~2

2m
r2

2 + V (r1 � r2) = E , (3.2)

where E is the energy of the pair. We use a pair wavefunction that is symmetric in real

space and anti-symmetric in spin space given by

 (r1, r2) =

"
X

k>kF

gk cos(k · (r1 � r2))

#
[|"i1 |#i2 � |#i1 |"i2] , (3.3)

where gk is the momentum space electron-phonon coupling. Substituting in for the wave-

function gives

2✏kgk +
X

k0>kF

Vkk0gk0 = Egk, (3.4)

where

✏k =
~2k2

2m
, Vkk0 =

Z
V (r)e�i(k�k0)·r. (3.5)

Assuming Vkk0 = �V for energies ✏F � ~wD  ✏k, and ✏k0  ✏F + ~wD gives

(E � 2✏k)gk = �V
X

k0>kF

gk0 = �V C, (3.6)

that can be rearranged to give

gk =
V C

2✏k � E
, (3.7)

C =
X

k>kF

gk = C
X

k>kF

V

2✏k � E
. (3.8)
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Figure 3.2: Fermi Surface with DeBye ‘Skin’ Attracting Phonons

The Fermi surface along with a small window for which electrons are attracted to one another.

Dividing this by C and replacing the momentum sum with an energy integral gives

1 = N(✏F )V

Z ✏F+~wD

✏F

d✏

2✏� E
(3.9)

=
1

2
N(✏F )V log


2✏F + 2~wD � E

2✏F � E

�
, (3.10)

where N(✏F ) is the density of states at the Fermi energy. We can write E � 2✏F = ��,

where � is the binding energy of the pair. Which gives

� = 2~wD exp


� 2

N(✏F )V

�
. (3.11)

The pair of particles is bound! Interestingly this factor of 2 in the exponent is missing

in the full BCS calculation. This is due to electron-hole symmetry not being considered

correctly in the Cooper calculation.

In this section we showed Cooper’s result of pairs binding due to a featureless attrac-

tion. In following section we will show the full BCS solution of conventional supercon-
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ductivity.

3.2 BCS — Theory of Superconductivity

The BCS solution is remarkably e↵ective in the predictions it makes. In this section we

will solve the BCS Hamiltonian but in our own way, closer to the work of Valatin [40]. We

will use this opportunity to replicate results that will occur in part II of the thesis. We will

look at the total energy, occupation factor, and the superconducting gap. If Hartree-Fock

mean field theory is unknown to you please see appendix D. The BCS Hamiltonian is

H =
X

k�

✏kc
†
k�ck� � V

X

kk0q

c†k0"c
†
q�k0#cq�k#ck", (3.12)

where we are assuming a featureless interaction V , and the sum over q allows for a

current to be included in the calculation. Allowing the correlations nk = hc†k�ck�i, �k =

hc†k0"c
†
�k0#i, and �⇤

k = hc�k#ck"i gives an average energy per site of

Ē =
X

k�

✏knk � V (n2
k + |�k|2), (3.13)

which gives an e↵ective Hamiltonian (using Wick’s theorem) of

Heff =
X

k�

⇥
(✏k � V nk)c

†
k�ck� � V (�⇤

kc
†
�k"c

†
k# +�kc�k#ck")

⇤
, (3.14)

which can be rewritten as a matrix equation

Heff =
X

k


c†k" c�k#

�
2

64
(✏k � V nk) V�⇤

k

V�k �(✏k � V nk)

3

75

2

64
ck"

c†�k#

3

75+ (✏k � V nk). (3.15)

Diagonalising this matrix gives the gapped BCS dispersion

E±
k = ±

p
(✏k � V nk)2 + V 2|�k|2. (3.16)
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Figure 3.3: BCS Energy as a Function of Occupation
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BCS Superconducting and normal energy as a function of occupation, with V = 0.1 on the 1D
chain. The energies are close but the superconducting solution is energetically favourable for all

occupation.

Using the resolvent we can generate the self consistent parameters

nk =
1

2

✓
1 � Ak

E+
k

◆
, (3.17)

�k =

✓
�Bk

2E+
k

◆
, (3.18)

where Ak = ✏k � V nk � µ, and Bk = V�k.

One can solve these equations in the limit �k is small but we’ve elected to solve them

numerically self consistently for a more accurate result. Figure 3.3 on page 18 depicts

the total average energy as a function of occupation for a one dimensional chain. This

result will be repeated for our particular system in Part II, and hence provides context with

respect to conventional superconductivity. The energies are close but the superconducting

solution is energetically favourable for all occupation.

In this chapter we modelled conventional superconductors, ran through the Cooper
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demonstration of pairing, and used these pairs as a basis for the BCS mean field solution.

These calculations will be repeated for our model in part II. In the following chapter we

will model unconventional superconductors and find that we will be able to say very little

conclusively.
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CHAPTER 4

MODELLING

UNCONVENTIONAL

SUPERCONDUCTORS

Unconventional superconductors have rich physics. In this chapter we will model

La2�xSrxCuO4, the simplest cuprate, and CeCu2Si2 the first heavy fermion superconduc-

tor. In the first section we will develop the most accurate model for the cuprates, but

it is rather unwieldy. This will be followed up by a dramatic simplification in the next

section. Here we will follow the argument made by Zhang & Rice [41] and generate a

single band Hubbard model. This will be extended to the t � J model, which is the

Hubbard model in the limit of strong Coulomb repulsion. In the next section we look

at resonance valence bond theory [42] developed by Anderson to explain unconventional

superconductivity. This is an interesting theory but has boasted little quantitative success

due to its immense complexity. Finally we look at the Anderson lattice model [43], the

simplest model for heavy fermion superconductors. We will be modelling these materials

using physical chemistry. If this is unfamiliar see appendix B.8.
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4.1 The Three BandModel — Arguments From Phys-

ical Chemistry

In this section we will develop an accurate yet complex model for the cuprates, focusing our

attention on La2�xSrxCuO4 (LSCO). Modelling begins on the parent compound La2CuO4,

which is an anti-ferromagnetic Mott insulator [44]. Doping will change little to the core

modelling and the result will be a three band model on the hole doped side and a single

band Hubbard model on the particle doped side.

We begin with the electron configuration of the compound: La is [Xe] 5d1 6s2, Cu is

[Ar] 3d10 4s1, and O is [He] 2s2 2p4. Oxygen is incredibly electronegative and will occur

as O2�, lanthanum is the opposite and will occur as La3+. Basic arithmetic then gives

the charge on the copper as �(2⇥ 3� 4⇥ 2) = 2. Therefore, there are 9 electrons on the

copper sites. This is one less electron than a fully occupied 3d shell, therefore it makes

sense to use a hole description. The parent compound has one hole on each copper in the

3d shell. Now let’s take a look at the structure of the compound and the e↵ect from the

crystal field.

The structure of the material is perovskite and is depicted in figure 4.1 on page 23.

There are layered copper oxide planes stacked on lanthanum oxide planes, with each

copper site being surrounded by an oxygen octahedron. This is depicted in figure 4.2

on page 24. The crystal field lifts angular degeneracy. The positive eg orbitals have

strong overlap with the neighbouring negative oxygen atoms, hence they gain Coulomb

energy and are favoured over the t2g orbitals. If the octahedral environment was perfect

the two eg orbitals would be degenerate. The environment is not perfect however, and

distortions elongate the octahedra along the z-axis. This lifts the degeneracy and the

dx2�y2 is favoured. The degeneracy lifting is depicted in figure 4.3 on page 24.

The final thing required to model the parent compound is super-exchange [46]. Hy-

bridisation with intermediate oxygen atoms allows for energy gain. This comes in the

form of virtual hopping. The two magnetic configurations are ferromagnetism and anti-
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Figure 4.1: Structure of Lanthanum Copper Oxide

Structure of the parent compound of LSCO [45] Here yellow sites are lanthanum atoms, orange
sites are copper atoms, and red sites are oxygen atoms. There is a layered structure with copper

oxide layers, followed by two lanthanum oxide layers.

ferromagnetism, with the latter gaining more energy than the former. This process is

depicted in figure 4.4 on page 25.

The parent compound is an anti-ferromagnetic Mott insulator formed by dx2�y2 or-

bitals on each copper site. Now we examine the e↵ects of doping. For LSCO this comes in

the form of strontium doping which takes the place of lanthanum in the compound. The

primary e↵ect of the strontium is to act as a hole donator as its electron configuration is

[Kr] 5s2 which is one fewer valence electron than lanthanum. As a result we are modelling

hole doping in the system.

The first question is where do the holes go? To answer this we require knowledge

of the energy states of the potential occupation sites. This is depicted in figure 4.5 on

page 25. From this we can see that the holes will reside on the oxygen atoms [47].

The next question is which orbitals will they occupy? There are three options px, py,

and pz. Figure 4.6 on page 26 depicts the relevant configurations from which we can see
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Figure 4.2: Octahedral Oxygen Environment Around a Copper Atom

The local oxygen (red sites) environment for every copper (orange sites) atoms. There is an
oxygen octahedron surrounding the copper atom creating a crystal field which lifts angular de-

generacy.

Figure 4.3: Copper Crystal Field Splitting

The energy levels of each orbital splitting. The first split is due to the octahedral crystal field,
whilst the second is due to the distortion of this octahedral environment.
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Figure 4.4: Anti-Ferromagnetic Superexchange

Visual representation explaining the source of anti-ferromagnetism. The large orange sites are
Copper and small red sites are oxygen. Antiferromagnetic order allows for virtual hopping onto

neighbouring states, ferromagnetism does not.

Figure 4.5: Energy Levels Of Placing Holes on Di↵erent Atoms

Energy cost for adding holes on di↵erent atoms, with example states on the right [48].
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Figure 4.6: Di↵erent Orbital Configurations to Hybridise with the Copper Hole

Copper atom (large, orange) with possible hybridisation on the oxygen atom (small, red). The
hole on the copper atom occupies the dx2�y2 state. The hole on the oxygen atom can occupy
one of three states: 2pz (not depicted as zero by symmetry), 2py, and 2px. The left depicts

hybridisation which are zero by symmetry, and the right are permitted configurations.

that one wins out: the one with the most overlap. The orbitals are px when hopping

in the x̂ direction and py when hopping in the ŷ direction This is because hybridisation

allows for energy gain from hopping. The lack of hybridisation between planes (due to

no pz) means all the physics is contained within the two dimensional copper oxide planes,

which are depicted in figure 4.7 on page 27.

We can therefore model this system with a three band Hubbard model for the copper-

oxide layers. Therefore, the nearest neighbour Hamiltonian [49] is

HHoles =
X

ij�

h
✏Cud†i�di� + ✏Opx

†
j�pxj� + ✏Opy

†
j�pyj�

i
+
X

ij

h
UCud†i"di"d

†
i#di#+UOpx

†
j"pxj"px

†
j#pxj#

+ UOpy
†
j"pyj"py

†
j#pyj#

i
� Vd,p

X

hiji�

h
d†i�pxj� + px

†
j�di� + d†i�pyj� + py

†
j�di�

i
, (4.1)

where ✏Cu is the occupation energy for a copper dx2�y2 hole, ✏O is the occupation energy for
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CHEMISTRY

Figure 4.7: Copper Oxide Layer

All of the physics of the cuprates are within the copper oxide layers depicted above. Here the
orange sites are copper atoms and red sites are oxygen atoms. There is an underlying square

lattice made of the copper sites, with oxygen atoms between each copper.

an oxygen px or py hole, UCu is the Coulomb penality for doubly occupying a copper site,

UO is the Coulomb penality for doubly occupying an oxygen site, Vij is the hybridisation

between copper and oxygen sites, d†i� creates a dx2�y2 hole with spin � on copper site i,

px
†
j� creates a px hole with spin � on oxygen site i + x̂, and py

†
j� creates a py hole with

spin � on oxygen site i+ ŷ. This is depicted in figure 4.8 on page 28.

This model contains all the hole physics but is incredibly complicated. Interestingly

the particle doped Hamiltonian is quite simple in comparison. From figure 4.5 on page 25

we can see that upon particle doping electrons will reside on the copper sites filling the

3d shell, which is a vacuum in the hole picture. The remaining holes are able to move

but only via hybridisation through the intermediate oxygen sites, for example hijihji0i.

What remains is an ordinary Hubbard model on the 2D square lattice

HParticles = ✏Cu
X

i�

d†i�di� + UCu
X

i

d†i"di"d
†
i#di# � t

X

hii0i�

d†i�di0�, (4.2)

27



CHAPTER 4. MODELLING UNCONVENTIONAL SUPERCONDUCTORS

Figure 4.8: Orbital Configuration of the Copper Oxide Layers

All copper sites are occupied by a dx2�y2 hole. The oxygen sites (when occupied) are in either
the 2px or 2py state if they are on the i + x̂ orbital or i + ŷ respectively.

where the hopping can be perturbatively shown to be

t =
V 2

✏Cu � ✏O
. (4.3)

In this section we modelled the copper oxide layers of the cuprates. In the hole doped

side we got a complicated three band Hubbard model, whilst on the particle doped side

we derived an ordinary Hubbard model. In the next section we will dramatically simplify

the hole doped model by replicating Zhang & Rice’s calculation.

4.2 The Single Band Hubbard Model — Zhang &

Rice’s Calculation

In this section we will go over the work done by Zhang and Rice [41], where they mapped

the three band Hubbard model from the previous section to a single band Hubbard model.
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4.2. THE SINGLE BAND HUBBARD MODEL — ZHANG & RICE’S
CALCULATION

Strong hybridisation between the copper and oxygen atoms bind a hole on each square of

oxygen atoms around a central copper. This singlet moves through the lattice like a hole

in the original model.

In this calculation we set ✏Cu = 0, ✏O > 0, and consider the case V << UCu, ✏O,

UCu � ✏O. As ✏O < UO extra holes reside on the oxygen sites but as V > 0 there is energy

to be gained from hybridisation.

We will consider the symmetric and anti-symmetric plaquette operator

P (S,A)
i� =

1

2

X

l2i

(⌥1)pl�, (4.4)

which creates a symmetric (S,�), or anti-symmetric (A,+) superposition over the 4

oxygen sites around a copper atom on site i. The creation of px or py is implicit for

the appropriate sites. Both P S
i� and PA

i� can hybridise with a copper dx2�y2 hole to form

singlet or triplet states. Using second order perturbation theory it can be shown that the

hybridisation energy of P S
i� singlet is �8(t1 + t2), of the P S

i� triplet is 0, and of the PA
i� is

�4t1. Here t1 = V 2

✏O , and t2 = V 2

UCu�✏O . The largest energy gain is that of the P S
i� singlet

state, due to phase coherence. This is the Zhang-Rice singlet and is depicted in figure 4.9

on page 30.

This needs to be compared with the energy of a hole at a fixed site l to see what

is preferred. Using the same second order perturbation theory, the binding energy of a

singlet combination of an oxygen hole and its neighbouring copper site is �2(t1 + t2),

which is only a quarter of the binding energy of the Zhang-Rice singlet. The e↵ective

hopping energy from one oxygen site to another is either t1 or t2, as it requires hopping

through an intermediary copper site. Both of these are much smaller than the separation

between these states so we can safely project out the anti-symmetric oxygen hole states

and work in subspace of P S
i� states.

Now let’s look at the motion of the Zhang-Rice singlets. The energy of two singlets on

the same square i.e. P S
i"P

S
i#di� is �(6t1 + 4t2), much higher than two separated singlets.
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Figure 4.9: Zhang-Rice Singlet

Visual representation of the Zhang-Rice singlet (grey box). A singlet hybridisation of P
S
i� operator

with a central copper site.

Zhang-Rice singlets feel a strong repulsion on the same site. The singlets are not orthog-

onal as neighbouring ones share a common oxygen site. To examine the motion we are

required to construct a Wannier basis. Here, Zhang and Rice decided to set t1 = t2 = t

and showed using second order perturbation theory that nearest neighbour hopping was

of strength ⇡ �1.5t and next nearest neighbour hopping was of strength ⇡ �0.16t. They

showed that when a singlet moves from site i to j a copper hole moves simultaneously

from j to i. This means that the singlet, for all intents and purposes, acts like a hole in

the original copper operator picture, and what we are left with is an ordinary Hubbard

model. This is given by

HZR
Holes = ✏Cu

X

i�

d†i�di� + UCu
X

i

d†i"di"d
†
i#di# � 1.5t

X

hiji�

d†i�dj�, (4.5)

which is nearly identical to the Hubbard model for particles.

In this section we followed Zhang and Rice’s argument that the Hamiltonian for the
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hole doped cuprates is the nearest neighbour single band Hubbard model. In the following

section we will look at a natural representation of this model in the large U limit, along

with its limitations.

4.3 The t � J Model

Unfortunately, reducing the three band Hubbard model to the single band Hubbard model

does little in tackling superconductivity. This is because the Hubbard model is notoriously

di�cult to tackle highlighted by the fact a solution only exists for the 1D chain. However,

theorists have been motivated by the physics of unconventional superconductors; namely

the large on-site Coulomb repulsion to chemical bonding ratio [48]. For example, in the

cuprates U ⇡ 8t. In this section we will look at one such limiting model, the t�J model.

Let’s take the ordinary Hubbard model

H = �t
X

hiji�

c†i�cj� + U
X

i

c†i"ci"c
†
i#ci#. (4.6)

In the limit U = 1 double occupation is prohibited on a site, as this state costs infinite

energy. To deal with this we can simply project this state out when dealing with hopping.

The operator

T †
i� = (1 � c†i�̄ci�̄)c

†
i�, (4.7)

creates a particle on site i with spin � provided there is not already a particle with spin

�̄ there. Therefore we can enforce the limit U = 1 using ci� ! Ti�, which gives

H = �t
X

hiji�

(1 � c†i�̄ci�̄)c
†
i�cj�(1 � c†j�̄cj�̄). (4.8)

This is the t model.

In reality though U is not infinite, it is finite. To deal with this we can perturbatively

lift this limit using Heisenberg corrections. This process is standard and, if unfamiliar,
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has been detailed in appendix F. Combining the t model with the Heisenberg model gives

the t � J model (where J = t2

U )

H = �t
X

hiji�

(1 � c†i�̄ci�̄)c
†
i�cj�(1 � c†j�̄cj�̄) + J

X

hiji

Si · Sj. (4.9)

In principle this accurately deals with the large U limit of the Hubbard model and is

therefore the model of the cuprate superconductors; however, there are limitations to this

model.

4.3.1 Limitation of This Model

The biggest limitation of this model is that it is arguably more di�cult to deal with

than the original Hamiltonian. As exact techniques are not sophisticated enough we

are required to use approximate techniques. All approximate techniques cannot exactly

constrain the projection; they only keep the constraint on average. This is because ap-

proximation schemes are designed to convert many body problems into single particle

ones, but the operators that restrict the subspace are many body by construction. There-

fore there are fluctuations on to previously prohibited states! The only way to to mitigate

this issue is to use a basis which completely covers the accessible states.

There are also inconsistencies with this model and experiment. Firstly the phase

diagram is not symmetric with respect to doping. This model would predict that it is.

There is a reduced pseudogap or strange metal phase in the particle doped side of the

phase diagram [50]. Add to that the fact experiments see a square Fermi surface [51],

and the nearest neighbour model would produce a diamond. The next nearest neighbour

hopping would have to be approximately half the size of nearest neighbour hopping to

create this. This is not predicted by Zhang and Rice.

The last, most interesting, limitation of this model is that of the local structure a

hole creates. In the t � J model the biggest scale is t so we examine the e↵ects from

just the hopping. A hole, at the Mott point, in the t model drives the local environment
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4.3. THE T � J MODEL

Figure 4.10: Local Copper Oxygen Environment with a Hole

Oxygen and copper atoms are (small) red and (large) orange sites respectively. The diamonds are
Zhang-Rice singlets. The spin configuration plays a more important role than the energetics. At
the same strength of an ordinary Zhang-Rice singlet hop we can make a next nearest neighbour

hop if the spin configuration permits it.

ferromagnetic. This is Nagaoka’s theorem [52]. However, in the original three band model

a hole drives the local environment to a low spin environment. Zhang and Rice’s model

only looks at the energetics but not the spin configuration. This is depicted in figure 4.10

on page 33.

In this section we derived the t � J model by taking the physically motivated limit

U is large from the Hubbard model. We found that there are many limitations to this

approach. In the next section we look at Anderson’s resonating valence bond theory.
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4.4 Resonance Valence Bonds — An Idea by Ander-

son

The last section on the cuprates is on Anderson resonating valence bond theory [42]. This

theory is interesting but has boasted little quantitative success. The theory is rather

simple

1. The cuprates are dominated by Mott physics and therefore the t � J model is the

minimal model.

2. The ground state is a superposition (resonance) of all possible configurations of

singlets (valence bonds). This ensures no Coulomb penalty and maximal gain from

hybridisation.

3. This Mott localisation remains when doping occurs, and hence these singlets prop-

agate in the metallic state mediating the superconductivity. These singlets are the

Cooper pairs which cause superconductivity.

Unfortunately there has been little analytical work on this model and, as many use these

ideas on the t � J model, su↵er from the limitations previously mentioned.

So why mention this model at all? Well, the work presented in part II of this thesis will

have remnants of this theory spontaneously appear, but the work will be rather rigorous.

Now let’s take a look at the model for heavy Fermion superconductors.

4.5 Anderson Lattice Model

In this section we will model CeCu2Si2, the first heavy fermion superconductor [26]. This

model will apply to most heavy fermion superconductors and the Anderson lattice model

will be the result.

We begin with the electron configuration of the compound: Ce is [Xe] 4f1 5d1 6s2, Cu

is [Ar] 3d10 4s1, and Si is [Ne] 3s2 3p2. Cerium is a lanthanide and will form a Ce3+ core
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4.5. ANDERSON LATTICE MODEL

leaving a 4f electron, and silicon bonds covalently as expected (being underneath carbon).

This system is metallic and these electrons are described by a tight binding model.

The structure is largely irrelevant for this modelling. Instead we focus on the remaining

f electron on the cerium sites. These are in the Hill limit, meaning they do not directly

hybridise with one another. Instead they hybridise with the copper electrons. This is

naturally described by the Anderson lattice model [43]

H =
X

j�

✏ff
†
j�fj�+

X

hj,j0i�

tjj0c
†
j�cj0�+

X

j,�

⇣
Vjf

†
j�cj� + V ⇤

j c
†
j�fj�

⌘
+U

X

j

f †
j"fj"f

†
j#fj#, (4.10)

where f †
i� creates a 4f electron on a cerium site i with spin �, and c†i� creates a 3d electron

on a copper site i with spin �.

Similar to the Hubbard model that is generated for the cuprates, this model is simple

but tough to tackle. The key di↵erence in this case is that V is small in heavy fermion

systems whilst for the cuprates it is the dominant interaction. Heavy fermion systems

are dominated by the background metal with the flat band physics from the f -electrons

only acting to increase the e↵ective mass of the system [53]. Whereas the cuprates are

not dominated by the metal, instead they are dominated by the Hubbard interaction.

In this chapter we modelled unconventional superconductors. For the cuprates we

found they were described by a three or one band Hubbard model for hole and particle

doping respectively. The three band model can be represented as a one band model

if the arguments of Zhang and Rice are followed, but the resulting t � J model has

limitations. Finally, we modelled heavy fermion superconductors and found a similarly

di�cult Hamiltonian to tackle. When it comes to unconventional superconductivity we

have just about got the model, and even then there are issues.
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CHAPTER 5

SUMMARY

In this first part we set the stage for the rest of this thesis. As the work is on unconven-

tional superconductivity we began with a history of superconductivity. Here we learnt

the essentials. Superconductivity is the phenomena of zero resistivity and perfect dia-

magnetism. In conventional superconductors electrons are attracted to one another with

phonons. Unconventional superconductors are simply ones where this is not what drives

superconductivity. They have rich phase diagrams which include magnetism, and are

strongly correlated electron systems with small correlation lengths.

The next chapter had us adding mathematical flesh onto the bones of the previous

chapter. Here we discussed the source of attraction: lattice distortions mediated by

phonons. This made the prediction of temperature dependence on ionic mass and a large

correlation length which were experimentally verified. We then showed that the Fermi

surface is unstable to pairing under a featureless attractive interaction whose source is

phonons (the Cooper calculation). Next we took this further and showed the BCS solution.

Following that, we modelled unconventional superconductors. Here we generated an

unwieldy three band Hubbard model for the hole doped cuprates and a single band model

for the particle doped cuprates. We then followed the work of Zhang and Rice to show

that the three band model could be mapped to a single band model. The resulting model

has limitations such as lacking corroboration with experiments. Finally we introduced An-
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derson’s resonance valance bond theory, and we modelled heavy fermion superconductors

using the Anderson lattice model.

There is a wealth of work done within the field of superconductivity. As a result we

only gave a sliver of what is out there. This included all the background to understand

the work that is to come in this thesis.

In the next part of this thesis, we are going to present a rigorous demonstration of

superconductivity in a repulsive Hubbard model. This is relevant as we have shown

the cuprates can be modelled by a Hubbard model. This work will follow the BCS

story, beginning with a proof of pairing and subsequent mean field solution. The results

presented will mirror the BCS results presented in this first part.

The third part of this thesis will look at a new technique we’ve created to deal with

strongly interacting problems non-perturbatively with remarkable accuracy. This directly

addresses the issues raised in this part about the di�culty in dealing with the Hubbard

model.
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Part II

Superconductivity in a Particular

U = 1 Hubbard Model

39





CHAPTER 6

INTRODUCTION

Superconductivity is the macroscopic quantum phenomenon corresponding to zero elec-

trical resistance and perfect diamagnetism, where the latter is known as the Meissner

e↵ect [1]. The first superconductors were phonon mediated [54, 55], described by the

formation of Cooper pairs [39] and subsequent condensation in the BCS solution [4]. In

these materials Coulomb repulsion can be sidestepped, as the correlation length in these

superconductors was large, allowing the electrons to be attracted at a distance where

Coulomb is screened. Only electrons very close to the Fermi surface participate, within

a Debye energy or so. The next generation of superconductors were strongly correlated

and do not fit naturally into this picture. The Coulomb repulsion is dominant and so the

interactions are both repulsive and not weak, the coherence length is quite small and so

the electrons are not naturally well separated. There is also evidence that all the charge

carriers participate and the phenomenon is not restricted to a tiny energy region around

the Fermi surface [56] (see figure 6.1 on page 42). We investigate a strongly correlated

model which is susceptible to superconductivity with these strongly-correlated hallmarks.

The physics of the cuprates is that of doping a Mott insulator [22]. The Coulomb

interaction dominates the chemical bonding and the electrons are localised even though

the non-interacting picture would o↵er a metal. This Mott insulator is usually an anti-

ferromagnet, caused by the residual e↵ects of the chemical bonding and the fact that the
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CHAPTER 6. INTRODUCTION

Figure 6.1: Uemura Plot

Superconducting transition temperature versus e↵ective Fermi temperature. TC = TF would
correspond to the entire band of electrons contributing to the superconductivity. Taken from [57].

Coulomb interaction is not infinite known as super-exchange [22]. We will take the math-

ematical limit that the Coulomb interaction is divergent, eliminating this magnetism, and

only reintroduce it as an afterthought; our target is really the superconductivity. Strongly

correlated systems are not all superconductors and a variety of phenomena are observed.

We also observe a phase which corresponds to the ferromagnetism in the manganites, and

the overall picture is a direct competition between this ferromagnet and the superconduc-

tor, with the ferromagnet winning in the limit of extreme Coulomb interaction, physically

reminiscent of Nagaoka ferromagnetism [52].

Superconductivity is a tricky property to investigate mathematically. The fundamental

issue is that of correlations. In metals we know how to describe a non-interacting state

in terms of a Fermi surface and occupancy, but in the presence of interactions we might

expect a Fermi-liquid description but we only have vague renormalisation arguments to

suggest which correlations might be relevant at low energy. On a more practical level,

we have mean-field theory which targets the best non-interacting state to approximate
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the Fermi-liquid. The positive characteristic of mean-field theory is that it only provides

order if the system is susceptible to that order, and the negative characteristic is that if

the system is susceptible to order then the technique will o↵er the order even when there

are better correlated states available to the system. We will employ the assumption that

if the system is susceptible to superconductivity then mean-field theory will predict this

and that only low dimensional fluctuations would be expected to destabilise this order

via the Mermin-Wagner theorem [58].

Obviously, mean-field theory is only credible when the interactions are weak, but we

are studying a model with divergent repulsion, so we need some non-trivial mathematics

to deal with this. Our first step is to map our original strongly correlated Hamiltonian

onto another weakly interacting Hamiltonian. This step is exact and is accomplished

by a non-linear fermion transformation [59]. The resulting description usually has weak

interactions and so the mean-field theory should be credible; in addition we have a com-

parison with an exact diagonalisation study which shows good agreement. Since we are

restricted to mean-field theory to demonstrate pairing, we have elected to work in one-

dimension. This has the advantage that we can compare with our exact diagonalisation,

which is restricted to small systems, but has the disadvantage that long-range phase

fluctuations would physically be expected to eliminate any long-range order [58]. The

mean-field theory erroneously promotes the long-range order, which would be correct in

three dimensions, but these weak power-law promoting fluctuations are an irrelevance to

the physical interactions which locally promote the superconducting correlations.

Physically, the mechanism that induces the superconductivity is surprisingly simple.

The strong repulsion means that situations with extra local charge have restricted motion,

they have to avoid paying the repulsive energy penalty. Situations with less local charge

can move around more freely. It can be advantageous to allow local charge fluctuations

because the rarefied configurations together with the denser blocked regions gain more

from the hopping than the homogeneous average. This is depicted in figure 8.1 on page 67.

Obviously this requires non-linearity, with the almost vacant being strongly preferred over
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both the average and the dense configurations. This non-linearity is provided by correlated

hopping: the chemical bonding that depends on the local occupancy of the site bonded to.

This correlated hopping is a generic consequence of non-linear fermion transformations.

Mathematically we employ three independent techniques; non-linear fermion transfor-

mations [59], exact diagonalisation [60] and resolvent formalism [61]. The first technique

has the crucial advantage that provides mathematical control. Exact diagonalisation is

a standard numerical technique that provides the exact solution to a small finite system.

The infinite system is then analysed through finite-size scaling, a form of extrapolation.

Resolvent formalism is a technique for finding the exact solution to an eigenvalue prob-

lem where, in some basis, there is a trivially completely solvable problem that is only

di↵erent from the desired problem in its action on a finite number of basis states. For

metallic systems, translational invariance controls one particle and then the interactions

with a second are local in real space and may be solved using resolvent formalism. We

can exactly solve the two-hole problem, allowing a rigorous proof of hole pairing.

The technique of non-linear fermion transformations allows access to a very particular

issue: in strongly correlated systems the Coulomb interaction is dominant. Although

one electron can naturally occupy a state, a second is strongly repelled by this Coulomb

repulsion and avoids double occupancy. If there is another doubly occupied state with

less repulsive losses, then a Fermi-liquid can be constructed using quite di↵erent single-

particle and two-particle states using a non-linear fermion transformation. The choice of

such states is usually quite subtle, but we provide an example where there is a unique

choice. Note that high temperature superconductivity supplies an excellent example of

this problem, one particle occupies a copper orbital but a second sits in an oxygen orbital

and forms a Zhang-Rice singlet [41].

This part is composed of seven chapters which, when put together, show that our Hub-

bard model exhibits superconductivity. In chapter 7 we present the model in question.

This is a minimal model which encapsulates the physics of unconventional superconduc-

tors: a Hubbard model with two atoms per unit cell. In the next chapter we exactly take
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the physical limit of divergent Coulomb repulsion to constrain the problem to one energy

scale and reduce the local state space. This is done with a non-linear fermion transforma-

tion [59] and is the key technique in the analysis. Using this, a problem involving divergent

energy scales is transformed into one of moderate interactions. In the chapter 9 we exactly

show that two holes at the Mott point bind. This is followed up with mean field analysis

in chapter 10. Where the results are not exact, we corroborate using exact diagonalisation

and will find good agreement seen in chapter 11. All results will then point to this system

exhibiting superconductivity. In the penultimate chapter we make the physical extension

to non-diverging Coulomb repulsion and find that superconductivity is enhanced.
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CHAPTER 7

THE PARTICULAR HUBBARD

MODEL

Like all good theoretical stories, ours begins with a Hamiltonian. Unconventional super-

conductors are dominated by two short range interactions: chemical bonding and local

Coulomb repulsion. With its elementary treatment of these two interactions the Hubbard

model is the natural starting point when modelling unconventional superconductivity.

Moreover this is a physically motivated choice as shown by Zhang and Rice when they

demonstrated the copper-oxide planes in the cuprates can be modelled with a 2D square

lattice Hubbard model.

In this section we will introduce the Hamiltonian. Our model is designed to give us

precise mathematical control and therefore appears slightly contrived. This control comes

in the form of a local symmetry which we will detail and extract. This will split the local

state space in two: states that are symmetric or anti-symmetric under the transformation.
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7.1 The Model

The model with which we begin is

H = �t1
X

hiji�

(t†i� + b†i�)(tj� + bj�) � t0
X

i�

(t†i�bi� + b†i�ti�)

+ U
X

i

(t†i"ti"t
†
i#ti# + b†i"bi"b

†
i#bi#), (7.1)

where t†i�, b
†
i�, ti�, and bi� are standard independent fermionic creation and annihilation

operators, t0 and t1 are hopping parameters and U is the Coulomb repulsion.

This is an ordinary Hubbard model but on a peculiar geometry. We can physically

realise this geometry in multiple ways, a select few are depicted in figures 7.1 on page 49,

7.2 on page 49, and 7.3 on page 50. Figure 7.1 on page 49 depicts a system where this

Hamiltonian is geometrically ‘literally’ (in the sense bond strength is directly proportional

to bond length) where the system is formed of edge sharing tetrahedra. Figure 7.2 on

page 49 depicts it as a 1D ladder which is easier to visualise but is less physical as diagonal

and horizontal bonds are the same strength. Figure 7.3 on page 50 depicts the system as

two coupled square lattices.

Next we move on to analysing the symmetry within this Hamiltonian which is key in

tackling the problem.

7.2 A Set of Local Symmetries

Symmetries are imperative in physics. Frequently, these simplify the problem to a solvable

form. In our case the symmetry is what allows us to tackle the problem and is crucial in

our analysis.

The symmetry in question is

ti� $ bi�, (7.2)

for each site i with both spins � and �̄. This is a local symmetry and corresponds to
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Figure 7.1: Geometric Representation of the Model

Geometric representation of the model if taken ‘literally’. A system of edge sharing tetrahedra.
‘Top’ green sites corresponds to t

†
i� operators and ‘bottom’ blue sites b

†
i�. Blue lines correspond

to t1 hopping and red lines correspond to t0 hopping.

Figure 7.2: Ladder Representation of the Model

Coupled ladder with contrived hopping which is easier to visualise. ‘Top’ green sites corresponds
to t

†
i� operators and ‘bottom’ blue sites b

†
i�. Black lines correspond to t1 hopping and red lines

correspond to t0 hopping.
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Figure 7.3: 2D Coupled Square Lattice Representation of the Model

Representation where two 2D square lattices are coupled in an interesting manner. Reminiscent
of the two copper oxide layers in YBCO. ‘Top’ green sites corresponds to t

†
i� operators and

‘bottom’ blue sites b
†
i�. Blue lines correspond to t1 hopping and red lines correspond to t0 hopping.

swapping top and bottom sites via the t0 (red bond in figures) bond. Analytically this

is trivially checked. Physically we can see the source of this symmetry is the ‘horizontal’

and ‘diagonal’ bonds being the same in figure 7.2 on page 49.

In the following sections we will see the a↵ect of the symmetry on the states and

Hamiltonian.

7.2.1 The States

So the Hamiltonian is symmetric but what about the states that occupy it? As this is a

local symmetry, we examine the basis states. There are 16 basis states in this Hamiltonian
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given by

|0i , (7.3)

t†i" |0i , t†i# |0i , b†i" |0i , b†i# |0i , (7.4)

t†i"t
†
i# |0i , t†i"b

†
i# |0i , t†i#b

†
i" |0i , t†i"b

†
i" |0i , t†i#b

†
i# |0i , b†i"b

†
i# |0i , (7.5)

b†i"t
†
i"t

†
i# |0i , b†i#t

†
i"t

†
i# |0i t†i"b

†
i"b

†
i# |0i , t†i#b

†
i"b

†
i# |0i , (7.6)

t†i"t
†
i#b

†
i"b

†
i# |0i , (7.7)

where we have grouped states by particle number. Obviously dealing with 16 states is

rather unwieldy but the symmetry is here to help.

We know that ti� $ bi� is a symmetry of the Hamiltonian, therefore the states must

respect the symmetry. Written as they are currently they do not respect the symmetry

and are clearly not the optimal basis to use. The correct operators to use are

s†i� =
1p
2
[t†i� + b†i�] and a†i� =

1p
2
[t†i� � b†i�], (7.8)

where the operator s†i� is symmetric and a†i� is anti-symmetric under the transformation.

Mathematically s†i� ! s†i� and a†i� ! �a†i� under ti� $ bi�.

Generating the local state space again we see that of the 16 states, 8 are symmetric

and 8 are anti-symmetric under the transformation. The symmetric basis states are given

by

|0i = |0i , (7.9)

s†i" |0i = 1p
2
[t†i" + b†i"] |0i , (7.10)

s†i# |0i = 1p
2
[t†i# + b†i#] |0i , (7.11)

s†i"s
†
i# |0i = 1

2
[t†i"t

†
i# + b†i"t

†
i# + t†i"b

†
i# + b†i"b

†
i#] |0i , (7.12)

a†i"a
†
i# |0i = 1

2
[t†i"t

†
i# � b†i"t

†
i# � t†i"b

†
i# + b†i"b

†
i#] |0i , (7.13)
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s†i"a
†
i"a

†
i# |0i = 1p

2
[b†i"t

†
i"t

†
i# + t†i"b

†
i"b

†
i#] |0i , (7.14)

s†i#a
†
i"a

†
i# |0i = 1p

2
[b†i#t

†
i"t

†
i# + t†i#b

†
i"b

†
i#] |0i , (7.15)

s†i"s
†
i#a

†
i"a

†
i# |0i = t†i"t

†
i#b

†
i"b

†
i# |0i , (7.16)

and the anti-symmetric basis states are given by

a†" |0i = 1p
2
[t†" � b†"] |0i , (7.17)

a†# |0i = 1p
2
[t†# � b†#] |0i , (7.18)

s†"a
†
" |0i = t†"b

†
" |0i , (7.19)

s†#a
†
# |0i = t†#b

†
# |0i , (7.20)

s†"a
†
# |0i = 1

2
[t†"t

†
# + b†"t

†
# + b†#t

†
" + b†"b

†
#] |0i , (7.21)

s†#a
†
" |0i = 1

2
[t†#t

†
" + b†#t

†
" + b†"t

†
# + b†#b

†
"] |0i , (7.22)

s†"s
†
#a

†
" |0i = 1p

2
[t†i"b

†
i"b

†
i# � b†i"t

†
i"t

†
i#] |0i , (7.23)

s†"s
†
#a

†
# |0i = 1p

2
[t†i#b

†
i"b

†
i# � b†i#t

†
i"t

†
i#] |0i . (7.24)

We have dramatically simplified the states. Now we move to the Hamiltonian.

