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Abstract 

 

Two staining protocols were formulated that enabled the detection of cellular 

stress at the single-cell level for Bacillus cereus. Both DiOC6(3) and 

RedoxSensor Green™ can be employed to detect perturbations in the energetic 

status of the cell at concentrations of 0.30 µg.mL-1 and 3.0 µM respectively. 

These methods can be employed for sensitive analysis of bacteria of both 

industrial and clinical interest. Flow cytometry was used throughout this work 

in order to assess the quality of recombinant Escherichia coli populations 

present within an agitated bioreactor. It was demonstrated in shake-flask 

culture that the cells could be grown to moderate cell densities (OD600nm ≈ 25) 

whilst producing measurable levels of antibody fragment. Despite being 

described in a patent which claims invention of a 100 % effective repression 

system (Hodgson et al., 2006), there was extensive evidence of promoter 

leakiness. Fab production was usually synonymous with cellular breakdown, 

however, a strategy based on simultaneous feeding and induction, before the 

exhaustion of the primary carbon source, yielded the highest concentration of 

Fab, 105 mg.L-1, with more than 50 mg.L-1 successfully targeted to the 

extracellular environment. Unlike all the previous cultures, this attainment also 

preceded the breakdown in the cellular structure. 
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1. Introduction 

 

Biopharmaceuticals, elaborate biological molecules used in the treatment of 

a variety of illnesses, are a large and ever-growing market. It has been 

estimated that the value of the biologics market could be as much as US$26 

billion by 2010 (Pharmaceutical Business Review, 2006). Due to the innate 

complexity of these products the most viable current method for their 

manufacture is the use of biological organisms as “cell factories”. Escherichia 

coli is the most widely used cell-type for this purpose, due to the wealth of 

information and resources available, although other cells are increasing in 

prominence, such as Bacillus subtilis, and Bacillus licheniformis (Law et al 

2003; Lopes-Silva et al 2005). From both a cost-effectiveness and demand-

driven perspective, it is desirable to develop processes which can generate as 

much product, in the shortest time as possible. It is estimated that 

approximately 80 % of the total cost of manufacturing a biopharmaceutical 

can be attributed to the downstream purification (separating the required 

molecule from its “factory” before purifying sufficiently for use as a 

therapeutic compound) (Dwyer, 1984). In order to mitigate this cost factor, 

the downstream process is considered when the choices of vector and 

expression system are being made with preference given to more easily 

recoverable products. In the context of an E. coli expression system, the low 

level of secretion into the extracellular environment makes periplasmic 

targeting an attractive compromise. 
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The production of a foreign molecule by a cell exerts a toll on its metabolism, 

the larger and more plentiful the foreign molecule, the greater this toll 

becomes. In certain cases, the metabolic load experienced by the cell is too 

great to bear, leading to cessation of growth, and even widespread cell death 

and lysis (Glick, 1995). 

 

It is an unfortunate contradiction that periplasmic expression of foreign 

proteins often increases the drain on cellular resources still further by the 

activation of numerous stress response pathways (Balagurunathan and 

Jayaraman, 2008). In order to more fully understand the impact of these 

subcellular events on the organisms in particular, and the process in 

general, information from a variety of different analytical procedures must be 

collated. In order to maximise the value and quantity of information about 

cell cultures, it is becoming increasingly necessary to combine traditional, 

population-averaged, techniques with more modern single-cell analyses. 
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2. Literature Review 

 

2.1. Biopharmaceutical Industry 

 

The pharmaceutical industry, in one form or another has been around since 

the middle ages, where the medicinal properties of plants and naturally 

occurring compounds were used to treat diseases and ailments. Originating 

in the middle-east, these pharmacies spread across Europe, however, it 

wasn’t until the mid-nineteenth century that a pharmaceutical industry, in 

the modern sense, was born.  

 

By the mid-20th century, increasing understanding of human biology and its 

maladies lead rapidly to increasingly complex medical treatments.  

The development of the pharmaceutical industry must also be considered 

alongside its current sibling, the biotechnology industry. For the purposes of 

this review, biotechnology will be considered shorthand for unicellular 

biotechnology, to exclude animal husbandry methods. 

 

Biotechnology, the co-optation of biological processes for the benefit of 

mankind, is far older than the pharmaceutical industry, preceding it, in fact, 

by a few thousand years. The first accounts of the use of biotechnology 

describe alcoholic fermentation in ancient Egypt and Mesopotamia. This was 

followed by the use of fermentative yeasts for the production of leavened 

bread. These early processes were likely arrived at through stochastic means, 
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with no real understanding of the underlying causes of the macroscopic 

changes being exploited.  

 

The first hurdle in the path to a broadly applicable discipline for 

biotechnologists was surmounted by Louis Pasteur in 1857 with his 

demonstration that fermentation processes are caused by the growth of 

microorganisms. This was the first proof that the established fermentative 

processes were reliant on a microbial population. Three major events 

combined to form the first modern-day biotechnology process; discovery of 

penicillin (Fleming, 1929), demonstration of its therapeutic potential (Chain 

et al., 1940) and the development of a fermentation process for its large-scale 

production by Margaret Hutchinson-Rousseau. The elucidation of the 

structure of DNA (Watson and Crick, 1953) and subsequent discoveries of 

the nature of heritable units allowed the manipulation of DNA beyond 

anything previously performed by selective breeding. This recombinant age 

marks another significant step in the march towards the biotechnology used 

today. There are a number of subclasses within the field of biotechnology, 

briefly: 

 

Blue – Describes the use and application of biotechnology within the marine 

environment such as degradation of marine oil spills by recombinant bacteria 

(Rheinwald et al., 1973). 

Green – Biotechnology as applied to agricultural processes and materials e.g. 

the Flavr Savr™ tomato generated by Calgene (Hiatt et al., 1987). 
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Red – Medical applications, such as antibiotic production, and the emerging 

tissue therapies (Asano et al., 2002). 

White – Industrial usage, typically high volume, low value. Used in a variety 

of industries from solvent production, to paper milling (Jaeger and Eggert, 

2004). 

 

It should be noted that in all the different types of biotechnology listed above, 

there are both native and recombinant organisms involved, although the 

latter are increasingly the majority. Following the discovery of the structure 

of DNA came an ever-expanding body of knowledge surrounding the genetic 

structure of living organisms and, with that knowledge, the ability to 

manipulate this most fundamental of features.  

 

The founding of Genentech™, the first company which was completely 

dependent on recombinant microbial technology, was a landmark in the 

modern biotechnological age, the first proof that these new tools could be 

applied in an industrial context for profitable ends. The first product in this 

new age was recombinant human insulin, which began manufacture in 1982 

(Chance and Hoffmann, 1983). The new “genetic era” opened up a wide array 

of possibilities in the development and manufacture of more sophisticated 

treatments for diseases with the new-found freedom to manipulate biology to 

greater extent.  

 

Insulin is an example of a peptide hormone, consisting of a short sequence of 

amino acids. The simplicity of this molecule was a major factor in its 
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development as the first biopharmaceutical, manufactured using Escherichia 

coli (Keen et al., 1980). 