7.2.2 The Hamiltonian

In its current form the Hamiltonian is not very useful. When applying it to our new

representations we would have to convert the states to the original basis, calculate, and

convert back. Instead we recast the Hamiltonian in terms of s†i� and a†i�. Note, that

we can take pairs of creation or annihilation operators in the original basis to make this
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calculation easier, for example t†"t
†
# + b†"b

†
# = s†"s

†
# + a†"a

†
#. The Hamiltonian becomes

H = �2t1
X

hiji�

s†i�sj� � t0
X

i�

(s†i�si� � a†i�ai�)

+
U

2

X

i

h
(s†i"s

†
i# + a†i"a

†
i#)(si#si" + ai#ai") + (s†i"a

†
i# � s†i#a

†
i")(ai#si" � ai"si#)

i
. (7.25)

Note the hopping has become simple but the Hubbard term is more involved. The t0 hop-

ping simply returns the di↵erence between the number of s†i� and a†i� states. Interestingly,

the t1 term only hops s†i� states from one site to the next. This means the a†i� states are

localised and cannot move. This is reminiscent of the Anderson lattice model discussed

in section 4.5.

With the basis states and Hamiltonian respecting the symmetry, we move our attention

to the entire state space.

7.2.3 Separating the State Spaces

Currently we have used the symmetry to classify the basis states into two sets, and recast

the Hamiltonian. In this section we will apply this symmetry to the system and argue

that there are only two symmetry configurations to consider: systems composed of the

same symmetry set on each site.

Let’s consider a one dimensional ladder for ease of visualisation. The symmetry allows

us to describe each pair of sites (ti� and bi�) connected by t0 (red bond in figures) as one

site (labelled by the index i) with 16 degrees of freedom. This will be called a p-site from

here on in. On each p-site there exists a state which is either symmetric or anti-symmetric

under the transformation. We can independently label each p-site with an ‘S’ or ‘A’ for

the symmetry of the state that occupies it. Both S and A have 8 degrees of freedom. In

principle any configurations of S and A systems could exist, but this is not what we see.

When examining this system with exact diagonalization (see Appendix C if unfamiliar),

we find that only one of two situations occur. Either the system is fully configured of Ss
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Figure 7.4: Symmetry Extraction Process

The process begins with diagram (a), where on any red bond we can switch green and blue sites
as the system is symmetric under that transformation. Upon extracting the symmetry we are
left with diagram (b), where each p-site is labelled either ‘S’ or ‘A’ for the symmetry of the state
that occupies it. From exact diagonalization results we discover systems are formed of purely
‘S’ or ‘A’, or a phase separated mixture of the two. We arrive at (c) where we examine pure

configurations and Maxwell construct where required.

or As, or the system is split into two regions with Ss in one region and As in the other.

This is a phase separated mixture. We will see that these phase separated systems are

accurately described by a Maxwell construction (discussed in detail in section 11.1).

This motivates us to consider two systems: one with an S on each site which we call the

symmetric subspace, the other with an A on each site which we call the anti-symmetric

subspace. When a phase separated mixture would occur we use a Maxwell construc-

tion between the symmetric and anti-symmetric subspaces. This process is depicted in

figure 7.4 on page 54.

In this chapter we introduced the Hamiltonian and its key local symmetry. This

symmetry was used to split the set of basis states in two. The reduced basis states

were either symmetric or anti-symmetric under the transformation. The Hamiltonian

was recast to respect the symmetry and we found that s†i� states we able to move while

a†i� states were localised. Finally we argued why we only need to consider two symmetry
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configurations. We now move on to a physically motivated limit that greatly simplifies

the problem.
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CHAPTER 8

SETTING U = 1 — NON-LINEAR

FERMION TRANSFORMATIONS

The Hubbard model is notoriously di�cult to tackle, highlighted by the fact that an exact

solution only exists for a linear chain[62]. As the cuprates can be modelled by an ordinary

Hubbard model [41], people have been motivated to solve it on a 2D square lattice for

decades, but they have not got far. People believe this di�culty is due to the strongly

correlated nature of the problem [63]. To know how one particle will behave we need to

know how they will all behave. On the 1D chain it is possible to consider the problem

in terms of three particle scattering thanks to the Yang-Baxter equation [64], allowing

the model to be solved. In short, when considering three particle scattering the order of

operation does not matter: the scattering of particle 1 and 2 does not a↵ect the scattering

of 2 and 3. This is not true for higher dimensions.

So how can we simplify this problem? One way is to eliminate one of the energy scales.

Of course we set either t or U to zero; this results in a trivially solvable problem. A better

approach is to be physically motivated and take limiting procedures, which keeps the

physics of the problem intact. In unconventional superconductors the Coulomb repulsion

is usually an order of magnitude larger than chemical bonding [48]. To physically simulate

this we could take the limit of divergent Coulomb. Indeed, this is what motivates us to
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take the limit U = 1. In this limit double occupation of a single site is prohibited.

Pauli exclusion prohibits double occupation of a site with the same spin, and U = 1

prohibits double occupation of a site with opposite spins. Immediately we are in a more

fortunate position, as not only do we have fewer degrees of freedom per site but we have

also removed a variable.

This alone would not make things easier. We require a mathematical formalism to

aid in this physical choice. Fortunately, we have this in the form of ‘Non-Linear Fermion

Transformations’ [59]. This is an exact transformation that allows one to arbitrarily

change the basis being worked in. This powerful technique will allow us write down a

Hamiltonian that exactly describes the system of states that remain accessible after taking

this limit.

In the remainder of this chapter we will give an overview of non-linear fermion trans-

formations (including a simple example) and apply this technique on both the symmetric

and anti-symmetric subspaces.

8.1 Non-Linear Fermion Transformations —How and

When to Apply Them

A non-linear fermion transformation is an exact technique by which to transform into an

arbitrary basis. The process is outlined as:

1. Choose a representation and define how they correspond to the original states.

2. Recast the Hamiltonian.

These steps are detailed below.

Let’s consider a rather contrived example which highlights why one would use a non-

linear fermion transformation. The Hamiltonian is given by

HStrange = �t
X

hiji�

(1 � 2c†i�̄ci�̄)c
†
i�cj�(1 � 2c†j�̄cj�̄). (8.1)
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Step 1

In this part we have a real choice, we can choose whatever basis we want to describe this

problem. Some choices are smarter than others, but we will choose a representation that

remarkably simplifies the problem.

|0ip = |0ic , p†" |0ip = c†" |0ic , p†# |0ip = c†# |0ic , p†"p
†
# |0ip = �c†"c

†
# |0ic . (8.2)

We can immediately see that this transformation is not linear as when we have one

particle p†# |0ip = c†# |0ic, but when we add a second particle p†"p
†
# |0ip 6= c†"c

†
# |0ic. This

transformation is both particle and spin conserving hence it is clear that these new p

operators are still fermions and obey the appropriate commutation relations [59].

Step 2

Now we recast the Hamiltonian. This is done by:

1. Applying the original operators to the new states.

2. Use the definitions to change back to the original basis.

3. Calculate the operation and use the definitions to transform back.

4. Adding linear combinations of the results to ensure the correct mathematics.

When doing this transformation we consider diagonal operators together, and o↵ di-

agonal operators by their composite operators separately. As the strange hopping is o↵

diagonal we only need to consider c�(1� 2c†�̄c�̄) and (1� 2c†�̄c�̄)c
†
� separately. We will do

one example in detail and show the results for the rest. Consider acting (1� 2c†�̄c�̄)c
†
� on

p†�̄ |0ip. Step one is to apply the operator to the new state, therefore we are calculating

(1�2c†�̄c�̄)c
†
�p

†
�̄ |0ip. Step two is to use the definitions to change back to the original basis.

As p†�̄ |0ip ⌘ c†�̄ |0ic we have (1�2c†�̄c�̄)c
†
�p

†
�̄ |0ip ⌘ (1�2c†�̄c�̄)c

†
�c

†
�̄ |0ic. The bracketed term

notices c†�̄ and adds a minus sign. The result is therefore (1�2c†�̄c�̄)c
†
�p

†
�̄ |0ip ⌘ �c†�c

†
�̄ |0ic.
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Using our definition of p†�p
†
�̄ |0ip = �c†�c

†
�̄ |0ic gives

(1 � 2c†�̄c�̄)c
†
�p

†
�̄ |0ip ⌘ �c†�c

†
�̄ |0ic ⌘ p†�p

†
�̄ |0ip (8.3)

Repeating this process for all states and the operator c� yields

(1 � 2c†�̄c�̄)c� |0ip ⌘ (1 � 2c†�̄c�̄)c� |0ic ⌘ 0, (8.4)

(1 � 2c†�̄c�̄)c�p
†
� |0ip ⌘ (1 � 2c†�̄c�̄)c�c

†
� |0ic ⌘ |0ip , (8.5)

(1 � 2c†�̄c�̄)c�p
†
�̄ |0ip ⌘ (1 � 2c†�̄c�̄)c�c

†
�̄ |0ic ⌘ 0, (8.6)

(1 � 2c†�̄c�̄)c�p
†
�p

†
�̄ |0ip ⌘ (1 � 2c†�̄c�̄)c�(�c†�c

†
�̄) |0ic ⌘ p†�̄ |0ip . (8.7)

Similarly for c†� we have

(1 � 2c†�̄c�̄)c
†
� |0ip ⌘ (1 � 2c†�̄c�̄)c

†
� |0ic ⌘ p†� |0ip , (8.8)

(1 � 2c†�̄c�̄)c
†
�p

†
� |0ip ⌘ (1 � 2c†�̄c�̄)c

†
�c

†
� |0ic ⌘ 0, (8.9)

(1 � 2c†�̄c�̄)c
†
�p

†
�̄ |0ip ⌘ (1 � 2c†�̄c�̄)c

†
�c

†
�̄ |0ic ⌘ p†�p

†
�̄ |0ip , (8.10)

(1 � 2c†�̄c�̄)c
†
�p

†
�p

†
�̄ |0ip ⌘ (1 � 2c†�̄c�̄)c

†
�(�c†�c

†
�̄) |0ic ⌘ 0. (8.11)

It’s not di�cult to see we can recast these operators as

(1 � 2c†�̄c�̄)c
†
� = p†� and (1 � 2c†�̄c�̄)c� = p�. (8.12)

This turns the Hamiltonian 8.1 into

HStrange = �t
X

hiji�

p†i�pj�. (8.13)

There are two incredible benefits to this result. Firstly, this result is exact. Any

analysis done on this model is not contingent on the validity of this result. Secondly, the

transformation has resulted in a Hamiltonian that is exactly solvable. In this case the
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result is just a tight binding Hamiltonian in p.

In fact we can quantify how much of a success this result is. To see how, let’s attempt

Hartree-Fock mean field theory on this Hamiltonian. If this technique is unfamiliar to

you please see appendix D, where it is explained in detail. The details of the derivation

are irrelevant for this point so we only present the result.

EMF = �2tN


(1 � 2n0)

2 sin(⇡n0)

⇡
� 4

sin3(⇡n0)

⇡3

�
(8.14)

where n0 = hp†i�pi�i = hp†i�̄pi�̄i is the occupation fraction. However, the exact result is

EExact = �2tN
sin(⇡n0)

⇡
. (8.15)

The ratio of the two is
EMF

EExact
= (1 � 2n0)

2 � 4
sin2(⇡n0)

⇡2
. (8.16)

At the extreme ends of occupation the di↵erence is reasonable, but in the middle the

mean field result is terrible! The non-linear fermion transformation has saved us.

In this example the non-linear fermion transformation has been very successful but

this success is not guaranteed. Though the result will always be exact, any approximation

procedures that follow may not succeed. We could imagine doing this example in reverse,

going from the tight binding model to a strange model. The incredible success would now

become an incredible failure. The choice of definitions in step one are crucial.

In this thesis we will use non-linear fermion transformations to constrain our Hamil-

tonian after taking the limit U = 1. Success here is dependent on external factors. To

see why, let’s consider the t-model

H t = �t
X

hiji�

(1 � c†i�̄ci�̄)c
†
i�cj�(1 � c†j�̄cj�̄). (8.17)

Though this Hamiltonian exactly projects doubly occupied states, mean field theory on

it will always fail. After performing Hartree-Fock mean field theory on this Hamiltonian,
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we get the e↵ective single particle Hamiltonian

H t
eff = �t

X

hiji�

[(1 � n0)
2 � 3n2

1]c
†
i�cj� + 2n1(n0 � n1)c

†
i�ci�, (8.18)

where n0 = hc†i�ci�i = hc†i�̄ci�̄i and n1 = hc†i�cj�i = hc†i�̄cj�̄i. Note that this Hamiltonian

can create doubly occupied pairs of electrons (i.e c†"c
†
#) as this is just a tight binding model;

nothing is stopping it. The approximation does not respect the constraints of the original

problem!

This occurs because approximations inherently try to convert a many body problem

into a single particle problem, but the operators that restrict the subspace are many body

by construction. The only way to mitigate this issue is to use a basis which completely

covers the accessible states. In this example we were left with three accessible states, but

the transformed basis permitted four states. As fermions bring with them two degrees of

freedom, either occupied or not, this example cannot be transformed into one containing

only fermions. Simply put, two does not divide three. Instead we must use a description

for which there are three states. A possibility is to consider a spin-zero vacuum and

spin-half particle, along with exchange operators. For example we could write

H = �t
X

hiji

⌃ij, (8.19)

where the basis states are

|0i = |0i , c†� |0i = |"i , c†�̄ |0i = |#i , (8.20)

and the operator ⌃ij is the exchange operator which swaps the spins sites i and j. Un-

fortunately, mean field techniques are not well developed for these types of problems.

In the following sections we will perform a non-linear fermion transformation on the

symmetric and attempt to on the anti-symmetric subspace but decide not to. We will

discover that the symmetric subspace can be successfully transformed in a way where the
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states are mapped onto a spin-half system, and that the anti-symmetric subspace cannot.

8.2 The Symmetric State Space

In this section we take the limit U = 1 and perform a non-linear fermion transformation

on the symmetric subspace. We begin by writing down the states. For the symmetric

subspace, the eight local states and their representations in the original basis are

|0i = |0i , (8.21)

s†" |0i = 1p
2
[t†" + b†"] |0i , (8.22)

s†# |0i = 1p
2
[t†# + b†#] |0i , (8.23)

1p
2
[s†"s

†
# � a†"a

†
#] |0i =

1p
2
[t†"b

†
# � t†#b

†
"] |0i , (8.24)

1p
2
[s†"s

†
# + a†"a

†
#] |0i =

1p
2
[t†"t

†
# + b†"b

†
#] |0i

� , (8.25)

s†i"a
†
i"a

†
i# |0i = 1p

2
[b†i"t

†
i"t

†
i# + t†i"b

†
i"b

†
i#] |0i

� , (8.26)

s†i#a
†
i"a

†
i# |0i = 1p

2
[b†i#t

†
i"t

†
i# + t†i#b

†
i"b

†
i#] |0i

� , (8.27)

s†i"s
†
i#a

†
i"a

†
i# |0i = t†i"t

†
i#b

†
i"b

†
i# |0i� , (8.28)

where states labelled by � are doubly occupied and are hence projected away by the

limit U = 1. As both s†"s
†
# and a†"a

†
# contain states that are both projected and allowed,

we have taken linear combinations of them to create states that are either completely

projected or allowed.

Fortunately, the number of states that are allowed in this subspace is four, which is

divisible by two. This means we can use a non-linear fermion transformation to restrict

us within this state space. We choose to do this with two spin half fermions with the
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following definition

|0ic = |0i , (8.29)

c†" |0ic = s†" |0i , (8.30)

c†# |0ic = s†# |0i , (8.31)

c†"c
†
# |0ic =

1p
2
[s†"s

†
# � a†"a

†
#] |0i . (8.32)

We have chosen this definition as it conserves number and spin.

The next step is to recast the Hamiltonian. Let’s consider the t1 hopping term, as

it is o↵-diagonal we only need to examine s†� and s� terms separately. Remember the

steps are: apply the operator, convert using the definitions, calculate and project, and

transform back. Using ‘!’ as a shorthand for projection, for s†� this is given by

s†� |0ic ⌘ s†� |0i ⌘ c†� |0ic , (8.33)

s†�c
†
� |0ic ⌘ s†�s

†
� |0i ⌘ 0, (8.34)

s†�c
†
�̄ |0ic ⌘ s†�s

†
�̄ |0i = 1

2
[t†�t

†
�̄ + t†�b

†
�̄ � t†�̄b

†
� + b†�b

†
�̄] |0i (8.35)

! 1

2
[t†�b

†
�̄ � t†�̄b

†
�] |0i ⌘ 1p

2
c†�c

†
�̄ |0ic ,

s†�c
†
�c

†
�̄ |0ic ⌘ s†�

1p
2
[s†�s

†
�̄ � a†�a

†
�̄] |0i = � 1p

2
s†�a

†
�a

†
�̄ |0i

! 0 ⌘ 0. (8.36)

For s� this is given by

s� |0ic ⌘ s� |0i ⌘ 0, (8.37)

s�c
†
� |0ic ⌘ s�s

†
� |0i ⌘ |0ic , (8.38)

s�c
†
�̄ |0ic ⌘ s�s

†
�̄ |0i ⌘ 0 (8.39)

s�c
†
�c

†
�̄ |0ic ⌘ s�

1p
2
[s†�s

†
�̄ � a†�a

†
�̄] |0i =

1p
2
s†� |0i ⌘ 1p

2
c†� |0ic . (8.40)
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Combining these results, using s†� = ↵(1 � c†�̄c�̄)c
†
� + �c†�̄c�̄c

†
� and solving for ↵ and �,

gives

s†� = (1 � ⌘c†�̄c�̄)c
†
� and s� = c�(1 � ⌘c†�̄c�̄), (8.41)

where ⌘ = 1� 1p
2
is the degree of non-linearity. Note that ⌘ ⇡ 0.3 is moderate compared

to 1. The transformation has recast the problem from divergent interactions to moderate

ones. Compare this to the original Hubbard model where the equivalent object is U
t . Now

that this is the case, it is reasonable to perform mean field theory on this Hamiltonian,

which will be done in chapter 10.

We now turn to the t0 term and perform the transformation. This term is diagonal

and hence we cannot consider each operator individually and must consider the term in

its entirety. The term we need to consider is

�t0
X

i�

(s†i�si� � a†i�ai�). (8.42)

Applying this to the states gives

(s†�s� � a†�a�) |0ic = 0, (8.43)

(s†�s� � a†�a�)c
†
� |0ic = c†� |0ic , (8.44)

(s†�s� � a†�a�)c
†
�̄ |0ic = 0, (8.45)

(s†�s� � a†�a�)c
†
�c

†
�̄ |0ic ⌘ (s†�s� � a†�a�)

1p
2
[s†�s

†
�̄ � a†�a

†
�̄] |0i

=
1p
2
[s†�s

†
�̄ + a†�a

†
�̄] |0i ! 0. (8.46)

Which means the term can be recast as

�t0

"
X

i�

c†i�ci� � 2
X

i

c†i"ci"c
†
i#ci#

#
. (8.47)

The t0 term has become a Hubbard-like term. Note that the value of t0 can be negative,

and it is known that the negative U Hubbard model exhibits superconductivity [65].
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Though it is true that the symmetric-subspace has a superconducting phase for negative

values of t0, this does not apply to the system as a whole. To understand why, we need to

understand the e↵ect of t0 on the anti-symmetric subspace. There is competition between

the two subspaces and we are required to investigate which of the two subspaces is the

ground state. This will be discussed at length in chapter 10.

Putting everything together we get the Hamiltonian for the symmetric subspace to be

HS = �2t1
X

hiji�

(1 � ⌘c†i�̄ci�̄)c
†
i�cj�(1 � ⌘c†j�̄cj�̄) � t0

X

i�

c†i�ci� + 2t0
X

i

c†i"ci"c
†
i#ci#. (8.48)

At this point let’s discuss the nature of the non-linear hopping depicted in figure 8.1

on page 67. At low occupation the system is dominantly described via (a) and (b), where

U = 1 penalises particles next to one another with a decreased hopping. However, at

high occupation the system must decide between (c) and (d). With the latter being

penalised the system has no choice but to form pairs and keep them closely bound (c)

to circumvent the Coulomb penalty. From this we can infer (from physical intuition, not

proof) that at low occupation particles would like to be spread out, in order to gain as

much hopping energy as possible. At the other end, as this Hamiltonian is not particle

hole symmetric, holes would like to pair up (rather than be uniformly distributed) in order

to gain hopping energy. This is the first indication that holes in the symmetric subspace

would like to form pairs.
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Figure 8.1: Correlated Motion of Electrons

The energy gain for hopping a particle with spin " from the left site to the right. Accessible hops
are highlighted in blue. Green rings describe a superposition over both top and bottom sites. In

sub-figures b and d states on the right are not symmetric for ease of visualisation.

8.3 The Anti-Symmetric State Space

For the anti-symmetric subspace, the eight local states and their original representations

are

a†" |0i = 1p
2
[t†" � b†"] |0i , (8.49)

a†# |0i = 1p
2
[t†# � b†#] |0i , (8.50)

s†"a
†
" |0i = t†"b

†
" |0i , (8.51)

s†#a
†
# |0i = t†#b

†
# |0i , (8.52)

1p
2
(s†"a

†
# + s†#a

†
") |0i = 1p

2
[b†"t

†
# + b†#t

†
"] |0i , (8.53)

1p
2
(s†"a

†
# � s†#a

†
") |0i = 1p

2
[t†"t

†
# � b†"b

†
#] |0i

� , (8.54)

s†"s
†
#a

†
" |0i = 1

2
p
2
[t†" + b†"][t

†
# + b†#][t

†
" � b†"] |0i

� , (8.55)

s†"s
†
#a

†
# |0i = 1

2
p
2
[t†" + b†"][t

†
# + b†#][t

†
# � b†#] |0i

� , (8.56)
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where � denotes a state that is projected away. We can instantly tell that a non-linear

fermion transformation on this subspace will not be as e↵ective as before. This is because

there are five allowed states, and five is not divisible by two. Instead we must rely on the

energetics to generate an e↵ective Hamiltonian.

Consider a pair of neighbouring sites. From the Hamiltonian (7.25) we know that only

the s� particles are mobile. If both of these sites are singly or doubly occupied then the

particles cannot move. This is due to the Hamiltonian and limit U = 1 respectively.

So when contemplating electron motion, we need only consider the case where one site is

singly occupied and the other is doubly occupied. As all singly occupied sites are total

spin half and all doubly occupied are total spin one, the pair can only have total spin of

3
2 or 1

2 . The following is a calculation where we apply the hopping Hamiltonian to the

pair of possible states and project away disallowed states (the vacuum has been omitted

to save space but is in each state)

s†1"a
†
1"a

†
2" ! �a†1"s

†
2"a

†
2", (8.57)

s†1#a
†
1#a

†
2# ! �a†1#s

†
2#a

†
2#, (8.58)

s†1"a
†
1"a

†
2# ! �a†1"s

†
2"a

†
2# = �1

2
a†1"(s

†
2"a

†
2# + s†2#a

†
2"), (8.59)

s†1#a
†
1#a

†
2" ! �a†1#s

†
2#a

†
2" = �1

2
a†1#(s

†
2"a

†
2# + s†2#a

†
2"), (8.60)

1p
2
(s†1"a

†
1# + s†1#a

†
1")a

†
2" ! � 1p

2
(a†1#s

†
2"a

†
2" + a†1"s

†
2#a

†
2") (8.61)

= � 1p
2
(a†1#s

†
2"a

†
2" + a†1"

1

2
(s†2"a

†
2# + s†2#a

†
2")),

1p
2
(s†1"a

†
1# + s†1#a

†
1")a

†
2# ! � 1p

2
(a†1#s

†
2"a

†
2# + a†1"s

†
2#a

†
2#) (8.62)

= � 1p
2
(a†1#

1

2
(s†2"a

†
2# + s†2#a

†
2") + a†1"s

†
2#a

†
2#),
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Where we have used the fact

s†�a
†
�̄ =

1

2
(t†�t

†
�̄
� � t†�b

†
�̄ + b†�t

†
�̄ � b†�b

†
�
�
) (8.63)

! 1

2
(�t†�b

†
�̄ + b†�t

†
�̄) (8.64)

=
1

2
(s†�a

†
�̄ + s†�̄a

†
�). (8.65)

In its current form things are not as transparent as they could be. Clearly the physics

of this problem is based around spin, so lets cast this to a spin problem. This is done by

defining

a†" |0i = |"i , a†# |0i = |#i , (8.66)

s†"a
†
" |0i = |1i , 1p

2
(s†"a

†
# + s†#a

†
") = |0i , s†#a

†
# |0i = |1̄i (8.67)

where the spin-one states are labelled by their spin projection. The above results can be

rewritten as

H |1 "i = �2t1 |" 1i , (8.68)

H |1̄ #i = �2t1 |# 1̄i , (8.69)

H |1 #i = �
p
2t1 |" 0i , (8.70)

H |1̄ "i = �
p
2t1 |# 0i , (8.71)

H |0 "i = �
p
2t1 |# 1i � t1 |" 0i , (8.72)

H |0 #i = �
p
2t1 |" 1̄i � t1 |# 0i . (8.73)

From this it can easily be shown that

H = �t1
X

hiji

[1 + 2si · Sj]⌃ij, (8.74)

where s and S are the standard spin operators acting on the spin-half and spin-one states
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respectively, and ⌃ij exchanges states on sites i and j. To see this expand, the Hamiltonian

in terms of ladder operators giving

H = �t1
X

hiji

⇥
1 + 2

�
sZi S

Z
j + 2

�
s+i S

�
j + s�i S

+
j

��⇤
⌃ij, (8.75)

along with the spin relations

sZ |"i = 1

2
|"i s+ |"i = 0 s� |"i = |#i , (8.76)

sZ |#i = �1

2
|#i s+ |#i = |"i s� |#i = 0, (8.77)

SZ |1i = |1i S+ |1i = 0 S� |1i =
p
2 |0i , (8.78)

SZ |0i = 0 S+ |0i =
p
2 |1i S� |0i =

p
2 |1̄i , (8.79)

SZ |1̄i = � |1̄i S+ |1̄i =
p
2 |0i S� |1̄i = 0. (8.80)

By expanding (si+Sj)2 it can be shown that si ·Sj = �1
2 for total spin 1

2 and si ·Sj =
1
2

for total spin 3
2 . From this set of equations we can see that if the total spin of the pair of

sites is 3
2 then it hops with twice the amplitude of when the pair of sites is total spin 1

2 .

This implies the hopping energetically favours ferromagnetism. This is corroborated with

our exact diagonalisation results. We see that every anti-symmetric system examined has

maximal spin. Of course this ferromagnetism must be stable to frustration to be a ‘true’

ferromagnet, but in our case there is no structural frustration that can a↵ect our system.

The Hamiltonian for the remaining ferromagnet is

HA = �2t1
X

hiji

s†i"sj" � t0
X

i

⇣
1 � s†i"si"

⌘
, (8.81)

where the vacuum is given by |0iA =
Q

i a
†
i" |0i.

In this chapter we took the physically motivated limit of divergent Coulomb limit given

by U = 1. This limit was taken exactly using a non-linear fermion transformation. We
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found that the symmetric subspace was well behaved under the transformation, and the

problem was recast to one with moderate interactions. In the anti-symmetric subspace

things were not as e↵ective, because there were five states remaining after the U =

1 projection. We had to examine the energetics of problem and discovered the anti-

symmetric subspace is described as a ferromagnet.

In the next chapter we will examine an exact solution of hole pairing using resolvent

formalism.
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CHAPTER 9

IMPURITY THEORY — AN

EXACT SOLUTION FOR TWO

HOLES AT THE MOTT POINT

In noteworthy physical problems the Hamiltonian is rarely solved trivially. Exact solutions

are usually impossible. In this section we will present a rare case where the system can

be solved exactly. We will show that two holes at the Mott point bind to form a localised

pair.

After applying the limit U = 1 the symmetric subspace is left with 4 of the 8 basis

states it began with. These are exactly described by the non-linear fermion transforma-

tion. Therefore full occupation in the new c†i� basis corresponds to the Mott point in the

original t†i�, b
†
i� basis.

The technique used in this chapter is called impurity theory or resolvent formalism [66].

It is a standard technique hence if this is unfamiliar see appendix E. Nevertheless, here

is a very brief overview of the technique. First split the Hamiltonian in two: an exactly

solvable component HE and an ‘impurity’ HI that only a↵ects a small number of states

H = HE + HI . This method relies on understanding and dealing with the resolvent
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G(✏) = [✏� H]�1. Using completeness this can be rewritten as

G(✏)ii0 =
X

nn0

| (n)
i iG(✏)nn0 h (n0)

i0 | =
X

n

| (n)
i i h (n)

i0 |
✏� En

, (9.1)

where | (n)
i i are the eigenvectors of H. Note that there are poles at the eigenvalues of H,

whose residues are their corresponding eigenfunctions. By defining GE(✏) = [✏ � HE]�1

it can be shown that G(✏) = GE(✏) +GE(✏)⌃(✏)GE(✏), where ⌃(✏) = HI [1�GE(✏)HI ]�1.

We can see that the poles, and hence the energy eigenvalues, of G(✏) are either poles of

GE(✏) or of ⌃(✏). We are only interested in ‘new’ poles as they correspond to energies due

to the addition of HI . Therefore, we must calculate the poles of ⌃(✏) which is equivalent

to solving the equation

|�i = GE(✏)HI |�i . (9.2)

This calculation involves a finite dimensional inverse, controlled by the non-zero eigenbasis

of HI , and is tractable for small matrices. If this energy ✏ is lower than the ground state

energy of HE there is a bound state.

It can also be shown (see appendix E) that the wavefunction of the bound state is

given by

| (n0)
i i = GE(En0) |'(n0)i , (9.3)

where En0 is the bound state energy and |'(n0)i is found by calculating the residue of ⌃(✏)

at ✏ = En0 giving |'(n0)i h'(n0)|.

We will calculate the energy, dispersion, and correlation length of the pair. Then we

will extend the energy results to two dimensions.
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9.1 Binding Energy — Two Holes at the Mott Point

Bind

In this section we will calculate the binding energy of two holes at the Mott point. We

will set up the state, apply the Hamiltonian, and split it in the required manner. Then

we will use impurity theory to calculate the binding energy.

The state in question, two holes at the Mott point, is given by

|mi = 1p
N

X

j

h†
j,"h

†
j+m,# | iMott , (9.4)

where h†
i� = ci� is the hole creation operator, m is the separation of the holes, and

| iMott =
Q

i c
†
i"c

†
i# |0i is the Mott state in the original (ti�, bi�) basis and a band insulator

in this basis.

As the state is written in terms of hole operators we rewrite the Hamiltonian in terms

of h†
i�. This gives

HS = �t0
X

j�

h†
j�hj�+2t0

X

j

h†
j"hj"h

†
j#hj#+t1

X

hjj0i�

h†
j�hj0�

⇣
1 + �h†

j�̄hj�̄

⌘⇣
1 + �h†

j0�hj0�

⌘
,

(9.5)

where � =
p
2 � 1. Next we apply this to our state |mi, using the shorthand m̄ = �m,

which gives

HS |mi = �2t0 |mi + 2t1(|m+ 1i + |m � 1i), 8m 6= 1, 0, 1̄, (9.6)

HS |1i = �2t0 |1i + 2t1(|2i + |0i) + 2t1� |0i , (9.7)

HS |0i = 2t1(|1i + |1̄i) + 2t1�(|1i + |1̄i), (9.8)

HS |1̄i = �2t0 |1̄i + 2t1(|0i + |2̄i) + 2t1� |0i . (9.9)
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This can be rewritten as HS = HE +HI , where in matrix form

HE =

2

66666666664

. . . . . .

. . . �2t0 2t1

2t1 �2t0 2t1

2t1 �2t0
. . .

. . . . . .

3

77777777775

and HI =

2

66666666664

. . . 0 0 0 0

0 0 2�t1 0 0

0 2�t1 2t0 2�t1 0

0 0 2�t1 0 0

0 0 0 0
. . .

3

77777777775

,

(9.10)

which is exactly what is required to perform impurity theory.

We diagonalise HE with a Bloch transformation giving GE in its diagonal basis as

GE(✏)kk0 =
�kk0

(✏+ 2t0) � 4t1 cos k
, (9.11)

and in real space this is given by

GE(✏)jj0 =
1

N

X

k

eik(j�j0)

(✏+ 2t0) � 4t1 cos k
. (9.12)

Taking the continuum limit it gives

GE(✏)jj0 =

Z ⇡

�⇡

dk

2⇡

eik(j�j0)

(✏+ 2t0) � 4t1 cos k
. (9.13)

This is solved with complex analysis and gives

GE(✏)jj0 =
� (x�)

|j�j0|

2t0 (x� � x+)
. (9.14)

where

x⌥ =
(✏+ 2t0) ±

⇥
(✏+ 2t0)

2 � 16t21
⇤1/2

4t1
. (9.15)

The matrix GE is symmetric, i.e. GE(✏)jj0 = GE(✏)j0j, so we will label the elements of
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GE with its corresponding displacement. In our case Equation 9.2 is given by

2

66664

a

b

a

3

77775
=

2

66664

G0 G1 G2

G1 G0 G1

G2 G1 G0

3

77775

2

66664

0 2�t1 0

2�t1 2t0 2�t1

0 2�t1 0

3

77775

2

66664

a

b

a

3

77775
. (9.16)

2

66664

a

b

a

3

77775
=

2

66664

G0 G1 G2

G1 G0 G1

G2 G1 G0

3

77775

2

66664

2�t1b

4�t1a+ 2t0b

2�t1b

3

77775
. (9.17)

This gives

a = 2�t1b(G0 +G2) +G1(4�t1a+ 2t0b) (9.18)

b = 4�t1bG1 +G0(4�t1a+ 2t0b) (9.19)

We can also use the definition of (✏� HE)GE = 1

2

66664

✏ �2t1 0

�2t1 ✏+ 2t0 �2t1

0 �2t1 ✏

3

77775

2

66664

G0 G1 G2

G1 G0 G1

G2 G1 G0

3

77775
=

2

66664

1 0 0

0 1 0

0 0 1

3

77775
, (9.20)

which gives

(✏+ 2t0)G0 � 4t1G1 = 1 (9.21)

✏G1 � 2t2(G0 +G2) = 0 (9.22)

The eigenvalue equation is solved to give

GE(✏)00 =
2

✏+ 4t0
. (9.23)
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Figure 9.1: Exact Binding Energy of Two Holes at the Mott Point — 1D

Total energy for two holes with Hamiltonian HE, labelled free particles, and exact solution labelled
full Hamiltonian. The di↵erence of the two is the binding energy. The units of energy are the

same as t0.

Equating 9.14 and 9.23 yields the bound state energy as

✏B =
4

3


�t0 �

q
t20 + 12t21

�
, (9.24)

and therefore the binding energy is given by

� =
4

3


�t0 �

q
t20 + 12t21

�
+ 2t0 + 4t1. (9.25)

This is depicted in figure 9.1 on page 78. Note this system is not always bound. At t0 = 2

both energies become equal and the gap becomes zero.

In this section we calculated the binding energy of two holes at the Mott point and

showed they are bound for a wide range of t0. In the following section we will extend this

calculation to include momentum.
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9.2 Centre of Mass Momentum — Binding as a Func-

tion of Momentum

We have solved the case where the momentum of the pair is zero. Now we will add

momentum to the centre of mass of the pair and see the e↵ects. This is as simple as

adding a phase to the definition of the pair. The states are now defined as

|miq =
1p
N

X

j

eiq(j+
m

2 )hj,"hj+m,# | Motti , (9.26)

where q is the centre of mass momentum of the pair.

This trivially updates the prior calculation in the following manner

t0 ! t0,

t1 ! t1 cos
⇥
q
2

⇤
,

(9.27)

and therefore the binding energy is given by

� =
4

3


�t0 �

r
t20 + 12t21 cos

2
hq
2

i�
+ 2t0 � 4t1 cos

hq
2

i
. (9.28)

This is depicted in figure 9.2 on page 80.

In this section we showed that two holes are bound at the Mott point even with

momentum. We now move on to calculating the correlation length of the bound pair.

9.3 Correlation Length— The Holes are Tightly Bound

To calculate the correlation length we must first find the wavefunction. This calculation

requires solving

| (n0)i = GE(En0) |'(n0)i , (9.29)
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Figure 9.2: Exact Dispersion of Two Holes at the Mott Point — 1D
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which requires solving a three dimensional eigenvalue equation. The process of calculating

the wavefunction using impurity theory is detailed in Appendix E. This gives

| i /
X

n

✓
✏B

�+ 2
+

2t0
�

◆
Gn + t1 (Gn+1 +Gn�1)

�
|ni . (9.30)

From equation 9.14 it can be seen that

Gn = G0x
|n|
+ , (9.31)

and therefore

| i /
X

n

✓
✏B

�+ 2
+

2t0
�

◆
+ t1

✓
x+ +

1

x+

◆�
G0x

|n|
+ |ni . (9.32)

To calculate the correlation length we state

 n / e�
|n|
⇠ |ni , (9.33)
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Figure 9.3: Exact Correlation Length of Two Holes at the Mott Point — 1D
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which is trivially solved to give the correlation length as

1

⇠
= ln

����
6

⌧ +
p
⌧ 2 + 12

���� , (9.34)

where ⌧ = t0
t1
. This is depicted in figure 9.3 on page 81. Note ⌧ = 2 is special as this is

the critical point where the correlation length diverges.

9.4 Extending Results to Two Dimensions

This calculation is trivially extended to higher dimensions. The only issue is the inability

to analytically perform the integration. As a result we rely on numerical integration.