 

Broadly speaking, biopharmaceuticals can be divided into a three distinct 

classes: 

 

• Cell therapies 

• rDNA (recombinant DNA) 

• rProtein (recombinant Protein) 

 

2.1.1. Cells 

 

The first instance of the use of, specific, whole cells as medical therapies is 

vaccination. The most common early use of vaccination on record is against 

the smallpox virus, with the use of weakly virulent strains of smallpox as the 

vaccinating agent. Edward Jenner, among others, showed that exposure to 

cow pox, a relative of smallpox, could confer resistance to the latter. Louis 

Pasteur further developed Jenner’s work using organisms subjected to 

treatments which decreased or removed their virulence. 

 

Beyond the use of attenuated viruses and bacteria as immunizing agents, the 

use of whole cells as therapeutics has been the overwhelmingly minor part of 

the industry. Recent elucidation of techniques for the in vitro cultivation of 

human embryonic stem cells (Thomson et al., 1998) has re-invigorated this 

part of the biotechnology industry. These pluripotent cells, and their progeny, 
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are currently being investigated for use in in vivo cell-replacement therapies, 

as well as in vitro platforms for animal-free drug-screening. Some work has 

also shown the benefits of mesenchymal stem cells as an alternative to 

surgery for osteoarthritic knee cartilage damage (Centeno et al., 2008). 

 

The other major use of cells as clinical therapies was the oft-highlighted and 

sporadically effective use of retroviruses in the treatment of SCID (Severe 

combined immunodeficiency). In that case, an rDNA copy of a gene absent in 

patients with the disease, is put into a retrovirus which are then used to 

“infect” a sample of the patients own cells. These cells are then transplanted 

back into the patient whereupon they express the previously missing 

proteins, curing the illness. The reason that this technique was not applied 

beyond phase I clinical trials was due to the development of leukaemia in 40 

% of the 17 patients treatmented (Gansbacher, 2003). 

 

2.1.2. rDNA 

 

In conjunction with the production of insulin, and also intricately associated 

with the abortive SCID therapy, rDNA is an integral tool in modern 

biotechnology. The application of extrachromosomal plasmid DNA (pDNA) is 

predominantly used to import industrially useful characteristics into a 

desired organism from expression of recombinant products (Ladisch and 

Kohlmann, 1992; Yee and Blanch, 1993), co-expression of chaperones to 

assist product formation (Schäffner et al., 2001), co-expression of cell 

permeation factors (van der Wal et al., 1995; van der Wal et al., 1998) to 
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addition of exotic enzymes able to carry out unusual chemical conversions 

(Di Gennaro et al., 1997) among others. 

 

Despite these primary uses of rDNA in biopharmaceutical processes there 

has also been a significant quantity of research into the use of naked DNA as 

a vaccine against a variety of ailments such as cancer (Johnson et al., 2006), 

bird-flu (Laddy et al., 2007) and multiple sclerosis (Stüve et al., 2007). A 

stimulation of the immune response as a result of the presence of the naked 

pDNA has also been observed, which will only serve to increase the efficacy of 

these medicines (Krieg et al., 1995; Jakob et al., 1998). 

 

2.1.3. rProtein 

 

There are a number of different polypeptide compounds of interest in medical 

and related fields, with the main difference between them being the final 

functional state of the molecule. Many of these different types of 

proteinaceous compounds, described below, have both in vivo and ex vivo 

uses. 

 

2.1.3.1. Small Peptides 

 

These are the simplest amino acid polymers and usually consist of between 

10 and 50 amino acids in length. The most well known of this group is 

insulin, mentioned earlier (Ladisch and Kohlmann, 1992), but also includes 
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somatostatin (Brazeau et al., 1973) and atrial natriuretic peptide (de Bold, 

1985). 

 

The second major category of small peptide molecules is that of the 

antimicrobial peptide, such as; d-lysin, Magainin 2 and melittin (Almeida and 

Pokorny, 2009). These molecules are near-ubiquitous in nature and are 

capable of exerting a lethal effect on a wide variety of different organisms 

such as: bacteria (Gram positive and negative), viruses and fungi among 

others. Their modes of action vary depending on the specific sequence but 

are capable of both membrane permeablisation and interference with 

intracellular targets (Papagianni, 2003). 

 

2.1.3.2. Enzymes 

 

Enzymes are a naturally occurring biological catalyst constituting a folded 

polypeptide chain whose function is defined by the three-dimensional shape 

formed. Enzymes are a potent and efficient tool able to perform a wide variety 

of reactions under an equally wide range of conditions. When being 

considered from a bioprocess perspective, enzymes can be viewed as either 

an end product (Prakash et al., 2009), or as a process ingredient, where the 

enzyme is first manufactured then subsequently used to catalyse a desired 

reaction (Goldberg et al., 2008). The main reason for the need for the use of 

enzymes (whose manufacture can be a complex process) is the unparalleled 

degree of specificity achieved in some enzyme catalysed reactions. In 
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manufacturing processes where a specific optical isomer is required, enzymes 

are often the most cost-effective way of achieving this goal.  

 

2.1.3.3. Antibodies 

 

Antibodies, or Immunoglobulins (Ig), are an integral part of the mammalian 

immune system, consisting of two pairs of polypeptide chains linked by 

disulfide bonds. 

 

 
Figure. 2.1. An IgG molecule. A denotes the antigen-binding portion of the 
molecule B indicates the Fc region which modulates the immune system 
response. The flexible hinge regions (the thinner lines) of the heavy chains are 
covalently linked. The light chains are connected to one heavy chain each by a 
single disulfide bond. (Parham, 2000b)) 

 

In vivo, naturally occurring, antibodies are produced in a number of different 

isotypes, which perform distinct physiological functions. 
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Table 2.1. Major antibody isotypes (Parham, 2000c) 

Name Description Appearance 

IgA 
Secreted to the external surfaces of 

the body 
Dimeric 

IgD Antigen receptor Monomeric 
IgE Involved in the allergic response Monomeric 

IgG 
Perform the bulk of antibody-based 

immunity against invading 
pathogens 

Monomeric 

IgM 
Active against pathogens before 

sufficient IgG has been produced 
Pentameric 

 

For use as a therapeutic or diagnostic tool, the most suitable class of 

antibody is the IgG, as a result of its initial method of production (injection of 

antigen into animals, and subsequent recovery of the raised antibodies) and 

the ease with which functional fragments can be generated by enzymatic 

digestion of IgG (Figure 2.2. p. 15). 

 

One of the greatest difficulties in obtaining antibodies by purification from an 

animal is the process of recovering a specific antibody from the mixture 

present. The work of Köhler and Milstein (1975) revolutionised the process of 

antibody production with the first production of an immortalised cell capable 

of producing a known, specific, antibody (a monoclonal antibody). The 

downsides to this method of production are the high cost and sensitivity to 

process conditions not experienced with more traditional biopharmaceutical 

production organisms, such as Escherichia coli.  

 

The majority of therapeutic antibodies are still made using mammalian cells 

as a production system, despite the drawbacks mentioned above. The reason 
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for this is that bacteria are unable to perform post-translational glycosylation 

of the antibodies in question. Chiba and Jigami (2007) describe the current 

state of the art regarding chemical and molecular methods for adding glycans 

to recombinant proteins either following, or during expression from bacterial 

and yeast-based systems. It is possible to achieve titres of 2 g.L-1 in bacterial 

systems (Carter et al., 1992), however, the yield of that kind of process would 

necessarily be impacted by the following steps where glycosylation is required 

(or the increased doses, reflecting decreased binding efficiency in vivo). 

 

The high degree of binding specificity exhibited by antibodies can be 

exploited to a number of different ends, both as in vivo therapeutics as well 

as in vitro diagnostic testing. 

 

2.1.3.3.1. In Vivo Therapeutic 

 

There are three major avenues being explored in order to realise the 

treatment of diseases with antibody therapy. The most prevalent is that of 

immune system targeting. Antibodies are generated which recognise specific 

molecules associated with disease (such as proteins expressed by cancerous 

cells) and can then recruit other important components of the immune 

system enabling the body to raise an immune response (Parham, 2000d). 

 

Antibodies can also be utilised in ameliorating an immune overreaction such 

as allergic responses to the environment or autoimmune diseases. Antibody 

fragments without the Fc region are more useful here (2.1.3.3.3. Antibody 
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Fragments) due to the fact that, in this case, a reduced immune response is 

required (Cochet et al., 1998; Pelat et al., 2007; Depetris et al., 2008). 

 

Some research has also been performed with a view to conjugating 

xenobiotics to antibody fragments, in an attempt to reduce the effects of 

cytotoxicity of chemotherapeutic agents on healthy cells (Pietersz and 

Mackenzie, 1992). 

 

2.1.3.3.2. In Vitro Diagnostic Testing 

 

Antibodies form the basis of a variety of diagnostic tests, such as ELISA 

analysis, radioactive assay for myasthenia gravis (Oger et al., 1987) and 

septicaemia (Eisenhardt et al., 2007). 

 

2.1.3.3.3. Antibody Fragments 

 

A single molecule of IgG has a molecular weight of approximately 150 kDa, 

with only a very small portion of this dedicated to performing its specific 

binding function. When manufactured by purifying antibodies from an 

animal, a significant portion of the final IgG is not only unnecessary, but due 

to being from a non-human source, can be recognised by the immune system 

as foreign and acted upon as such. One of the solutions to this issue was 

enzymatic digestion of full-length antibodies with papain or pepsin creating 

Fab and F(ab’)2 respectively (Figure 2.2.).  
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Figure. 2.2. Left Fab fragment; Right F(ab’)2 fragment. Originally created by 
enzymatic digestion of the whole IgG molecule from Fig. 2.1. (Parham, 2000a) 

 

Both of these fragments have far less surplus sequence which is 

immunogenic in nature making them more suitable for therapeutic use in 

that sense. This reduction in size also had an additional unwanted effect 

however, with an observed reduction in circulation time in the body. This 

problem has been overcome by the addition of a tail of polyethylene glycol to 

antibodies to increase their size and mass preventing them being filtered out 

by the kidneys before they can have a therapeutic effect (Veronese and Pasut, 

2005; DeFrees et al., 2006). There are also many other types of antibody 

fragment available with a wide variety of functionalities, Holliger and Hudson 

(2005) have written a comprehensive review including a list of antibodies 

currently in clinical use and development.  

 

One of the most attractive features of the availability of antibody fragments is 

their ease of production, relative to full-length monoclonal antibodies. The 

smaller size and decreased reliance on disulfide bonds means that the 

production options are much more varied than they would be otherwise. 
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Simmons et al (2002) have shown that the expression of full-length IgG 

molecules is possible in Escherichia coli however this is still very much the 

exception rather than the rule. 

 

2.1.4. Cells as Factories 

 

The use of biological cells as factories is the only viable method for the 

manufacture of complex biological molecules as has been previously 

described here. There are a number of factors involving the choice of host 

organism which are all interlinked such as: nature of product, its location, 

process operation methods, etc.  

 

2.1.4.1. Bacteria 

 

Bacteria are one of the most popular choices for large-scale biotechnological 

processes. This is a consequence of their rapid growth rate, ease of 

manipulation (both physically and genetically) and potential to achieve very 

high cell densities. As with all of the different production methods, there are 

downsides too, such as the increased load of lipopolysaccharide (LPS, the 

pyrogenic component of the outer membrane) when utilising Gram negative 

organisms and rare, protein-specific, post-translational modifications such 

as glycosylation (Sherlock et al., 2006), which are necessary for the function 

of certain products (Bolt et al., 2005). It is also the case that larger and more 

complex proteins often cannot be produced in bacterial systems due to the 

limits of the cellular expression machinery.  
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2.1.4.1.1. Escherichia coli 

 

First described in 1885 and named for its discoverer, Theodor Escherich, E. 

coli is a Gram negative bacterium and a normal commensal organism of the 

human gastrointestinal tract. Individual cells consist of rod-shapes 

approximately 2 µm in length by 0.5 µm in diameter, although specific 

mutations in membrane proteins have formed “filaments” (de Pedro et al., 

2002), and spherical particles (Markiewicz et al., 1982; Zaritsky and 

Woldringh, 2003). These microorganisms also have the capability of 

metabolising a wide variety of carbon sources in both the presence and 

absence of oxygen. E. coli can be further subclassified into strains, 

differentiated by mutations in the genome, which often elicit phenotypic 

variations. In most cases, the differences between one strain and another 

have very little impact on the ability of the organisms to grow and reproduce 

in an ideal environment. However, if these organisms are challenged with a 

non-ideal environment, the different phenotypes displayed as a result of 

strain variations can enable an array of responses with the possibility of 

increasing survival rate of the genotype within a mixed population of cells.  

 

Escherichia coli has been closely studied for many years, used as a model 

organism by research groups around the world for understanding bacterial 

physiology and was the first organism in which the process of horizontal gene 

transfer, conjugation, was studied (Lederberg and Tatum, 1946). In 1997 the 

complete genome of E. coli MG1655 was sequenced and published (Blattner 
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et al., 1997), although this was as a result of its prominence as an organism 

of choice for so many rather than a precursor. Most of the strains in use in 

laboratories today (including MG1655, above) are descended from the K12 

strain of E. coli. These laboratory strains are distinct from the wild type 

organisms by their inability to colonise the gut and, in some cases, to form 

biofilms (Vidal et al., 1998).  

 

As a result of its de facto status as a model organism, there is a great deal of 

knowledge available surrounding the physiology of E. coli. In addition, the 

array of cloning vectors and expression systems that have been developed for 

use with E. coli mean that it is often the simplest and quickest route to 

manufacture of a complex biological molecule. 

 

2.1.4.1.2. Bacillus spp. 

 

Routinely found in soil, B. subtilis is a Gram positive, rod-shaped bacterium 

used by some as an organism for the manufacture of recombinant products 

(Law et al., 2003; Takesue et al., 2007). Gram positive organisms, such as B. 

subtilis, do not contaminate the final product with LPS which must be 

removed from Gram negative-produced recombinant materials. B. subtilis 

also possesses a much more efficient secretion system than E. coli, due to the 

absence of a periplasm (Han et al., 2003) which can ease the purification of a 

biopharmaceutical. It also holds Generally Recognized As Safe (GRAS) status 

due to the prevalence in the environment and exceedingly rare incidence of 

associated food poisoning (Westers et al., 2004).  
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Bacillus cereus is a closely related member of the genus, which is capable of 

causing food poisoning but otherwise has similar characteristics in terms of 

Gram staining and sporulation under stress. Bacillus cereus was chosen for 

this work due to the fact that it is an organism of clinical relevance for which 

understanding of stress tolerance is of interest. It also serves as a model for 

Gram positive behaviour in general, ideally situating it as a platform for the 

development of new techniques. 