We are required to solve

1

N

X

k

1

✏� 2t1Z�k + 2t0
=

2

✏+ 4t0
, (9.35)
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Figure 9.4: Exact Binding Energy of Two Holes at the Mott Point — 2D

Total energy for two holes with Hamiltonian HE, labelled free particles, and exact solution labelled
full Hamiltonian. The di↵erence of the two is the binding energy. Calculated on the 2D square

lattice. Energy is in the same units as t0.

where �k is the structure factor and Z is the co-ordination number (the number of nearest

neighbours). In figure 9.4 on page 82 we depict the binding energy of two holes at the

Mott point for the 2D square lattice.

In this chapter we showed exactly that two holes form a closely bound pair. This was

qualitatively analogous to the Cooper problem. As exact solutions with more holes are

not tractable in the next chapter we use mean field theory.
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MEAN FIELD THEORY — AN

APPROXIMATE SOLUTION FOR

ARBITRARY OCCUPATION

Exact solutions with more holes are not tractable. Therefore we use mean field theory [67].

In the anti-symmetric subspace this is an exact solution as HA is non-interacting. In the

symmetric subspace this is an appropriate technique as, thanks to the non-linear fermion

transformation, interactions are now moderate. Nevertheless we will compare our results

to exact diagonalization in chapter 11 and find good agreement.

As this technique is standard we have detailed and introduced it in appendix D. Here

is a very brief overview of the process.

1. Decide what physics you are examining. This restricts the allowed correlations.

2. Calculate the average energy Ē = hHi using Slater determinants [68] where neces-

sary.

3. Use Wick’s theorem [69] to create an e↵ective single particle Hamiltonian Heff .

4. Use the resolvent G(✏) = [✏�Heff ]�1 to self consistently determine the fields which

are permitted.
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The first calculation is the ferromagnetic phase in the anti-symmetric subspace.

10.1 Anti-Symmetric Subspace

Note that this process is exact for the anti-symmetric subspace, as HA is a single particle

Hamiltonian. The anti-symmetric subspace Hamiltonian is

HA = �2t1
X

hiji

s†i"sj" � t0
X

i

⇣
1 � s†i"si"

⌘
. (10.1)

We assume translational invariance in this calculation, so the only correlations allowed

are nA
0 = hs†i"s

†
i"i and nA

1 = hs†i"s
†
j"i. The average energy per site is therefore

ĒA = �2t1Zn
A
1 � t0(1 � nA

0 ), (10.2)

where Z is the co-ordination number (the number of nearest neighbours). The Hamilto-

nian is already single particle so we do not require Wick’s theorem. We diagonalise HA

with a Bloch transform which gives the resolvent as

GA(✏) =
�kk0

✏+ 2t1Z�k + t0
, (10.3)

where �k is the nearest neighbour structure factor. The only quantities required to be

calculated are nA
0 and nA

1 , with the former given by

nA
0 = hs†i"si"i =

X

k

hs†k"sk"i (10.4)

=
X

k

Z

C

d✏

2⇡i
f(✏� µ)GA(✏) (10.5)

=
X

k

Z

C

d✏

2⇡i
f(✏� µ)

1

✏+ 2t1Z�k + t0
(10.6)

=
X

k

f (�2t1Z�k � t0 � µ) (10.7)

84



10.1. ANTI-SYMMETRIC SUBSPACE

=

Z ⇡

�⇡

ddk

(2⇡)d
f (�2t1Z�k � t0 � µ) , (10.8)

where f(x) is the Fermi function, and in the final step we took the continuum limit.

Similarly for nA
1 we have

nA
1 =

Z ⇡

�⇡

ddk

(2⇡)d
f (�2t1Z�k � t0 � µ) �k. (10.9)

This result is depicted and discussed in chapter 11.

We now move on to the symmetric subspace, in which a superconducting phase can

be found.
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10.2 Symmetric Subspace

In this section we will calculate the paramagnetic and superconducting mean field energy.

The paramagnetic solution is standard, but the superconducting solution must be diago-

nalised via a Bogoliubov-Valatin [40] transformation. This is standard for BCS theory.

10.2.1 Paramagnetic Calculation

In this calculation we will assume translational invariance and paramagnetism. The cor-

relations that are in this calculation are nS
0 = hc†i�ci�i and nS

1 = hc†i�cj�i. There is no

magnetism as spin up and down are treated equally. The Hamiltonian is

HS = �2t1
X

hiji�

(1� ⌘c†i�̄ci�̄)c
†
i�cj�(1� ⌘c†j�̄cj�̄)� t0

X

i�

c†i�ci� + 2t0
X

i

c†i"ci"c
†
i#ci#. (10.10)

The average energy per spin per site is therefore

ĒS = �4t1Zn
S
1

⇣�
1 � ⌘nS

0

�2 � ⌘2nS
1
2
⌘

� t0n
S
0

�
nS
0 � 1

�
. (10.11)

Using Wick’s theorem this gives an e↵ective single particle Hamiltonian of

Heff
S = ↵S

X

j�

c†j�cj� + �S
X

hjj0i�

c†j�cj0�, (10.12)

where ↵S = 4Zt1⌘nS
1

�
1 � ⌘nS

0

�
+ t0

�
2nS

0 � 1
�
and �S = �4Zt1

⇣�
1 � ⌘nS

0

�2 � 3⌘2nS
1
2
⌘
.

This is diagonalised using a Bloch transformation and gives the resolvent

GS(✏) =
�kk0

✏� �SZ�k � ↵S
. (10.13)

Using this we can self consistently define our fields, which gives

nS
0 =

Z ⇡

�⇡

ddk

(2⇡)d
f (��SZ�k � ↵� µ) , (10.14)
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nS
1 =

Z ⇡

�⇡

ddk

(2⇡)d
f (��SZ�k � ↵� µ) �k. (10.15)

This is depicted and discussed in chapter 11. Next we look at the superconducting solu-

tion.

10.2.2 Superconducting Calculation

In this calculation we assume translational invariance, spin symmetry, and the existence

of the superconducting fields �0, �⇤0, �1, and �
⇤
1. This

nSC
0 = hc†i�ci�i, nSC

1 = hc†i�cj�i (10.16)

�0 = h�c†i�c
†
i�̄i, �⇤0 = h�ci�̄ci�i (10.17)

�1 = h�c†i�c
†
j�̄i, �⇤1 = h�ci�̄cj�i, (10.18)

where we have used the shorthand � = +/� for spins � =" / #. Without loss of generality

we can choose a phase such that �0 = �⇤0 and �1 = �⇤1. This gives the average energy per

site as

ĒSC = �4t1Zn
SC
1

⇣�
1 � ⌘nSC

0

�2 � ⌘2nSC2
1

⌘
� 2t0n

SC
0

�
1 � nSC

0

�
+ 2t0�

2
0

+ 4t1Z
�
2⌘�0�1

�
1 � ⌘nSC

0

�
+ ⌘2nSC

1

�
�20 + �21

��
. (10.19)

Using Wick’s theorem this gives an e↵ective Hamiltonian as

Heff
SC = ↵SC

X

j�

c†j�cj� + �SC
X

hjj0i�

c†j�cj0�

+ ⌫SC
X

j�

⇣
c†j�c

†
j�̄ + cj�̄cj�

⌘
+ �SC

X

hjj0i�

⇣
c†j�c

†
j0�̄ + cj0�̄cj�

⌘
, (10.20)
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where

↵SC = 2t0 (2n0 � 1) + 16t1⌘ (n1 (1 � ⌘n0) � ⌘�0�1) , (10.21)

�SC = �8t1
�
(1 � ⌘n0)

2 � ⌘2
�
3n2

1 + �20 + �21
��

, (10.22)

⌫SC = 4t0�0 + 16t1⌘ (�1 (1 � ⌘n0) + ⌘n1�0) , (10.23)

�SC = 16t1⌘ (�0 (1 � ⌘n0) + ⌘n1�1) . (10.24)

After a Bloch transformation and Bogoliubov-Valatin transformation we cast Heff
SC as the

following matrix

Heff
SC =

X

k�


c†k� c�k�̄

�
2

64
Ak Bk

Bk �Ak

3

75

2

64
ck�

c†�k�̄

3

75+ Ak, (10.25)

where Ak = ↵SC + �SCZ�k and Bk = ⌫SC + �SCZ�k. Diagonalising this matrix gives the

expected gapped BCS dispersion

E±
k = ±

q
A2

k +B2
k. (10.26)

Again, we generate the resolvent

GSC(✏) =
1

✏2 � A2
k +B2

k

2

64
✏+ Ak �Bk

�Bk ✏� Ak

3

75 , (10.27)
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which is used to generate the fields

nSC
0 =

Z ⇡

�⇡

ddk

(2⇡)d
1

2
f(E+

k )

✓
1 � Ak

E+
k

◆
, (10.28)

nSC
1 =

Z ⇡

�⇡

ddk

(2⇡)d
1

2
f(E+

k )

✓
1 � Ak

E+
k

◆
�k, (10.29)

�0 =

Z ⇡

�⇡

ddk

(2⇡)d
f(E+

k )

✓
�Bk

2E+
k

◆
, (10.30)

�1 =

Z ⇡

�⇡

ddk

(2⇡)d
f(E+

k )

✓
�Bk

2E+
k

◆
�k, (10.31)

where in these equations Ak ! Ak � µ to control the number of particles in the Grand

Canonical picture with the chemical potential µ.

In this chapter we performed Hartree-Fock mean field theory on both the symmetric

and anti-symmetric subspace. We calculated for a paramagnetic and superconducting

phase for the symmetric subspace. This analysis is exact for the ferromagnet in the

anti-symmetric subspace. In the next chapter we present the results.
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CHAPTER 11

RESULTS

In this chapter we will present the total energy and specific correlations from di↵erent

phases in the model. In the anti-symmetric subspace we will only present a ferromagnetic

phase, as this is the only phase by construction. In the symmetric subspace we will con-

sider a paramagnetic and superconducting phase generated in the previous chapter. The

correlations we consider are excess pairing, occupation factor, and the superconducting

gap.

Initial calculations are performed in 1D, as exact diagonalization finite scales best in

1D [70]. However, we know that long range order is not permitted in 1D due to the

Mermin Wagner theorem. For this reason we do further calculations in 2 dimensions. It

is important to note that we are at the level of BCS with these results. Hartree-Fock

mean field theory is a variational solution and finds the best single particle solution to a

many body problem.

Before we present our main results let’s discuss the competition between the two

subspaces.
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11.1 Maxwell Construction — Bridging the Gap Be-

tween Subspaces

In chapter 7, we discussed the role of symmetry in this model. Specifically, that we need

only consider two symmetry configurations: purely S on each site or A on each site. In

this section we discuss the motivation behind this approach.

The complete system of 9 degrees of freedom is rather unwieldy. From energy argu-

ments we saw that two neighbouring anti-symmetric states would like to have maximal

spin and exchange. This energy gain can occur en masse if all the anti-symmetric states

are together in real space. To test this hypothesis we used exact diagonalisation on the

complete system of 9 degrees of freedom, and we extracted the symmetry at each site. As

there is translational invariance the ground state is a linear superposition of translated

copies. Therefore to extract the symmetry we: calculate the ground state vector, apply

the symmetry transformation on each site, and project into the untranslated configuration

i.e. |GSi ! 1
2(1 + T̂i) |GSi, where T̂i is t

†
i� $ b†i� on site i. This provided a set of labels

for each system which is shown in table 11.1 on page 93.

Our hypothesis was correct! The system phase separates to gain the most energy it

can. When this occurs it is frequently described mathematically by a Maxwell construction

(see appendix G if unfamiliar). We separated the state space, into the symmetric and

anti-symmetric subspaces, and performed a Maxwell construction between them. This is

depicted in figure 11.1 on page 94. Note the agreement between the Maxwell construction

and the exact diagonalisation. Add to that when the ground state is described by one of

the two subspaces, the two exact diagonalisation calculation energies agrees to numerical

accuracy.

There is one caveat however, and that is the e↵ect of long range Coulomb. Our model

only takes into account local Coulomb repulsion; this is usually appropriate thanks to

screening. However, when phase separation occurs in this model it is between states with

di↵erent occupation numbers. Having phase separation on a macroscopic scale would
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correspond to 1023 extra electrons on one side of the crystal. This would incur a massive

long range Coulomb penality. Instead there would be a balance between the gain from

phase separation and the penalty from long range Coulomb such that the phase separation

would occur on a micro- or meso-scopic scale. This has been seen experimentally, one

such system is Sr0.5Ce0.5FBiS2�xSex where ferromagnetism and superconductivity were

shown to co-exist [71].

We can therefore consider both subspaces independently, allowing us to examine larger

systems numerically. Now we move on to the rest of the results starting with total energy

as a function of occupation.

Table 11.1: Phase Separation in the Model: Symmetry Extracted States from Exact

Diagonalisation on Systems with Periodic Boundary Conditions

No of Particles Symmetry Configuration No of Particles Symmetry Configuration

0 SSSSSSSSSS 11 SSSSSSSSSS

1 SSSSSSSSSS 12 SSSSSSSSSS

2 SSSSSSSSSS 13 SSSAAASSSS

3 SSSSSSSSSS 14 SSSSSAAAAA

4 SSSSSSSSSS 15 AAAAASSSAA

5 SSSSSSSSSS 16 AAAAAAAAAA

6 SSSSSSSSSS 17 AAAAAAAAAA

7 SSSSSSSSSS 18 AAAAAAAAAA

8 SSSSSSSSSS 19 AAAAAAAAAA

9 SSSSSSSSSS 20 AAAAAAAAAA

10 SSSSSSSSSS
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Figure 11.1: Maxwell Construction Fit to Phase Separation
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Energy per site as a function of occupation, comparing mean field theory to diagonalisation of
finite systems of size 8 to 10 (each system size is a di↵erent point) with t0 = 0 and t1 = 1.
The three systems examined are the full system, symmetric, and anti-symmetric. Predominantly
the pure symmetry configurations energies match the full system. When these systems are in
competition a Maxwell construction between the subspaces shows good agreement to the data.
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11.2 Total Energy as a Function of Occupation

In this section we present total energy results from which a zero temperature phase dia-

gram can be generated. Each phase has an associated total energy which can be compared

to find the ground state phase of the system. As we vary the chemical potential µ we self

consistently solve for the correlations numerically. This allows us to find the phase of the

system as a function of occupation.

Figures 11.2 on page 96, 11.3 on page 97, and 11.4 on page 98 depict the average energy

as a function of occupation for t0 = 0, 1, and �1 respectively. As can be seen the interplay

between magnetism, paramagnetism, and superconductivity is controlled by t0. While

decreasing t0 strengthens the superconductivity it also strengthens the ferromagnetism.

When t0 = 1 the ferromagnetism is completely suppressed, the symmetric subspace is the

ground state for all occupation, and close to the Mott point superconductivity prevails.

Note the quality of the agreement between exact diagonalisation and mean field theory

in every figure. As they are two independent techniques and the exact diagonalisation is

‘correct’, the agreement signifies the validity of the mean-field solution.

In this section we showed the total energy results which generated the zero temperature

phase diagram of this system. We now move on to calculating correlations.
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Figure 11.2: Total Energy as a Function of Occupation t0 = 0, t1 = 1 — 1D
E
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Energy per site per spin as a function of occupation, comparing mean field theory to diagonali-
sation of finite systems of size 10 to 14 with t0 = 0 with t1 = 1. There is competition between

the subspaces i.e. the superconductivity and ferromagnetism do coexist.
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Figure 11.3: Total Energy as a Function of Occupation t0 = 1, t1 = 1 — 1D
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Energy per site per spin as a function of occupation, comparing mean field theory to diagonali-
sation of finite systems of size 10 to 14 with t0 = t1 with t1 = 1. Superconductivity, paramag-
netism, and ferromagnetism are competitive close to the Mott point, however superconductivity
is the ground state of the system. As there is no competition between the subspaces, this is a

pure example of a superconducting system.

97



CHAPTER 11. RESULTS

Figure 11.4: Total Energy as a Function of Occupation t0 = �1, t1 = 1 — 1D
E
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Energy per site per spin as a function of occupation, comparing mean field theory to diagonali-
sation of finite systems of size 10 to 14 with t0 = �t1 with t1 = 1. Superconducting mean field
theory, existing within the symmetric subspace, provides better agreement for diagonalisation
results. Ferromagnetism is the phase within the anti-symmetric subspace and is energetically

dominant over superconductivity.
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11.3 Superconducting Correlations — Going Beyond

Total Energy

The total energy is an extensive quantity and hence finite scales well with exact diagonal-

isation. Superconductivity has microscopic quantities associated with it. In this thesis we

examine three such correlations: pair formation, occupation factor, and superconducting

gap. For each quantity we compare the mean field prediction to exact diagonalisation and

find good agreement.

11.3.1 Pair Formation

In superconductors pairs form more frequently than in an uncorrelated system [72]. In

this subsection we examine the excess pairing given by

P =
1

N

X

i

D⇣
c†i"ci" �

D
c†i"ci"

E⌘⇣
c†i#ci# �

D
c†i#ci#

E⌘E
, (11.1)

where P counts the number of pairs in excess of uncorrelated. This is depicted in fig-

ure 11.5 on page 100 and shows that excess pairing, and therefore superconductivity,

strengthens with the reduction of t0. For low occupation the system is strongly correlated

against pair formation as discussed in figure 8.1 on page 67. Mean field theory’s failure

for these types of systems is well known, and so the best it can do is be zero in this

region. For higher occupation the system prefers pair formation, which agrees with the

BCS superconducting solution. This is a local quantity and as a result finite size scales

well.
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Figure 11.5: Excess Pair Formation — 1D

Excess pairing probability, P, against occupation for the 1D lattice with t1 = 1 and varying t0,
comparing mean field theory to diagonalisation of a finite system of size 8 to 14. Mean field
theory shows good agreement to diagonalisation results, where superconductivity exists close to

the Mott point.
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11.3.2 Occupation Factor

The occupation factor provides a measure to what degree a system is a Fermi liquid. If

it is, then there will be a sharp discontinuity. In superconductors however, pairs form

in a window around the Fermi surface. This distorts the Fermi discontinuity, making it

continuous so that superconductivity can manifest.

For our system we have the original s†i� operators to calculate the occupation factor.

This is given by

nS
k =

X

�

hs†k�sk�i, (11.2)

which when Bloch transformed is equal to

nS
k =

1

N

X

jj0�

eik(j�j0)hs†j�sj0�i, (11.3)

=
X

j0�

e�ikj0hs†0�sj0�i, (11.4)

where we have used translational invariance in the final step. We then substitute the non-

linear fermion transformation, however this needs to be done carefully. Our definitions of

s†i� are only true when the operators are o↵ diagonal. When j = j0 we have

s†j�sj� = c†j�cj� � 1

2
c†j�cj�c

†
j�̄cj�̄. (11.5)

Combined this gives

nS
k =

X

j0�

e�ikj0h(1 � ⌘c†0�̄c0�̄)c
†
0�cj0�(1 � ⌘c†j0�̄cj0�̄)i

� h(1 � ⌘c†0�̄c0�̄)c
†
0�c0�(1 � ⌘c†0�̄c0�̄)i + hc†0�c0�i � 1

2
hc†0�c0�ihc

†
0�̄c0�̄i (11.6)

= nk(1 � ⌘n0)
2 � ⌘2

1

4

1

N2

X

k1k2

nk1nk2nk+k1+k2 + (2⌘ � 1

2
)n2

0, (11.7)

where nk =
P

�hc†�c�i. Figures 11.8 on page 104, 11.9 on page 105, 11.10 on page 106

depict the occupation factor for t0 = 1,�1, 0 respectively for varying occupation. This
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result also agrees with the existence of a superconducting phase. Note, that this analytical

result gives access the renormalised Fermi liquid discontinuity Z. This is plotted in

figures 11.6 on page 102 and 11.7 on page 103. We find that Z tends to 1
2 close to the

Mott point as is expected theoretically.

Figure 11.6: Fermi Liquid Discontinuity as a Function of Occupation
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Renormalised Fermi liquid discontinuity as a function of occupation. At low occupation there is
little interaction and hence is close to 1, whilst closer to the Mott point Z ! 0.5 as is theoretically

expected.
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Figure 11.7: Occupation Factor Analytical t0 = 1
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Analytical occupation factor nk for t0 = 1 and various occupation. In a perfect Fermi liquid
nk = 1 until k = kF then nk = 0. In systems with interactions this discontinuity is renormalised

which is called Z.
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Figure 11.8: Occupation Factor Numerical t0 = 1
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Numerical occupation factor nk for t0 = 1 and various occupation. If the system was a metal
we’d expect constant nk until kF with a sharp drop to a lower constant. However we see that as
the system exhibits superconductivity there is a ‘softening’ of the Fermi surface, as expected.
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Figure 11.9: Occupation Factor Numerical t0 = �1
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Numerical occupation factor nk for t0 = �1 and various occupation. If the system was a metal
we’d expect constant nk until kF with a sharp drop to a lower constant. However we see that as
the system exhibits superconductivity there is a ‘softening’ of the Fermi surface, as expected.
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Figure 11.10: Occupation Factor t0 = 0
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Numerical occupation factor nk for t0 = 1 and various occupation. If the system was a metal
we’d expect nk = 1 until kF with a sharp drop to zero. However we see that as the system

exhibits superconductivity there is a ‘softening’ of the Fermi surface, as expected.
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11.3.3 Superconducting Gap

A cornerstone of superconductivity is the superconducting gap: the excess energy gained

from pair formation. We calculate the gap from exact diagonalisation by comparing the

energy di↵erence for even and odd particles

�N = |EN�1 � 2EN + EN+1|. (11.8)

This is depicted in figures 11.11 on page 108, 11.12 on page 109, and 11.13 on page 110.

This is the most sensitive calculation of all in this thesis as the gap is global property

of the system. It is incredibly sensitive to occupation and system size, and as a result

we use finite size extrapolation to infer how an infinite system would behave. As each

occupation ratio may only be attained with certain system sizes we are extrapolate with

di↵ering, but the maximal, number of points for each occupation. The gap has good

agreement with the mean field solution. When the mean field results predicts no gap

so does the extrapolation, the onset is approximately at the right point, and the size is

of the correct order of magnitude. Finally, the Mott point agrees incredibly well and

tends to the bound hole-pair state energy, showing the strength of the calculation at this

point. Experimentally the superconducting transition temperature is directly related to

the size of the gap. In our systems superconducting solutions occur close to t0 = 1 (see

Figure 11.13 on page 110) for which the gap ranges from 0 to 0.15eV. Therefore we find

the transition temperature would be of order 100K, similar to those seen in experiments.
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Figure 11.11: Superconducting Gap — 1D t0 = 1

Superconducting gap as a function of occupancy, comparing mean field theory to polynomial
extrapolation of diagonalisation of finite systems. The number of points we can extrapolate from
is a function of occupation as certain ratios only occur for particular system sizes. O stands for
odd system sizes, E for even system sizes, whilst straight lines are the mean field prediction.
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Figure 11.12: Superconducting Gap — 1D t0 = 0

Superconducting gap as a function of occupancy, comparing mean field theory to polynomial
extrapolation of diagonalisation of finite systems. The number of points we can extrapolate from
is a function of occupation as certain ratios only occur for particular system sizes. O stands for
odd system sizes, E for even system sizes, whilst straight lines are the mean field prediction.
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Figure 11.13: Superconducting Gap — 1D t0 = �1

Superconducting gap as a function of occupancy, comparing mean field theory to polynomial
extrapolation of diagonalisation of finite systems. The number of points we can extrapolate from
is a function of occupation as certain ratios only occur for particular system sizes. O stands for
odd system sizes, E for even system sizes, whilst straight lines are the mean field prediction.

In this section we showed total energy and correlation results for a one dimensional

system. We know however that long range order is not permitted in one dimension but

quasi-long range order is, which boasts qualitatively similar results. In the next section

we extend these results to two dimensions for which long range order is permitted at zero

temperature.
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11.4 Extending Results to Two Dimensions

In this section we extend the previous results to the 2D square lattice. For the mean

field theory this is trivially done by changing the structure factor in the calculations.

Unfortunately, the exact diagonalisation is limited for two dimensions as the systems

sizes are comparatively much smaller. Nevertheless we find good agreement, given the

limitations.

Figures 11.14 on page 111, 11.15 on page 112, 11.16 on page 113, depict the total

energy as a function of occupation for t0 = 0, 2 and �2 respectively. Again t0 controls the

interplay between superconductivity, paramagnetism, and ferromagnetism. With fewer

and proportionally smaller systems when compared to 1D the agreement of the numerics

is less satisfactory than before. Nevertheless, systems which are strongly superconducting

show good agreement with the numerics.

Figure 11.14: Total Energy as a Function of Occupation t0 = 0, t1 = 1 — 2D
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Energy per site as a function of occupation, comparing mean field theory to diagonalisation of a
finite system of size 3 ⇥ 3 and 3 ⇥ 4 with t0 = 0 and t1 = 1. There is competition between all

the phases.
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Figure 11.15: Total Energy as a Function of Occupation t0 = 2, t1 = 1 — 2D
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Energy per site as a function of occupation, comparing mean field theory to diagonalisation of a
finite system of size 3 ⇥ 3 and 3 ⇥ 4 with t0 = 2 and t1 = 1. Superconductivity is the favourable
phase close to the Mott point where it competes with paramagnetism and ferromagnetism. This

is an example of a 2D system which is superconducting.
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Figure 11.16: Total Energy as a Function of Occupation t0 = �2, t1 = 1 — 2D
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Energy per site as a function of occupation, comparing mean field theory to diagonalisation of a
finite system of size 3⇥3 and 3⇥4 with t0 = �2 and t1 = 1. Superconductivity has better agree-
ment over paramagnetism, both existing within the symmetric subspace. The anti-symmetric
subspace is ferromagnetic and energetically dominant in the region where superconductivity is

prevalent, hence this system is not superconducting.

Figures 11.18 on page 115 and 11.17 on page 114 depict the excess pair formation and

superconducting gap for two dimensional systems. Again the pairing agrees well close to

the Mott point, where the superconductivity exists. Additionally, as the superconducting

gap calculation was the most sensitive numerical calculation in the previous section it

is reasonable that it will not perform as well in 2D. We would only have two points to

extrapolate from and this would definitely be unscientific.

In this chapter we presented results that rigorously demonstrated superconductivity

in this model. We controlled the interplay between magnetism and superconductivity

with t0. When extending the calculation to two dimensions we found little qualitative

di↵erence. In the following chapter we will extend this calculation to finite Coulomb

repulsion using perturbation theory.
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Figure 11.17: Excess Pair Formation — 2D
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Excess pairing probability, P, against occupation for the 2D square lattice with t1 = 1 and varying
t0, comparing mean field theory to diagonalisation of a finite system of size 3⇥3 and 3⇥4. Mean
field theory shows good agreement to diagonalisation results, where superconductivity exists close

to the Mott point.
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Figure 11.18: Superconducting Gap — 2D
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Superconducting gap, against occupation for the 2D square lattice with t1 = 1 and varying t0.
We are unable to compare against finite sized diagonalisation as there is not enough data to

finite size scale. However, the exact solution at the Mott point agrees well.
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CHAPTER 12

PERTURBATION THEORY —

HEISENBERG CORRECTIONS

FROM LARGE BUT FINITE U

All prior work has focused on the U = 1 limit. It could be argued that his limit was

pathological, but it gave us access to exact results analytically and numerical simulations

on larger systems. However in real materials U is not infinite, it is only large; for example,

in the cuprates U ⇡ 8t [73]. How can we reconcile this in our work? We will lift this limit

perturbatively in the large U limit. This will be done using second order perturbation

theory which gives Heisenberg corrections [74]. This is a standard technique and is detailed

in appendix F.

In this chapter we will generate the Hamiltonian perturbatively for the symmetric-

subspace and replicate the equivalent results from the previous chapter. We are not able

to prove hole binding at the Mott point in this system. Instead we rely on mean-field and

exact diagonalization.

Things are worse for the anti-symmetric subspace. Here virtual hopping is to states

that are total spin zero. This reduces the total spin of the system resulting in a breakdown

of the ferromagnet. Note that this occurs at high occupation and hence we expect a
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Figure 12.1: Perturbative Hops Allowed

Diagrams of allowed hops in perturbative expansion. Arrows denote sequence of hops. Interme-
diate states pay on-site Coulomb penalty.

ferromagnetic to anti-ferromagnetic transition with doping. This is exactly what we see

numerically. Analytically things are much more di�cult as all 8 anti-symmetric states

play a role, and as a result we do not have a manageable theory.

The first thing to do is calculate the Hamiltonian.

12.1 The Resulting Hamiltonian

This process is simple but algebraically taxing. As a result we simply present the result,

and the general process is detailed in appendix F, with the allowed hops being depicted

in figure 12.1 on page 118. The Hamiltonian becomes

HS ! HS � 1

U

X

j

HU
j , (12.1)
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where

HU
j =

2

42t0c†j"c
†
j# +

X

n2

p
2t1

X

hjj2in2

⇣
s†j2"c

†
j# + c†j"s

†
j2#

⌘
3

5

⇥

2

42t0cj#cj" +
X

n1

p
2t1

X

hjj1in1

(cj#sj1" + sj1#cj")

3

5 , (12.2)

where hjj1in1
and hjj2in2

denote the first and second neighbours of j. Repeating the mean

field procedure yields the average energy

ĒSCU
= ĒSC � 8t12

U

"
1

2

h
n0(�(�0

2 + �1
2)) + 2�0�1n1 � n0(n0

2 � n1
2)
i

+
h
�1

2 + n1
2
ih
⌘2(�0 � �2)
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2
i

+ ⌘2
h
�0 � �2

i2h
1 � ⌘(n0 � n2)

ih
n1

2 � n0n2

ih
2�1⌘n1(�0 + �2) � 2�0�2⌘n0

+ (�1
2 + n0n2)(1 � ⌘(n0 � n2)) + 2⌘n1

2n2
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� 8t1

"
n1
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2t0t1
U

"
� ⌘
h

� n1(�0
2 + �1

2) + 2�0�1n0 + n1(n0
2 � n1

2)
i
+ �0�1 + n0n1

#

� 4t02

U

"
�0

2 + n0
2

#
� 2t0

"
(1 � n0)n0 � �0

2

#
, (12.3)

where n2 = hc†j�c�j2i and �2 = h�c†j�c
†
�̄j2i are now introduce. This is used to generate the

self consistent parameters with the exact same procedure in chapter 10.

12.2 Modified Results

In this section we present the equivalent results from the previous chapter but with finite

U . Figure 12.4 on page 123 demonstrates a case where the symmetric subspace is the

true ground state. Again in this system superconductivity occurs close to the Mott point.

In these results the perturbative expansion consistently produces an overestimate for the
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energy gained due to virtual hopping. In principle this can be remedied by adding higher

order terms such as t3/U2, but it is not done in this work.

For the symmetric subspace these fluctuations allow for energy to be gained, as is ex-

pected from similar t� J models. The interesting thing however is that because we have

dealt with the hopping exactly, we are not erroneously adding superconducting fluctua-

tions. Whilst in the anti-symmetric subspace these fluctuations break the ferromagnet,

and the resulting anti-ferromagnet does not gain that much energy while being localised

close to the Mott point. Whilst we cannot analytically examine the anti-symmetric sub-

space, we can numerically study it.

The superconducting gap is calculated in the same way as previous calculations and

is depicted in figures 12.5 on page 124, 12.6 on page 124, 12.7 on page 125. Again we are

limited by system size for extrapolation, but the trend seems to agree well with the mean

field data.

In this chapter we extended results to finite Coulomb repulsion using second order per-

turbation theory. The analysis was identical to previous chapters, but we were limited nu-

merically by reduced system size. Nevertheless results showed good agreement. There was

competition between paramagnetism, superconductivity, and anti-ferromagnetism which

could be controlled by t0. This model still exhibits superconductivity at finite U . In the

next chapter we conclude the work done in this part.
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Figure 12.2: Total Energy as a Function of Occupation U = 10, t0 = 0, t1 = 1 — Finite
U
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Energy per site as a function of occupation, comparing perturbative mean field theory to ex-
act diagonalisation of finite systems of size 8 and 9 with U = 10, t0 = 0 and t1 = 1. The
anti-symmetric subspace cannot be characterized, however there is a phase transition from ferro-
magnetism to anti-ferromagnetism close to the Mott point. Mean field theory has good agreement
to the diagonalisation data, with superconductivity being favourable over paramagnetism but not

the anti-symmetric subspace.
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Figure 12.3: Total Energy as a Function of Occupation U = 10, t0 = �1, t1 = 1 — Finite
U
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Energy per site as a function of occupation, comparing perturbative mean field theory to ex-
act diagonalisation of finite systems of size 8 and 9 with U = 10, t0 = �1 and t1 = 1. The
anti-symmetric subspace cannot be characterized, however there is a phase transition from fer-
romagnetism to anti-ferromagnetism close to the Mott point. This system is dominated by the

anti-symmetric subspace.
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Figure 12.4: Total Energy as a Function of Occupation U = 10, t0 = 1, t1 = 1 — Finite
U
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Energy per site as a function of occupation, comparing perturbative mean field theory to exact
diagonalisation of a finite system of size 8 and 9 with U = 10, t0 = 1 and t1 = 1. Superconduc-
tivity is the favoured phase, close to the Mott point, while competing with anti-ferromagnetism

(from the anti-symmetric subspace) and paramagnetism (from the symmetric subspace).
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Figure 12.5: Superconducting Gap as a Function of Occupation — Finite U t0 = 1

Superconducting gap of a system with U = 10, and t0 = 1. We only have access to smaller
systems and hence have limited finite sized scaling. Despite this there is still good agreement.

Figure 12.6: Superconducting Gap as a Function of Occupation — Finite U t0 = 0

Superconducting gap of a system with U = 10, and t0 = 0. We only have access to smaller
systems and hence have limited finite sized scaling. Despite this there is still good agreement.
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Figure 12.7: Superconducting Gap as a Function of Occupation — Finite U t0 = �1

Superconducting gap of a system with U = 10, and t0 = �1. We only have access to smaller
systems and hence have limited finite sized scaling. Despite this there is still good agreement.
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CHAPTER 13

SUMMARY

We have rigorously demonstrated that this repulsive Hubbard model exhibits pairing and

presumably superconductivity. We began with an ordinary Hubbard model with a col-

lection of local symmetries. These were extracted resulting in two subspaces, symmetric

and anti-symmetric. We then took the physically motivated limit of divergent Coulomb

exactly. This reduced the state space, simplifying the problem further, and showed the

anti-symmetric subspace is ferromagnetic. We exactly showed that two holes at the Mott

point bind, which formed the basis of a BCS mean field solution. The mean field re-

sults of total energy, excess pairing, and the superconducting gap showed good agreement

with exact diagonalisation. Finally we extended our results to finite but large U using

perturbation theory. This opened up an anti-ferromagnetic phase in the anti-symmetric

subspace at the Mott point as the ferromagnetism cannot gain from the Heisenberg cor-

rections.. Our model manifests the phase diagram of the cuprates, as seen in figure 13.1

on page 129.

We are left asking whether this toy model contains the core physics behind uncon-

ventional superconductivity. Possibly this model is to unconventional superconductivity

as the Ising model is to magnetism. Is the physics of the cuprates Anderson’s resonating

valence bond theory? For our model, the ground state at the Mott point is a valence bond

solid, a more controlled version of the former. Anderson hypothesises that upon doping
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these valence bonds will gain kinetic energy, condense and superconduct. This is exactly

what occurs in our model.

Our model also shines light on the interplay between magnetism and superconductivity.

There are theories stating that magnetic excitations couple electrons in the same manner

as phonons in conventional superconductors. However, in our model magnetism and

superconductivity occur in di↵erent symmetry protected subspaces. They do not talk to

each other.

What about the more interesting phases such as the pseudogap and strange metal?

The analysis in this thesis is at zero temperature, and as a result we cannot comment if

these exotic phases are encapsulated in our model. This could possibly be an extension

for further work.

The final comment is that of particle-hole asymmetry. Our model is not particle-hole

symmetric. In the cuprates there is only qualitative symmetry between particles and holes

in the phase diagram. Though both can be broadly described as ‘strong anti-ferromagnets

at the Mott point which die and give rise to superconductivity upon doping’, it is a fact

that there is quantitative asymmetry. In the hole doped cuprates superconductivity occurs

sooner and is stronger than in the particle doped case. This cannot be examined with

the techniques we have used. There is debate on whether the hole doped cuprates are

described by a three band Hubbard model or a single band model. Until we can deal with

both sides of the Mott point with the same level of rigour, our work cannot comment on

this debate.
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Figure 13.1: Schematic Phase Diagram of All Systems Considered

Phase diagrams for the three systems we consider in this thesis: 1D chain with U = 1, 2D
square lattice with U = 1, and 1D chain with U = 10. In these diagrams the grey region is
normal, blue is superconducting, red is ferromagnetic, and amber is anti-ferromagnetic. For
each of the systems we have calculated three values of t0, the intermediate regions are linear

interpolations and a guide to the eye.
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Part III

Self-Consistent Distribution Theory

— Dealing With Finite U With

Remarkable Accuracy
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CHAPTER 14

INTRODUCTION

Most non-trivial problems do not yet have exact solutions. For this reason the community

relies on computational and perturbative techniques. Unfortunately, accurate computa-

tional methods are often expensive in both time and memory [75] and hence are limited

to small systems. A state of the art technique in strongly interacting problems is pertur-

bation theory. Take the Hubbard model

H = �t
X

hiji�

c†i�cj� + U
X

i

c†i"ci"c
†
i#ci#. (14.1)

One can tackle this model in the limit U = 1 or in the limit U = 0, and then U or U�1

can be reintroduced perturbatively. This is a limited process. The perturbations are only

valid in the vicinity of the limit and breakdown rather quickly. Currently there are two

ways to deal with this: either stay in the region of validity, or add higher order corrections

to our perturbation scheme. Neither of these options are ideal.

In principle non-perturbative techniques could do wonders here, but they are few and

far between. We will present a self-consistent, non-perturbative method which provides

remarkably accurate results.

In this part we will formulate and implement the technique. The core principle is

rather simple. If we use a non-orthogonal operator, defined by a distribution over the

lattice, would this encapsulate the long range perturbative corrections? The answer is
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yes.