 

2.1.4.1.3. Streptomyces spp 

 

The Streptomycetes are an important source of antibiotics; the natural 

source of, among others: erythromycin, tetracycline and chloramphenicol. As 

a result, this family was particularly important in the pre-genomic era, 

allowing large scale manufacture of clinical quantities of antibiotics. 

Streptomyces spp. are still being used today in modern biotechnological 

processes with the advantages of an efficient secretion system and naturally 

occurring glycosylation of protein products (Cowlishaw and Smith, 2001). 

 

2.1.4.2. Mammalian Cells 

 

Typically the term “mammalian cells” excludes human cells, and is usually 

used to describe cells from sources such as rat, mouse and monkey. 
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One of the most widely utilised mammalian cell types in this context is the 

Chinese Hamster Ovary (CHO) cell, first cultured in 1958 (Tjio and Puck, 

1958). This cell type can be cultivated in attachment dependent and 

suspension cultures (following suitable adaptation), making it a very versatile 

cell type for biotechnological use. Furthermore, CHO cells are capable of 

applying glycosylation to manufactured proteins which is similar (but not 

identical) to that of native human proteins (Sheeley et al., 1997; Bolt et al., 

2005). The other common expressions system of choice in this arena is the 

NS0 cell line derived from mouse myeloma described by Barnes et al (2000). 

Both of these cell types have similar advantages and disadvantages, and two 

of the major disadvantages are the slow growth rate and high cost of growth 

medium. The latter has been partly diminished by the development of 

synthetic growth media and additives that circumvent the prior necessity for 

more expensive, naturally occurring additives (e.g. foetal bovine serum). 

Mammalian cells also present a number of challenges from a bioprocess 

perspective, distinct from bacterial cells. Their more complex physiology 

makes the design of media and feeds more difficult, in conjunction with a 

reduced tolerance for mechanical stresses, often found within bioreactors, 

which combine to prescribe narrower engineering tolerance limits for 

operating parameters. 

 

2.1.4.3. Human Cells 

 

This particular area of research is expanding rapidly; however, the uses of 

these cell types are, generally, not as factories to manufacture a recombinant 
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product. The cost of manufacture and youth of the technology mean that 

most of the current work is aimed towards using these cells either as 

replacement therapies in cases of insufficient or poorly functional cells in a 

patient or as in vitro drug-screening platforms which will be vital if animal 

testing is to be discontinued. 

 

2.1.4.4. Yeast/Fungi 

 

As mentioned earlier, yeasts are some of the oldest biotechnological 

organisms, used in the creation of raised bread products and alcohol by 

Saccharomyces cerevisiae. Additional genetic material has been added to S. 

cerevisiae in order to broaden its range of substrates for the production of 

ethanol from a larger variety of sources (Ho et al., 1998). Another kind of 

fungus was responsible for changing the landscape of modern medicine 

entirely. Discovered in 1928, penicillin, so named as a product of the 

Penicillium genus of fungus, was the first proven antibiotic compound 

(Fleming, 1929) (prior to this plants were often used, but the source of the 

antibacterial effect was unknown). 

 

In more recent times, Pichia pastoris is gathering prominence as an effective 

production organism (Cregg et al., 2000), offering a compromise between 

bacterial and mammalian systems. P. pastoris is a methylotrophic yeast 

capable of performing glycosylation and disulfide bonding on proteins, 

rendering it an attractive choice for recombinant protein manufacture. The 

most commonly used expression system is the AOX promoter, which is 
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repressed in the presence of glucose and active in the presence of methanol, 

a similar system to the lac operon in E. coli (Charoenrat et al., 2005; 

Charoenrat et al., 2006). This enables the growth and production phases to 

be discrete in a manufacturing process.  

 

It has also been shown that glycosylation by Pichia pastoris can increase the 

efficiency of binding of certain molecules (Medzihradszky et al., 2004). In 

addition to this, secretion by this yeast is much more easily achieved, and 

reliably performed than in the case of poor secretors such as E. coli with far 

higher biomass achievable (Cregg et al., 2000).  

 

Bacterial production systems still dominate the biopharmaceutical 

manufacturing mien. The primary reasons for this are ease of regulatory 

approval for the process, stability of production following strain selection and 

rapid generation time, which impacts both development cycle-time and 

production space-time efficiency. The combination of these is ample 

justification for using a process based on bacterial expression systems, in 

preference to the other options mention above. 

 

2.1.5. Stress 

 

Cells of all types can be subjected to stresses from a variety of sources, that 

those cells have persisted means they have evolved mechanisms to enable 

them to tolerate, and even grow in the presence of, those stresses. 
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To properly understand stress, it must first be defined. It is also vital that the 

effect of the stress on the cell is characterised, at the molecular level, which 

will inform the nature and extent of the responses enacted by the cell.  

 

2.1.5.1. Stress – A Definition 

 

“Stress is any change in the genome, proteome or environment that imposes 

either reduced growth or survival potential. Such changes lead to attempts 

by a cell to restore a pattern of metabolism that either fits it for survival or 

for faster growth.” (Booth, 2002). 

 

This definition encompasses stresses which are intrinsic to the normal 

operation of the cell (such as DNA mutations through random copying errors) 

as well as extrinsic factors, more normally associated with raising cellular 

stress responses (e.g. heat, heavy metals, antibiotics, etc.), and as such 

provides a comprehensive and satisfactory definition of stress, as experienced 

at the single-cell level.  

 

The most well-studied stress, relating to single-cells, is the effect of a sudden 

increase in temperature, eliciting the heat shock response. First discovered 

in Drosophila melanogaster (Ritossa, 1963), and later found to be present in 

almost all living organisms, the heat shock response enables cells to survive 

in the presence of a sudden increase in temperature to unusually high levels. 

Other stressors include: heavy metals (Sharma et al., 2006), oxygen (both too 

much and not enough) (Kalmar and Greensmith, 2009), antibiotics (Barcina 



 23 

et al., 1995), starvation (Cuny et al., 2005), mechanical stresses (Sukharev et 

al., 1999) and recombinant protein production (Dürrschmid et al., 2008). 

 

2.1.5.2. Stress Effects 

 

There are three major classes of molecule whose integrity and function must 

be preserved by the cell in order to remain viable under stress 

 

• Membrane 

• DNA 

• Protein 

 

The cytoplasmic membrane is responsible for separating the cell from its 

environment; it suffices to say that if a cell is unable to maintain the integrity 

of its membrane the internal contents of the cell will be quickly diluted in the 

surrounding medium. In addition, the membrane is also required to maintain 

electrolyte gradients for the generation of energy and transport of nutrients. 

This electrolyte imbalance is described as the membrane potential of the cell. 