We begin with the Hubbard model from the previous part for which the focus was

predominantly on the limit U = 1, and we only examined finite U perturbatively. In this

part we will examine the finite U limit using a non-perturbative approach. In physical

systems a lot of interesting physics occurs at the Mott point, including but not limited

to high temperature superconductivity, spin glasses, and anti-ferromagnetism [76]. For

this reason we begin our analysis at the Mott point in section 15.2 and enforce certain

symmetry properties. This defines a new non-orthogonal operator which is key within the

method for this part. This method, which is discussed in section 15.3, is simple though

algebraically tedious. Due to certain properties of the Mott point, the two operator (s†i�

and a†i�) species system can be exactly mapped onto a single operator system. The new

non-orthogonal prescription describes fluctuations which the original does not, these are

then taken into account. At this point paramagnetic averages are taken in order to create

a single particle picture. Finally appropriate commutators are calculated to describe

the dispersion for adding and subtracting a particle. With this description we find that

the occupation factor is not set, it is solved for. This allows us to examine the Fermi-

liquid discontinuity which is discussed in section 15.5, along with results and supporting

numerical work.
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SOLVING THE PROBLEM AT

THE MOTT POINT

New procedures require precision and control. For this reason we begin by solving the

problem at the Mott point. Control here comes from the fact that, in our system, at

U = 1 the Mott state is known exactly. From this we can generate an intelligent ansatz

for our non-orthogonal operators. In our case these will be a weighted distribution of the

original operators over the lattice.

In this chapter we will formulate and apply the theory to our model. In the first section

we will map the Hamiltonian to a pseudospin Hamiltonian exactly. This prescription

dramatically simplifies the problem. In the following section we examine the state at the

Mott point. Here we will extract the local symmetry. Before taking a journey through

arduous algebra we will detail the method, which is conceptually surprisingly simple. In

the final section we will present the fruits of our labour, the results, and highlight their

remarkable accuracy.

15.1 Exact Mapping to a Pseudospin Hamiltonian

In this section we will map the original Hamiltonian to a pseudospin model exactly. This

is a rather trivial process and only requires noticing the structure of the basis states. We
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will find that the symmetric and anti-symmetric subspaces (recall ti� $ bi�) have the

same structure except for one small di↵erence. The benefit of doing this will become clear

in section 15.3 but for now can be summarised as ‘equivalence principles’.

To recap, the original Hamiltonian is given by

H = �t1
X

hiji�

h
t†i�+b†i�

ih
tj�+bj�

i
�t0

X

i�

h
t†i�bi�+b†i�ti�

i
+U

X

j

h
t†j"tj"t

†
j#tj#+b†j"bj"b

†
j#bj#

i
,

(15.1)

which has a local symmetry ti� $ bi� allowing the Hamiltonian to be recast using the

operators

sj� =
1p
2

h
tj� + bj�

i
, aj� =

1p
2

h
tj� � bj�

i
, (15.2)

giving

H = �2t1
X

hiji�

s†i�sj� � t0
X

i�

h
s†i�si� � a†i�ai�

i

+
U

2

X

j

"h
s†j"s

†
j# + a†j"a

†
j#

ih
sj#sj" + aj#aj"

i
+
h
s†j"a

†
j# � s†j#a

†
j"

ih
aj#sj" � aj"sj#

i#
. (15.3)

There are 16 basis states, 8 of which are symmetric under the transformation and are

given by

|0i , s†j" |0i , s†j# |0i , s†j"s
†
j# |0i , (15.4)

a†j"a
†
j# |0i , s†j"a

†
j"a

†
j# |0i , s†j#a

†
j"a

†
j# |0i , s†j"s

†
j#a

†
j"a

†
j# |0i , (15.5)

and 8 are anti-symmetric under the transformation and are given by

a†j" |0i , s†j"a
†
j" |0i , s†j#a

†
j" |0i , s†j"s

†
j#a

†
j" |0i , (15.6)

a†j# |0i , s†j"a
†
j# |0i , s†j#a

†
j# |0i , s†j"s

†
j#a

†
j# |0i . (15.7)

We can map the 16 basis states onto pseudo and real spin for the symmetric and anti-
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symmetric states respectively. Note that half of the symmetric basis states are occupied

by a†"a
†
# while the other half are not. These form our pseudospin, given by |#Si = |0i and

|"Si = a†j"a
†
j# |0i. For the anti-symmetric basis states the spin is real, given by |"Ai = a†j"

and |#Ai = a†j#. Half of the anti-symmetric basis states are occupied by a†" and the other

half by a†#. This allows us to recast the states to

|⌧↵i , s†j" |⌧↵i , s†j# |⌧↵i , s†j"s
†
j# |⌧↵i , (15.8)

where in the symmetric subspace |⌧↵i is a pseudospin and in the anti-symmetric subspace

is a real spin. This is expressed by |#Si = |0i, |"Si = a†j"a
†
j# |0i, |"Ai = a†j", and |#Ai = a†j#.

In this part of the thesis we are focused on the symmetric subspace: states which are

occupied by a symmetric basis state on each site. For the symmetric subspace we can

replace any aj� dependence with the following pseudospin operators. Note, for the AZ

operator we have three operations which produce the same result, and hence are equivalent

in the pseudospin language:

A+
j ⌘ a†j"a

†
j#, (15.9)

A�
j ⌘ aj#aj", (15.10)

1

2
+ AZ

j ⌘

8
>>>>>><

>>>>>>:

a†j"aj"a
†
j#aj#,

a†j"aj",

a†j#aj#,

(15.11)

where the final equivalence is true as a†j� only occurs in pairs in the symmetric space.

Explicitly we can see this as

A+
j |"Si ⌘ a†j"a

†
j#a

†
j"a

†
j# |0i = 0, A+

j |#Si ⌘ a†j"a
†
j# |0i ⌘ |"Si , (15.12)

A�
j |"Si ⌘ aj#aj"a

†
j"a

†
j# |0i = |0i ⌘ |#Si , A�

j |#Si ⌘ aj#aj" |0i = |0i (15.13)
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
1

2
+ AZ

j

�
|"Si ⌘

8
>>>><

>>>>:

a†j"aj"a
†
j#aj#a

†
j"a

†
j# |0i

a†j"aj"a
†
j"a

†
j# |0i

a†j#aj#a
†
j"a

†
j# |0i

9
>>>>=

>>>>;

= a†j"a
†
j# |0i ⌘


1

2
+

1

2

�
|"Si (15.14)


1

2
+ AZ

j

�
|#Si ⌘

8
>>>><

>>>>:

a†j"aj"a
†
j#aj# |0i

a†j"aj" |0i

a†j#aj# |0i

9
>>>>=

>>>>;

= 0 ⌘

1

2
� 1

2

�
|#Si (15.15)

Upon direct substitution we get

HS = �2t
X

hiji�

s†i�sj� +
U

2

X

j

"
s†j"sj"s

†
j#sj# + s†j"s

†
j#A

�
j

+ sj#sj"A
+
j +

h
1 + s†j"sj" + s†j#sj#

ih1
2
+ AZ

j

i#
. (15.16)

In this subsection we mapped the basis states and the Hamiltonian on to a pseudospin

representation. The advantage of this is in the equivalence principles which will become

clear in section 15.3. Now let’s take a closer look at the Mott state.

15.2 The State at the Mott Point

At the Mott point, many physical phenomena occur such as spin glasses and anti-ferromagnetism.

In our case the Mott point is not only physically relevant, but it also has properties which

allow us to incorporate particle fluctuations. In this section we take a non-interacting

Mott state and enforce our choice of symmetry upon it, and in doing so define a non-

orthogonal operator.

The Mott point corresponds to half filling. A non-interacting state we could write at

this point is given by

| i =
Y

k�

h
uks

†
k� + ivka

†
k�

i
|0i . (15.17)
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Subject to the condition (as we have two atoms per unit cell) that

X

k�

h
s†k�sk� + a†k�ak�

i
| i = 2. (15.18)

Let’s relabel our states via

g†k� = Lks
†
k�, (15.19)

where Lk = uk/vk. Note that this operator is not orthogonal so we define its dual as

g̃k� = Rksk�, (15.20)

such that {g̃k�, g†k0⌧} = �kk0��⌧ . Though this is diagonal in momentum space, it is not

diagonal in real space. We can transform from momentum to real space via a Bloch

transformation. This does not need to be done explicitly as it is a linear transformation

single creation operators map to single creation operators only. It is required that

| i /
Y

j�

h
g†j� + ia†j�

i
|0i (15.21)

=
Y

j

h
g†j" + ia†j"

i h
g†j# + ia†j#

i
|0i (15.22)

=
Y

j

h
g†j"g

†
j# � a†j"a

†
j# + i

h
g†j"a

†
j# � g†j#a

†
j"

ii
|0i . (15.23)

Note the bracketed term, g†j"a
†
j# � g†j#a

†
j", is anti-symmetric under the transformation

ti� $ bi�; therefore, to ensure we maintain the symmetry of the chosen subspace, this is

projected to zero. Rewriting this in terms of the pseudospin operators we get

| i =
Y

j

h
g†j"g

†
j# � A+

j

i
|#i . (15.24)

This state is key in the analysis. Note, in the limit U = 1 we know the state at the Mott
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point is

| iU=1 =
Y

j

h
s†j"s

†
j# � a†j"a

†
j#

i
|0i , (15.25)

which corresponds to g†i� = s†i�. This gives LkU=1 = �k0, and we expect this to relax over

di↵erent k points at finite U .

The Mott state has many properties which allow us to remove the pseudospin oper-

ators from the Hamiltonian and naturally incorporate particle fluctuations. This will be

discussed in the next section.

15.3 The Method

The method in applying the technique is simple yet algebraically tedious. For that reason,

in this section we will outline the process before taking a treacherous algebraic journey

in the next section. The steps will be detailed later in this section but can be outlined as

follows

1. Find any equivalence principles that hold true for the state being considered. This

is where pseudospin operators can be replaced with non-orthogonal operators.

These are very particular to the state being considered. If this step cannot be

performed the method instantly fails.

2. Find any particle fluctuation properties the state being considered has. This is

where two operator terms can be simplified. For the specific cases they occur we

subtract the multiple operator term and add them back on after simplifying.

This step is not necessary for the method, but if not taken produces terrible results

when compared to the numerics.

3. Perform single particle paramagnetic averaging. This is simple but usually alge-

braically tedious.
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15.3.1 Step 1 — Equivalence Principles

For our system we have the following equivalence principles for our chosen state

h1
2
+ AZ

j

i
| i ⌘ g̃j�g

†
j� | i , (15.26)

A+
j | i ⌘ g†j#g

†
j" | i , (15.27)

A�
j | i ⌘ g̃j"g̃j# | i . (15.28)

Demonstrating these explicitly we have

h1
2
+ AZ

j0

i
| i =

h1
2
+ AZ

j0

iY

j

h
g†j"g

†
j# � A+

j

i
|#i (15.29)

=
h1
2
+ AZ

j0

i h
g†j0"g

†
j0# � A+

j0

iY

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.30)

= �
h1
2
+ AZ

j0

i
A+

j0

Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i , (15.31)

= �A+
j0

Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i , (15.32)

g̃j0�g
†
j0� | i = g̃j0�g

†
j0�

h
g†j0"g

†
j0# � A+

j0

iY

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.33)

= �A+
j0 g̃j0�g

†
j0�

Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.34)

= �A+
j0

Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i , (15.35)

and

A+
j0 | i = A+

j0

h
g†j0"g

†
j0# � A+

j0

iY

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.36)

= A+
j0g

†
j0"g

†
j0#

Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i , (15.37)
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g†j0#g
†
j0" | i = g†j0#g

†
j0"

h
g†j0"g

†
j0# � A+

j0

iY

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.38)

= g†j0"g
†
j0#A

+
j0

Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i , (15.39)

where in the last step we have swapped the creation operators and gained a Fermi minus

sign, finally

A�
j0 | i = A�

j0

h
g†j0"g

†
j0# � A+

j0

iY

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.40)

= �A�
j0A

+
j0

Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.41)

= �
Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.42)

g̃j0"g̃j0# | i = g̃j0"g̃j0#
h
g†j0"g

†
j0# � A+

j0

iY

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.43)

= g̃j0"g̃j0#g
†
j0"g

†
j0#

Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i (15.44)

= �
Y

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i , (15.45)

where in the last step we swapped the annihilation operators and gained a Fermi minus

sign.

These allow us to recast the Hamiltonian to one which is purely composed of g̃j�

operators. This is a special property of the state we’re considering. If we can’t do this

the method instantly fails.

15.3.2 Step 2 — Particle Fluctuations

Particle fluctuations are usually di�cult to incorporate in many averaging methods. It is

these fluctuations that are clearly important in strongly correlated systems. To include
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them in our model we note the following property

g†j�g̃j�̄ | i = 0. (15.46)

Demonstrating this explicitly we have

g†j0�g̃j0�̄ | i = g†j0�g̃j0�̄
h
g†j0"g

†
j0# � A+

j0

iY

j 6=j0

h
g†j"g

†
j# � A+

j

i
|#i = 0, (15.47)

where the first term is zero from Pauli exclusion and the second term is zero from anni-

hilating the vacuum.

Using this property is simple yet algebraically tedious. Wherever there are two or

more operators of the form g†j0�g̃j0�̄ acting on state | i the fluctuation property should

be enforced explicitly. This is in preparation of the third step as averaging only enforces

fluctuations on average, and we are attempting to explicitly enforce this.

Things are more subtle than they initially seem as any s†i� operators are linear super-

positions of g†i� operators. To see this, we require the real space transformation for sj� to

g̃j� operators. Consider the Bloch transform of s†j�

s†j� =
1p
N

X

k

eijks†k�, (15.48)

we then substitute the definition s†k� = Rkg
†
k� followed by Bloch transforming g†k�

s†j� =
1p
N

X

k

eijkRk
1p
N

X

j0

eij
0kg†j0� (15.49)

=
X

j0

1

N

X

k

ei(j�j0)kRkg
†
j0� (15.50)

=
X

j0

Rj�j0g
†
j0�, (15.51)

where we have defined an anti-symmetric transform Rl =
1
N

P
k e

ilkRk. This odd choice is

done to help with calculations, as we do not need to worry about carrying factors of 1p
N
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when transforming and manipulating between orthogonal and non-orthogonal operators.

Repeating this gives

s†j� =
X

j0

Rj�j0g
†
j0� sj� =

X

j0

Lj0�j g̃j0�. (15.52)

To use the fluctuation property (15.46), we take any combination of operators, transform

into the g̃j� representation, subtract any specific terms where the identity holds, and add

it back but collapsed. For example

s†j"g̃j#g
†
j# | i =

X

j0

Rj�j0g
†
j0"g̃j#g

†
j# | i =

h
s†j"g̃j#g

†
j# � R0g

†
j"g̃j#g

†
j# +R0g

†
j"

i
| i . (15.53)

In doing so we have not changed the Hamiltonian, but once averaging occurs we will have

modified H while incorporating particle fluctuations. Taking the previous example we

have (after averaging)

s†j"hg̃j#g
†
j#i vs s†j"hg̃j#g

†
j#i � R0g

†
j"hg̃j#g

†
j#i +R0g

†
j", (15.54)

where the additional terms are taking into account particle fluctuations.

15.3.3 Step 3 — Paramagnetic Averaging

The final step is to perform single particle paramagnetic averaging. For example

s†j"sj"s
†
j#sj# ! s†j"sj"hs

†
j#sj#i + hs†j"sj"is

†
j#sj# � hs†j"sj"ihs

†
j#sj#i (15.55)

15.3.4 Produce of the Theory

The method produces four things that can be measured: total energy E, particle disper-

sion ✏k, hole dispersion ✏̃k, and occupation number nk. These are defined via the following
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equations and commutators, which are calculated at the start of the process.

HS | i = E | i +
X

k�

Ek g
†
k�g̃k� | i . (15.56)

[HS, s
†
k�] | i = ✏k s

†
k� | i , (15.57)

[sk�, HS] | i = ✏̃k sk� | i , (15.58)

h |
n
sk�, [HS, s

†
k�]
o

| i

h | i = ✏k (1 � nk) + ✏̃k nk, (15.59)

These are subtle assumptions at play with each of these equations. For equation 15.56

we are assuming that as there are equivalence principles between A and g† that H is

essentially a function of g†, therefore | i can be represented as a sum of products of g†k�

states

| i =
X

µ

cµ
Y

k�

g†k� |0i , (15.60)

and that, upon averaging, HS can be represented as a single particle Hamiltonian such

that there is a dispersion Ek upon application. A separate assumption that we make is

that | i is an eigenstate which sets Ek = 0. This defines Rk and its inverse Lk.

For equation 15.57 we assume that s†k� | i is an eigenstate with eigenvalue E+ ✏k such

that

[HS, s
†
k�] | i = [HSs

†
k� � s†k�HS] | i ⇡ [(E + ✏k)s

†
k� � s†k�E] | i = ✏ks

†
k� | i . (15.61)

Similarly we have for equation 15.58

[sk�, HS] | i = [sk�HS � HSsk�] | i ⇡ [sk�E � (E � ✏̃k)sk�] | i = ✏̃ksk� | i . (15.62)

Finally, and most interestingly, we can use 15.59 to solve for the occupation factor.
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Taking the Hermitian conjugate of 15.62 gives h | [HS, s
†
k�] = h | s†k� ✏̃k such that

h |
n
sk�, [HS, s

†
k�]
o

| i = h |
⇣
sk�[HS, s

†
k�] � [HS, s

†
k�]sk�

⌘
| i (15.63)

= h |
⇣
sk�✏ks

†
k� � s†k� ✏̃ksk�

⌘
| i . (15.64)

By defining
h | s†k�sk� | i

h | i = nk, (15.65)

where we have divided by the norm for normalisation purposes, we get

h |
n
sk�, [HS, s

†
k�]
o

| i

h | i = ✏k (1 � nk) + ✏̃k nk. (15.66)

This means we can examine the Fermi liquid discontinuity in the system.

In this section we outlined the method. We discovered a set of equivalence princi-

ples relating g̃i� operators to our pseudospin operators and how to incorporate particle

fluctuations. In the following section we implement this method.

15.4 The Calculation — An Exercise in Arduous Al-

gebra

This section is, as the title says, arduous. We’ve streamlined the process to the best of

our ability while still making it easy to follow. We begin by calculating the commutators,

and using the equivalence principles to recast them. In each of the following subsections

we incorporate particle fluctuations and average to attain the appropriate quantities.

The following commutators can be directly calculated in the pseudospin basis.

[H, s†l�] = �2t1
X

hili

s†i� � t0s
†
l� +

U

2

h
s†l�s

†
l�̄sl�̄ + sl�̄A

+
l + (

1

2
+ Az

l )s
†
l�

i
, (15.67)
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[sl�, H] = �2t1
X

hili

si� � t0sl� +
U

2

h
s†l�̄sl�̄sl� + s†l�̄A

�
l + (

1

2
+ Az

l )sl�
i
, (15.68)

{sj0�, [H, s†l�]} = �2t1�hj0li � t0�j0l +
U

2

h
s†l�̄sl�̄ + (

1

2
+ Az

l )
i
�j0l, (15.69)

these will be recast using equivalence principles and Bloch transformed to get the appro-

priate commutators.

We have the following equivalence principles

(
1

2
+ Az

j) | i = (
1

2
+ Az

j)(g
†
j"g

†
j# � A+

j )
Y

j0 6=j

(g†j0"g
†
j0# � A+

j0) |#i (15.70)

= �A+
j

Y

j0 6=j

(g†j0"g
†
j0# � A+

j0) |#i (15.71)

⌘ g̃j"g
†
j" | i (15.72)

⌘ g̃j#g
†
j# | i , (15.73)

A+
j | i = g†j"g

†
j#A

+
j

Y

j0 6=j

(g†j0"g
†
j0# � A+

j0) |#i (15.74)

⌘ �g†j"g
†
j# | i , (15.75)

(15.76)

A�
j = �

Y

j0 6=j

(g†j0"g
†
j0# � A+

j0) |#i (15.77)

⌘ �g̃j#g̃j" | i . (15.78)

Whenever the pseudospin operators occur we will replace them with the appropriate g̃j�

operators.

Upon substitution the commutators and Hamiltonian become when acting on | i

[H, s†l�] = �2t1
X

hili

s†i� � t0s
†
l� +

U

2

h
s†l�s

†
l�̄sl�̄ � sl�̄g̃j#g̃j" + s†l�g̃j�̄g

†
j�̄

i
, (15.79)
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[sl�, H] = �2t1
X

hili

si� � t0sl� +
U

2

h
s†l�̄sl�̄sl� � s†l�̄g̃j#g̃j" + sl�g̃j�̄g

†
j�̄

i
, (15.80)

{sj0�, [H, s†l�]} = �2t1�hj0li � t0�j0l +
U

2

h
s†l�̄sl�̄ + g̃j�̄g

†
j�̄

i
�j0l, (15.81)

HS = �2t
X

hiji�

s†i�sj� +
U

2

X

j

"
s†j"sj"s

†
j#sj# � s†j"s

†
j#g̃j#g̃j"

� sj#sj"g
†
j#g

†
j" +

1

2
(g̃j"g

†
j" + g̃j#g

†
j#) + s†j"sj"g̃j#g

†
j# + s†j#sj#g̃j"g

†
j"

#
. (15.82)

To deal with particle fluctuations we utilise

g†j�g̃j�̄ | i = 0, (15.83)

g̃j�̄g
†
j�g̃j� | i = g̃j�̄ | i . (15.84)

Wherever there is an s†� or s� we use the transformation

s†j� =
X

j0

Rj�j0g
†
j0� sj� =

X

j0

Lj0�j g̃j0�, (15.85)

which is simply a Bloch transformation of the definitions s†k� = Rkg
†
k� and sk� = Lkg̃k�

where

Rj�j0 =
1

N

X

k

eik(j�j0)Rk Lj0�j =
1

N

X

k

eik(j
0�j)Lk. (15.86)

We will use Bloch transformations

g̃j� =
1p
N

X

k

eikj g̃k�, g†j� =
1p
N

X

k

e�ikjg†k�, (15.87)

and the inverse transformations

g̃k� =
1p
N

X

j

e�ikj g̃j�, g†k� =
1p
N

X

j

eikjg†j�. (15.88)
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These transformations allow us to calculate the required momentum space commuta-

tors from our real space commutators via

[sq�, H] =
1p
N

X

j

e�iqj[sj�, H], [H, s†q�] =
1p
N

X

j

eiqj[H, s†j�]. (15.89)

Now that we’ve detailed the process we move on to calculating the appropriate quan-

tities beginning with nk.

15.4.1 Calculating the Occupation factor nk

This is the simplest calculation in this part. We have the definition and equivalence

nk =
h | s†k�sk� | i

h | i ⌘ h | g†k�g̃k� | i
h | i . (15.90)

The real space commutator is given by

{sj0�, [H, s†l�]} = �2t1�hj0li � t0�j0l +
U

2

h
s†l�̄sl�̄ + (

1

2
+ Az

l )
i
�j0l, (15.91)

which, upon substitution of the equivalence principles becomes

{sj0�, [H, s†l�]} = �2t1�hj0li � t0�j0l +
U

2

h
s†l�̄sl�̄ + g̃j�̄g

†
j�̄

i
�j0l. (15.92)

Upon Bloch transformation we get

h |
n
sk�, [HS, s

†
k�]
o

| i

h | i = �2t1Z�k + (
U

2
� t0). (15.93)

This result is equated to equation 15.59

h |
n
sk�, [HS, s

†
k�]
o

| i

h | i = ✏k (1 � nk) + ✏̃k nk, (15.94)

= �2t1Z�k + (
U

2
� t0), (15.95)
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which gives

nk =
�2t1Z�k � ✏k � t0 +

U
2

✏̃k � ✏k
. (15.96)

Note that this calculation solves for the occupation factor and is not set. We now

calculate the particle dispersion.

15.4.2 Calculating the Particle Dispersion ✏k

In this subsection we repeat the previous procedure to calculate the particle dispersion.

This time we will be required to consider particle fluctuations.

We are solving with the following definition

[HS, s
†
k�] | i = ✏k s

†
k� | i . (15.97)

In real space the commutator is given by

[H, s†l�] = �2t1
X

hili

s†i� � t0s
†
l� +

U

2

h
s†l�s

†
l�̄sl�̄ + sl�̄A

+
l + (

1

2
+ Az

l )s
†
l�

i
, (15.98)

which upon substitution of the equivalence principles becomes

[H, s†l�] = �2t1
X

hili

s†i� � t0s
†
l� +

U

2

h
s†l�s

†
l�̄sl�̄ � sl�̄g̃j#g̃j" + s†l�g̃j�̄g

†
j�̄

i
. (15.99)

At this point we are required to consider particle fluctuations. This is performed by

following the procedure outlined in equation 15.53, subject to equation 15.84. As this is

rather involved we take this term by term. Take s†l�s
†
l�̄sl�̄, after expanding and averaging

we get

s†l�hs
†
l�̄sl�̄i �

X

j1

Rj�j1Lj1�jg
†
j1�hs

†
j�̄g̃j1�̄i, (15.100)
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which upon Bloch transformation becomes

s†q�
1

N

X

k1

h
nk1 � Lq

1

N

X

k2

Rj1Lk2 [Rn]k1�k2+q

i
. (15.101)

For sl�̄g̃j#g̃j"

hsl�̄g†l�̄ig
†
l� � L0hg̃j�̄g†j�̄ig

†
j� + L0g

†
j�, (15.102)

) s†q�
1

N

X

k1

h
LqLk1(1 � nk1) � LqL0(1 � nk1) + L0Lq

i
. (15.103)

For s†l�g̃j�̄g
†
j�̄

s†j�hg̃j�̄g
†
l�̄i � R0g

†
j�hg̃j�̄g

†
j�̄i +R0g

†
j�, (15.104)

) s†q�
1

N

X

k1

h
(1 � nk1) � LqR0(1 � nk1) + LqR0

i
. (15.105)

Putting everything together and equating to 15.97 gives

✏q = �2t1Z�q � t0 +
U

2
[1 � LqBq] (15.106)

Bq =
1

N

X

k1

h 1
N

X

k2

Rk1Lk2 [Rn]k1�k2+q � (L0 +R0)nk1 � Lk1(1 � nk1)
i

(15.107)

15.4.3 Calculating the Hole Dispersion ✏̃k

In this subsection we repeat this process for the hole dispersion defined by

[sk�, HS] | i = ✏̃k sk� | i . (15.108)

In real space this commutator is given by

[sl�, H] = �2t1
X

hili

si� � t0sl� +
U

2

h
s†l�̄sl�̄sl� + s†l�̄A

�
l + (

1

2
+ Az

l )sl�
i
, (15.109)
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which upon substitution of the equivalence principles becomes

[sl�, H] = �2t1
X

hili

si� � t0sl� +
U

2

h
s†l�̄sl�̄sl� � s†l�̄g̃j#g̃j" + sl�g̃j�̄g

†
j�̄

i
. (15.110)

Now we consider each term’s particle fluctuations. For s†l�̄sl�̄sl�

hs†j�̄sj�̄isj� �
X

j1

Rj�j1Lj1�jhg†j1�̄sj�ig̃j1� +
X

j1

Rj�j1Lj1�jLj1�j g̃j1�, (15.111)

) sq�
1

N

X

k1

h
nk1 +Rk1Lk2 [L(1 � n)]q�k1+k2Rq

i
. (15.112)

For �s†l�̄g̃j#g̃j"

�g̃j�hs†j�̄g̃j�̄i � R0hg†j�̄g̃j�̄ig̃j� +R0g̃j�, (15.113)

) sq�
1

N

X

k1

h
� RqRk1nk1 � RqR0nk1 +R0Rq

i
. (15.114)

For sl�g̃j�̄g
†
j�̄

sj�hg̃j�̄g†j�̄i � L0g̃j�hg̃j�̄g†j�̄i, (15.115)

) sq�
1

N

X

k1

[(1 � nk1) � L0Rq(1 � nk1)]. (15.116)

Putting everything together and equating to 15.108 gives

✏̃q = �2t1Z�q � t0 +
U

2
[1 +RqB̃q] (15.117)

B̃q =
1

N

X

k1

h
Rk1Lk2 [L(1 � n)]q�k1+k2 � Rk1nk1 � (L0 +R0)(1 � nk1)

i
(15.118)
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15.4.4 Calculating Ek

In this subsection we calculate Ek by applying this process to the Hamiltonian given by

HS = �2t
X

hiji�

s†i�sj� +
U

2

X

j

"
s†j"sj"s

†
j#sj# + s†j"s

†
j#A

�
j

+ sj#sj"A
+
j +

h
1 + s†j"sj" + s†j#sj#

ih1
2
+ AZ

j

i#
, (15.119)

which upon substitution of the equivalence principles yields

HS = �2t
X

hiji�

s†i�sj� +
U

2

X

j

"
s†j"sj"s

†
j#sj# � s†j"s

†
j#g̃j#g̃j"

� sj#sj"g
†
j#g

†
j" +

1

2
(g̃j"g

†
j" + g̃j#g

†
j#) + s†j"sj"g̃j#g

†
j# + s†j#sj#g̃j"g

†
j"

#
. (15.120)

Now we apply the particle fluctuations to each term and average. For the s†j"sj"s
†
j#sj#

s†j"sj#hs
†
j#sj#i + hs†j"sj#is

†
j#sj# � hs†j"sj#ihs

†
j#sj#i �

X

j1

Rj�j1Lj1�jhg†j1"sj"is
†
j#g̃j1#

�
X

j1

Rj�j1Lj1�jg
†
j1"sj"hs

†
j#g̃j1#i+

X

j1

Rj�j1Lj1�jhg†j1"sj"ihs
†
j#g̃j1#i+

X

j2

Rj�j2Lj2�jLj2�js
†
j"g̃j2"

�
X

j1j2j3

Rj�j2Lj2�js
†
j"g̃j2"hg

†
j2#sj#i �

X

j1j2j3

Rj�j2Lj2�jhs†j"g̃j2"ig
†
j2#sj#

+
X

j1j2j3

Rj�j2Lj2�jhs†j"g̃j2"ihg
†
j2#sj#i +

X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jhg†j1"g̃j2"ig
†
j2#g̃j1#

+
X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jg
†
j1"g̃j2"hg

†
j2#g̃j1#i �

X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jhg†j1"g̃j2"ihg
†
j2#g̃j1#i

+
X

j1

Rj�j1Lj1�jLj1�js
†
j#g̃j1# � 1

2

X

j1j2

Rj�j1Rj�j1Lj1�jLj1�j(g
†
j1"g̃j1" + g†j1#g̃j1#), (15.121)
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) [g†q"g̃q"+g†q#g̃q#]
1

N

X

k1

h
nk1�

1

N

X

k2

Rk1Lk2 [Rn]k1�k2+qLq+
1

N

X

k2

Rk1Lk2 [L(1�n)]k2�k1+q

+
1

N2

X

k2k3

Rk1Rk2Lk3Lk1+k2�k3 [nk1�k3+q�
1

2
]
i
� 1

N2

X

k1k2

nk1nk2+
1

N3

X

k2k3

Rk1Lk2 [Ln]k3 [Rn]k1�k2+k3

+
1

N3

X

k2k3

Rk1Lk2 [Ln]k3 [Rn]k1�k2+k3 +
1

N3

X

k2k3

Rk1Lk2nk3nk1�k2+k3 . (15.122)

For the �sj#sj"g̃j#g̃j" term

s†j"g̃j"[�hs†j#g̃j#i +R0hg†j†g̃j#i � R0] + s†j#g̃j#[�hs†j"g̃j"i +R0hg†j"g̃j"i � R0]

+ g†j"g̃j"[R0hs†j#g̃j#i � R2
0hg

†
j#g̃j#i +

1

2
R2

0] + g†j#g̃j#[R0hs†j"g̃j"i � R2
0hg

†
j"g̃j"i +

1

2
R2

0]

+ hs†j"g̃j"ihs
†
j#g̃j#i � R0hs†j"g̃j"ihg

†
j#g̃j#i � R0hg†j"g̃j"ihs

†
j#g̃j#i +R2

0hg
†
j"g̃j"ihg

†
j#g̃j#i,

(15.123)

) [s†j"g̃j"+s†j#g̃j#]
1

N

X

k1

[�Rk1nk1�R0(1�nk1)]+[g†j"g̃j"+g†j#g̃j#]
1

N

X

k1

[R0Rk1nk1�R2
0nk1+

1

2
R2

0]

1

N2

X

k1k2

[Rk1nk1Rk2nk2 � Rk1nk1R0nk1 � R0nk1Rk1nk1 +R2
0nk1nk2 ]. (15.124)

For �sj#sj"g̃j#g̃j" term

sj#g
†
j#[�hsj"g†j"i + L0hg̃j"g†j"i � L0] + sj"g

†
j"[�hsj#g†j#i + L0hg̃j#g†j#i � L0]

+ g̃j#g
†
j#[L0hsj"g†j"i � L2

0hg̃j"g
†
j"i +

1

2
L2
0] + g̃j"g

†
j"[L0hsj#g†j#i � L2

0hg̃j#g
†
j#i +

1

2
L2
0]

+ hsj#g†j#ihsj"g
†
j"i � L0hg̃j#g†j#ihsj"g

†
j"i � L0hsj#g†j#ihg̃j"g

†
j"i + L2

0hg̃j#g
†
j#ihg̃j"g

†
j"i, (15.125)
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) [g†j#sj# + g†j"sj"]
1

N

X

k1

[Lk1(1 � nk1) + L0nk1 ]

+ [g†j#g̃j# + g†j"g̃j"]
1

N

X

k1

[L2
0(1 � nk1) � L0Lk1(1 � nk1) � 1

2
L2
0]

1

N2

X

k1k2

h
Lk1(1 � nk1)Lk2(1 � nk2) � L0(1 � nk1)Lk2(1 � nk2) � Lk1(1 � nk1)L0(1 � nk2)

+ L2
0(1 � nk1)(1 � nk2) � Lk1(1 � nk1) � L0nk1 + L0Lk1(1 � nk1) � L2

0(1 � nk1) +
1

2
L2
0

i
.

(15.126)

For the 1
2(g̃j"g

†
j" + g̃j#g

†
j#) term

) �[
1

2
(g†j"g̃j" + g†j#g̃j#)] + 1. (15.127)

For the sj"g̃j#g
†
j# term

s†j"sj"hg̃j#g
†
j#i�L0s

†
j"g̃j"hg̃j#g

†
j#i+g†j"sj"[�R0hg̃j#g†j#i+R0]+g†j"g̃j"[R0L0hg̃j#g†j#i�

1

2
R0L0]

g̃j#g
†
j#[hs

†
j"sj"i � L0hs†j"g̃j"i � R0hg†j"sj"i +R0L0hg†j"g̃j"i � 1

2
R0L0 +R0L0]

�hs†j"sj"ihg̃j#g
†
j#i+L0hs†j"g̃j"ihg̃j#g

†
j#i+R0hg†j"sj"ihg̃j#g

†
j#i�R0L0hg†j"g̃j"ihg̃j#g

†
j#i�

1

2
R0L0,

(15.128)

s†j"sj"
1

N

X

k1

[(1 � nk1)] + s†j"g̃j"
1

N

X

k1

[�L0(1 � nk1)] + g†j"sj"
1

N

X

k1

[R0nk1 ]

g†j"g̃j"
1

N

X

k1

[R0L0(1�nk1)�
1

2
R0L0]+g†j#g̃j#

1

N

X

k1

[�nk1+L0Rk1nk1�R0Lk1(1�nk1)�R0L0nk1

+
1

2
R0L0]+

1

N2

X

k1k2

h
nk1(1�nk2)+L0Rk1nk1(1�nk2)+R0Lk1nk1(1�nk2)�R0L0nk1(1�nk2)

� R0L0 + nk1 � L0Rk1nk1 +R0Lk1(1 � nk1) +R0L0nk1

i
. (15.129)
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For the s†j#sj#g̃j"g
†
j" term

s†j#sj#hg̃j"g
†
j"i�L0s

†
j#g̃j#hg̃j"g

†
j"i+g†j#sj#[�R0hg̃j"g†j"i+R0]+g†j#g̃j#[R0L0hg̃j"g†j"i�

1

2
R0L0]

g̃j"g
†
j"[hs

†
j#sj#i � L0hs†j#g̃j#i � R0hg†j#sj#i +R0L0hg†j#g̃j#i � 1

2
R0L0 +R0L0]

�hs†j#sj#ihg̃j"g
†
j"i+L0hs†j#g̃j#ihg̃j"g

†
j"i+R0hg†j#sj#ihg̃j"g

†
j"i�R0L0hg†j#g̃j#ihg̃j"g

†
j"i�

1

2
R0L0,

(15.130)

s†j#sj#
1
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[(1 � nk1)] + s†j#g̃j#
1

N

X
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[�L0(1 � nk1)] + g†j#sj#
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N

X

k1

[R0nk1 ]
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1

N

X

k1

[R0L0(1�nk1)�
1

2
R0L0]+g†j"g̃j"

1

N

X

k1

[�nk1+L0Rk1nk1�R0Lk1(1�nk1)�R0L0nk1

+
1

2
R0L0]+

1

N2

X

k1k2

h
nk1(1�nk2)+L0Rk1nk1(1�nk2)+R0Lk1nk1(1�nk2)�R0L0nk1(1�nk2)

� R0L0 + nk1 � L0Rk1nk1 +R0Lk1(1 � nk1) +R0L0nk1

i
. (15.131)

Putting it together we get

Eq =
U

2
[RqB̃q � LqBq � 2Cq]

2Cq =
2

U

h
2t1Z�q + 2t0

i
+

1

N

X

k1

h⇥
[L0 +R0]

2 + 1
⇤⇥
nk1 � 1

2

⇤

+
⇥
L0 +R0

⇤⇥
Lk1(1 � nk1) � Rk1nk1

⇤
� 1

N2

X

k2k3

Rk1Rk2Lk3Lk1+k2�k3

⇥
nk1�k3+q � 1

2

⇤i

156



15.5. THE RESULTS

15.4.5 Calculating the Total Energy E

This is simple to calculate. We take the terms not contributing towards Ek and perform

the summations.

E = �4t1Z
X

k

�knk +
U

2

1

N2

X

k1k2

"
1 + nk1

⇥
1 � nk2

⇤⇥
1 + [R0 + L0]

2
⇤

�
⇥
R0 + L0

⇤⇥
[1 � nk1 ]Rk2nk2 + nk1Lk2 [1 � nk2 ]

⇤
� Bk1B̃k1q

C2
k1
+Bk1B̃k1

� Rk1Lk1Nk1

#
,

(15.132)

Rk =
1

N

1

2

X

k1

Rk1 [Lk1�k + Lk+k1 ] (15.133)

Lk =
1

N

1

2

X

k1

Lk1 [Rk1�k +Rk+k1 ] (15.134)

Nk =
1

N

1

2

X

k1

[1 � nk1 ][nk1�k + nk+k1 ] (15.135)

15.5 The Results

In this section we review the results and test them against exact diagonalisation. To recap

the particle dispersion is given by

✏k = �2tZ�k +
U

2

h
1 + LkBk

i
, (15.136)

and the hole dispersion is

✏̃k = �2tZ�k +
U

2

h
1 � RkB̃k

i
. (15.137)

The occupation factor is

nk =
�2t1Z�k � ✏k � t0 +

U
2

✏̃k � ✏k
, (15.138)
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which can be rearranged using equations 15.136 and 15.137 to

nk =
LkBk

LkBk +RkB̃k

, (15.139)

which can be further simplified with Ek = 0 to

nk =
1

2

2

41 +
"
1 +

Bk

Ck

B̃k

Ck

#� 1
2

3

5 . (15.140)

The total energy is

E = �4t1Z
X
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⇤
� Bk1B̃k1q
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#
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(15.141)

where

Lk =
Ck

Bk

2

41 +
"
1 +

Bk

Ck

B̃k

Ck

# 1
2

3

5 Rk =
1

Lk
, (15.142)
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X
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#
, (15.143)

B̃k =
1
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X
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"
[L0 +R0] [1 � nk1 ] + nk1Rk1 � 1

N

X
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#
, (15.144)
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(15.145)

Rk =
1

N

1

2

X

k1

Rk1 [Lk1�k + Lk+k1 ] (15.146)

Lk =
1

N

1

2

X

k1

Lk1 [Rk1�k +Rk+k1 ] (15.147)

Nk =
1

N

1

2

X

k1

[1 � nk1 ][nk1�k + nk+k1 ] (15.148)

So how do we see the fruits of our labour? This procedure is self consistent. We start

with an ansatz of Ck, Bk, and B̃k. These can be used to calculate nk, Lk, and Rk which

are then used to calculate Ck, Bk, and B̃k. This cycle is repeated until convergence.

Figures 15.1 on page 160 and 15.2 on page 160 depict the particle and hole dispersion

for varying U . The agreement to numerics is remarkable! The larger U is the better the

agreement, but even down to approximately U = 5 has good agreement. Past this the

convergence breaks down. The source of this breakdown is unknown.

Figure 15.3 on page 161 depicts the occupation factor for varying U . Again the

agreement is remarkable. Analytically we expect the Fermi-Liquid discontinuity to be

zero at the Mott point, and that is exactly what we see.

Table 15.1 depicts the total energy per site for varying system sizes and U . At the

Mott point, the system finite size scales very well. For this reason the total energy fits

rather well in this calculation.
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Figure 15.1: Particle Dispersion at the Mott Point
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Figure 15.2: Hole Dispersion at the Mott Point
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Plot of hole dispersion ẽk against k for U = 25, U = 10 and U = 5. The solid lines are
the analytical results. The points on the graph are finite size diagonalisation results for n =

4, 5, 6, 7, 8, 9 lattice sites.
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15.5. THE RESULTS

Figure 15.3: Occupation at the Mott Point
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Plot of occupation factor nk against k for U = 25, U = 10 and U = 5. The solid lines are the
analytical results. The solid lines are the analytical results. The points on the graph are finite

size diagonalisation results for n = 4, 5, 6, 7, 8, 9 lattice sites.

Table 15.1: Mott Point Total Energy

U = 10 U = 25

Diagonalisation

Energy

System

Size

4 -0.403186850861380 -0.160246118307604

5 -0.398727682184652 -0.159985200325172

6 -0.398814931982000 -0.159986038723485

7 -0.398724733012764 -0.159985199309589

8 -0.398727028565785 -0.159985202686994

9 -0.398724721357989 -0.159985199311420

10 -0.398724787565121 -0.159985199328586

Energy (Method) -0.4016569360 -0.1600168947

Total energy per site for U = 10 and U = 25. Finite size diagonalisation compared to analytical
result.
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CHAPTER 15. SOLVING THE PROBLEM AT THE MOTT POINT

In this chapter we detailed and performed self-consistent distribution theory at the

Mott point for our system. We were able to calculate the particle and hole dispersions,

the occupation factor, and the total energy with remarkable accuracy. In the next chapter

we extend this method away from the Mott point.
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CHAPTER 16

BEYOND THE MOTT POINT —

THE EFFECTS OF DOPING

This technique has shown remarkable success at the Mott point. However, if one were

to pick a non-trivial point where a theory would be successful, it would be that point.

Here the strong correlations are ‘renormalised’ into a simpler model, for example the

Heisenberg model from the Hubbard model [74]. Away from this point things are more

interesting and incredibly complicated, and usually very di�cult to examine for example

the t � J model accurately. If our method extends to non-trivial doping and boasts the

same success it could be of great use.

In this chapter we essentially repeat the work done in the previous chapter but at

arbitrary doping. This is done by modifying the Mott state and reprocessing the calcu-

lations. The complications that arise are due to the equivalence principles. Namely, that

they are only true at the Mott point. We deal with this via a set of commutators. After

this the process is essentially identical except for more arduous algebra.
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CHAPTER 16. BEYOND THE MOTT POINT — THE EFFECTS OF DOPING

16.1 Modifications to the Method

In this section we modify the method to take into account doping. Essentially we require

HS |Ki = E |Ki +
X

k�

Ek g
†
k�g̃k� |Ki . (16.1)

[HS, s
†
k�] |Ki = ✏k s

†
k� |Ki , (16.2)

[sk�, HS] |Ki = ✏̃k sk� |Ki , (16.3)

hK|
n
sk�, [HS, s

†
k�]
o

|Ki

hKi = ✏k (1 � nk) + ✏̃k nk, (16.4)

where

|Ki = K̂ | i K̂ =
Y

k2K�

g̃k�. (16.5)

the state |Ki is simply hole doped away from the Mott state | i.

The issue with this is the equivalence principles

(
1

2
+ Az

j) ⌘ g̃j"g
†
j" ⌘ g̃j#g

†
j# (16.6)

A+
j ⌘ g†j#g

†
j", (16.7)

A�
j ⌘ g̃j"g̃j#, (16.8)

g†j�g̃j�̄ | i = 0, (16.9)

g̃j�̄g
†
j�g̃j� | i = g̃j�̄ | i . (16.10)

are only true at the Mott point. We must therefore commute these operators through K̂,

apply the identity, and commute the result back. The commutators we require, and have

been calculated, are

[g̃j1"g
†
j2", K̂] = K̂

1

N

X

k

eik(j1�j2)�k2K , [g†j2"g̃j1", K̂] = �K̂
1

N

X

k

eik(j1�j2)�k2K , (16.11)
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16.2. THE CALCULATION — AN EXERCISE IN ARDUOUS ALGEBRA PART 2

[sj1"g
†
j2", K̂] = K̂

1

N

X

k

eik(j1�j2)�k2KLk, [g†j2"sj1", K̂] = �K̂
1

N

X

k

eik(j1�j2)�k2KLk,

(16.12)

[g̃j1"s
†
j2", K̂] = K̂

1

N

X

k

eik(j1�j2)�k2KRk, [s†j2"g̃j1", K̂] = �K̂
1

N

X

k

eik(j1�j2)�k2KRk.

(16.13)

We will use the following shorthand

↵ =
1

N

X

k

�k2K , L̃ =
1

N

X

k

Lk�k2K , R̃ =
1

N

X

k

Rk�k2K . (16.14)

The rules of engagement are simple: If you have to commute a g̃j� or sj� we can do so

without any worry. If we commute a g†j� or s†j� we must move the appropriate gj� or sj�

with it. This is to ensure particle conservation.

In the following section we will repeat the calculation but away from the Mott point.

16.2 The Calculation — An Exercise in Arduous Al-

gebra Part 2

In this section we will calculate Ek, this is a ‘shortcut’ to the all the key components.

We will find that ✏k, ✏̃k, nk, Lk, and Rk are identical but Bk, B̃k, and Ck are slightly

augmented.

16.2.1 Calculating Ek

The Hamiltonian acting on |Ki is given by

HS = �2t
X

hiji�

s†i�sj� � t0
X

j�

[s†j�sj� � K̂g̃j�g
†
j�] +

U

2

X

j

"
s†j"sj"s

†
j#sj#K̂ + s†j"s

†
j#K̂g̃j"g̃j#

+ K̂sj#sj"g
†
j#g

†
j" + K̂

1

2
(g̃j"g

†
j" + g̃j#g

†
j#) + s†j"sj"K̂g̃j#g

†
j# + s†j#sj#K̂g̃j"g

†
j"

#
, (16.15)
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CHAPTER 16. BEYOND THE MOTT POINT — THE EFFECTS OF DOPING

where application on | i is implied. We consider each term, expand what would be the

identity, commute through the terms and apply g†j�g̃j�̄ | i = 0, and commute back. For

the s†j"sj"s
†
j#sj#K̂ term

s†j"sj"s
†
j#sj# ) s†j"sj"s

†
j#sj# �

X

j1

Rj�j1Lj1�jg
†
j1"sj"s

†
j#g̃j1# +

X

j1

Rj�j1Lj1�jg
†
j1"sj"s

†
j#g̃j1#

�
X

j2

Rj�j2Lj2�js
†
j"g̃j2"g

†
j2#sj# +

X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jg
†
j1"g̃j2"g

†
j2#g̃j1#

+
X

j2

Rj�j2Lj2�js
†
j"g̃j2"g

†
j2#sj# �

X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jg
†
j1"g̃j2"g

†
j2#g̃j1# (16.16)

The
P

j1j2
Rj�j1Rj�j2Lj1�jLj2�jg

†
j1"g̃j2"g

†
j2#g̃j1# term is equal to (spin symmetry)

=
1

2

"
X

j1

Rj�j1Rj�j1Lj1�jLj1�jg
†
j1#g̃j1# �

X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jg
†
j2#g̃j1#g̃j2"g

†
j1"

X

j1

Rj�j1Rj�j1Lj1�jLj1�jg
†
j1"g̃j1" �

X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jg
†
j1"g̃j2"g̃j1#g

†
j2#

#
K̂ (16.17)

=
1

2

"
X

j1

Rj�j1Rj�j1Lj1�jLj1�jg
†
j1#g̃j1#K̂ +

X

j1

Rj�j1Rj�j1Lj1�jLj1�jg
†
j1"g̃j1"K̂

�
X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jg
†
j2#K̂

 
g̃j2"g

†
j1" +

1

N

X

k

eik(j2�j1)�k2K

!
g̃j1#

�
X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jg
†
j1"K̂g̃j2"

 
g̃j1#g

†
j2# +

1

N

X

k

eik(j1�j2)�k2K

!#
(16.18)

=
1

2

"
X

j1

Rj�j1Rj�j1Lj1�jLj1�jg
†
j1#g̃j1# +

X

j1

Rj�j1Rj�j1Lj1�jLj1�jg
†
j1"g̃j1"

�
X

j1j2

Rj�j1Rj�j2Lj1�jLj2�j
1

N

X

k

�k2K
⇣
eik(j2�j1)g†j2#g̃j1# + eik(j1�j2)g†j1"g̃j2"

⌘#
K̂ (16.19)
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The
P

j1
Rj�j1Lj1�jg

†
j1"sj"s

†
j#g̃j1#K̂ term is equal to

=
X

j1

Rj�j1Lj1�jLj1�js
†
j#g̃j1#K̂ �

X

j1

Rj�j1Lj1�js
†
j#sj"g

†
j1"g̃j1#K̂ (16.20)

=
X

j1

Rj�j1Lj1�jLj1�js
†
j#g̃j1#K̂ �

X

j1

Rj�j1Lj1�js
†
j#K̂

 
sj"g

†
j1" +

1

N

X

k

eik(j�j1)�k2KLk

!
g̃j1#

(16.21)

=
X

j1

Rj�j1Lj1�jLj1�js
†
j#g̃j1#K̂ �

X

j1

Rj�j1Lj1�js
†
j#K̂

1

N

X

k

eik(j�j1)�k2KLkg̃j1# (16.22)

The
P

j2
Rj�j2Lj2�js

†
j"g̃j2"g

†
j2#sj#K̂ is equal to

=
X

j2

Rj�j2Lj2�jLj2�js
†
j"g̃j2"K̂ �

X

j2

Rj�j2Lj2�js
†
j"g̃j2"sj#g

†
j2#K̂ (16.23)

=
X

j2

Rj�j2Lj2�jLj2�js
†
j"g̃j2"K̂ �

X

j2

Rj�j2Lj2�js
†
j"K̂g̃j2"

 
sj#g

†
j2# +

1

N

X

k

eik(j�j2)�k2KLk

!

(16.24)

=
X

j2

Rj�j2Lj2�jLj2�js
†
j"g̃j2"K̂ �

X

j2

Rj�j2Lj2�js
†
j"K̂g̃j2"

1

N

X

k

eik(j�j2)�k2KLk (16.25)
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Putting all this together and averaging gives

s†j"sj"hs
†
j#sj#i + hs†j"sj"is

†
j#sj# � hs†j"sj"ihs

†
j#sj#i �

X

j1

Rj�j1Lj1�jg
†
j1"sj"hs

†
j#g̃j1#i

�
X

j1

Rj�j1Lj1�jhg†j1"sj"is
†
j#g̃j1#+

X

j1

Rj�j1Lj1�jhg†j1"sj"ihs
†
j#g̃j1#i�

X

j2

Rj�j2Lj2�js
†
j"g̃j2"hg

†
j2#sj#i

�
X

j2

Rj�j2Lj2�jhs†j"g̃j2"ig
†
j2#sj# +

X

j2

Rj�j2Lj2�jhs†j"g̃j2"ihg
†
j2#sj#i

+
X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jg
†
j1"g̃j2"hg

†
j2#g̃j1#i +

X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jhg†j1"g̃j2"ig
†
j2#g̃j1#

�
X

j1j2

Rj�j1Rj�j2Lj1�jLj2�jhg†j1"g̃j2"ihg
†
j2#g̃j1#i +

X

j1

Rj�j1Lj1�jLj1�js
†
j#g̃j1#

�
X

j1

Rj�j1Lj1�j
1

N

X

k

eik(j�j1)�k2KLks
†
j#g̃j1# +

X

j2

Rj�j2Lj2�jLj2�js
†
j"g̃j2"

�
X

j2

Rj�j2Lj2�js
†
j"g̃j2"

1

N

X

k

eik(j�j2)�k2KLk � 1

2

"
X

j1

Rj�j1Rj�j1Lj1�jLj1�jg
†
j1#g̃j1#

+
X

j1

Rj�j1Rj�j1Lj1�jLj1�jg
†
j1"g̃j1"

�
X

j1j2

Rj�j1Rj�j2Lj1�jLj2�j
1

N

X

k

�k2K
⇣
eik(j2�j1)g†j2#g̃j1# + eik(j1�j2)g†j1"g̃j2"

⌘#
(16.26)

Bloch transforming this and putting it together gives

h
g†q"g̃q" + g†q"g̃q"

i 1
N

X

k1

h
nk1 � 1

N

X

k2

Rk1Lk2 [Rn]k1�k2+qLq

+
1

N

X

k2

Rk1Lk2 [L(1�n��2K)]k2�k1+qRq
1

N2

X

k2k3

Rk1Rk2Lk3Lk1+k2�k3

⇥
[n+

1

2
�2K ]k1�k3+q�

1

2

⇤i

� 1

N2

X

k1k2

nk1nk2 +
1

N3

X

k1k2k3

h
2Rk1Lk2

⇥
[Ln][Rn] � [n][n]

⇤
k3,k1�k2+k3

i
(16.27)

For the s†j"s
†
j#K̂g̃j"g̃j# term

s†j"s
†
j#K̂g̃j"g̃j# ) s†j"s

†
j#K̂g̃j"g̃j# � R0s

†
j"g

†
j#K̂g̃j"g̃j# � R0g

†
j"s

†
j#K̂g̃j"g̃j#

+R2
0g

†
j"g

†
j#K̂g̃j"g̃j# +R0s

†
j"g

†
j#K̂g̃j"g̃j# +R0g

†
j"s

†
j#K̂g̃j"g̃j# � R2

0g
†
j"g

†
j#K̂g̃j"g̃j# (16.28)

168



16.2. THE CALCULATION — AN EXERCISE IN ARDUOUS ALGEBRA PART 2

Applying the identity gives

R0s
†
j"g

†
j#K̂g̃j"g̃j# = �R0s

†
j"g

†
j#g̃j#K̂g̃j" (16.29)

= �R0s
†
j"K̂(g†j#g̃j# � ↵)g̃j" (16.30)

= R0(↵� 1)s†j"g̃j"K̂ (16.31)

R0g
†
j"s

†
j#K̂g̃j"g̃j# = R0(↵� 1)s†j#g̃j#K̂ (16.32)

Spin symmetry of this term requires averaging both spin-up and spin-down contributions

R2
0g

†
j"g

†
j#K̂g̃j"g̃j# = �1

2
R2

0(↵� 1)(g†j"g̃j" + g†j#g̃j#)K̂. (16.33)

Collecting these and averaging gives

s†j"g̃j"[�hs†j#g̃j#i +R0hg†j#g̃j#i +R0(↵� 1)] + s†j#g̃j#[�hs†j"g̃j"i +R0hg†j"g̃j"i +R0(↵� 1)]

+g†j"g̃j"[R0hs†j#g̃j#i�R2
0hg

†
j#g̃j#i�

1

2
R2

0(↵�1)]+g†j#g̃j#[R0hs†j"g̃j"i�R2
0hg

†
j"g̃j"i�

1

2
R2

0(↵�1)]

+ hs†j"g̃j"ihs
†
j#g̃j#i � R0hs†j"g̃j"ihg

†
j#g̃j#i � R0hg†j"g̃j"ihs

†
j#g̃j#i +R2

0hg
†
j"g̃j"ihg

†
j#g̃j#i. (16.34)

Bloch transforming this gives

[s†j"g̃j" + s†j#g̃j#]
1

N

X

k1

[�Rk1nk1 � R0(1 � nk1 � �k12K)]

+ [g†j"g̃j" + g†j#g̃j#]
1

N

X

k1

[R0Rk1nk1 � R2
0nk1 +

1

2
(1 � �k12K)]

1

N2

X

k1k2

[Rk1nk1Rk2nk2 � Rk1nk1R0nk2 � R0nk1Rk2nk2 +R0nk1R0nk2 ] (16.35)
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For the K̂sj#sj"g
†
j#g

†
j" term

K̂sj#sj"g
†
j#g

†
j" ) K̂

h
sj#sj"g

†
j#g

†
j" � L0g̃j#sj"g

†
j#g

†
j" � L0sj"g

†
j"

� L0sj#g̃j"g
†
j#g

†
j" � L0sj#g

†
j# + L2

0g̃j#g̃j"g
†
j#g

†
j" +

1

2
(g̃j"g

†
j" + g̃j#g

†
j#)
i

(16.36)

Commuting K̂ through and averaging gives

� sj#g
†
j#hsj"g

†
j"i � hsj#g†j#isj"g

†
j" + hsj#g†j#ihsj"g

†
j"i + L0g̃j#g

†
j#hsj"g

†
j"i + L0hg̃j#g†j#isj"g

†
j"

� L0hg̃j#g†j#ihsj"g
†
j"i � L0sj"g

†
j" + L0sj#g

†
j#hg̃j"g

†
j"i + L0hsj#g†j#ig̃j"g

†
j" � L0hsj#g†j#ihg̃j"g

†
j"i

�L0sj#g
†
j# �L2

0g̃j#g
†
j#hg̃j"g

†
j"i �L2

0hg̃j#g
†
j#ig̃j"g

†
j" +L2

0hg̃j#g
†
j#ihg̃j"g

†
j"i+

1

2
L2
0(g̃j#g

†
j# + g̃j"g

†
j")

+ L̃(sj#g
†
j# + sj"g

†
j")� L̃2 �L0↵sj"g

†
j" �L0L̃g̃j#g

†
j# +↵L0L̃+L0L̃�L0↵sj#g

†
j# �L0L̃g̃j"g

†
j"

+ L0↵L̃+ L0L̃+ L2
0↵g̃j"g

†
j" + L2

0↵g̃j#g
†
j# � L2

0↵
2, (16.37)

which upon Bloch transforming becomes

[sj#g
†
j# + sj"g

†
j"]

1

N

X

k1

[�Lk1(1 � nk1 � �k12K) � L0(nk1 + �k12K)]

+ [g̃j#g
†
j# + g̃j"g

†
j"]

1

N

X

k1

[L0Lk1(1 � nk1 � �k12K) � L2
0(1 � nk1 � �k12K) +

1

2
L2
0]

1

N2

X

k1k2

[Lk1(1 � nk1)Lk2(1 � nk2) � Lk1(1 � nk1)L0(1 � nk2) � L0(1 � nk1)Lk2(1 � nk2)

+ L0(1 � nk1)L0(1 � nk2) � L̃2 � L2
0↵

2 + 2↵L0L̃+ 2L0L̃]. (16.38)

For the K̂ 1
2(g̃j"g

†
j" + g̃j#g

†
j#) we trivially get

K̂
1

2
(g̃j"g

†
j" + g̃j#g

†
j#) =

1

2
(g̃j"g

†
j" + g̃j#g

†
j# � 2↵)K̂ (16.39)
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For the s†j"sj"K̂g̃j#g
†
j# + s†j#sj#K̂g̃j"g

†
j" term we first consider s†j"sj"K̂g̃j#g

†
j# term and add

the spin flipped result

s†j"sj"K̂g̃j#g
†
j# ) s†j"sj"K̂g̃j#g

†
j#�L0s

†
j"g̃j"K̂g̃j#g

†
j#�R0g

†
j"sj"K̂g̃j#g

†
j#+R0L0g

†
j"g̃j"K̂g̃j#g

†
j#

+ L0s
†
j"g̃j"K̂g̃j#g

†
j# +R0g

†
j"sj"K̂g̃j#g

†
j# � R0L0g

†
j"g̃j"K̂g̃j#g

†
j# (16.40)

Commuting through and averaging gives

� hs†j"sj"ihg̃j#g
†
j#i + L0hs†j"g̃j"ihg̃j#g

†
j#i +R0hg†j"sj"ihg̃j#g

†
j#i � R0L0hg†j"g̃j"ihg̃j#g

†
j#i

+ hs†j"sj"i � L0hs†j"g̃j"i � R0hg†j"sj"i +R0L0hg†j"g̃j"i � 1

2
R0L0(1 � ↵) � R0L̃+R0L0

� R0L0(1 + ↵) +R0L̃(1 + ↵) � 1

2
R0L0(↵

2 � 1) + s†j"g̃j"[�L0hg̃j#g†j#i + L0↵]

+ g†j"sj"[�R0hg̃j#g†j#i +R0(↵ + 1)] + g†j"g̃j"[R0L0hg̃j#g†j#i � 1

2
R0L0 � R0L0↵]

+ s†j#g̃j#[hs
†
j"sj"i + L0hs†j"g̃j"i +R0hg†j"sj"i � R0L0hg†j"g̃j"i
1

2
R0L0(1 � ↵) +R0L̃ � R0L0] + s†j"sj"[hg

†
j#sj#i � ↵]. (16.41)

Bloch transforming and adding the spin flipped component gives

� [s†j"g̃j" + s†j#g̃j#]
1

N

X

k1

[L0(1 � nk1 � �k12K)] + [g†j"g̃j" + g†j#g̃j#]
1

N

X

k1

[R0(nk1 + �k12K)]

[s†j"sj"+s†j#sj#]
1

N

X

k1

[1�nk1 � �k12K ]+ [g†j"g̃j"+g†j#g̃j#]
1

N

X

k1

[R0(1�Lk1)(1�nk1 � �k12K)

�R0L0nk1�
1

2
R0L0�k12K�nk1+L0Rk1nk1 ]+2

1

N2

X

k1k2

[(1�nk2)(�nk1+Rk1nk1L0+R0Lk1nk1

� R0L0nk1) +R0Lk1(1 � nk1 � �k12K) + nk1 � L0Rk1nk1 +R0L0nk1

R0L0(1 + �k12K) +R0Lk1�k12K(1 + �k22K) +
1

2
R0L0�k12K(1 � �k22K)] (16.42)

Combining everything and Bloch transforming we get

Eq =
U

2
[RqB̃q � LqBq � 2Cq] (16.43)
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Bk =
1

N

X

k1

"
[L0 +R0] [nk1+�k12K ]+[1 � nk1 � �k12K ]Lk1�

1

N

X

k2

Rk1Lk2 [Rn]k�k1+k2

#
,

(16.44)

B̃k =
1

N

X

k1

"
[L0 +R0] [1 � nk1 � �k12K ]+nk1Rk1�

1

N

X

k2

Rk1Lk2 [L[1�n��2K ]]k+k1�k2

#
,

(16.45)

2Ck =
2

U
[2tZ�k+2t0]�

1

N3

X

k1k2k3

Rk1Lk2Rk3Lk1�k2+k3


[n+

1

2
�2K ]k1�k2�k � 1

2

�
+
1

2
R2

0�k12K

+
⇥
[L0 +R0]

2 + 1
⇤
"
1

N

X

k

[nk + �k12K ] �
1

2

#
+[L0 +R0]

1

N

X

k1

"
[1 � nk1 � �k12K ]Lk1�nk1Rk1

#
.

(16.46)

This result is remarkably similar to the previous result, and in the limit � ! 0 we

retrieve the Mott point solution. The rest of the results are calculated in a similar manner

and are presented in the following section.
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16.3 The Results

Upon application of the method we get the particle dispersion to be

✏k = �2tZ�k +
U

2

h
1 + LkBk

i
, (16.47)

the hole dispersion to be

✏̃k = �2tZ�k +
U

2

h
1 � RkB̃k

i
, (16.48)

the occupation factor to be

nk =
1

2

2

41 +
"
1 +

Bk

Ck

B̃k

Ck

#� 1
2

3

5 , (16.49)

and the total energy to be

E =
1

N2

X

k1k2

�2t0[2nk1 + �k12K � 1] � 4t1Z�k1nk1 +
U

2

"
[1 � �k12K ][1 � �k22K ]

+ [nk1 + �k1 2 K][1 � nk2 � �k2 2 K] +
⇥
1 � nk1 � �k12K

⇤⇥
nk2 [R0 + L0]

2 + �k22KL
2
0

⇤

� 2
⇥
R0 + L0

⇤⇥
[1 � nk1 � �k12K ]Rk2nk2 + [nk1 + �k12K ]Lk2 [�k22K � nk2 ]

⇤

� Lk1 [�k12K � nk1 ]Lk2 [�k22K � nk2 ] � Rk1nk1Rk2nk2 + 2Rk1Mk1 � Rk1Lk1Nk1

#
(16.50)

where

Rk =
1

N

1

2

X

k1

Rk1 [Lk1�k + Lk+k1 ] (16.51)

Lk =
1

N

1

2

X

k1

Lk1 [Rk1�k +Rk+k1 ] (16.52)

Nk =
1

N

1

2

X

k1

[�k12K � nk1 ][nk1�k + nk+k1 ] (16.53)

Mk =
1

N

1

2

X

k1

Lk1 [�k12K � nk1 ][nk1�kRk1�k + nk+k1Rk+k1 ] (16.54)
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Lk =
Ck

Bk

2

41 +
"
1 +

Bk

Ck

B̃k

Ck

# 1
2

3

5 Rk =
1

Lk
, (16.55)

Bk =
1

N

X

k1

"
[L0 +R0] [nk1+�k12K ]+[1 � nk1 � �k12K ]Lk1�

1

N

X

k2

Rk1Lk2 [Rn]k�k1+k2

#
,

(16.56)

B̃k =
1

N

X

k1

"
[L0 +R0] [1 � nk1 � �k12K ]+nk1Rk1�

1

N

X

k2

Rk1Lk2 [L[1�n��2K ]]k+k1�k2

#
,

(16.57)

2Ck =
2

U
[2tZ�k+2t0]�

1

N3

X

k1k2k3

Rk1Lk2Rk3Lk1�k2+k3


[n+

1

2
�2K ]k1�k2�k � 1

2

�
+
1

2
R2

0�k12K

+
⇥
[L0 +R0]

2 + 1
⇤
"
1

N

X

k

[nk + �k12K ] �
1

2

#
+[L0 +R0]

1

N

X

k1

"
[1 � nk1 � �k12K ]Lk1�nk1Rk1

#
.

(16.58)
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Figure 16.1: Total Energy Analytical vs Numeric
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the Mott point and at low occupation the agreement is rather good. However, at high occupation

the analytical result overestimates the energy.

The one result that highlights the success and and failures of this theory is figure 16.1

on page 175. From this we can see that the theory overestimates the total energy at high

doping. When we analyse the calculation we find that the U term is very sensitive. More

specifically each component of the U term is large and cancels almost perfectly to give the

answer. When the theory agrees well, i.e. at the Mott point and at low occupation, this

cancellation occurs well. However, when there is a discrepancy, i.e. at higher occupation,

this cancellation is o↵ by ⇡ 10%. This is not that large but when multiplied by the

highest energy scale in the system makes a large di↵erence. To improve this we imagine

that there are e↵ects that occur in the physical system that occur that have not been

modelled in the theory.

In this section we extended the theory from the previous section. This was done by

adding doping in order to examine the entire occupation range. In order to add doping
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we manipulated the state considered in the theory; this required adapting the equivalence

principles by commuting operators through the state manipulator. The result was a

remarkably similar answer to the previous section with a few small amendments. The

results, however, were not as successful: in certain areas of the phase diagram the total

energy was o↵ by ⇡ 10%. To improve this calculation we would have to take into account

other possible physical e↵ects. In the next section we conclude this Part.
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SUMMARY

We have developed a new technique which can be used to calculate observables in a

strongly correlated model with remarkable accuracy. We began with the same Hubbard

model from part II. Symmetries were extracted in the same way as the previous part

and attention was focused on the ‘symmetric subspace’, as this was the subspace which

exhibited superconductivity in part II. Initial calculations were performed at the Mott

point | i as it was easiest to deal with. We defined a non-orthogonal operator g†k� which

was proportional one of the original basis operators s†k�, and in the limit U = 1 the

two were equal. Thanks to some equivalence principles we were able to recast the action

of the Hamiltonian on | i in terms of only g†i� and its dual g̃i�. After making some

assumptions about being able to represent | i as a sum of products of g†i�, averaging to

create a single particle Hamiltonian, and taking particle fluctuations into account we were

able to examine the produce of the technique. Particle dispersion, hole dispersion, and

the occupation factor were calculated and agreed remarkably with exact diagonalisation.

Following this further calculations were performed away from the Mott point by modifying

the state | i. This boasted similar results.

We are left asking whether this technique is generally useful or just a specific suc-

cess story. The natural extension of superconductivity could not be examined trivially.

This was due to the construction inherently assuming a single particle picture, whereas
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superconductivity requires a two-particle description.

The next question to ask is whether we could apply this technique to another Hamil-

tonian. This best answer to this question is maybe. We require many things to be true to

even begin attempting the technique. The most critical example of this is the state used.

In our case the Mott state was closely related to a known state at U = 1. Additionally,

the state had equivalence principles which allowed us to remove any dependence on a†i�

operators. This is a pretty stringent set of conditions to attempt a technique.

Finally, we have not mentioned the relevance of ‘Ward-Takahashi Identities’ in this

technique. These are quantum conservation laws, akin to Noether’s theorem in classical

mechanics, which are required to be imposed to ensure the success of a mean-field theory.

In our case we have not considered them.

From this, it is clear what future work should be done. First, one should examine

the importance of Ward-Takahashi identities in this technique, imposing them where

necessary. Second, another Hamiltonian where this technique could be applied should

be found. Third, this technique should be modified to be able to take into account

superconductivity. If this technique is to be useful for others, these points must be

examined.
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Conclusion & Appendices
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CHAPTER 18

CONCLUSION

Three parts and 181 pages later, we come to the end of this thesis. The first thing

we did was set the stage. We primarily covered superconductivity, both conventional and

unconventional, and the core physical properties of both. Next we used physical chemistry

to model both conventional and unconventional superconductors. We went through the

argument Zhang and Rice presented when they argued the cuprates could be modelled

by a Hubbard model.

At the heart of parts II and III was one particular Hubbard model

H = �t1
X

hiji�

(t†i�+b†i�)(tj�+bj�)�t0
X

i�

(t†i�bi�+b†i�ti�)+U
X

i

(t†i"ti"t
†
i#ti#+b†i"bi"b

†
i#bi#).

Its collection of local symmetries were core to its many examinations. Extracting those

symmetries created a much more manageable Hamiltonian for further analysis.

In part II we took the limit U = 1 exactly, probed superconducting hole-pair forma-

tion, and used BCS mean field theory to examine superconductivity. We found that there

was coexistence between ferromagnetism and superconductivity which could be tuned

with t0. Total energy, excess pairing, superconducting gap, and occupation factor were all

examined and showed good agreement with exact diagonalisation. Finally, we extended

the analysis to 2D and finite U perturbatively showing that superconductivity persisted
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and anti-ferromagnetic phase manifested close to the Mott point.

In part III we created a new technique to deal with finite U more accurately. The cen-

tral component of the technique was a non-orthogonal operator; one that was distributed

over multiple sites. The purpose of this operator was to take into account n-th order

‘perturbations’ self consistently. This produced particle dispersions, hole dispersions, and

the occupation factor which agreed remarkably well with exact diagonalisation.

The key takeaways from this work is that: symmetries are incredibly useful and are

the reason any of this work could have been done; a repulsive Hubbard model can be

rigorously shown to be superconducting; and non-orthogonal mean field theories might be

useful in dealing with strongly correlated physics. The key lessons however are that: exact

techniques aren’t always useful when following them with approximate ones; manifesting

the phase diagram of the cuprates does not mean that your model is the model of the

cuprates; and the e↵ectiveness of a technique does not mean it is by default a general

approach. As hard as this thesis was to write, I hope it wasn’t too hard to read.
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APPENDIX A

SECOND QUANTISATION &

FERMIONIC OPERATORS

The single particle picture is unwieldy when extended to a many body system. As most

systems contain more than one particle we require an extension. Second quantisation is

that extension and forms the foundation of quantum many particle systems.

In this appendix we will give an overview of the current methods used in quantum

mechanics. We will then extend this to the far superior method that is second quan-

tisation. Then we will present information on how to deal with many body states and

Hamiltonians in this formalism.

A.1 First Quantisation

Quantum mechanics for a single particle is governed by the Schrödinger equation [77]

Ĥ = E . (A.1)

This elegant equation has its roots in Lagrangian mechanics [78] as the Hamiltonian is

often represented as

Ĥ = T̂ + V̂ , (A.2)
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where T̂ is the kinetic energy operator, and V̂ is the potential operator. From this point

forward we will drop the operator-hat notation.

This picture is trivially extended to many particles via a Hamiltonian of the form

H =
nX

i

H(1)(ri) +
X

1i<jn

V (ri, rj), (A.3)

acting on the many body wavefunction

 (r1, ..., rn). (A.4)

Here ri is the position of the i-th particle, H(1)(ri) is the generalised one body term for

the i-th particle, and V (ri, rj) is the two body term for interactions between the i-th

and j-th particles. In general we assume the maximal number of particles involved in an

interaction is two. Higher particle terms are usually only occur in high energy systems

and are not of concern for most of condensed matter. For example, the Hamiltonian for

n particles with mass m and charge e in a background potential W (r) interacting via a

Coulomb potential [79] is given by

H =
nX

i


� ~2
2m

r2
i +W (r1)

�
+

X

1i<jn

e2

|ri � rj|
. (A.5)

A system like this is generally impossible to solve exactly. Even if it were, dealing

with a n-particle wavefunction is not practical. The solution is to introduce second quan-

tisation.

A.2 Second Quantisation

Second quantisation, or more accurately occupation number representation, is a refined

way to deal with many particle states and Hamiltonians. Instead of writing an n-particle

wavefunction we describe a many-body state by its occupation numbers [80]. We state
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that there are nr1 particles in state r1, nr2 particles in state r2 and so on. Then we can

use creation operators a†r and annihilation operators ar which increase or decrease the

occupation number of state r by one. This is the same picture as the ladder operators

used when solving the simple harmonic oscillator [81].

In this section we will formulate second quantisation, beginning with many body states

and moving on to many body Hamiltonians.

A.2.1 Many Body States

Before we deal with many body states, let us focus on the single particle level. In an ideal

world we would like to describe the absence of a particle with a vacuum |0i, and create a

particle with wavefunction  (r) via a creation operator a† |0i. This state could then be

annihilated using annihilation operator a, just as for the simple harmonic oscillator, to

give back the vacuum. Mathematically this corresponds to

a |0i = 0 aa† |0i = |0i . (A.6)

Unfortunately, this picture breaks down when we add more particles due to wave-

function overlap. Take a particle with wavefunction  (r1) and a†1 |0i1, and another with

wavefunction  (r2) and a†2 |0i2. As there is always overlap between the two wavefunctions

we will always have

a1a
†
2 |0i1 |0i2 = O12 |0i1 |0i2 . (A.7)

This is a non-orthogonal setup and is incredibly di�cult to deal with.

To fix this, we almost always use the Wannier basis [82] c†i |0i corresponding to a

particle with a Wannier wavefunction  W (ri) such that

c1c
†
2 |0i1 |0i2 = �12 |0i1 |0i2 , (A.8)

and the c†i create ‘independent’ degrees of freedom. To connect this to the original wave-
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function we use the fact that the Wannier wavefunctions form a complete basis and

therefore by definition

 (r) =
X

i

ui W (r � ri). (A.9)

We can then use the operator

 ̂(r) =
X

i

 W (r � ri)ci, (A.10)

to return the wavefunction.

Shorthand: Instead of writing the vacuum for each possible state when

considering many body systems we frequently write a generic vacuum to denote

the product over all vacuums. For example |0i = |0i1 |0i2 · · · |0in.