The resting membrane potential of the cell is approximately 100-200 mV 

negative inside with respect to the outside (Novo et al., 1999). When the cells 

are subjected to stresses, their ability to maintain this membrane potential 

could be impaired due to the diversion of energy and resources away from 

these processes to cellular repair and stress tolerance mechanisms (Hewitt et 

al., 1999; Lewis et al., 2004). An extreme example of this is the ability of E. 

coli to accumulate recombinant protein up to 80 % of dry cell weight (Demain 
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and Vaishnav, 2005). Production in this quantity represents a significant 

drain on cellular resources away from normal housekeeping functions.  

 

The DNA comprising the cellular genome contains all of the heritable 

information required for continuing survival and proliferation. Fidelity of 

copying the information is important, and all living cells have a vast array of 

repair mechanisms operating continuously to establish this. Even under 

ideal conditions, the rate of mutation is non-zero, allowing the occurrence of 

occasional changes in the genome, however under the pressure of mutagens 

(chemical or radiative) the level of expression of the repair functions is 

increased (Bridges et al., 1987).  

 

Protein is the last major class of molecule affected by stresses to the cell. 

Protein molecules are the workhorses of the cells, providing the means by 

which the information in the DNA sequences can be controlled, transcribed, 

translated and exported. They enable metabolites to be imported and 

processed providing the energy for all cellular operations, as well as 

controlling the flow of ions across the membrane to establish the gradients 

mentioned above.  

 

2.1.5.2.1. Metabolic Load 

 

Metabolic load, or burden, is the term given to an often observed 

phenomenon when using living organisms to manufacture complex 

biopharmaceuticals. The presence of foreign DNA within the cell (Ow et al., 
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2006), as well as the manufacture of proteins from it (Kane, 1995; Bonomo 

and Gill, 2005) cause a decrease in the ability of the cell to carry out its 

normal metabolism. In the case of Kane’s (1995) and Bonomo & Gill’s (2005) 

work the net effect of the recombinant protein expression is the induction of 

the starvation response as a result of rare codons/amino acids found in 

eukaryotic proteins. The response to this increase in the requirement for 

resources diverted away cellular maintenance and proliferation usually 

entails a decrease in growth rate (Glick, 1995). The responses of the cell to 

the effects of metabolic load are carried out through responses to the 

particular effects detailed below (2.1.5.3. Stress Responses). 

 

2.1.5.3. Stress Responses 

 

E. coli regulates a significant amount of its gene expression at the 

transcriptional level. The genetic information is transcribed, by RNA 

polymerase into messenger RNA, before being translated into a primary 

peptide sequence where it can perform the function of that specific protein. 

The RNA polymerase enzyme is a quaternary structure featuring a number of 

subunits which form the “core” enzyme and a more easily dissociated 

subunit, designated the σ subunit. The σ subunit is responsible for targeting 

the core RNA polymerase to a specific DNA sequence. The most commonly 

utilised σ subunit is the σ70 (70 denotes the molecular weight – 70 kDa) 

which targets the core enzyme to the “housekeeping” genes, those whose 

transcription is necessary to maintain basic cellular function. A number of 

other σ factors exist, which serve to recruit the RNA polymerase core enzyme 
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to genes associated with stress response proteins, which are designated by 

molecular weight, in the case of a number, or by function (e.g. E = envelope 

stress). 

 

The onset of a significant upward change in temperature alters the 

conformation of σ32 transcription factor. The σ32 subunit preferentially binds 

to the promoters of the so-called heat shock proteins (HSP), and recruits RNA 

polymerase, effecting their transcription. Many HSPs have been 

demonstrated to be chaperones that assist correct folding of proteins into 

their functional conformation (Gaitanaris et al., 1990). It has been shown 

that although the HSPs are expressed following a rise in temperature their 

expression is necessary, but not sufficient, to achieve thermotolerance 

(VanBogelen et al., 1989). The variety of possible stressors encountered by 

bacteria is very wide, and so it seems unlikely that they would be able to 

utilise specialised stress response mechanisms. A number of other stimuli 

have elicited expression of HSPs, as well as providing varying measures of 

thermotolerance. The heat shock response, and the associated 

thermotolerance, has been raised by the exposure of cells to ethanol, CdCl2, 

antibiotics and H2O2 (VanBogelen et al., 1989; López-Sánchez et al., 1997). 

Most of the evidence suggests that non-heat derived induction of the heat 

shock response may be due to accumulation of improperly folded proteins 

(Chaudhuri et al., 2006; Díaz-Acosta et al., 2006).  

 

An additional alternative sigma factor, σS, is responsible for modulating the 

general bacterial stress response. Particularly implicated as part of the 
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bacterial response to starvation (Lange and Hengge-Aronis, 1991), σS is 

increased as the cells transition from exponential-phase growth to 

stationary-phase (Jishage and Ishihama, 1995). As the name implies, the 

general stress response is also induced by stimuli other than the starvation 

and reduction in growth rate associated with transition into stationary phase 

(Notley and Ferenci, 1996), such as high osmolarity (Muffler et al., 1996) and 

low pH (Bearson et al., 1996).  

 

A third alternative σ subunit, σE, is responsible for modulating the response 

to envelope stresses. During bacterial growth the proper functioning of the 

membrane, and its associated proteins, are impaired by events such as 

mechanical stress, antibiotics and misfolding of membrane proteins (Ami et 

al., 2009). These effects are transduced through the membrane allowing the 

expression of proteases and chaperones that assist the correct folding of 

outer membrane proteins, membrane biosynthesis proteins and genes with 

predicted periplasmic localisation (Dartigalongue et al., 2001). Envelope 

stress is particularly important in a biotechnological context due to the 

possibility that accumulation of recombinant proteins in the periplasm can 

trigger the same stress response due to both the appearance of misfolded 

proteins in the compartment (Hayden and Ades, 2008), as well as the 

increased physical pressure exerted on the membrane by the contents of the 

periplasm (Narayanan et al., 2008). 

  

It is common to have one or more of these alternative factors present in a cell 

simultaneously in addition to the housekeeping σ70. The σ32 mediated 
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response exemplifies this, as described above, with heavy metals and 

oxidative stress eliciting the heat-shock response. This has the effect of 

reducing the number of RNA polymerase core enzyme complexes available to 

transcribe constitutive cellular proteins. For this reason, a secondary effect of 

the stress responses is the lowering of the growth rate, which in turn, 

reduces the quantity of basal metabolism needed (Want et al., 2009). 

 

One of the features exhibited in cells entering stationary-phase growth is the 

stringent control of ribosome production (Sands and Roberts, 1952). The 

molecule responsible for modulating this effect is the unusual nucleotide 

guanosine tetraphosphate, ppGpp (Cashel and Gallant, 1969), which exerts 

its effect through binding to the β and β’ subunits of the RNA polymerase 

core enzyme (Chatterji et al., 1998). It has been established that ppGpp 

increases the affinity of the RNA polymerase core enzyme for alternative 

sigma factors, such as σS (Jishage et al., 2002) thus inducing the general 

stress response in addition to restriction of ribosome production. This 

sequence of events increases transcription from stress response genes, whilst 

limiting the production of ribosomes to increase the competition between 

transcripts, leading to increased translation of stress response gene 

products. Costanzo (2006) found that ppGpp also impacts on σE targeted 

genes although it is, as yet, unknown if this is caused by increased affinity of 

RNA polymerase for σE. 
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2.2. Culture Strategy 

 

2.2.1. Expression Strategy 

 

When expressing a protein in a Gram negative bacterium, there are four 

possible options when considering where the protein might be targeted: 

 

� Extracellular environment (secreted) 

� Intracellular  

• Soluble 

• Insoluble (inclusion bodies) 

� Periplasmic space 

 

Each of these options can be employed with a variety of proteins and their 

suitability is determined by the nature of the product (size, number of 

disulfide bonds, etc.).  