Now comes the tricky bit: statistics. In an ideal world we would like to associate the

application of c†i with the creation of a particle with wavefunction  (ri) independently

of whether there is another particle there or not. The issue is that not all types of

particles are independent. Bosons and fermions obey di↵erent statistics. Namely, the

wavefunction of a fermion is anti-symmetric under exchange of any two particles, whilst

a bosonic wavefunction is symmetric under exchange. For bosons we require

b†1b
†
2 |0i !  1(r1) 2(r2) +  1(r2) 2(r1), (A.11)

with fermions we actually require

f †
1f

†
2 !  1(r1) 2(r2) �  1(r2) 2(r1). (A.12)

So how do we enforce this? We can rewrite this two fermion term (by adding and sub-

tracting f †
2f

†
1) as

f †
1f

†
2 |0i = 1

2

h
f †
1f

†
2 � f †

2f
†
1

i
|0i + 1

2

h
f †
1f

†
2 + f †

2f
†
1

i
|0i . (A.13)
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If we were to demand that

f †
1f

†
2 + f †

2f
†
1 = 0, (A.14)

the two particle fermion state would automatically obey Fermi statistics.

The method by which we incorporate statistics into this second quantised picture is

by enforcing the commutators

[b†i , b
†
i0 ] = 0, [bi, bi0 ] = 0, [bi, b

†
i0 ] = �ii0 , (A.15)

for bosons, and the anti-commutators

{f †
i , f

†
i0} = 0, {fi, fi0} = 0, {fi, f †

i0} = �ii0 , (A.16)

for fermions. Note that for fermions the first two anti-commutators enforce Pauli exclusion

when i = i0; there can only be up to one fermion in a given state.

And we’re done! We’ve set up second quantisation for many particle states of both

bosons and fermions. Now let’s introduce some practical tips and notes on how to use

second quantisation.

As stated at the start of this section, second quantisation is more accurately described

as occupation number representation. The state

| i = |0i1 |2i2 |2i3 |1i4 ⌘ |0, 2, 2, 1i , (A.17)

has zero particles in state 1, two in state 2, two in state 3 and one in state 4. Clearly, as

there are more than one particle in each state this is a system of bosons which could be

rewritten as

| i = b†2b
†
2b

†
3b

†
3b

†
4 |0i . (A.18)

It is important to be able to fluidly change from one representation to the other. Just as
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in the single particle case if we annihilate a state with no particles in it zero is returned

b1 | i = b1 |0i1 |2i2 |2i3 |1i4 = 0. (A.19)

Funnily, as bosons commute, they are easier to handle but the physics that results is

usually far more di�cult.

As all of the work in this thesis is centred around fermions, let’s add a few notes about

handling them. The first thing to remember is the Fermi minus sign, namely

f †
1f

†
2 |0i = �f †

2f
†
1 |0i . (A.20)

The order of states matters! For this reason, we usually denote an order of application

to make handling these minus signs easier. Second, the fermions we deal with tend to

have spin. This acts as a second quantum number and the operators anti-commute with

respect to it, giving

{fi,�, f †
i0,⌧} = �ii0��⌧ . (A.21)

Now that we have detailed second quantisation for many body operators lets move on

to Hamiltonians.

A.2.2 Many Body Hamiltonians

We are now in a position to consider many body Hamiltonians in second quantised form.

In essence this is just a change of basis. Our first quantised Hamiltonian is given by

H =
nX

i

H(1)(ri) +
X

1i<jn

V (ri, rj), (A.22)

and we wish to convert this to a second quantised form

H = H1 +H2, (A.23)
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where H(1)(ri) ! H1, and V (ri, rj) ! H2.

In the Wannier basis we have the wavefunction annihilation operator

 ̂(r) =
X

i

 W (r � ri)ci, (A.24)

and

H1 =

Z
d3r

Z
d3r0 ̂†(r)H(1)(r, r0) ̂(r). (A.25)

For the general case of a particle with mass m moving in a background potential W (r)

we have

H1 =

Z
d3r

Z
d3r0 ̂†(r)�(r � r0)


� ~2
2m

r2
r0 +W (r0)

�
 ̂(r) (A.26)

=
X

ii0

Hii0c
†
ici0 , (A.27)

where

Hii0 =

Z
d3r ⇤

i (r � ri)


� ~2
2m

r2 + U (r)

�
 i0 (r � ri0) . (A.28)

Similarly for the two particle interaction

V (ri, r
0) =

e2

|r � r0| , (A.29)

and then

H2 =
1

2

Z
d3r

Z
d3r0 ̂†(r) ̂† (r0)

e2

|r � r0|  ̂ (r0)  ̂(r) (A.30)

=
1

2

X

ii0

X

jj0

Iii0,jj0c
†
ic

†
i0cj0cj, (A.31)

where

Iii0,jj0 =

Z
d3r

Z
d3r0 ⇤

i (r � ri) 
⇤
i0 (r � ri0)

e2

|r � r0| j0 (r
0 � rj0) j (r � rj) . (A.32)
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Putting it all together gives the spinless fermion Hamiltonian in second quantised form,

is given by

H =
X

ii0

Hii0c
†
ici0 +

1

2

X

ii0

X

jj0

Iii0,jj0c
†
ic

†
icjcj, (A.33)

which is clearly more elegant and easier to deal with than the original Hamiltonian.

We can add spin in a similar way. The important change is that two particle interaction

now sums over spin indices on each site. Note, we haven’t considered physics, such as

Hund’s rules [83] , in generating this Hamiltonian. This gives the spin inclusive fermion

Hamiltonian in second quantised form as

H =
X

�ii0

Hii0c
†
i�ci0� +

1

2

X

�⌧

X

ii0

X

jj0

Iii0,jj0c
†
i�c

†
i0⌧cj0⌧cj�. (A.34)

Most of the work in this thesis is on a regular lattice. This means the electron wave-

functions are localised around sites Ri. In this limit we expect the wavefunction overlap

to become negligible if they are more than one site away. The on site same spin Iii0,jj0 is

zero due to Pauli exclusion. By labelling Hii = ✏, Hhii0i = �t (where hii0i denote i and i0

are nearest neighbours), Iii,ii = U , and summing over ⌧ we get

H = ✏
X

i�

c†i�ci� � t
X

hii0i�

c†i�ci0� + U
X

i

c†i"c
†
i#ci#ci". (A.35)

This is the Hubbard Model [84], and is where most lattice models begin. A plethora of

physics is encapsulated in this rather simple model: metals, insulators, ferromagnets,

anti-ferromagnets, charge density waves, and (as will be shown in this thesis) supercon-

ductivity.

In this appendix we introduced second quantised operators and their relationship to

many body states and Hamiltonians. Second quantisation is essentially an extension to

the simple harmonic oscillator, but there are caveats such as Wannier states and statistics.

We now have the foundations to understand the work that is presented in this thesis.
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PHYSICAL CHEMISTRY CRASH

COURSE — HOW TO THINK

ABOUT MATERIALS

As much as theorists love to think about models in a vacuum, models are created to model

physical systems. These are often generated upon examining materials from condensed

matter systems. These materials are governed by a wide variety of physics. Broadly

speaking, the two categories of materials are metals and insulators. Of course there are

other systems, like magnets and superconductors, but at the lowest level of modelling

many materials are either metals or insulators.

Physical chemistry is an entangled web of a subject. Many properties are contingent

on one another, and it is often di�cult to understand why a material does what it does.

This appendix is written for a young scientist attempting to model a material. My aim

is to cut through the web of physical chemistry and create a set of principles that can

be followed. These principles will be at the end of this introduction to serve as a future

reference.

The structure of this appendix is as follows: examine atoms in free space, consider

atoms in a solid, modelling insulators, and modelling metals. We begin by investigating
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atoms in free space, treating them as extensions to the Hydrogen atom. This will generate

a physical picture of the periodic table. Electrons are also a↵ected by one another and

their angular momentum; these e↵ects are encapsulated in screening and Hund’s rules.

In condensed matter systems however, atoms exist in the vicinity of other atoms. This

crystal generates a field which distorts the free space behaviour, which is the last section

that pertains to modelling. Finally, we are able to generate a model.

The following steps are the principles of physical chemistry modelling. They may not

seem meaningful if this is the first time you’re reading this document, but they should

become clear as you learn.

1. Make a note of whether the material is a metal or insulator. It will a↵ect your

decision making.

2. Separate the atom into core and valence electrons.

3. Add electrons to the most electronegative atoms.

4. If the material is an insulator the number of electrons on each atom is defined, if

the material is a metal it is not. What shell can the remaining electrons occupy?

5. What is the crystal structure of the compound? How will this a↵ect the crystal

field?

6. What is the dominant interaction, crystal field or Hund’s rules? Hund’s rules win for

atoms on the left of Co and all lanthanides. How does this lift orbital degeneracy?

7. Lanthanides are dominantly 3+ cores except sometimes at the edges.

8. If the model is an insulator what are the low lying excitations doing? Consider

super exchange.

9. If the model is a metal write the tight-binding model, diagonalise it, and compare

to DFT calculations.
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B.1 Atoms in Free Space — Extending the Hydrogen

Atom

Atoms are the building blocks of solid state physics. Unfortunately, they also happen to

be quite complicated to solve. We, like many before us, will simplify this complexity by

assuming all atoms are just extensions to the hydrogen atom [85]. This gross simplification

works rather well, and we only need to add a handful of caveats.

We will begin with a review of the solution to the hydrogen atom. This will provide

the hydrogenic wavefunctions. Next, we will consider screening and its e↵ects within an

atom. Lastly, we will consider the e↵ects of angular momentum which are governed by

Hund’s rules [83].

The Schrödinger equation for the hydrogen atom is given by


|p2|
2m

� e2

|r| � E

�
 (r) = 0, (B.1)

subject to the commutation relations [r↵, p�] = i~�↵�. We must then employ spherical

symmetry i.e. angular momentum commutes with the Hamiltonian. Using

p̂ = �i~ @
@r

and L̂ = r̂ ^ p̂, (B.2)

p̂2 =
1

r2

h
(r̂·p̂)2 � i~r̂ · p̂+ L̂ · L̂

i
. (B.3)

We wish to solve for the radial and spherical motion independently. This is done by

separation of variables

 (r) = Ylm(✓,�) (r). (B.4)

First we solve the spherical motion to generate the spherical harmonics. This is done
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by stating Ylm(✓,�) is an eigenfunction of L̂2 with eigenvalue equation

L̂2Ylm(✓,�) = ~2l(l + 1)Ylm(✓,�). (B.5)

The equation left to solve


1

sin ✓

@

@✓
sin ✓

@

@✓
+

1

sin2 ✓

@2

@�2
+ l(l + 1)

�
Ylm(✓,�) = 0. (B.6)

We can use separation of variables on Ylm

Ylm(✓,�) =
1p
2⇡

eim�Plm(✓), (B.7)

where m must be an integer to ensure the single valued nature of Ylm. The details

of derivation are omitted as the result is more important. Instead we outline the key

steps [85]. Use the more natural variable u = cos ✓ and rewrite Plm(u) = [1�u2]
|m|
2 Qlm(u),

force the operator to be self-adjoint, use the ansatz Qlm(u) = Nlm(1�u2)�m
�

@
@u

�l�m
(1�

u2)l, and consider the inner product (Ql0m, Qlm) to calculate Qlm(u). This gives

Ylm(✓,�) =
1p
2⇡

eim�


2l + 1

2

� 1
2

(l +m)!

(l � m)!

� 1
2 1

2ll!
(1 � u2)�m


@

@u

�l�m

(1 � u2)l. (B.8)

The first few are given by [86]

Y00 =
1p
4⇡

Y20 =
1p
4⇡

p
5

2
(3 cos2 ✓ � 1) (B.9)

Y11 =
ei�p
4⇡

✓
3

2

◆ 1
2

sin ✓ Y33 =
e3i�p
4⇡

p
35

2
sin3 ✓ (B.10)

Y10 =
1p
4⇡

(�1)
p
3 cos ✓ Y32 =

e2i�p
4⇡

(�1)

✓
105

8

◆ 1
2

sin2 ✓ cos ✓ (B.11)

Y22 =
e2i�p
4⇡

✓
15

8

◆ 1
2

sin2 ✓ Y31 =
ei�p
4⇡

p
21

4
(5 cos2 ✓ � 1) sin ✓ (B.12)

Y21 =
ei�p
4⇡

(�1)

✓
15

2

◆ 1
2

sin ✓ cos ✓ Y30 =
1p
4⇡

(�1)

p
7

2
(5 cos2 ✓ � 3) cos ✓ (B.13)
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These will form the basis of the cubic harmonics examined in the next section, and are

therefore the key result from the spherical solution.

We now move on to finding the radial solution. In spherical polar coordinates r · p̂ =

�i~r @
@r . Combining this with a rescaling of space by r = ~2

me2x and energy by E = me4

2~2 ✏

gives the dimensional representation


x
@2

@x2
+ 2

@

@x
� l(l + 1)

x
+ 2 + ✏x

�
 (x) = 0. (B.14)

Just as before, the details of derivation are omitted as the result is more important.

Instead, we outline the key steps. The general procedure is to extract out asymptotic

behaviour at the origin and employ a contour ansatz. Assume the behaviour close to

the origin is  l(x) = xl�l(x), represent this as a complex integral �l(x) =
R
C dzezxfl(z),

integrate by parts to give an ODE for fl(z), parametrise ✏ = � 1
n2 and integrate directly,

as we’re considering bound states we need to find the residues at z ! � 1
n . This leads to

restrictions on the principle quantum number n > l, and using the Liebnitz di↵erentiation

theorem provides the radial wavefunctions

 nl(x) / xle�
x

n

n�l�1X

r=0

(n � l � 1)!

(n � l � 1 � r)!r!


� 2

n

�r+2l+1 (n+ l)!

(r + 2l + 1)!
xr, (B.15)

where the normalisation can be found. By definition the radial probability is given by

Pnl(x) = x2| nl(x)|2. (B.16)

The ground state has energy ✏ = �1 and its wavefunction is given by

 10(x) = 2e�x, (B.17)
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the first excitations have energy ✏ = �1
4 and their wavefunctions are given by

 20(x) =
1

2
p
2
(2 � x)e�

x

2 ,  21(x) =
1p
6
xe�

x

2 , (B.18)

and the second excitations have energy ✏ = �1
9 and their wavefunctions are given by

 30(x) =
2

81
p
3
(27�18x+2x2)e�

x

3 ,  31(x) =
2
p
2

81
p
3
(6�x)xe�

x

3 ,  32(x) =
2
p
2

81
p
15

x2e�
x

3 .

(B.19)

These wavefunctions and their radial probabilities are depicted in figures B.1 on page 197

and B.2 on page 197. At this point we should make note of a few things:

• Wavefunctions with the same principle quantum number have the same decay rate

e�
x

n , so have similar extent.

• The higher angular momentum wavefunctions are slightly more localised because

that they have fewer electrons to ‘statistically’ avoid.

• Wavefunctions with di↵erent principle quantum numbers have very di↵erent innate

radii.

Nomenclature: Angular momentum quantum numbers are frequently labelled with

letters: l = 0 ⌘ s, l = 1 ⌘ p, l = 2 ⌘ d, l = 3 ⌘ f . For example 3d is equivalent to

principle quantum number n = 3 and angular momentum quantum number l = 2.

These are often called ‘shells’.

This elementary picture provides a consistent sketch for the periodic table but the

order of the states is not quite as expected. We should expect the ordering to be

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f, (B.20)

but in reality the order is

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d. (B.21)
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Figure B.1: Hydrogenic Radial Wavefunctions
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Wavefunctions for the lowest three energy states. Higher angular momentum wavefunctions are
slightly more localised.

Figure B.2: Hydrogenic Radial Probabilities
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So why do higher principle quantum numbers arrive before completing the previous quan-

tum number? The answer is relativity! The two energies to compare are

Enon�relativistic = mc2 +
p2

2m
, and Erelativistic =

⇥
p2c2 +m2c4

⇤ 1
2 . (B.22)

From this we can see that if something is relativistic then it has a higher momentum for

the same energy.

The lowest shells have the highest energies and are the most relativistic. This means

they have higher momentum and are therefore more localised (from the uncertainty prin-

ciple). This causes higher lying electrons of the same type to drop down to also lower

their energy.

The last thing to understand for the periodic table is electron counting. The degen-

eracy of a state with angular momentum l is 2l+ 1. Taking into account spin this means

the s shell can occupy 2 electrons, p can occupy 6, d can occupy 10, and f can occupy 14.

This is equally split between spin up and down electrons.

When considering the electrons in an atom (also known as its ‘electron configuration’)

in a compound we split the electrons into core and valence [85]. The ‘core’ is labelled by

the heaviest noble gas that is lighter than the atom, denoted by square brackets. All other

electrons are ‘valence’. They are labelled by a principle quantum number, a letter for the

angular momentum, and a superscript number which counts the number of electrons that

occupy that shell. For example iron’s (Fe) electron configuration is [Ar]3d64s2. This

means it has an argon (Ar) core and is also occupied by 6 electrons in the n = 3, l = 2

shell, and 2 electrons in the n = 4, l = 0 shell.

At this point we have an elementary physical picture of the periodic table. However,

things are slightly more complicated. The source of this complication is electron-electron

interactions within atoms; this is detailed in the next section.

198



B.2. HARTREE AND SCREENING

B.2 Hartree and Screening

So far we’ve tried to explain the periodic table using the hydrogen atom. When we consider

other atoms there are modifications from electron-electron interactions. The basic picture

will be the same but the details are completely di↵erent. The basic picture one should

think of is as follows: electrons are much closer to the nucleus than the 6s electrons. To

a first approximation the 1s electron can be thought of as part of the nucleus, essentially

reducing its charge. The electrons within the current radius of the reference electron are

said to ‘screen’ the charge of the nucleus. We will be using the Hartree approximation [87]

(the electrons are assumed to be independent of one other) and ignore Fermi statistics for

simplicity. The role of the other electrons is to provide an electrostatic potential applied

to the current electron. We find this potential with the use of a Green’s function.

In general we can solve an equation of the following form with a Green’s function [88]

Z
d3sÔ(r, s)A(s) = a(r), (B.23)

where a(r) is a given forcing term, Ô(r, s) is an operator, and A(s) is an unknown to be

found. The Green’s function is the analogue of the inverse of Ô and is constructed to

satisfy Z
d3sÔ(r, s)G(s, r) = �3(r � r0). (B.24)

The solution of the posed problem, verified by direct substitution, is then just

A(r) =

Z
d3sG(s, r)a(s). (B.25)

The Hartree problem is exactly of this type! We have a static charge distribution

arising from the other electrons. From Maxwell’s equations [79] we have

r ^ E = 0 ) E = �r�(r), (B.26)
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r · E = 4⇡e2⇢(r) ) r2�(r) = �4⇡2⇢(r), (B.27)

where �(r) is the electrostatic potential and ⇢(r) is the density profile of electrons. The

final equation is known as Poisson’s equation [88], and it is the form required to apply the

theory of Green’s functions. Again, as the result is more important than the derivation we

will sketch the key steps. The operator in question is Ô(r, s) = �(r � s)r2
s, hence we are

required to solve r2
rG(r, s) = �(r�s). We will solve this using spherical polar co-ordinates

as the delta function is spherically symmetric and only non-zero at the origin. This is

solved by G(x) = a + b
x . By demanding

R
V d3xr2G(x) = 1 and use of the divergence

theorem we get G(x) = � 1
4⇡|x| . The associated potential is consequently �(r) =

R
ds e2⇢(r)

|r�s| .

We simplify the problem by assuming the charge distribution is spherically symmetric,

this is true for closed shell configurations. This gives the radially depended e↵ective charge

as [79]

Z(r) = Ze �
Z 1

r

ds(s � r)s4⇡⇢(s), (B.28)

where Ze is the total electric charge.

As r ! 0 the integral tends to Ze, and so Z(r) vanishes and the nuclear charge is

unscreened. As r ! 1 the integral vanishes and the nucleus is screened by all other

electrons.

Each principle quantum number has the same e↵ective range and therefore this extra

potential should not change the physics within each principle quantum number. It is

natural to think of the inner electrons as a ‘screen’ of the nuclear charge for outer electrons.

This is the source of the statement that ‘all atoms are about the same size’. More directly

the ‘outer most electrons’ only ‘see’ a singular positive charge. Electrostatics therefore

dictate the radius of the atom. This, of course, is not exact and the radius of atoms is

only the same order of magnitude; which results in interesting structural properties of

many compounds.
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B.3 Hund’s Rules

The final thing to understand about spherically symmetric isolated atoms is Hund’s

rules [83]. There are three rules that govern the behaviour of S, L, and J.

The largest relevant atomic physics energy scale is that of exchange. Fermionic wave-

functions must be anti-symmetric due to their statistics. As electrons are fermions their

wavefunction must be anti-symmetric. The electron wavefunction is composed of a spin

and spatial component. If two electrons have parallel spins their spin wavefunction is

symmetric; therefore, to ensure the overall wavefunction is anti-symmetric their spatial

component must be anti-symmetric. Conversely if the spins are anti-parallel the spatial

wavefunction must therefore be symmetric. Mathematically this corresponds to

 ""(r1, r2) / [ 1(r1) 2(r2) �  1(r2) 2(r1)] |"i1 |"i2 , (B.29)

 "#(r1, r2) /  1(r1) 2(r2) [|"i1 |#i2 � |#i1 |"i2] (B.30)

The electron-electron interaction, also known as the Coulomb penalty, takes the form

Z
d3r1

Z
d3r2| (r1, r2)|2

e2

|r1 � r2|
. (B.31)

Note that the integrand of this function is maximal when r1 = r2 but this is precisely

where the wavefunction for the parallel spins vanishes. We can mitigate the Coulomb

penalty by using a parallel spin wavefunction. Hence, it is energetically favourable for

two spins to be parallel. Hund’s Rule 1 (H1): The total spin of an open shell is maximal.

Simply put maximise S.

The next most important scale controls the choice of orbitals and directly competes

with the crystal field (discussed in the following sections). Hund’s Rule 2 (H2): The

orbital angular momentum is maximised subject to the restriction of Fermi statistics.

Simply put maximise L.

The third rule originates from relativity and is usually small. The terminology is spin
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orbit coupling and the result is optimising J. Care should be taken as for the first half

j = |l�s| and for the second half j = l+s. Hund’s Rule 3 (H3): Maximise J = L+J. For

the first half of the shell S and J are anti-parallel, for the second half they are parallel.

Simply put optimise J

Applying Hund’s rules is simple. We apply them in the order they were presented.

Handily, this is also the the order of their energy scales. The origin of H1 is Coulomb

and therefore depends on the extent of the shell. For example, if the shell is localised

its energy is higher. This gives the 3d shell an energy scale of approximately 1-2eV and

2-10eV for the 4f shell. H2 is approximately the same order of H1 but a fraction of it. H3

is smaller still, being approximately 0.25eV for Ce and 1eV for Yb.

At this point we have a good physical picture of the periodic table, which is that of

isolated atoms. However, in condensed matter systems we care about solids. The next

two sections we focus on the caveats that pertain to the physics of atoms in solids.

B.4 Bonding — How Atoms Form a Solid

The physics of solids is all about bonding verses Coulomb repulsion and statistics. When

atoms come together they ‘stick’ because, to a good approximation, electrons can make

use of each other’s nuclei’s potentials while avoiding each other. This process is chemical

bonding and e↵ects the energies of di↵erent orbitals.

Let’s take a look at the first failure of the gaseous picture of atoms in a solid. Consider

the 4s and 3d shell. The 3d shell is more localised as e�
x

3 decays faster than e�
x

4 . As the

4s electrons have a larger extent we would predict they will bond first, and only when the

3d wavefunctions begin to overlap will they bond. This prediction is incorrect.

Figure B.3 on page 203 depicts the hydrogenic probabilities for the 4s and 3d orbitals.

We see that the 3d orbital will only overlap when the neighbouring atom is in the middle

of of where the 4s electron would be! In practice the 3d electrons do bond and so the 4s

electrons are in trouble. The 4s electrons experience strong Pauli exclusion from the 3d
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Figure B.3: 4s vs 3d Radial Probabilities
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The 3d state is maximal where there is a large probability in the 4s shell. This will cause a large
Pauli exclusion penality.

electrons. We can view the 4s electrons as being forced into the ‘hole’ where the atom

sits causing a rise in their energy.

The physical picture of bonding in the transition metals is that of a balance between

the 3d electrons (which are strongly chemically bonded) and the 4s or 4p electrons (which

are under high pressure): the 3d electrons form the ‘glue’ which is compressing the 4s

electronic subsystem. In practice, there are usually very few 4s electrons i.e 1
2 an electron

per manganese in �-Mn [89]. For oxides this is even worse as the highly negative oxygen

atoms usually force the 4s electrons out of accessibility and all that remains is the ‘3d

core’. A similar ‘anomaly’ occurs in the 4f shell which occurs at the same time as the 6s

shell. However, the f-electrons are so localised that they never directly bond, and instead

must hybridise via other electrons to gain energy. This is the so called ‘Hill limit’ [90].

Note that both of these situations are exacerbated by the nature of screening. Com-

paring 3d to 4s again, we see that the 4s electrons are screened by the more localised 3d

electrons. This means the 4s electrons are even more weakly bound than expected!
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At this point we have taken our elementary gaseous picture of the periodic table and

begun to see the e↵ects of forming a solid. Namely, solids form due to bonding: the

energetic gain from using neighbouring atom’s potentials. This has radical consequences

on the order of occupation for shells due to pauli exclusion. Next we will see the e↵ects

due to the lack of spherical symmetry.

B.5 Cubic Harmonics and The Crystal Field

So far we have a spherical representation of orbitals. This is acceptable in free space where

there is spherical symmetry but in real systems there are other atoms which are charged.

This set of surrounding atoms is called the crystal field. These atoms have electrons which

will need to be Pauli avoided but also provide an opportunity for chemical bonding. This

potential will also lift the spherical symmetry. In general we do not know the crystal field

potential but we do know one thing: the potential will respect the local point group of the

atom.

This key concept in this section, is that of the irreducible representation [91]. The

group we have in mind is the point group where the elements are spatial reflections and

rotations. This group acts on a vector space which is composed of linear combinations

of spherical harmonics. It should be clear that upon application of a group element a

spherical harmonic is mapped onto a linear combination of other spherical harmonics.

For example under a 90� rotation about the y-axis

Y10(r̂) ! 1p
2
[Y11(r̂) + Y11̄(r̂)] . (B.32)

The mapping of a vector space onto itself is described by a matrix and the collection

of matrices which correspond to the group are known as a representation of the point

group. Any representation of a group must have the same multiplicative properties as the
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underlying group, in other words

g1g2 = g3 ) R(g1)R(g2) = R(g3), (B.33)

where gi is a group element and R(gi) is a representation.

The basic idea is to choose linear combinations of spherical harmonics which behave

in the simplest possible way under the action of the appropriate point group. A vector

space which is acted on by a group can be split into irreducible subspaces which are closed

under the action of a group. Simply put, they map onto themselves.

The choice of basis of an invariant subspace provides an irreducible representation of

the group acting on that basis. This gives a collection of n⇥n matrices which correspond

to the action of the group on the chosen basis. We will apply these ideas to the cubic

point group which has 48 elements and present the results [91].

Obviously the s orbital (l = 0) is irreducible as it is one dimensional. This is depicted

in figure B.4 on page 206 and is given by

s =
1p
4⇡

. (B.34)

The p orbitals (l = 1) are best represented in three dimensions. They are depicted in

figure B.5 on page 206 and are given by

px =

r
3

4⇡

x

r
, py =

r
3

4⇡

y

r
, pz =

r
3

4⇡

z

r
. (B.35)

The d orbitals (l = 2) are split into two subspaces: a three dimensional t2g (yes it’s

poorly named) and a two dimensional eg. They are depicted in figures B.6 on page 207
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Figure B.4: The s orbital
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The s orbital is spherically symmetric and has a uniform positive (red) phase in each direction.

Figure B.5: The Three p Orbitals
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py
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z

The three p orbitals lie along the Cartesian axes. Their phase is positive (red) in one half and
negative(blue) in the other.
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Figure B.6: The Three t2g Orbitals
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The three t2g orbitals lie along the Cartesian planes. Their phase is positive (red) in opposite
quarters and negative (blue) in the other.

and B.7 on page 208 respectively. The t2g are given by

dyz =

r
15

4⇡

yz

r2
, dxz =

r
15

4⇡

xz

r2
, dxy =

r
15

4⇡

xy

r2
, (B.36)

and the eg subspace is given by

dx2�y2 =

r
15

16⇡

x2 � y2

r2
, d3z2�r2 =

r
5

16⇡

3z2 � r2

r2
. (B.37)

The f orbitals are split into 3 irreducible subspaces and are not named anything special.

We have picked the most symmetric representation, in other documents you may see them

represented another way. These are not depicted as the f electrons are dominated by

Hund’s rules and their crystal field are often irrelevant. The first set are given by

fx2�r2 =

r
7

16⇡

x

r

5x2 � 3r2

r2
, fy2�r2 =

r
7

16⇡

y

r

5y2 � 3r2

r2
, fz2�r2 =

r
7

16⇡

z

r

5z2 � 3r2

r2
,

(B.38)
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Figure B.7: The Two eg Orbitals
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The two eg orbitals lie along the Cartesian axis. The phase for the dx2�y2 orbital is positive
(red) along the x axis and negative (blue) along the y axis. The phase for the d3z2�y2 orbital is

positive along the z axis and negative in the ‘ring’ around the xy plane.

the second set are given by

fy2�z2 =

r
105

16⇡

x

r

y2 � z2

r2
, fz2�x2 =

r
105

16⇡

y

r

z2 � x2

r2
, fx2�y2 =

r
105

16⇡

z

r

x2 � y2

r2
,

(B.39)

and the final one is given by

fxyz =

r
105

4⇡

xyz

r3
. (B.40)

The application of these ideas is simple. There exist degeneracies in condensed matter

systems. It is our job to discover how they are lifted. Including the crystal field breaks

spherical symmetry hence di↵erent irreducible representations have di↵erent energies. The

magnitude and sign of this change is unknown and must be solved for. For example, if

an electron is in the dx2�y2 orbital its wavefunction is maximal along the axis directions.

If there are negatively charged ions in those directions, Coulomb repulsion would state

it is unfavourable. Therefore both this and d3z2�r2 (the other orbital in its irreducible
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Figure B.8: Example Crystal Field Penality of dx2�y2

An electron is negatively charged and therefore pays a large Coulomb penality when its wave-
function overlaps with another electron. This figure depicts the view of a dx2�y2 orbital and four
surrounding negative charges. The angular wavefunction is maximal along the axis directions

where the charges are placed. Therefore, this orbital will pay a high Coulomb penality.

representation eg) are a higher energy than the three orbitals in t2g. This is depicted in

figure B.8 on page 209.

Crystal field and Hund’s rules directly compete. In the first row transition metals there

is competition between these energies centred around Co. H1 win for atoms to the left of

Co and crystal field wins on the right. H2 is never relevant in this row unless the orbitals

can be combined to gain more energy, for example dxy + idyz. The Lanthanide series

are dominated by Hund’s rules [85]. Note, in general all Lanthanides form 3+ except at

the edges where Ce can form Ce4+ and Yb can form Yb2+. Both the Lanthanides and

Actinides are tricky to deal with as the the size of f and d shells are comparable and they

compete.

The rules of engagement are rather simple. If the Hund’s rules win on the atom in

question then just apply the appropriate rules in order. If the crystal field wins, determine

which of the irreducible representations is lower in energy and fill the levels from the
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bottom up. In either case the ‘loser’ between Hund’s rules and crystal field acts to lift

any residual degeneracy that may remain.

After all this work we have a physical picture of how atoms behave in solid state

physics. The following sections will give two examples: modelling an insulating material

and modelling a metal.

B.6 Example: MnO, An Antiferromagnetic Insulator

We will work through the list highlighted at the introduction of this chapter.

Step 1: This material is an insulator, we will keep this in mind while modelling this

system.

Step 2: Let’s separate this system into its core and valence electrons. To do this we

begin with the electron configuration of both of the compounds atoms. Mn’s electron

configuration is [Ar]3d54s2 and O’s is [He]2s22p4.

Step 3: Oxygen is incredibly electronegative. It is very rare in solid state to observe

system where oxygen does not have a closed shell. In this material oxygen atoms will

gain electrons to act as O2�. As this is a full shell, the oxygen atoms do little but act as

a field for the remaining electrons.

Step 4: If we recall from step 1, this material is an insulator. Therefore the number of

electrons on each atom is defined. If the oxygen atom has gained two electrons, they must

have come from the manganese atom. In this material manganese is said to ‘donate’ its

electrons and will act as Mn2+. From manganese’s electron configuration we know that

these electrons could come from either the 4s or 3d shell. Recalling that in solids the

4s shell feels a strong Pauli repulsion and are energetically unfavourable, we expect the

electrons to be donated from the 4s shell. This leaves five electrons in the 3d shell.

Step 5: The structure of this compound is FCC [92]; this is usually very easy to find

online. Now we consider the crystal field. The local environment of a Mn atom is depicted

in figure B.9 on page 211. Electrons are negative and so are the oxygen sites which form
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Figure B.9: Manganese’s Octahedral Oxygen Cage

Each manganese atom (orange) is surrounded by six oxygen atoms (red). This forms an octa-
hedral cage.

the ‘cage’ for the manganese atom. Therefore, the electrons do not want to be near each

other. Of the t2g and eg orbitals it can be seen that the eg orbitals violently overlap with

the O2� sites, therefore will be a higher energy.

Step 6: As Mn is on the left side of Co we know that Hund’s rules will dominate

over crystal field. From Hund’s first rule we are told to maximise S. This results in the

parallel alignment of all the electrons in each d orbital. This is depicted in figure B.10

on page 212. We are left with a Heisenberg model of the spin 5
2 state on the manganese

atoms.

Step 7: This does not apply for us.

Step 8: Superexchange is the coupling between two next-nearest neighbouring atoms

through a non-magnetic atom. In our case the two atoms are Mn and the non magnetic

atom is O. Electrons virtually hop from the Mn atom onto the O atom, and then (if they

can) on to a further Mn atom. This is only facilitated if next-nearest neighbouring atoms

are anti-ferromagnetically coupled. This is due to pauli exclusion prohibiting double
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Figure B.10: Crystal Field Levels of MnO

The crystal field lifts the d degeneracy, such that the t2g band is a lower energy the eg band.
However, in this material Hund’s rules dominate and spin must be maximised.

occupation from the hop if their spins were aligned. This is depicted in figure B.11 on

page 213. We are left with an anti-ferromagnetic Heisenberg model to solve.

Step 9: This does not apply to us.

B.7 Example: Bulk Copper, a Metal

Step 1: This material is a metal.

Step 2: Copper’s electron configuration is [Ar]3d104s1.

Step 3: This step does not apply.

Step 4: For the case of copper, the d shell is full. This means that the only electron that

can bond is the 4s1 electron.

Step 5: The structure of this metal is FCC [85]. As there is only one electron in the 4s

shell the crystal field has no e↵ect.

Step 6: Copper is to the right of Co and hence crystal field e↵ects dominate over Hund’s
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Figure B.11: Depiction of Superexchange

Visual representation explaining the source of antiferromagnetism. The large orange sites are
manganese and small red sites are oxygen. Antiferromagnetic order allows for virtual hopping

onto neighbouring states, ferromagnetism does not.

rules. However, there are no degeneracies to lift in this case.

Step 7: This step does not apply.

Step 8: This step does not apply.

Step 9: This metal has one electron in the 4s shell that forms a tight binding model. As

the 4s shell is spherically symmetric we are left with a trivial tight binding model given

by

H = �t
X

hiji�

c†i�cj� + ✏
X

i�

c†i�cj�, (B.41)

with an FCC structure. This is trivially solved with a Bloch transformation giving

H =
X

k�

(✏� Zt�1,k)c
†
k�ck�, (B.42)

where Z is the co-ordination number (12 in this case) and �1,k is the nearest neighbour

structure factor. For an FCC lattice this is given by �k = 1
3 [cos ky cos kz + cos kz cos kx +
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cos kx cos ky]. If this is unfamiliar, it is explained in detail in the following section. This can

be used to generate a band structure which can be compared to DFT (Density Functional

Theory) or experiment.

This model is very basic, and in reality the 4s and even some 4p electrons hybridise

with the 3d electrons. For a full picture this interaction must be taken into account.

B.8 E�ciently Solving the Tight Binding Model

In this final section we will go over, in detail, how to solve the many tight binding models

that could occur in your analysis of materials. We will build complexity, beginning with

s wave hopping on a linear chain, moving to a three dimensional system with one atom

per unit cell, extending to a system with more than one atom per unit cell, and finally

extending to a system with di↵erent electron shells.

The tight binding model is an elementary Hamiltonian that describes bonding between

atoms. Though it begins as a simple model, it very quickly can become convoluted and

messy. Implicit in every tight binding model is the structure that it acts on. The exact

same Hamiltonian on a di↵erent structure can provide radically di↵erent results. Let’s

consider an ordinary nearest neighbour tight binding model with s-wave hopping on the

linear chain. The Hamiltonian for which is

H = ✏
X

i�

c†i�ci� � t
X

hiji�

c†i�cj�, (B.43)

where ✏ is the occupation energy and can be set to zero without loss of generality. Due

to translational invariance, this is solved with a Bloch transform [93]

c†i� =
1p
N

X

k

eik·Ric†k�, ci� =
1p
N

X

k

e�ik·Rick�, (B.44)
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which upon substitution yields

H = �t
X

hiji�

1

N

X

kk0

eik·Rie�ik0·Rjc†k�ck0�. (B.45)

We can define the nearest neighbours by writing Rj = Ri + a, where a is a vector that

takes to our nearest neighbours. This substitution gives

H = �t
X

i�

X

a

1

N

X

kk0

ei[k�k0]·Rie�ik0·ac†k�ck0�. (B.46)

Bloch’s theorem states that 1
N

P
i e

i[k�k0]·Ri = �kk0 , combining this with a sum over k0 and

defining Z�1,k =
P

a e
�ik·a gives

H = �Zt
X

k�

�1,kc
†
k�ck�, (B.47)

where Z is the co-ordination number: the number of nearest-neighbour atoms. We have

diagonalised the Hamiltonian and hence solved the problem. Note that all the physics of

the problem is encapsulated in Z�1,k, known as the structure factor. For the 1D chain

the set of neighbours is {�x̂, x̂}, where we have normalised the set the distance between

neighbours to 1 without loss of generality. This gives �1,k = cos(kx).