 

2.2.1.1. Secretion 

 

The overwhelming majority of bacteria are capable of secreting proteins into 

the extracellular environment. The principal benefit of this in environmental 

samples of bacteria is the manipulation of the extracellular milieu, to its own 

advantage. There are a variety of functions performed by these secreted 

proteins (Fernández and Berenguer, 2000); from enzymes able to digest 

surrounding macromolecules (Voigt et al., 2006), to pathogenicity factors 
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(Brown et al., 2004), even combinations of the two where the enzyme 

function increases potency of the pathogenic activities (Egea et al., 2007). 

Secretion of proteins from Gram negative bacteria is a more involved process 

than is the case for Gram positive organisms. In order to be liberated into the 

extracellular medium from a Gram negative cell, the protein must pass 

through two lipid membranes, a highly energetically unfavourable process 

given the highly hydrophilic nature of the majority of soluble proteins. In 

order to achieve the export of proteins, bacteria are able to utilise one of a 

number of different pathways; type I, II and the twin arginine translocase 

pathways being the most prominent. 

 

2.2.1.1.1. Type I Secretion 

 

Type I secretion, also referred to as signal-sequence independent (although 

the modern consensus is that there is, actually, a signalling sequence at the 

C-terminal end of proteins destined for this kind of export (Sandkvist and 

Bagdasarian, 1996)), is a single-step process where a protein is passed 

through both membranes at once and is present in a variety of genera 

including Escherichia coli (Kenny et al., 1991; Palacios et al., 2001). Type I 

secretion is very rapidly saturated with proteins if translation rates are not 

properly controlled (Shokri et al., 2003) further, the signal sequence is not 

cloven from the protein during export. The combination of these two factors 

ensures that type II secretion is the most widely used system of this type in 

industrial processes. 
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2.2.1.1.2. Type II Secretion 

 

Type II secretion, also known as the general secretory pathway (GSP), is a 

two-stage process where the excreted protein is first passed into the 

periplasmic space, and then secreted through the outer membrane as a fully 

folded protein. Following translation, the protein destined for export binds to 

elements of the secretory machinery by interaction with an N-terminal signal 

sequence usually between 10 and 30 amino acids in length. This signal 

sequence is removed from the protein as it is passed through the inner 

membrane into the periplasm. It has been established that secreted proteins 

pass through the outer membrane after interacting with a large number of 

protein factors (Pugsley, 1993) although the exact means of this interaction 

has yet to be elucidated, indications are that it may be dependent on the 

three-dimensional structure of the protein and additionally, may vary from 

protein to protein (Sandkvist and Bagdasarian, 1996). 

 

Bacterial strains derived from the K12 strain may have been stripped of their 

pathogenic activity, however, the secretion machinery utilised by the 

organism in those processes remain intact. Escherichia coli, generally, 

secretes very low quantities of protein into the extracellular medium 

(Sandkvist and Bagdasarian, 1996).  

 

This low level of secretion of endogeneous proteins makes E. coli an ideal 

candidate for use as a production organism; due to the low levels of host-cell 

proteins contaminating the downstream purification. Secretion of 
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recombinant protein product also obviates the need for a cell disruption step, 

ensuring that contamination with host cell DNA and proteins can be avoided. 

Other benefits of this type of production methodology are; increased stability 

(Talmadge and Gilbert, 1982) and reduction in immunogenicity of the final 

product, as a result of decreased LPS contamination (Mergulhão et al., 2000). 

 

Due to the constitutively low levels of secretion by E. coli, the pathways 

which enable newly produced proteins to be passed through the two lipid 

membranes are ill-equipped, both physically and energetically, to translocate 

protein in the quantities, and at the rates of production, usually achieved 

with recombinant expression (Simmons and Yansura, 1996). Incomplete 

translocation across the inner membrane can result in blockage of the 

membrane-bound complex responsible for transferring protein from the 

cytoplasm to the periplasm (Baneyx, 1999) and concomitant accumulation of 

heterologous protein in inclusion bodies within the cell (Mergulhão and 

Monteiro, 2004; Mergulhão et al., 2004). These can be caused by protein size 

(Koster et al., 2000), amino acid composition of the leader peptide, and the 

sequence of the expressed protein (Kajava et al., 2000), especially in the 

region of the export signal sequence. 

 

2.2.1.1.3. Twin Arginine Translocase (TAT) Pathway 

 

Discovered in E. coli, and independent of the GSP, the TAT is so called due to 

a pair of consecutive, conserved arginine residues within the N-terminal 

signal sequence. The TAT pathway is unusual due to its ability to transport 
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fully folded proteins (DeLisa et al., 2003) across the inner membrane (Stanley 

et al., 2000) in the absence of ATP (Yahr and Wickner, 2001). The transport 

is instead driven by the proton motive force generated by the bacteria (de 

Leeuw et al., 2002). In spite of this, export is performed at very slow rates 

when compared to the type II system (DeLisa et al., 2004).  

 

2.2.1.2. Intracellular Protein Expression 

 

The potential utility of secretion as a means of achieving ease of purification 

from E. coli cultures means that research in this area is being pursued as a 

high priority; however, bacterial systems are currently unable to attain the 

yields required for therapeutic uses.  

 

The most obvious alternative is the expression of the protein within the cells, 

leading to extraction and subsequent purification. Proteins can occur in one 

of two possible forms inside the cell, soluble and insoluble. 

 

2.2.1.2.1. Soluble 

 

In bacterial cells, this is the default expression option for the overwhelming 

majority of proteins. It is, therefore, the easiest method on offer, but in some 

ways the most problematic. Many proteins that one might wish to express in 

Escherichia coli are able to fold correctly within the cytoplasm, however, 

those requiring the presence of disulfide bonds in order to achieve their 

correct 3-dimensional structure cannot achieve this in the highly reducing 
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bacterial cytosol (Bessette et al., 1999). Any proteinaceous material present 

within the cell also presents a prime target for intracellular proteases 

requiring the use of protease deficient bacterial strains to reduce product 

degradation. However, this would also compromise the ability of the 

organism to deal with stress and could further complicate the fermentation. 

At high intracellular concentrations of protein, insoluble inclusion bodies can 

be formed (Section 2.2.1.2.2. Insoluble) and there is not yet any reliable 

means for predicting whether an individual protein will be sequestered, or at 

what concentration. 

 

2.2.1.2.2. Insoluble 

 

In many cases insoluble intracellular expression is not an unwanted by-

product of overexpression, but a desired feature of the process. It was 

originally considered that inclusion bodies were formed by the aggregation of 

misfolded proteins in instances where their numbers overwhelmed the 

chaperone-assisted protein folding (Kane and Hartley, 1988). The whole 

process of inclusion body formation is now recognised as being more complex 

than first thought, with significant quantities of correctly folded protein 

within bacterial inclusion bodies (Ventura and Villaverde, 2006; Martínez-

Alonso et al., 2009). Inclusion bodies can easily be separated from the bulk of 

a disrupted bacterial cell, due to their increased density relative to other 

intracellular components. They also exhibit excellent purity and shield the 

desired protein from proteolysis (Singh and Panda, 2005). Following this 

separation, the extremely costly and low yield refolding process takes place 
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using high concentrations of chemicals such as urea or guanidine 

hydrochloride (Datar et al., 1993). Driven by the extremely poor recovery and 

economics of these refolding processes, a great deal of work has been carried 

out concerning the extent of refolding necessary from a variety of inclusion 

bodies, with far milder conditions than conventionally used for a number of 

different proteins (Tsumoto et al., 2003; 2004; Umetsu et al., 2005). 

 

2.2.1.3. Periplasmic Expression 

 

Periplasmic expression represents a compromise between the absence of 

additional engineering required for intracellular expression, and the ease of 

purification allowed by true secretion. As described earlier, the first step in 

secretion of a protein from Gram negative organisms is translocation across 

the inner membrane, and periplasmic expression obviates the need for the 

additional cellular resources required to pass the protein through the outer 

membrane. Furthermore, the oxidizing environment of the periplasm ensures 

that disulfide bonds can be formed where necessary (Missiakas et al., 1995). 

The periplasm contains approximately 4 % of the total cell protein of wild 

type E. coli cells allowing simplified purification of product if the outer 

membrane of the cell can be selectively removed or otherwise negated (Nossal 

and Heppel, 1966; Makrides, 1996).  

 

Protein can be liberated from the cell by “partial” lysis – methods which 

remove, or render passive, the outer membrane of the cell 
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• Osmotic shock (lysozyme/EDTA/sucrose) 

• L-form cells 

 

Osmotic shock is the most well established method for disrupting cells, 

requiring inexpensive chemicals and minimal processing. This method uses 

ethylene diamine tetraacetate (EDTA) to weaken the membrane by chelation 

of magnesium ions that stabilise the teichoic acids in the membrane, along 

with sucrose which diffuses into the periplasm. The cells are then exchanged 

into a solution free of sucrose and the resulting osmotic gradient causes 

influx of water into the periplasm, causing it to swell and then burst (Heppel, 

1967). Chen et al (2004) have performed experiments indicating that pre-

treatment of the cells with divalent cations can increase the efficiency of the 

osmotic shock technique when recovering recombinant proteins from E. coli.  

 

The derivation of Gram negative bacteria that are missing their cell wall (L-

form cells) has allowed another potential avenue for an alternative type of 

expression. These bacteria possess a stable mutation which prevents them 

from correctly forming the outer cell membrane (Rippmann et al., 1998). This 

effect has been utilised as a recombinant expression system in a number of 

species including Proteus mirabilis and Escherichia coli. Due to the absence of 

the outer membrane and cell wall, any protein which is targeted for release to 

the periplasm will instead be secreted into the extracellular milieu. These 

cells have an absolute requirement for complex medium sources, which 

introduce an extra layer of variability into the process, rendering them less 

suitable for biotechnological exploitation (Gumpert and Hoischen, 1998). 
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2.3. Expression Systems 

 

2.3.1. Constitutive 

 

Many proteins found within cells are required at specific levels at all times in 

order to carry out basal functions. In order to facilitate this, these proteins 

are expressed at low levels at all times.  

 

On the face of it, constitutive protein expression appears to be an attractive 

means of producing heterologous proteins with continuous expression 

throughout the length of the culture. This kind of expression system 

effectively links biomass accumulation to increases in product, with an easily 

administered process. 

 

In practice, constitutive expression is almost never used for the production of 

recombinant products due to a number of factors. Most significantly, the 

manufacture of a recombinant product exerts a toll on the organism in 

question in terms of both energy and resources. The magnitude of this toll is 

amplified by the scarcity of these components during rapid cell growth. 

Continuous production of recombinant proteins also increases the risk of 

proteolytic degradation due to the higher residence time of the proteins 

within the cell. 
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2.3.2. Induced 

 

By far the more common means of expressing recombinant proteins is that of 

induction. A variety of methods are available whereby the cells are first 

grown, and then induced to manufacture the desired compound. The 

greatest advantage of this approach is maintaining a separation of cellular 

growth from product formation. The classical paradigm of this type of process 

is growth of cells up to the maximum possible cell density, followed by 

induction. Approaching the process in this manner enables the use of much 

stronger promoters than are suitable for constitutive expression meaning 

that, in some cases, far greater quantities of protein can be produced in a 

relatively short induction period. Induced systems also provide greater scope 

for process optimisation in comparison to constitutive ones.  

 

There are a variety of different methods for achieving induction of protein 

expression, and they generally achieve better results than constitutive 

methods with improved process control. There is also evidence that some 

induction regimes can be harmful to cells, by expressing recombinant protein 

too fast for the existing cellular infrastructure causing a breakdown in the 

expression systems that impacts on the production of constitutively required 

components (Section 2.1.5.2.1. Metabolic Load). Furthermore, some of the 

induction conditions are not easily scaled due to either physical restrictions, 

such as heat and mass transfer, or cost-effectiveness. 
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2.3.2.1. Inducers 

 

2.3.2.1.1. Heat 

 

The most common means for control of protein expression in Escherichia coli 

by temperature change is the bacteriophage λ PL and PR promoter system. 

Manufacture of proteins which are controlled by this system are held under 

repression by the cI repressor at temperatures less than 42 °C. Jechlinger et 

al (1999) have shown that a mutant repressor (cI857) exhibits an increased 

sensitivity to temperature, with induction of the system at temperatures 

exceeding 30 °C. Cells utilising temperature control are usually grown in the 

range of 30-37 °C, however it has been shown that temperatures prior to, 

during and following induction, as well as the duration of the induction, can 

vary the extent of both the expression and its effect on the organism. 

Cultivation at repressive temperatures (30 °C) followed by an upward shift 

and brief hold (39 °C) before returning to a non-repressive condition with 

increased cellular activity (37 °C) can yield particularly good results in terms 

of measured protein activity (Chao et al., 2002). The model described here is 

the standard means of operating this kind of process (although the specific 

temperatures vary from protein to protein). There are two major factors 

which prevent permanent upshift in temperature; the observation that 

protracted derepression of PR and PL controlled genes can lead to 

segregational instability and reduction in the number of plasmid-bearing 

cells within the bioreactor (Siegel and Ryu, 1985). High temperatures also 

carry the risk of triggering the bacterial heat shock response, necessarily 
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entailing diversion of resources away from recombinant protein production, 

as well as increased protease activity. 

 

Temperature-controlled induction does not lend itself well to large-scale 

cultures due to the limitations on the speed of heat transfer encountered. 

While these effects can be partially mitigated by process changes such as 

utilisation of a second bioreactor (Hortacsu and Ryu, 1990), this impacts 

significantly on the cost-effectiveness of the process. 