It is the structure factor that changes when we consider di↵erent, more complex sys-

tems. When there is only one atom per unit cell the calculation is rather trivial, regardless

of dimension. For example the structure factor for: the square lattice is

�k =
1

2
[cos kx + cos ky], (B.48)

the triangular lattice is

�k =
1

3

"
cos kx + cos

 
kx +

p
3ky

2

!
+ cos

 
kx �

p
3ky

2

!#
, (B.49)
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the cubic lattice is

�k =
1

3
[cos kx + cos ky + cos kz], (B.50)

the body centred cubic lattice is

�k = cos kx cos ky cos kz, (B.51)

the face centred cubic lattice is

�k =
1

3
[cos ky cos kz + cos kz cos kx + cos kx cos ky]. (B.52)

Things get more complicated when there are more than one atom per unit cell. In

this case our elementary Hamiltonian gains some complexity and becomes

H = �
X

hiji�

h
tccc

†
i�cj� + tcf

⇣
c†i�fj� + f †

i�cj�
⌘
+ tfff

†
i�fj�

i
, (B.53)

where we have labelled one site with c� operators and the second with f�, and t↵� are the

hopping elements between sites ↵ and �. Though this may look complex at first glance

we can drastically simplify this by representing it as a matrix equation. This gives

H =
X

hiji�


c†i�, f †

i�

�
2

64
�tcc �tcf

�tcf �tff

3

75

2

64
cj�

fj�

3

75 , (B.54)

which is just a matrix tight binding model. We can diagonalise this using a Bloch trans-

form as before which yields

H =
X

k�


c†k�, f †

k�

�
2

64
�tccZcc�cc,k �tcfZcf�cf,k

�tcfZcf�cf,k �tffZff�ff,k

3

75

2

64
ck�

fk�

3

75 , (B.55)

where Z↵� is the number of � neighbours of site ↵, and �↵�,k is the structure factor of

� neighbours of ↵. This matrix is the controlling object in tight binding analysis, which
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when diagonalised produces the band structure.

We can simplify this analysis by introducing the following shorthand, often called the

floating phase. We are interested in the sum

Z�k =
X

↵

eik·R↵ . (B.56)

Upon substitution of R↵ = ↵xx̂+ ↵yŷ + ↵zẑ, we get

Z�k =
X

↵

ei(↵xkx+↵yky+↵zkz), (B.57)

which can be decomposed into

Z�k =
X

↵

ei↵xkxei↵ykyei↵zkz . (B.58)

By writing x = eikx etc. this becomes

Z�k =
X

↵

x↵xy↵yz↵z . (B.59)

Using this we can simply look at a geometry and read o↵ the structure factor. We just

count how many unit vectors each neighbour is away from the original atom and add

the appropriate power of x, y or z. For example let’s consider the cubic lattice. There

neighbours are at x̂, �x̂, ŷ, �ŷ, ẑ, and �ẑ. Which give x, 1
x , y,

1
y , z and 1

z respectively.

Putting these into the sum gives

Z�k = x+
1

x
+ y +

1

y
+ z +

1

z
(B.60)

= 2 cos kx + 2 cos ky + 2 cos kz, (B.61)

as required.

Let’s use this simplification, and consider a system with two atoms per unit cell: the
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diamond lattice. This is a FCC structure with two atoms per unit cell. We will consider

nearest neighbours only, and hence only couple atom one with atom two. This is depicted

in figure B.12 on page 219. From this we can simply read o↵ the hoping matrix as

�t

2

64
0 xyz + x

yz +
y
xz +

z
xy

1
xyz ++yz

x + zx
y + xy

z

3

75 , (B.62)

which is trivially diagonalised to give the band structure

✏k =
⇥
1 + y2z2 + z2x2 + x2y2

⇤ 
1 +

1

y2z2
+

1

z2x2
+

1

x2y2

�
, (B.63)

which upon direct substitution of the FCC structure factor �FCC
k gives

✏k = ±
⇥
4 + 12�FCC

k

⇤
. (B.64)

This highlights how much this simplifies the process of calculating the band structure.

The final thing to consider is the e↵ect di↵erent orbitals have on this picture. So far

we have only considered s-wave hopping which is spherically symmetric. In real systems

electrons occupy other shells such as p, d and f . The occupation energy of these shells

varies from one system to another, and we cannot simply set them to zero as before. These

additional ‘flavours’ of electrons merely expand the hopping matrix, and now electrons

can from any one site or shell to another. Unfortunately, as these shells are not spherically

symmetric the phase di↵erence is not always symmetric. This is highlighted in figure B.13

on page 219. Here the phase di↵erence is positive for the s electron hopping right onto

px but negative when hopping to the left onto px. This term would therefore look like

�tsp(x � 1
x).

There is one final complication when considering di↵erent orbitals: symmetry. If

there exists a plane that passes through the sites for which one orbital is symmetric under

inversion and the other is anti-symmetric under inversion, the strength of that hop is zero.

This is depicted in figure B.14 on page 220. In this diagram the xz plane passes through
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Figure B.12: The Diamond Lattice

The diamond lattice is formed of two atoms per unit cell (grey and black), with an underlying
FCC lattice for the unit cell.

Figure B.13: Hopping Asymmetry

The asymmetry of the px orbital under inversion of x causes a phase asymmetry between hopping
along the x axis between an s and px orbital.
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Figure B.14: Orbital Symmetry Causing Vanishing Hopping

There is asymmetry of the py orbital under inversion of y and symmetry of s under the same
transformation. This causes a phase cancellation when hopping along the x axis, resulting in

this hop vanishing.

both sites. The s orbital is symmetric under inversion, but the py orbital is anti-symmetric

under inversion. Hence this hop vanishes.

At this point we are able to solve any metallic tight binding model. We can extend

this analysis to magnetic systems rather simply. If the system has antiferromagnetic order

the unit cell will increase in size which needs to be taken into account. Adding magnetic

order is as simple as changing the Hamiltonian to

H = �t
X

hiji�

c†i�ci� +�
X

i

h
c†i#ci# � c†i"ci"

i
, (B.65)

where � is the magnetic penality (gain) for the incorrect (correct) alignment of a spin on

a site.

With this we reach the end of this section and so too the appendix. The periodic

table was modelled by extending the hydrogen atom. We then extended this to solid
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state systems where a↵ects such as bonding and crystal field were introduced. Finally, we

thoroughly solved the tight binding model. With this you should be able to model many

materials and in some cases even solve them.
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APPENDIX C

THE LANCZOS ALGORITHM —

EXACT DIAGONALISATION OF

FINITE SYSTEMS

C.1 Introduction

Many body quantum mechanics is a di�cult endeavour, where exact solutions are either

for contrived models or are out of reach. As a result, we rely on sophisticated techniques

with subtle approximation schemes. After all the hard work we are frequently left con-

templating the decisions we made and the accuracy of the result. Thankfully there is a

complementary technique we can use to compare our results against: exact diagonalisa-

tion.

Quantummechanics is a linear algebra problem [80], hence we can represent any system

of interest with a matrix. Subsequent diagonalisation of this matrix gives us access to

the energy eigenvalues and eigenvectors, from which we can calculate any correlation we

please. So why don’t we deal with all quantum problems this way? It’s simple: for

an infinite system the matrix is infinite, which is notoriously di�cult to write down, let

alone diagonalise. Therefore, when discussing exact diagonalisation of quantum systems
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we are strictly considering finite systems, but the perils are not yet done. For a system

composed of objects with d degrees of freedom and n sites, the state space is of size dn,

and its matrix representation contains d2n elements. This means that our state space

grows exponentially with system size, and hence we are limited to rather small systems.

To give a sense of scale, a computer with 8Gb of RAM can store 1 ⇥ 109 numbers, but

this is only a state space of 31,622 which is equivalent to 7 sites of a spin-half fermion

system. This scaling is so poor that doubling our RAM to 16Gb is still not enough to

reach 8 sites.

All hope is not yet lost. Through the application of the Lanczos algorithm, extraction

of symmetries, and some clever optimisations we are able to extend the number of sites to

17! With this increase techniques such as finite size scaling have a far higher success rate,

and we are able to compare our results to analytics, hopefully corroborating the results.

This appendix will serve as a reference document for all future students who aspire

to do exact diagonalisation. The technique will not only be explained with nuance but

results will be given to compare against. We assume a competence in programming, so

will not go into these details. We begin by detailing how to construct the matrix of a

quantum system, namely the Heisenberg model. This is followed by an explanation of

the Lanczos algorithm — the largest gain of memory in the process. Next we discuss

the technical construction of the algorithm along with optimisations that can be made.

Finally we extract symmetries of the Hamiltonian — the next largest gain of memory in

the process. As an addendum to the appendix we include a section of particular results

which will be invaluable to any student when they inevitably encounter errors in the

process.

C.2 The Heisenberg Model

What follows is a quick overview of the Heisenberg model [74], the archetypal model for

quantum magnets. A more detailed discussion on how to construct this Hamiltonian

224



C.2. THE HEISENBERG MODEL

computationally is given in section C.4.

Its Hamiltonian is

H = �J
X

hiji

Si · Sj, (C.1)

where hiji denotes that sites i and j are nearest neighbours, and J is the magnetic

interaction strength, which is negative for a ferromagnetic system and positive for an anti-

ferromagnetic system. Upon substitution of the vector spin operator S = Sxx̂+Syŷ+Szẑ

we get

H = �J
X

hiji

�
Sx
i S

x
j + Sy

i S
y
j + Sz

i S
z
j

�
. (C.2)

By choosing the z direction as special we can define the following spin raising and lowering

operators

S± = (Sx + iSy) , (C.3)

such that upon substitution the Hamiltonian becomes

H = �J
X

hiji

✓
Sz
i S

z
j +

1

2

�
S+
i S

�
j + S�

i S
+
j

�◆
. (C.4)

Note that for a quantum mechanical state with spin l and z-projection m, denoted by

|l,mi, the spin operators [80] behave as

Sz |l,mi = m |l,mi , (C.5)

S± |l,mi =
p
l(l + 1) � m(m ± 1) |l,m ± 1i . (C.6)

We will be working with a spin-half system and as such will use the short hand |12 ,
1
2i = |"i

and |12 ,�
1
2i = |#i. The spin operators therefore result in

Sz |"i = 1

2
|"i , Sz |#i = �1

2
|#i , (C.7)

S+ |"i = 0, S+ |#i = |"i , S� |"i = |#i , S� |#i = 0. (C.8)
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We are now in a position to construct the Hamiltonian. The first thing to note is

that the H can be written as a sum over local Hamiltonians that only act on two sites

H = �J
P

hiji Hij. This means that when we ‘apply’ the Hamiltonian to a state we need

only decompose the state into nearest neighbour pairs and apply the local change. Lets

see what this corresponds to for a 4 site system with open boundaries |�1�2�3�4i, where

�i denotes the spin on site i.

H12 H23 H34

H |�1�2�3�4i ! |�1�2�3�4i + |�1�2�3�4i + |�1�2�3�4i

From the diagram above it becomes obvious that we need only see how the Hamiltonian

a↵ects two neighbouring spins. The e↵ect of Hij is

|""i ) 1

4
|""i , |##i ) 1

4
|##i . (C.9)

|"#i ) �1

4
|"#i + 1

2
|#"i , |#"i ) �1

4
|#"i + 1

2
|"#i . (C.10)

This may be written as a matrix in the basis [|""i , |"#i , |#"i , |##i]

Hi,j =
1

4

2

66666664

1 0 0 0

0 �1 2 0

0 2 �1 0

0 0 0 1

3

77777775

. (C.11)

This is not the matrix representation of H. This is the local Hamiltonian, which is used to

calculate the full H. The full Hamiltonian can be calculated by taking the tensor product

of this with the identity as follows:

H = �J
X

hiji

11,2 ⌦ 12,3 ⌦ . . . Hi,j . . .1n�1,n, (C.12)

and an example is given at section C.9.
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Figure C.1: Periodic vs Anti-periodic Boundary Conditions

Pictorial representation of boundary conditions, periodic (left) and anti-periodic (right). In
either case a ‘ring’ is formed of lattice sites, with a bond connecting the first and final site. For
periodic boundary conditions this bond is the same as every other bond, whereas for anti-periodic

boundary conditions this bond has a di↵erent Hamiltonian.

A note on boundary conditions. There are three natural types of boundary conditions:

open, periodic and anti-periodic. Open boundary conditions have been discussed up to

now, they describe a system with edges that are special as they only have one bond as

opposed to two. Periodic and anti-periodic boundary conditions are an e↵ective way to

simulate an infinite system, in which there are no special sites. To implement these we

add another bond between sites n and 1. For periodic boundary conditions this bond is

the same strength as all other bonds, while for anti-periodic boundary conditions it is not

as simple. This is explained in detail in section C.8, but for now it is enough to know

that the Hamiltonian on that bond is changed to:

HAP
n1 = �J (Sz

nS
z
1 � Sx

nS
x
1 � Sy

nS
y
1 ) , (C.13)

where the sign of both the Sz and Sy term has switched. This is depicted in the figure C.1

on page 227.
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C.3 The Lanczos Algorithm

The Lanczos algorithm [60] is an iterative tri-diagonalisation routine. It takes any Hermi-

tian matrix and returns another with elements on the diagonal and nearest o↵-diagonals.

If this was the only thing we did it would still be useful, resulting in a large saving of

memory as we would go from N2 matrix elements to 3N non-zero matrix elements. As it

happens the routine has one added benefit: the lowest eigenvalues of the Lanczos matrix

exponentially converge to those of the original matrix. This is what makes the Lanc-

zos algorithm so powerful, it not only drastically reduces memory usage but it finds the

lowest lying eigenvalues exponentially quickly. We will now derive the algorithm, discuss

exponential convergence, and explain how to reconstruct the ground-state vector.

The aim is to generate a routine which converts the Hamiltonian from our basis to

the Lanczos basis. Underlying the technique we are using {Hn�0} as a basis, where �0

is the initial vector, and performing Gram-Schmitt orthogonalisation [94]. The resulting

iterative routine will generate the Lanczos basis {|ni}, where |1i = �0 the initial vector.

Applying H to |1i gives

H |1i = a1 |1i + b1 |2i . (C.14)

We calculate a1 then b1 then |2i by

a1 = h1|H |1i , (C.15)

b1 =
p

k(H � a1) |1ik, (C.16)

|2i = 1

b1
(H � a1) |1i . (C.17)

Now we apply the Hamiltonian to |2i

H |2i = c2 |1i + a2 |2i + b2 |3i . (C.18)

Taking the inner product with |1i, and using the hermiticity of H we find that c2 = b1,
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from which we find a2 and b2 in the same way as before

c2 = h1|H |2i = h2|H |1i = b1⇤ (C.19)

a2 = h2|H |2i (C.20)

b2 =
p

k(H � a2) |2i � b1 |1ik, (C.21)

|2i = 1

b2
(H � a2) |2i � b1 |1i . (C.22)

We apply the Hamiltonian one final time to |3i

H |3i = d3 |1i + c3 |2i + a3 |3i + b3 |4i . (C.23)

By taking the inner product with |1i it is trivial to see (using Hermiticity) that d3 = 0,

and from here on in the process is repeated. To summarise

1. Apply the Hamiltonian to state |ni which will give

H |ni = bn�1 |n � 1i + an |ni + bn |n+ 1i ,

where we have defined b0 = 0.

2. Find an from hn|H |ni as |ni is known.

3. Find bn from

kH |ni � bn�1 |n � 1i � an |nik = b2n,

as an, bn and |n � 1i are known.

4. Find |n+ 1i from

|n+ 1i = 1

bn

⇣
H |ni � bn�1 |n � 1i � an |ni

⌘
,

as all entities on the right hand side are known quantities.
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5. Store all values of an and bn as they form the tri-diagonal matrix. Store states

|n � 1i , |ni and |n+ 1i as they are required for the next iteration.

6. Repeat process, increasing n until the required eigenvalues of the tri-diagonal matrix

converge to those of the Hamiltonian.

The iteration algorithm and tridiagonal matrix can be written as


H |1i , H |2i , ...

�
=


|1i , |2i , ...

�

2

66666664

a1 b1

b1 a2 b2

b2 a3
. . .

. . . . . .

3

77777775

(C.24)

Note that when beginning this process the original vector must have some overlap

with the ground state, else it will not find it. This is most easily ensured by starting with

a random vector.

C.3.1 Eigenvalue Convergence

If we were interested in the entire energy spectrum of H the Lanczos algorithm would only

be useful as a means to save memory. In reality we usually only care about the ground

state eigenvalue, and sometimes the first excitation to examine the gap. In this case the

Lanczos algorithm reigns supreme, as the lowest lying eigenvalues of the Lanczos matrix

converge onto those of the Hamiltonian exponentially quickly. To see why consider the

following, where |Ri is a random vector, µ is a shift that defines the zero of the problem,

and E0 is the lowest eigenvalue

✓
H � µ

E0 � µ

◆N

|Ri =
✓
H � µ

E0 � µ

◆NX

�

a� |�i (C.25)

=
X

�

✓
H � µ

E0 � µ

◆N

a� |�i . (C.26)
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In the case � = 0 this returns one, but if � 6= 0 as E0 < E� this operation returns a

fraction less than one. This exponentially tends to zero. The Lanczos algorithm actually

performs better than this as it is not simply repeated application of the Hamiltonian, it

is simultaneously orthogonalising. For example (0.3)30 = 2 ⇥ 10�16, so the ground state

eigenvalue can converge from a 30 by 30 matrix in the Lanczos basis.

There is a caveat however; the number of steps until convergence is heavily dependent

on the energy gap. If there is a large degeneracy and the energies are very close together

then convergence can take thousands of steps. Consider (0.99)30 ⇡ 0.74, to get the same

convergence as before approximately 3500 steps must be taken as (0.99)3500 ⇡ 5x10�16.

C.3.2 Reconstructing the Ground State Vector

In physics we are not only interested in the energetics but frequently care about corre-

lations. These tell us to what degree two sites are a↵ected by one another, and hence

indicate the order that exists within the system. Reconstructing the ground state vector

is mathematically trivial, it is just a conversion of basis

|GSi =
X

n

vn |ni , (C.27)

where |GSi is the ground state, |ni are the Lanczos basis vectors and vn are elements of

the tri-diagonal matrix’s eigenvector. To calculate this a second run of Lanczos must be

done, calculating the ground state vector on the go.

C.4 Technical Construction

There is little use in knowing the mathematical formalism of an algorithm; it must be

implemented. That is the purpose of this section. There are many components that come

together to set this up computationally: representing states, applying the Hamiltonian,

and computing eigenvalues. Each will be discussed and by the end, the reader should be
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able to program an elementary Lanczos algorithm.

At this point it is good to mention a little practical advice. Firstly, always make the

most simple program you can to begin with. Complexity can be added in the future. To

that end, invest in version control, GitHub is a great example. Secondly, check your code

for small systems by hand. To aid with this point I have produced section C.9, which can

act as a reference to check against.

C.4.1 Representing the State

When studying quantum mechanical systems it can often feel intuitive to apply operators

to states. It is only when one tries to generate an algorithm for this action do they

realise how awkward it really is. In this section we will learn how to represent quantum

mechanical states numerically, in order for us to apply a Hamiltonian in the next section.

This may be a strange starting point, but lets take the binary representation of 5 and

replace the digits 0 and 1 via the rules 0 ⌘" and 1 ⌘#

5 ⌘ 0101 ! "#"# . (C.28)

Interestingly, we are returned a particular quantum mechanical state composed of four

sites. It is not a giant leap to recognise that this could be done with any integer, sub-

sequently generating another state. We also know that this procedure produces unique

states as there is a unique binary representation of every integer. We can then use this

to represent every state in our system.

Consider a four site Heisenberg spin chain. As there are two degrees of freedom on

each site and four sites, we know that there are 24 = 16 states in our Hilbert space. From

our previous analysis we know that each integer from [0, 15] will map to a state in our
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Hilbert space. More directly we have

0

1

2

3

4

5

6

7

⌘

0000

0001

0010

0011

0100

0101

0110

0111

!

""""

"""#

""#"

""##

"#""

"#"#

"##"

"###

8

9

10

11

12

13

14

15

⌘

1000

1001

1010

1011

1100

1101

1110

1111

!

#"""

#""#

#"#"

#"##

##""

##"#

###"

####

(C.29)

Therefore, we can represent our entire Hilbert space with an array of size bn, where b is

the degrees of freedom on each site and n is the number of sites. The index of this array

represents a unique state in our Hilbert space, and each state is accounted for.

In section C.2 we learned how to apply our Hamiltonian. The result was applying a

sequence of local Hamiltonians. We therefore need a system to convert our array indices

into binary. Application of a local Hamiltonian will produce a state in our Hilbert space,

we therefore also require a method to convert a binary representation into an array index.

Fortunately, both of these things are rather trivial.

Converting a number m to base b for an n site system requires integer division of

m by b, n times. At each division store the resulting remainder. Reading this set of

remainders backwards is the base b representation of m. For example, finding the base 2

representation of 5 for a 4 site system is as follows

5 ÷ 2 = 2 rem 1

2 ÷ 2 = 1 rem 0

1 ÷ 2 = 0 rem 1

0 ÷ 2 = 0 rem 0

. (C.30)

Reading the remainders backwards give 0101 as required.
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Converting a base b number ib into a base 10 number i10 consists of multiplying the

digits of ib by increasing powers of b (right to left) and summing them. For example,

finding the base 10 representation of 0101 from base 2 is as follows

1 ⇥ 20 + 0 ⇥ 21 + 1 ⇥ 22 + 0 ⇥ 23

= 1 + 0 + 4 + 0

= 5

(C.31)

C.4.2 Applying the Hamiltonian

Now that we know how to represent the states of our Hilbert space with a vector, the

next logical step is to apply the Hamiltonian to this state. The first thing to note is that

we never calculate the full matrix, simply because it is too large. Instead when we ‘apply’

the Hamiltonian we recalculate its a↵ects. At this point it is convenient to recall our

local Hamiltonians Hij from equation C.11, and remember that this is applied to each

pair of neighbours. This is incredibly useful as it is easy to program Hij with a series of

if statements.

The following series of steps describe how to apply the Hamiltonian:

1. Create a second vector (the same size as the original) to store the application result.

2. Loop over each element of the original vector.

3. Save the value of the element Px as this represents the probability amplitude of this

state.

4. Convert the element index x to base b.

5. Loop over each digit of xb.

6. Apply Hij using a series of if statements. This will produce another state yb.

7. Convert yb to y10 (y in base 10).
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8. Access the element y10 of the second vector and add to it the corresponding coe�-

cient i.e. J ⇤ Px

9. If considering closed boundary conditions ensure the correct Hamiltonian H1n over

the connecting bond.

Remember the process begins with a normalised random vector to ensure overlap with

the ground state.

C.4.3 Calculating Eigenvalues and Truncation

At this point you should be able to generate a tri-diagonal matrix. The only thing left is

to find the eigenvalues of this matrix. To do this, I recommend using a diagonalisation

routine, many exist for every programming language [95].

The final thing left to understand is when to truncate the tri-diagonal matrix. We

know that the lowest lying eigenvalues of these converge exponentially quickly to the those

of the original, but when do we stop the routine? There are two ways to do this.

1. Compare the current lowest eigenvalue to the previous one, when the di↵erence is

almost zero it has converged.

2. Look at the last value of the tri-diagonal eigenvector associated with the lowest

eigenvalues, when its almost zero it has converged.

Point 1 is faster but not as accurate, while point 2 is slower but more accurate. The

speed is associated with the algorithm cost of each. Finding the eigenvalues of a matrix

scales as N3 while finding the eigenvectors scales as N4 where N is the size of the matrix.

So if a particular system has a high degeneracy, and hence requires many thousands of

iterations, point 2 will be much slower. Great care should be taken in choosing one of

these methods.

At this point I will mention the e↵ects of numerical accuracy when doing this routine.

The biggest issue is that of orthogonality. We have mathematically defined the set |ni
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Figure C.2: Convergence of Lanczos Eigenvalues
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to form an orthonormal basis, but in reality this is only true up to numerical accuracy.

When the deviations between these states becomes smaller than the accuracy available to

us, orthonormality is broken and states begin to reconverge. This is complicated further

by the fact that this happens at di↵ering points for each eigenvalue. In figure C.2 on

page 236 we see that after certain point eigenvalues begin to converge to the ones below.

For this reason we can only automate truncation to a certain degree and caution must be

taken.

You should now have all the knowledge required to write a Lanczos routine for the

Heisenberg model. However this is just the beginning, the next sections will introduce

optimisations and teach how to extract symmetries. With this the system sizes that are

accessible to you will drastically increase.
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C.5 Optimisations

In all the work up to now, we have been rather care free with our use of memory. That

is somewhat foolish as the entire game of exact diagonalisation is to do with memory

optimisation. In this section we will introduce two techniques that will save us memory;

one is simple and the other sophisticated. The first optimisation is concerned with finding

eigenvalues, where we will reduce the number of vectors required from three to two. The

second optimisation is concerned with the eigenvectors, where we will reduce the number

of vectors required from four to two.

C.5.1 Eigenvalues

This rather trivial optimisation will reduce the number of vectors required from three to

two. This gives a saving of two thirds in memory, which could be enough to get an extra

site or two. Let A and B represent the two vectors one uses in the computation. The

stages these vectors go through are:

A = |ni B = |n � 1i

A = |ni B = HA � bn�1B ) an = A · B

A = |ni B = B � anA ) bn = |B|

A = |ni B = B
bn

⌘ |n+ 1i

A = |n+ 1i B = |ni

(C.32)

Initially, we were required to store three vectors |n � 1i , |ni , |n+ 1i in order to run the

Lanczos routine. Thanks to this, we need only store A and B provided we follow the

advised procedure.

C.5.2 Eigenvectors

Using the optimisation discussed in the former section we instantly reduce the number

of vectors required to calculate the ground state by one. Though this is true, we can be
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more cunning using mathematics and get this down to two. The trick is to generate the

Lanczos algorithm where the basis automatically generates the ground state.

The three term recursion relationship developed in section C.3 wasH |ni = bn�1 |n � 1i+

an |ni + bn |n+ 1i. The aim is to find a similar relationship

H N = � N�1 + � N + � N+1. (C.33)

Where

 N =
NX

n=0

vn |ni , (C.34)

such that when N = T , where T is the size of the set vn,  T = |GSi.

First we apply the Hamiltonian to  N substituting in the definition and expanding

the sums.

H N = H
NX

n=0

vn |ni =
NX

n=0

vn (bn�1 |n � 1i + an |ni + bn |n+ 1i) (C.35)

As we have defined b�1 = 0 we can start the first summation from n = 0 and add a n = 0

term to the final sum without loss of generality, giving

H N =
N�1X

n=0

vn+1bn |ni +
NX

n=0

anvn |ni +
N+1X

n=0

vn�1bn�1 |ni . (C.36)

We know

bn�1vn�1 + anvn + bnvn+1 = ✏vn, (C.37)

where ✏ is the eigenvalue calculated. Substituting this into the above and adding extra
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terms to complete the sum yields

H N = ✏ N � vn+1bN |Ni + bNvN |N + 1i (C.38)

= ✏ N � vN+1

vN
bN( N �  N�1) + bN

vN
vN+1

( N+1 �  N) (C.39)

= (✏� bN(
vN+1

vN
+

vN
vN+1

)) N +
vN+1

vN
bN N�1 + bN

vN
vN+1

 N+1 (C.40)

We have arrived at our target and can simply read o↵ that

� =
vN+1

vN
bN , (C.41)

� = ✏� bN(
vN+1

vN
+

vN
vN+1

), (C.42)

� = bN
vN
vN+1

. (C.43)

As one can store the values of ✏, an, bn and the Lanczos basis eigenvector elements vn,

the coe�cients �, � and � can be calculated. This along with the three term recursion

relationship allows us to calculate the ground state using only two vectors, resulting in a

50% saving of memory.

C.6 Extracting Symmetries

Symmetries are staggeringly useful in physics; they drastically simplify problems. From

a numerical standpoint we will use them to reduce the Hilbert space of the problem. In

doing so we save memory and can therefore examine larger systems. In this section we will

go over two symmetries: z-spin Sz and translation invariance. We will generate look-up

tables as a means of saving memory.

Frequently, symmetries are simpler to calculate and diagonalise than the Hamiltonian.

In this case we can use the vectors that diagonalise the symmetry to block diagonalise the

Hamiltonian. We then run Lanczos in these blocks, which is quicker and more memory

e�cient than before. If S is a symmetry of the Hamiltonian H then S, by definition,
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commutes with H [H,S] = 0. Lets pick the set of vectors {|v1i} that diagonalise S with

eigenvalue s1

S |v1i = s1 |v1i . (C.44)

We can left and right multiply the commutator with |v1i and hv2| respectively

hv2| [H,S] |v1i = 0,

(s1 � s2) hv2|H |v1i = 0,
(C.45)

and as (s1 � s2) is non-zero by definition we are left with hv2|H |v1i = 0 which is the

definition of a block diagonal matrix.

[H,S] = 0 ) H =

2

6666666666666666664

2

66664
“s1”

3

77775

2

66664
“s2”

3

77775


. . .

�

3

7777777777777777775

, (C.46)

where the block matrices labelled with “sn” are the corresponding matrices for states with

eigenvalue sn for operator S.

The process is simple.

1. We apply our symmetry to each state in our Hilbert space and extract the corre-

sponding eigenvalue s.

2. Create a lookup table for the s you wish to examine.

3. Run your Lanczos routine for an initial vector the size of the shorter lookup table.

Use the lookup table to reference to the original states.

This process is detailed below for the symmetry Sz.
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C.6.1 Extracting Sz — Creating Lookup Tables

This symmetry is trivial to extract which makes it our first target. We have

Sz =
X

i

Si
z, (C.47)

where Si
z |"i = 1

2 and Si
z |#i = �1

2 . For each state in our Hilbert space we can easily

calculate and identify states with the same Sz. If we are considering all states with

Sz = s, then we should be using a Lanczos vector that only contains these states. However

generating states that have Sz = s from our array indices would be challenging to do in

general. Instead we create look-up tables. These are a pair of arrays that point to each

other’s indices. A ‘Long’ array (size of full Hilbert space) is used to point to the indices

of the ‘Short’ array (size of states with Sz = s). The ‘Short’ array is a reference to the

original basis; it points to the indices of ‘Long’. This way we can perform Lanczos with a

vector with the size of ‘Short’. An example of these two vectors for 4 sites, with Sz = 0

is shown below where we have reduced the size of the space from 16 to 6.
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Long =

2

666666666666666666666666666666666666666666666664

�

�

�

0

�

1

2

�

�

3

4

�

5

�

�

�

3

777777777777777777777777777777777777777777777775

(""##)

("#"#)

("##")

(#""#)

(#"#")

(##"")

Short =

2

666666666666664

3

5

6

9

10

12

3

777777777777775

(C.48)

Exercise: Show the ground state eigenvalue always exists in the Sz = 0 subspace.

C.6.2 Using Sz Conservation to Shorten the Look Up Tables

Though extracting Sz has proven useful, the cost of storing a vector of size 2n is still a hefty

cost of memory. In this section I will highlight how to be more artful while conserving

Sz. This will allow one to use two arrays of length 2
n

2 as look-up tables instead of one 2n

array, making a massive saving in memory.

This trick relies on understanding the nature of number ordering and Sz conservation

in separate fractions of states. Let’s first describe the goal and then spell out how to

achieve it. The process is as follows
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1. Take the state that is being referenced and cut it into two states half the size each.

If the state has an odd number of sites make the left half state the size of the smaller

odd number.

2. Take the left and right half state and convert them, individually, into a base 10

number.

3. Look up the value corresponding to the element of the left half state number in the

left look up table and the same for the right side.

4. Add these two numbers together and they should reference the index of the short

look up table.

As this is not trivial I will highlight it with an example of 8 sites for all possible values

of Sz. The states on the left are the binary decompositions of numbers, as a reference.

The vectors on the right are the look up tables, grouped in sets of two, named ‘Left’ and

‘Right’ for what side they are on. The ‘Long’ lookup table has been omitted as it is 256

in length, but the ‘Short’ lookup table for Sz = 4 and Sz = 0 is given. The look up tables

are given by:

ShortSz=4 =


0

�
(C.49)

ShortSz=0 =

2

666666666666666666664

15

23

27

29

30

39

43

45

3

777777777777777777775

2

666666666666666666664

46

51

53

54

57

58

60

71

3

777777777777777777775

2

666666666666666666664

75

77

78

83

85

86

89

90

3

777777777777777777775

2
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Sz = 4 Sz = 3 Sz = 2 Sz = 1 Sz = 0

Lets begin with a trivial example. Consider the Sz = 4 state � ="""""""" where

""""""""! 0 in base 10. We then split the state in two and get �L ="""" and �R ="""".

Converting these into base 10 (using the reference table on the left) we get """"! 0.

Then we look up these numbers in the left and right lookup tables for the appropri-

ate Sz. This gives LeftSz=4(0) = 0 and RightSz=4(0) = 0. If this method works then

Short(Left(�L) + Right(�R)) should equal � in base 10. Sure enough LeftSz=4(0) +

RightSz=4(0) = 0 + 0 = 0, and ShortSz=4(0) = 0 which is equivalent to � in base 10.

Now lets move on to a more complicated example. Consider the Sz = 0 state

� =#""#"##"! 150. Splitting this in two give �L =#""#! 9 and �R ="##"! 6. Sure

enough LeftSz=0(9) + RightSz=0(6) = 39 + 2 = 41, and ShortSz=0(41) = 150 which is
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equivalent to � in base 10. This procedure has converted a lookup table of length 256 to

two tables of length 16. This is a monumental saving in memory.

In order to create these look up tables first we must appreciate what Sz conservation

means to each state. As we are in the subspace of a given Sz = s each state must have

Sz = s, though this may sound obvious the reason this trick works is that if we know the

Sz value of the left half of the state we automatically know the Sz value of the right half of

the state. This allows the information to split up. The second thing to appreciate is that

numbers always appear in the same order, this is what controls the values of LongLeft.

In order to create the look up tables, we do the following procedure:

1. Loop through all the integers from 0 to 2n checking if their corresponding states

have the desired Sz, if so adding that number to ‘Short’.

2. Loop through ‘Short’, converting the numbers to base b and split them into two.

Convert the left half to base 10 and if it is the first time this number appears

reference the original (long) number into LongLeft, where the index is the left half

number.

3. Loop through all possible Sz which can occur for the right look-up table while

running through LongRight, converting each index into base b. When a state in the

right look up table has the correct Sz LongRight of that state becomes its numerical

position order for all the states with the same Sz.

As the final step is complex, I’ve highlighted the details in the example below for Sz = 0
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Though it is possible to keep doing this splitting, the improvements are negligible as

the controller of memory now becomes the ‘Short’ look-up table and the state vectors.

One must focus on optimising memory usage for them instead, which leads us to the

symmetry that is translational invariance.

C.6.3 Translational Invariance

Translational invariance is a symmetry that is much more di�cult to extract, however it

is well worth it. Upon extraction the Hilbert space goes from bn to ⇡ bn

n . This symmetry
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Figure C.3: Translational Invariance of Two States

A visual comparison of two states which are identical under translation. When we represent
them however they seem distinct. An appropriate linear superposition of the set of identical

states under translation would however respect the symmetry.

only exists in systems with closed boundary conditions. Consider the two systems in

figure C.3 on page 247. It is apparent that they are equivalent just rotated by two lattice

sites, but our linear representation causes them to be distinct. In this section we will

formulate translational invariance, applying the Hamiltonian to transitionally invariant

states and changing the Lanczos routine to adjust for this.

Consider the translation operator T̂ which, when acted on state |"""#i, does

T̂ |"""#i = w |#"""i . (C.51)

As we have periodic boundary conditions upon four iterations we return back to the

original state, in general this condition becomes

T̂ n | ni = | ni = wn | ni , (C.52)

where n is the number of sites in the state  n. From this we can define w as the root of
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unity obeying

wn = 1. (C.53)

There are n solutions to this equation obtained by

wn = e2⇡im, (C.54)

where m is an integer, giving

w = e
2⇡im

n . (C.55)

To utilise translational invariance one must group together states that are translated

copies of one another. These are put together into a normalised state that is invariant

under translation. In the case of four sites the states are given by

|0i = |""""i ,

|1i = 1
2 (|"""#i + w |#"""i + w2 |"#""i + w3 |""#"i) ,

|2i = 1
2 (|""##i + w |#""#i + w2 |##""i + w3 |"##"i)

|3i = 1+w2

2
1p
2
(|"#"#i + w |#"#"i) ,

|4i = 1
2 (|###"i + w |"###i + w2 |#"##i + w3 |##"#i) ,

|5i = |####i .

(C.56)

Note that due to the additional translational symmetry of state |3i it has the added

property that for w2 = �1 |3i = 0. When performing the numerics the existence of these

vanishing states must be checked. Upon application of the Hamiltonian we get

H |0i = |0i ,

H |1i = 1
2(w + w�1) |1i ,

H |2i = 1+w+w2+w3

4

p
2 |3i ,

H |3i = � |3i + (1+w2)(1+w)
4

p
2 |2i ,

H |4i = 1
2(w + w�1) |4i ,

H |5i = |5i .

(C.57)
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These can be trivially diagonalised and give the following eigenvalues for w = 1, i,�1,�i

0 : ✏ = 1 (C.58)

1 : ✏ = 1, 0, 0,�1 (C.59)

2, 3 : ✏ = 1, 0, 0, 0,�1,�2 (C.60)

4 : ✏ = 1, 0, 0,�1 (C.61)

5 : ✏ = 1 (C.62)

The aim is create a general set of rules such that we only ‘apply’ the Hamiltonian to

the first referenced state, and have it as if we applied it to the entire state. The rules

generated in the case of the Heisenberg model is:

1. Check if the state that the Hamiltonian is being applied to exists, if it does not then

skip to the next state.

2. Apply the Hamiltonian as normal.

3. Use the look up table and find the resulting state to find degeneracy, number of

translations from original state, and reference state.

4. Check if the resulting state exists, if not then skip to the next state.

5. The matrix element references the reference state and its coe�cient is

1

2

r
DI

DF
wN�T , (C.63)

where DI is the number of states in the original reference state, DF is the number

of states in the final reference state, and T is the number of translations it takes to

get from the initial state to the resultant state.

Checking whether a state exists or not requires an appreciation of how many applica-

tions of T̂ are required to return the original state. If there are N states or 1 state in an
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invariant state then it must exist. However, if there are a fraction of N states then it is

more complicated. Take for example, the state |3i, when creating it we would translate

the state |"#"#i four times giving

(1 + w2) (|"#"#i + w |#"#"i) . (C.64)

In the case w = ±1 this state exists, and it does not otherwise, therefore this check must

be performed whenever referencing |3i.

One may think as we are using complex numbers that the Lanczos matrix must also be

complex, this however is not the case. Firstly, as the Hamiltonian is hermitian its diagonal

components must be real. Transforming to the Lanczos basis conserves this therefore all

an are real. Secondly, referring back to when the algorithm was being derived we had a

choice of gauge when performing the modulus, this freedom is still available and we can

choose the gauge where all bn are also real without loss of generality.

C.7 2D Systems

This technique is not restricted to just one dimensional systems. We can extend to two or

even three but the result is rather limited. This is due to system scaling with dimension.

Say we can examine a 36 site linear chain, this corresponds to a 6 ⇥ 6 2D square lattice

and a 3 ⇥ 3 ⇥ 4 3D cubic system. We are drastically limited by system size in higher

dimensions hence our results are of less use. Nevertheless, we carry on as some results are

better than none.

There are two ways we can extend into two dimensions. The obvious way to do it is

to just create a square lattice with closed boundary conditions in both Cartesian direc-

tions. Doing this allows us to extract translational invariance for each axis, resulting in a

moderately large saving in memory. Unfortunately, there are issues with this approach.

Firstly, extracting translational invariance for each direction frequently comes at the cost

of a dense matrix. The denser a matrix the more time an algorithm takes, sometimes
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Figure C.4: Helical Boundary Conditions on a Cylinder

A geometric representation of helical boundary conditions. Each site is connected to the ones
next to it but also the ones m away, where in this diagram m = 6.

to a point where it becomes the limiting factor. Secondly, as we are limited to rather

small systems we introduce unwanted frustrated geometries into the system. Take a 3⇥ 3

square lattice depicted in figure C.5 on page 252, we are introducing triangles into our

examination, notorious for generating frustrated systems.

Instead, I recommend using helical boundary conditions [96] which are depicted in

figures C.5 on page 252 and C.4 on page 251. This is where we examine a one dimensional

system but introduce long range bonds. These can be thought of connecting di↵erent sites

across a helix. In the thermodynamic limit this system would exhibit a 1D to 2D crossover.

Though we can only extract translational invariance in one direction, this approach is less

susceptible to small system frustration and can finite size scale better. Mathematically

we write the helical boundary condition Hamiltonian as

Hhelix = �J
X

i

Si · Si±1 + Si · Si±m, (C.65)

where m characterises the diameter of the helix. The number of sites in the system is

given by n = 1 +m2, as this ensures square symmetry.

At this point we have reached the limit of our examination of the Heisenberg model.

We know how to represent states numerically, apply a Hamiltonian, calculate the lowest

lying eigenvalues and eigenvectors, optimise to use only two vectors, extract Stot
z and

translational invariance, and examine two dimensional systems. There is one thing yet to
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Figure C.5: Helical and 2D Square Boundary Conditions

2D periodic boundary conditions, square (left) and helical (right). In each system there are only
nine sites but the way they are connected is di↵erent. A square lattice is a series of connected
rings of size three. Helical boundary conditions are a 1D chain with m neighbour interactions,

in this case m = 3.

learn: how to apply everything we know to more general fermionic systems.

C.8 More General Fermionic Systems

There is more to life than quantum magnets, there are also metals! The archetypal

model for metallic systems is the Hubbard model [84]. It treats chemical bonding and

the screened Coulomb repulsion in an elementary yet elegant way. In this section we will

briefly introduce the Hubbard model, explain the new issues that arise, and introduce

another symmetry that can be extracted. The model is given by

H = �t
X

hiji�

c†i�cj� + U
X

i

c†i"ci"c
†
i#ci#, (C.66)

where t is the strength of chemical bonding, and U is the on-site screened Coulomb

repulsion. The operators cj� are second quantised fermionic operators that characterise

electrons. If these are unfamiliar, they are explained in appendix A.

This model brings with it increased degrees of freedom and non-trivial commutation
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relations. The four states that appear are

|0ii , c†i" |0ii , c†i# |0ii , c†i"c
†
i# |0ii , (C.67)

where |0ii is the vacuum on site i. This is a great annoyance as it exponentially increases

our Hilbert space, but there is nothing we can do. Along with this comes non-trivial

commutation relations. Fermions anti-commute which results in c†i�c
†
�̄ = �c†i�̄c

†
i�. This

means we have to be cautious when applying operators to our states. We must also pick

a system by which to order our fermions. The one I choose is ordered by site, and if there

are multiple electrons on a site the " electron is ordered before the #. An example state

for a 6 site system with vacancies on the third and sixth site is

c†1"c
†
2"c

†
4#c

†
5"c

†
5# |0i .

Note that H is composed of local operators, just like the Heisenberg model. We can

write H =
P

hiji Hij where Hij is a 16 ⇥ 16 matrix too large for this document.

Conveniently there is another symmetry we can extract for fermionic systems: particle

number N . It is given by

N =
X

i�

c†i�ci�. (C.68)

This is extracted in just the way Sz was before.

C.8.1 Anti-Periodic Boundary Conditions

Closed boundary conditions are about gaining a phase when carriers travel around the

system. For anti-periodic boundary conditions this phase is tuned such that n hops gains

a phase of �1. This can be simply implemented in fermionic systems by changing the

sign of t on the H1n bond.

This is why things weren’t as simple for the Heisenberg model. Closed boundary condi-

tions are to do with the motion of carriers. The underlying motion within the Heisenberg
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Figure C.6: Anti-Periodic Boundary Conditions — Translational Invariance

Two ways to represent anti-periodic boundary conditions. On the left is a trivial implementation
but is not translationally invariant, while the right is for an appropriate choice of phase �. If

� = 2⇡
6 the system would be both anti-periodic and translationally invariant.

model is only seen after performing the Holstein-Primako↵ transformation [97]. Simply

changing the sign of the final bond would not work, as it is not an commutator conserving

transformation. Attaining equation C.13 is left as an exercise for an enthusiastic reader.

We can also consider anti-periodic boundary conditions with translational invariance,

but not in their current state. We must transmute the original boundary conditions as is

depicted in figure C.6 on page 254. The phase shift must be smeared across the lattice.

This means t ! tei⇡/n for forward operators and t ! te�i⇡/n for backward operators.

More accurately

H = �t
X

i�

ei⇡/nc†i�ci+1,� + e�i⇡/nc†i+1,�ci�. (C.69)

Now we have reached the end of what there is to learn for the Lanczos algorithm. In

principle there may be other symmetries in the systems you choose to examine. The tech-

niques you have learned from this document should help you extract them and examine

larger systems still.
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C.9 Results

In this section we give some results that can be used as reference to compare against.

They are accurate to 16 decimal places.

Table C.1: Lowest eigenvalue Heisenberg model for J = 1, varying boundary conditions

and system sizes

n Open Periodic

10 -4.258035207282886 -4.515446354492047

11 -4.632093302359579 -4.718936362524425

12 -5.142090632840548 -5.387390917445213

13 -5.525322097083683 -5.629584329744325

14 -6.026724661862179 -6.263549533547023

Table C.2: Lowest eigenvalue Heisenberg model for J = �1, varying boundary conditions

and system sizes

n Open Periodic

10 -2.250000000000008 -2.500000000000008

11 -2.500000000000001 -2.74999999999999

12 -2.749999999999988 -3.000000000000004

13 -2.999999999999997 -3.250000000000007

14 -3.249999999999934 -3.500000000000009
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Table C.3: J = 1, n = 4 Heisenberg model, all eigenvalues

Open Periodic

-1.616025403784439 -2

-0.9571067811865481 -1

-0.9571067811865465 -1

-0.9571067811865465 -0.9999999999999999

-0.25 0

-0.2499999999999998 0

-0.2499999999999998 0

0.1160254037844387 0

0.4571067811865476 1.211175157689102e-17

0.4571067811865476 1.211175157689102e-17

0.4571067811865476 5.548233325764073e-17

0.7499999999999998 0.9999999999999992

0.7499999999999998 0.9999999999999992

0.75 1

0.75 1

0.7500000000000002 1.000000000000001
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Table C.4: J = �1, n = 4 Heisenberg model, all eigenvalues

Open J = �1 Periodic J = �1

-0.7500000000000002 -1.000000000000001

-0.75 -1

-0.75 -1

-0.7499999999999998 -1

-0.7499999999999998 -1

-0.4571067811865476 -5.548233325764073e-17

-0.4571067811865476 0

-0.4571067811865476 0

-0.1160254037844387 0

0.2499999999999998 0

0.2499999999999998 1.211175157689102e-17

0.25 1.211175157689102e-17

0.9571067811865465 0.9999999999999992

0.9571067811865465 0.9999999999999992

0.9571067811865481 0.9999999999999999

1.616025403784439 2
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APPENDIX D

MEAN-FIELD THEORY —

SOLVING MODELS WHEN

INTERACTIONS ARE

MODERATE

Noteworthy physical problems are rarely solved trivially. In many cases exact solutions

don’t exist and hence approximate solutions must be used. In this appendix we will

discuss one such technique: Hartree Fock mean field theory [67]. This is the process of

creating an e↵ective single particle theory from a many body Hamiltonian. In principle

a particle will feel an e↵ective field from the others in the system. This field a↵ects the

behaviour of that particle which in turn a↵ects the behaviour of the field. This is a

self consistent problem. Hartree Fock mean field theory is a variational solution to the

problem and hence provides the best single particle solution which is an underestimate

for the solution [67]. Nevertheless, when a problem is weakly correlated it is a remarkably

e↵ective tool.

The process is rather simple: calculate the average energy, create an e↵ective Hamil-

tonian, and self consistently solve for the parameters. These steps are detailed in the
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following sections, which is followed by two examples one paramagnetic and the other

magnetic.

D.1 Calculating the Average Energy — Slater De-

terminants

The first step in Hartree Fock mean field theory is to calculate the average energy. This

is done using Slater determinants [68]: a technique by which to calculate many particle

correlations in terms of single particle correlations. Mean field theory comes in many

‘flavours’ based on assumptions one puts in. For example we can assume the system is

paramagnetic and hence there is no spin dependence, or the system is transnationally

invariant and there is no site dependence. Mathematically paramagnetism corresponds

to

hc†i"ci"i = hc†i#ci#i (D.1)

hc†i"cj"i = hc†j#ci#i (D.2)

hc†i"cj#i = hc†i#cj"i = 0 (D.3)

and translational invariance corresponds to

hc†i�cj⌧ i = hc†i+n�cj+n⌧ i. (D.4)

These are defined before the calculation. Di↵erent assumptions lead to di↵erent physics.

The Slater determinant is defined as

h
n=NY

n=1

c†n

m=2NY

m=N+1

cmi = detA, (D.5)

where Aij = hc†ic2N�(j�1)i. As an explicit example the following three particle term is
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represented as

hc†1c
†
2c

†
3c4c5c6i =

����������

hc†1c6i hc†2c6i hc†3c6i

hc†1c5i hc†2c5i hc†3c5i

hc†1c4i hc†2c4i hc†3c4i

����������

. (D.6)

If, for example, the only permitted correlations are ↵ = hc†1c4i, � = hc†2c6i and � = hc†3c4i

then the previous equation simplifies to

hc†1c
†
2c

†
3c4c5c6i =

����������

↵ 0 0

0 � 0

0 0 �

����������

= ↵��. (D.7)

If and when many particle correlations occur within the Hamiltonian, the Slater determi-

nant is used to calculate them in terms of single particle correlations.

Our Hamiltonian is defined by second quantized operators, the average of which defines

the average energy

E({⇢}) = hHi, (D.8)

where {⇢} denotes the set of correlations ⇢ allowed in our system.

261



APPENDIX D. MEAN-FIELD THEORY — SOLVING MODELS WHEN
INTERACTIONS ARE MODERATE

Derivation of Slater Determinant (Not Necessary for Understanding)

Consider a single particle Hamiltonian which has been diagonalised

H =
X

jj0

Hjj0f
†
j fj0 =

X

n

✏nd
†
ndn, (D.9)

where H has been diagonalised using unitary operators defined as

X

n

Ujndn = fj
X

n

d†Unj = f †
j . (D.10)

Consider the following two particle correlation

hf †
j1f

†
j2fj3fj4i

X

n1,n2,n3,n4

Uj1n1Uj2n2hd†n1
d†n2

dn3dn4iU
†
j3n3

U †
j4n4

, (D.11)

where we have diagonalised the operators. There is a state to take the average with

respect to, and in general any state can be written as

|Statei =
X

↵

a↵ |↵i , (D.12)

where the set of states {|↵i} are the eigenstates. For hd†n1
d†n2

dn3dn4i to be non-zero

we must be left with the same state after acting our operators on it. This only

occurs when n1 = n4 & n2 = n3 or n1 = n3 & n2 = n4, where the latter picks up

a Fermi minus sign. Therefore hd†n1
d†n2

dn3dn4i = �n1n4�n2n3 � �n1n3�n2n4 which upon

substitution and converting back to the original operators gives

hf †
j1f

†
j2fj3fj4i = hf †

j1fj4ihf
†
j2fj3i � hf †

j1fj3ihf
†
j2fj4i (D.13)

⌘

�������

hf †
j1fj4i hf †

j2fj4i

hf †
j1fj3i hf †

j2fj3i

�������
. (D.14)

This is easily generalised to a n ⇥ n matrix for an n particle correlation.
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D.2 Creating an E↵ective Hamiltonian—Wicks The-

orem

The next step is to calculate an e↵ective single particle Hamiltonian. We do this using

the average energy and Wicks theorem [69]. This is the prescription

HEFF =
X

{⇢}

⇢̂
@E

@⇢
+ E � ⇢

@E

@⇢
, (D.15)

where ⇢̂ is the single particle operator that generates ⇢. For example if ⇢ = hc†1c2i then

⇢̂ = c†1c2. This resulting Hamiltonian should then be diagonalised. This will be used to

solve for the self consistent parameters.

D.3 Solving for Self Consistent Parameters

At this point we have an average energy in terms of single particle correlations and a

Hamiltonian in terms of diagonal operators. However, these correlations are only defined

and must be solved for. This process is simple, we represent our correlations in terms of

the diagonal operators and use

hc†l cl0i =
Z

C

d✏

2⇡i
f(✏� µ)Gl0l(✏), (D.16)

where f(✏� µ) is the Fermi function and µ is the chemical potential and

G(✏) = [✏� HEFF ]�1, (D.17)

is the resolvent.

The result is often a self consistent sum or integral equation. Sometimes these can

integrated directly to produce a result, but often it must be solved for numerically via an
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iterative routine. Mathematically this would correspond to

x =

Z
dkF (k, x), (D.18)

numerically this corresponds to

xn =

Z
dkF (k, xn�1), (D.19)

which xn exponentially converges to the solution as n ! 1. We simply provide an initial

guess x0 and iterate this until numerical convergence.

Now that we have formulated Hartree Fock mean field theory we present two examples.

D.4 Example: Paramagnetic and Magnetic Mean Field

Theory

In this section we will implement Hartree Fock mean field theory on a strange Hamiltonian.

We will do both paramagnetic and magnetic field theory comparing the results. The

Hamiltonian in question is

H = �t
X

hiji�

c†i�cj� ��
X

hiji

c†i"ci"c
†
j"cj". (D.20)

D.4.1 Paramagnetic Mean Field Theory

In this subsection we do something ridiculous for the sake of an easy calculation: cal-

culate a paramagnetic mean field theory for a Hamiltonian that is clearly susceptible to

magnetism. For a paramagnetic mean field theory we assume the result is independent of

spin. We will also assume translational invariance. For this reason we state the correla-

tions that exist are n0 = hc†i�ci�i, n1 = hc†i�cj�i, and that each spin species occur in equal

quantities.
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The first step is to calculate the average energy. This is given by

E = hHi = �t
X

hiji�

hc†i�cj�i ��
X

hiji

hc†i"ci"c
†
j"cj"i. (D.21)

For the second term we are required to use a Slater determinant where

hc†i"ci"c
†
j"cj"i = hc†j"c

†
i"ci"cj"i (D.22)

=

�������

hc†j"cj"i hc†i"cj"i

hc†j"ci"i hc†i"ci"i

�������
(D.23)

=

�������

n0
2

n1
2

n1
2

n0
2

�������
(D.24)

=
n2
0

4
� n2

1

4
. (D.25)

This gives the average energy as

E = �t
X

hiji�

n1 ��
X

hiji


n2
0

4
� n2

1

4

�
(D.26)

= �2Ztn1 � Z
�

4
[n2

0 � n2
1], (D.27)

where sum over neighbours gives Z the coordination number (the number of nearest

neighbours) and the sum over spin gives a factor of two.

The next step is to calculate the e↵ective Hamiltonian using Wick’s theorem. The

term n1 ! c†i�cj�, n
2
0 ! 2n0c

†
i�ci� + n2

0, and n2
1 ! 2n1c

†
i�cj� + n2

1 which gives

E = �t
X

hiji�

n1 ��
X

hiji


n2
0

4
� n2

1

4

�
(D.28)

! HEFF = �t
X

hiji�

c†i�cj� � �

4

X

hiji

h
2n0c

†
i�ci� + n2

0 � 2n1c
†
i�cj� � n2

1

i
(D.29)

= �[t+
�

4
n1]
X

hiji�

c†i�cj� � Zn0
�

4

X

i�

c†i�ci� � Z
�

4
[n2

0 � n2
1] (D.30)
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This is diagonalised with a Bloch transformation [93] (see Appendix B.8 if this is unfa-

miliar) giving

HEFF =
X

k�

(�[t � �

4
n1]Z�1,k � Z

�

4
n0)c

†
k�ck� � Z

�

4
[n2

0 � n2
1], (D.31)

where �1,k is the nearest neighbour structure factor.

The final step is to calculate the parameters n0 and n1. For this we require the

resolvent G(✏) = [✏� HEFF ]�1, which in our case gives

G(✏) =
�kk0

✏+ [t � �
4 n1]Z�1,k + Z�

4 n0)
. (D.32)

In terms of diagonal operators, n0 is

n0 = hc†i�ci�i =
X

k

hc†k�ck�i, (D.33)

and by using equation D.16 this is

n0 =
X

k

Z

C

d✏

2⇡i
f(✏� µ)

1

✏+ [t � �
4 n1]Z�1,k + Z�

4 n0)
, (D.34)

and by use of the Cauchy residue theorem [98] this is

n0 =
X

k

f(�[t � �

4
n1]Z�1,k � Z

�

4
n0 � µ), (D.35)

which can be summed over or integrated in the continuum limit [99] where

n0 =

Z
ddk

(2⇡)d
f

✓
�[t � �

4
n1]Z�1,k � Z

�

4
n0 � µ

◆
. (D.36)

Repeating the process for n1 we have

n1 =

Z
ddk

(2⇡)d
f

✓
�[t � �

4
n1]Z�1,k � Z

�

4
n0 � µ

◆
�1,k. (D.37)
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These self consistent integral equations can be solved numerically, and the resulting energy

is depicted in figure D.1 on page 269.

D.4.2 Magnetic Mean Field Theory

From the Hamiltonian we can see that the system favours neighbouring spins to be parallel.

For this reason we examine a magnetic mean field theory. The only di↵erence is the

distinguishing between spin occupation, namely n�
↵ = hc†i�ci+↵,�i. This gives the average

energy as

E = �Zt(n"
1 + n#

1) � Z�
h
n"
0

2 � n"
1

2
i
, (D.38)

for which the e↵ective Hamiltonian is

HEFF =
X

hiji

(�[t � 2�n"
1]c

†
i"cj" � tc†i#cj#) � 2n"

0Z�
X

i

c†i"ci" � Z�
h
n"
0

2 � n"
1

2
i

(D.39)

which when Bloch transformed gives

HEFF =
X

k

(�[t � 2�n"
1]Z�1,k � 2n"

0Z�)c†k"ck" � tZ�1,kc
†
k#ck# � Z�

h
n"
0

2 � n"
1

2
i

(D.40)

where �1k is the nearest neighbour structure factor. We can represent this with a 2 ⇥ 2

matrix equation

HEFF =
X

k


c†k", c†k#

�
2

64
�[t � 2�n"

1]Z�1,k � 2n"
0Z� 0

0 �tZ�1k

3

75

2

64
ck"

ck#

3

75�Z�
h
n"
0

2 � n"
1

2
i
.

(D.41)

This matrix is subtracted from ✏ and inverted to give the resolvent

G(✏) =

2

64
1

(✏+(t�2�n"
1)Z�1k+2n"

0Z�)
0

0 1
(✏+tZ�1k)

3

75 . (D.42)
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We can then use this to calculate the correlations

n"
0 = hc†i"ci"i =

X

k

hc†k"ck"i (D.43)

=
X

k

Z

C

d✏

2⇡i
f(✏� µ)G""(✏) (D.44)

=
X

k

Z

C

d✏

2⇡i
f(✏� µ)

1

(✏+ (t � 2�n"
1)Z�1k + 2n"

0Z�)
(D.45)

=
X

k

f
⇣
�
h
t � 2�n"

1

i
Z�1k � 2n"

0Z�� µ
⌘

(D.46)

=

Z ⇡

�⇡

ddk

(2⇡)d
f
⇣
�
h
t � 2�n"

1

i
Z�1k � 2n"

0Z�� µ
⌘
, (D.47)

where f(x) is the Fermi function. This is a self consistent integral equation for n"
0 which

must be solved for numerically. Repeating this process gives

n#
0 =

Z ⇡

�⇡

ddk

(2⇡)d
f (�tZ�1k � µ) , (D.48)

n"
1 =

Z ⇡

�⇡

ddk

(2⇡)d
f
⇣
�
h
t � 2�n"

1

i
Z�1,k � 2n"

0Z�� µ
⌘
�1,k, (D.49)

n#
1 =

Z ⇡

�⇡

ddk

(2⇡)d
f (�tZ�1,k � µ) �1,k, (D.50)

we numerically solve these self consistent integral equations by iteration and varying the

controlling parameter µ. The result of which is depicted in figure D.1 on page 269.

In this appendix we outlined the simple three step process to perform Hartree-Fock

mean field theory. This was then detailed with a two part example where the importance

of correctly picking assumptions was highlighted.
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Figure D.1: Paramagnetic and Magnetic Energy of Example Hamiltonian
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The average total energy per spin per site of the example Hamiltonian. At low occupancy there
is little di↵erence between the energies. As occupancy increases the system prefers magnetism

in order to gain more of the � energy. In this calculation �
t = 0.2.
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APPENDIX E

IMPURITY THEORY — EXACT

SOLUTIONS TO PARTICULAR

MODELS

In noteworthy physical problems the Hamiltonian is rarely solved trivially. In this chapter

we present a powerful mathematical technique which can give access to exact results [66].

If a problem can be split into an exactly solvable component and an ‘impurity’ component

that only a↵ects a finite number of elements, it can be solved exactly. This impurity

distorts the exact solution in a way that can be analytically dealt with. We will begin by

formulating the mathematics and follow this up with an example.

E.1 Theory

Before we begin let’s sketch the theory. The key object in this analysis is the resolvent.

If the Hamiltonian can be split into an exactly solvable component and an ‘impurity’,

then we can split the resolvent in a similar manner. This can then be used to provide

an eigenvalue equation which can subsequently be solved for a binding energy. Now let’s

detail the theory.

271



APPENDIX E. IMPURITY THEORY — EXACT SOLUTIONS TO PARTICULAR
MODELS

This method relies on understanding and dealing with the resolvent

G(✏) = [✏� H]�1, (E.1)

in which ✏ is a variable and H the Hamiltonian of the system. In its diagonal basis the

resolvent can be written as

G(✏)nn0 =
�nn0

✏� En
, (E.2)

where En are the energy eigenvalues of H. From this it is clear to see that the poles of

G(✏) are the energy eigenvalues of H.

Let’s see how the resolvent relates to the eigenfunctions of H. Consider the states

| nii where
P

i0 Hii0 | (n)
i0 i = En | nii. These can be used as a unitary transformation as

they diagonalise the Hamiltonian. Using this we get the spectral representation of the

resolvent

G(✏)ii0 =
X

nn0

| (n)
i iG(✏)nn0 h (n0)

i0 | =
X

n

| (n)
i i h (n)

i0 |
✏� En

. (E.3)

The resolvent has poles at the energy eigenvalues of H whose residues are the wavefunc-

tion.

In the following subsections we explicitly formulate how to calculate the ground state

energy and its wavefunction.

E.1.1 Energy Eigenvalues

This technique relies on having a Hamiltonian that can be split in the following manner

H = HE +HI , (E.4)

where H is the full Hamiltonian, HE is the exactly solvable Hamiltonian, and HI is the

‘impurity’ which only has a finite number of non-zero eigenvalues. This number is directly

related to the dimension of the final eigenvalue problem and thus must be small for the

tractability of the solution.
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The next step is to manipulate the resolvent to ‘split’ it in a similar manner to the

Hamiltonian where all the ‘information’ for the exact solution is in one component and

the impurity in the other. We begin by substituting H into G(✏)

G(✏) = [✏� HE � HI ]
�1, (E.5)

we then factorise GE(✏) = [✏� HE]�1

G(✏) = GE(✏)[1 � HIGE(✏)]
�1, (E.6)

which is manipulated in the following manner

G(✏) = (1 +GE(✏)HI +GE(✏)HIGE(✏)HI + . . .)GE(✏) (E.7)

= GE(✏) +GE(✏) (HI +HIGE(✏)HI + . . .)GE(✏) (E.8)

= GE(✏) +GE(✏)⌃(✏)GE(✏). (E.9)

From this we can see there are two sources of poles of G(✏), GE(✏) and ⌃(✏). The poles

of GE(✏) are simply the eigenvalues of HE, but we are interested in the poles due to the

addition of HI . Therefore we must calculate the poles of

⌃(✏) =
⇥
H�1

I � GE(✏)
⇤�1

, (E.10)

where we have projected onto the non-zero eigenbasis of HI to ensure an inverse. This is

equivalent to solving the eigenvalue equation

⌃(✏)�1 |�i =
⇥
H�1

I � GE(✏)
⇤
|�i = 0, (E.11)

which upon substitution of |�i = HI |�i yields

|�i = GE(✏)HI |�i . (E.12)
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This calculation involves a finite dimensional inverse, controlled by the number of states

a↵ected by HE, and is tractable for small matrices.

At this point we have two independent methods to calculate GE(✏), the sum (E.3) and

the eigenvalue equation (E.12), which we can equate to solve for ✏. If this energy is lower

than the ground state energy of HE then there is a bound state. In the next section we

formulate how to calculate the wavefunctions of the bound states.

E.1.2 Wavefunctions of Bound States

In this section we will calculate the wavefunction of the bound state En0 . We begin with

the spectral representation of the resolvent

G(✏)ii0 =
X

n

| (n)
i i h (n)

i0 |
✏� En

, (E.13)

and split the sum to pick out the En0 term

G(✏)ii0 =
X

n 6=n0

| (n)
i i h (n)

i0 |
✏� En

+
| (n0)

i i h (n0)
i0 |

✏� En0
. (E.14)

However we also have

G(✏)ii0 = GE(✏) +GE(✏)⌃(✏)GE(✏), (E.15)

and therefore

X

n 6=n0

| (n)
i i h (n)

i0 |
✏� En

+
| (n0)

i i h (n0)
i0 |

✏� En0
= GE(✏) +GE(✏)⌃(✏)GE(✏). (E.16)

By calculating the residue of G(✏) at ✏ = En0 , from equation (E.16) we get

| (n0)
i i h (n0)

i0 | = GE(En0)�(En0)GE(En0), (E.17)
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Figure E.1: Linear Chain With a Funny Atom

�

Tight binding chain with a funny atom highlighted in red. Gray lines correspond to available
hops from one atom to the next. If an electron is situated on the red atom it gains energy �.

where �(En0) is the residue of ⌃(✏) at ✏ = En0 . By representing �(En0) = |'(n0)i h'(n0)| we

can see the wavefunction of the bound state En0 is given by

| (n0)
i i = GE(En0) |'(n0)i . (E.18)

In this section we formulated the mathematics to exactly calculate the bound state

eigenvalue and eigenvector of systems with H = HE + HI . In the following section we

implement this technique with an example.

E.2 Implementation

Like many mathematical techniques this is best explained with an example. We consider

a linear chain with a ‘funny’ atom and examine whether this atom creates a bound state.

The system is depicted in figure E.1 on page 275. First we will calculate the bound state

energy and then its associated wavefunction.

E.2.1 Bound State Energy

The problem is a simple tight binding Hamiltonian with one site gaining extra energy,

the Hamiltonian for this problem is given by

H = �t
X

hiji

c†icj ��c†0c0. (E.19)
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Note how this Hamiltonian can be split into an exactly solvable component HE and an

impurity component HI where

HE = �t
X

hiji

c†icj HI = ��c†0c0, (E.20)

such that H = HE +HI .

First we consider the ‘sum definition’ of G(✏). In our example HE is exactly solved by

a Bloch transformation giving rise to the energy dispersion Ek = �2t cos(k). This gives

our spectral definition of GE(✏) as

GE(✏) =
1

N

X

k

1

✏+ 2t cos(k)
. (E.21)

We can take the continuum limit [99] which gives us the integral

GE(✏) =

Z ⇡

�⇡

dk

2⇡

1

✏+ 2t cos(k)
. (E.22)

Performing this integral requires complex analysis [98] and, as the details are irrelevant

for the broad analysis, is left as an exercise for an enthusiastic reader. Provided ✏ < �2t,

the result is

GE(✏) = � 1p
✏2 � 4t2

. (E.23)

Next we solve the eigenvalue equation |�i = GE(✏)HI |�i for G0(✏). As the non-zero

eigenbasis of HI is a 1⇥1 matrix all we are required to solve is 1 = ��GE(✏) which gives

GE(✏) = � 1

�
. (E.24)

The final step is to equate equations E.23 and E.24

� 1p
✏2 � 4t2

= � 1

�
, (E.25)
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which is rearranged to give

✏ = �
p
�2 + 4t2. (E.26)

As the ground state energy for HE is �2t and ✏ < �2t for all � > 0 the particle is always

bound to the funny atom.

As there is a bound state, we calculate the wavefunction of the bound state in the

following section.

E.2.2 Wavefunction of the Bound State

To find the wavefunction of the impurity we are required to calculate �(En0). This is

simply the non-zero states of HI , therefore

�(En0) = |0i h0| . (E.27)

Similarly from the spectral representation of GE we have

G(En0)ii0 =
X

n

| (n)
i i h (n)

i0 |
En0 � En

. (E.28)

Upon substitution of the bound state energy En0 = �
p
�2 + 4t2 into equation E.18, we

find the wavefunction is given by

| (n0)
i i =

X

n

| (n)
i i

�
p
�2 + 4t2 � En

. (E.29)

This example highlighted how to perform impurity theory. In this section we calculated

the bound state energy and its wavefunction for the linear chain with a funny atom.

Note in general the ‘impurity’ is not one dimensional and matrix algebra will be re-

quired. This is tractable if the size of the non-zero eigenbasis set is small. Impurity theory

is a powerful technique by which to calculate exact quantities for non-trivial problems.
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APPENDIX F

PERTURBATION THEORY —

FROM HUBBARD TO

HEISENBERG

In this chapter we detail how to perform second order perturbation theory on the infinite

U Hubbard model and attain the Heisenberg model. We will begin by discussing the

Hubbard model at half occupation and understanding the Mott point. This is followed

by a second order perturbation theory [100] on an large U Hubbard model at the Mott

point. Finally, we transform the resulting Hamiltonian and see that it maps on to the

Heisenberg Model.

F.1 The Hubbard Model at the Mott Point

The Hubbard model is given by

H = �t
X

hiji�

c†i�cj� + U
X

i

c†i"ci"c
†
i#ci#, (F.1)

where hiji denotes nearest neighbours. Let’s consider the model at half filling. In the

limit U = 0 this becomes the tight binding model and is trivially solved, with the solution
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being a metal. However, in the limit U = 1 something more interesting occurs. The on

site interaction is divergent and hence double occupation in real space is prohibited. This

is the so called Mott insulator [76]: a system where every electron is localised due to the

Coulomb interaction.

Interestingly, the system has 2N spin degeneracy at U = 1 which we expect to be

lifted as we decrease U . Note that this also will cause a metal to insulator transition [101]

at a certain value of U
t due to the di↵ering physics in each limiting case.

F.2 Perturbation in the Large U Limit

Consider the Hubbard model at half filling with a large but not infinite U . In this limit

the electrons are localised to a first approximation. For this reason we will begin with

the solution for infinite U and perform perturbation theory with hopping matrix t. This

means before and after our perturbation we must be left with a state that is a solution

to the infinite U Hubbard model: one particle on each site. As one hop will cause double

occupation we require perturbation with two hops and hence second order perturbation

theory.

Hopping must occur between opposite spins. This is because Pauli exclusion [102]

prohibits double occupation of the same particle. Hopping occurs between neighbours.

Either the left particle hops on to the right or vice versa. At this point either the original

particle hops back or the other particle does. This is depicted in figure F.1 on page 281

From second order perturbation theory we know

�H =
X

k

V̂0kV̂k0

E0 � Ek
, (F.2)

where V̂k0 is a perturbation hop that takes a particle from the groundstate to an excited

state, V̂0k does the opposite, E0 is the ground state energy, and Ek is the excited state

energy. The energy terms are simple. As Ek = E0 + U this gives E0 � Ek = �U . The

perturbation operators are a little more complicated. Let’s label the two neighbouring

280
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Figure F.1: Second Order Perturbation Hops in the Hubbard Model

Schematic for accessible hops in the large U perturbative calculation. The top hop is forbidden
due to Pauli exclusion. The bottom four are able to occur. Either particle can hop on to its
neighbour. Then either the original particle can hop back or the other particle can hop back.

sites under consideration 1� and 2�̄ for the left and right sites with opposite spins respec-

tively. The two operators for V̂k0 are V̂ (1)
k0 = �tc†1�̄c2�̄ and V̂ (2)

k0 = �tc†2�c1�. For each V̂k0

there are two V̂0k operators that bring the state back to a ground state. For V̂ (1)
k0 we have

V̂ (1,1)
0k = �tc†2�c1� and V̂ (1,2)

0k = �tc†2�̄c1�̄, whilst for V̂ (2)
k0 we have V̂ (2,1)

0k = �tc†1�c2� and

V̂ (2,2)
0k = �tc†1�̄c2�̄.

The Hamiltonian that results from second order perturbation theory is therefore

HMott = �2t2

U

X

hiji�

c†i�ci�c
†
j�̄cj�̄ � c†i�̄ci�c

†
j�cj�̄ + c†i�̄ci�. (F.3)

As there is a particle on each site the c†i�̄ci� term is just a constant energy shift and

therefore can (and will) be neglected for the rest of the calculation.
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F.3 Second Quantized Operators to Spin Operators

In this section we transform the resulting Hamiltonian from the previous section to the

Heisenberg model. This is an exact transformation [80] that acts on a Hilbert space where

there is one electron per site. The transformation is given by

Sz
i =

1

2

h
c†i"ci" � c†i#ci#

i
, S+

i = c†i"ci#, S�
i = c†i#ci". (F.4)

To invert Sz
i we are required to understand projection. Note Sz

i c
†
i" |0i = 1

2c
†
i" |0i and

Sz
i c

†
i# |0i = �1

2c
†
i# |0i. Rearranging these gives

�
Sz
i � 1

2

�
c†i" |0i = 0, and

�
Sz
i +

1
2

�
c†i# |0i =

0. These are the on site spin half projectors and clearly define

✓
Sz
i +

1

2

◆
= c†i"ci"

✓
Sz
i � 1

2

◆
= c†i#ci#. (F.5)

We substitute these into the Hamiltonian giving

HMott = �2t2

U

X

hiji

c†i"ci"c
†
j#cj# + c†i#ci#c

†
j"cj" + c†i#ci"c

†
j"cj# + c†i"ci#c

†
j#cj" (F.6)

= �2t2

U

X

hiji

✓
Sz
i +

1

2

◆✓
Sz
j � 1

2

◆
+

✓
Sz
i � 1

2

◆✓
Sz
j +

1

2

◆
+ S�

i S
+
j + S+

i S
�
j (F.7)

= �4t2

U

X

hiji

Sz
i S

z
j +

1

2

�
S�
i S

+
j + S+

i S
�
j

�
. (F.8)

Next we directly substitute the definitions S+ = Sx + iSy and S� = Sx � iSy into the

Hamiltonian, which gives

HMott = �J
X

hiji

Si · Sj, (F.9)

where J = 4t2

U . This is the Heisenberg model [74].

We have detailed how to perform second order perturbation theory on the large U

Hubbard model at the Mott point. This process can be repeated for any large U Hubbard

model but the hopping details will be model dependent.
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MAXWELL CONSTRUCTION

Free energy curves cannot be concave [103]. This simple fact means that when two phases

compete to be the lowest energy the system will compensate by gaining from both phases.

This occurs in the form of a phase separated mixture where there is one region of space

per phase.

So that explains the physics but what about the energy curve? Well this is where the

Maxwell construction [104] comes in. All we are required to do is connect the minima

with a straight line. This schematic is depicted in figure G.1 on page 284.

G.1 More Detail

Mathematically we can flesh this out further. Historically, the source of Maxwell con-

structions is liquid-to-vapour phase transitions [105]. Consider the Gibbs free energy of

two coexisting phases

G = g1M1 + g2M2, (G.1)

where g1, g2 are the Gibbs free energy and M1, M2 are the masses in states 1 and 2

respectively. We are also enforcing mass conservation, which is mathematically given by

dM1 = �dM2. (G.2)
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Figure G.1: Typical Maxwell Construction

Schematic of a Maxwell construction between states 1 and 2.

If we minimise G at equilibrium we get

dG = g1dM1 + g2dM2 = 0, (G.3)

which directly yields

g1 = g2. (G.4)

Specific Gibbs free energies are equal for coexisting phases! If g1 > g2 the second law

of thermodynamics allows for transfer of material from state 1 ! 2. There are three

variables: pressure P , volume V , and temperature T , along with two constraints: the

equation of state, and g1 = g1. Therefore, phase coexistence is a line in pressure and

temperature.

What can we say about this line? Let’s consider a system in equilibrium at constant

284



G.1. MORE DETAIL

T and V and minimise the Helmholtz free energy F = U � TS

dF = PdV � SdT = 0, (G.5)

subject to the constraint

V = v1 + v2, (G.6)

where v1 and v2 are the individual volumes for states 1 and 2. F is minimised by a mixture

of phases, where the slope of the common tangent is the coexistence pressure

✓
@F

@V

◆

T

= P. (G.7)

This is the Maxwell construction.
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