 

It has also been shown that reduction in temperature can increase the 

expression from a number of promoters, including the λ PL promoter (Giladi 

et al., 1995) and the cold-shock response proteins (Phadtare et al., 1999) 

although these effects are not generally exploited for recombinant protein 

expression. 

 

2.3.2.1.2. Nutrient Limitation 

 

2.3.2.1.2.1. Phosphate 

 

Alkaline phosphatase, transcribed from the phoA gene, is responsible for 

performing hydrolysis of phosphate containing substrates (Schwartz and 

Lipmann, 1961). When the availability of inorganic phosphate falls, the phoA 

gene is derepressed. The phoA promoter can be used in conjunction with a 

recombinant DNA sequence, in order to link phosphate depletion to product 

formation. This type of control of recombinant protein expression is 
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particularly elegant, ensuring an automatic disconnection between growth 

and product formation, particularly due to the lack of a requirement for 

exogenous material. However, the phosphate limitation can have negative 

effects on the cell’s metabolism (Lübke et al., 1995) which diminish its ability 

to manufacture the protein of interest. The effects of the phosphate limitation 

on metabolism can be mitigated by optimisation of the feeding strategy and 

batch medium (Lübke et al., 1995; Wang et al., 2005) though the presence of 

phosphate in some of the most significant biomolecules (nucleotides and 

ATP/GTP). As a result of this, Lübke et al (1995) observed plasmid loss 

during the induction phase (likely resulting from the cell having insufficient 

phosphate to maintain the plasmid within the cell), but were able to 

compensate by increasing the level of inoculum. This action also managed to 

increase the productivity of the fermentation with the most recombinant 

protein produced in tandem with the highest level of inoculum (10 % 

compared with 1 %). Wang et al (2005) employed a pH-stat fed-batch strategy 

and achieved a ten-fold increase in recombinant protein production as a 

result, using a similar phosphate limitation method. This recombinant 

protein production was further increased by supplementing amino acids into 

the simple glucose feed, although this effect was less significant. 

 

Fine control of this kind of expression is very difficult to achieve using 

complex media (Section 2.4.2. Nitrogen source) due to the variability of 

components within it, therefore use of phosphate-limited induction places 

constraints on the possible choices of growth medium. 
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2.3.2.1.2.2. Tryptophan 

 

The trp operon encodes proteins which are responsible for synthesising 

tryptophan from other amino acids when it is not present within the bacterial 

environment. Genes under the control of the trp operon are repressed in the 

presence of tryptophan, and derepressed by either its absence or the 

presence of the gratuitous inducer 3-β-indole acrylic acid. Repression of this 

type, however, has been found to be incomplete (Kane and Hartley, 1988) 

which could be problematic in the case of production of a toxic product. 

There are processing techniques available that can completely repress the trp 

operon though, such as the addition of yeast extract (whose effect was shown 

to be distinct from that of tryptophan added alone) or the use of 

monosaccharides such as glucose to enable a catabolite repressive effect 

(Yoon et al., 1996). Care must be taken with this system though, as it may be 

unsuitable for the expression of proteins which have large quantities of 

tryptophan, or other aromatic amino acids.  

 

2.3.2.1.3. Chemical Induction 

 

2.3.2.1.3.1. lac Operon 

 

The lac operon is present in many E. coli strains and controls the expression 

of proteins responsible for the import and metabolism of, the disaccharide, 

lactose. The lac operon encodes three proteins, of which two are necessary 

for lactose metabolism: β-galactactoside permease (responsible for import of 
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lactose and its analogues) and β-galactosidase (capable of catalyzing 

hydrolysis of lactose to galactose and glucose, and transgalactosylation of 

lactose to form allolactose). In the absence of lactose, the expression of these 

two proteins is repressed, although often not completely, allowing small 

quantities of the lac operon products to be made (Elowitz et al., 2002). This is 

particularly important, due to the fact that without β-galactoside permease 

none of the lactose can enter the cell. More significantly, the natural inducer 

of the lac operon is actually allolactose, which means that both the permease 

and galactosidase enzymes are required in order to fully induce expression. It 

has also been shown that the products of β-galactactoside reactions 

(galactose, glucose and allolactose) are all excreted from the cell in large 

quantities. It is suggested this may have the dual effect of preserving the 

allolactose from hydrolysis to act on uninduced cells, and the connection 

between proton-linked efflux of glucose and the proton-linked influx of 

lactose and allolactose (Huber et al., 1980). 
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Figure. 2.3. Lactose (left) naturally occurring disaccharide and Allolactose 
(right) its enzymatically altered (lac operon inducing) isomer. 

 

The lac repressor molecule is a tetrameric protein complex which obstructs 

the transcription initiation site, preventing access by RNA polymerase. Each 
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subunit of the lac repressor can bind a single allolactose molecule, requiring 

4 molecules for each repressor to achieve complete derepression (Lewis et al., 

1996). 

 

Escherichia coli also uses an ancillary method for control of the lac operon, 

whose effect was first described by Jacques Monod in 1942. The observed 

effect was that of diauxie (preferential use of one carbon source over another) 

later expounded upon by Monod himself (1949) as well as specifically relating 

to the glucose/lactose dyad (Loomis and Magasanik, 1967). When both 

glucose and lactose are present in the environment, E. coli will utilise glucose 

as a carbon source whilst the lac operon remains repressed. This is an effect 

termed “catabolite repression” which classical scientific orthodoxy indicates 

is caused by high levels of intracellular cAMP, in turn binding to cAMP 

receptor protein (CRP) which regulates the transcription in the absence of 

glucose (Ullmann and Monod, 1968). The established model states that 

growth using glucose suppresses cAMP levels within the cell, a suppression 

which is lifted when metabolism is changed to alternative carbon sources, 

such as lactose. Inada et al (1996) demonstrated that the apparent catabolite 

repression is actually an inducer exclusion effect of the phosphotransferase 

system (responsible for the import of simple sugars such as glucose) on the 

β-galactosidase permease. 
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2.3.2.1.3.2. lacUV5 Operon 

 

The lacUV5 operon is a variation of the lac operon that is not susceptible to 

the apparent catabolite repression discussed in 2.3.2.1.3.1. If the carbon 

source of choice is likely to be glucose, the use of the lacUV5 operator 

ensures that the cells can be adequately fed during induction.  

 

2.3.2.1.3.3. tac Operon 

 

The tac operon is a hybrid of the -20 to -35 region of the trp promoter, 

attached to the -20 to -1 section of the lacUV5 operon. This hybrid has been 

shown to increase transcription by 11 times relative to the lacUV5 sequence 

and 3-fold in comparison to the trp operon (de Boer et al., 1983).  

 

2.3.2.1.3.4. lac Operon Inducers 

 

The natural inducer of this system, allolactose (derived from lactose), has 

already been mentioned above (Section 2.3.2.1.3.1. lac operon). There is, 

however, another type of inducer that is relevant because of its prolific use 

within academic research, the so-called gratuitous inducers. These 

compounds are non-hydrolysable analogues of lactose which bind to the lac 

repressor causing expression of foreign proteins under control of the lac 

operon. The most widely used of these chemicals is isopropyl-β-D-1-

thiogalactopyranoside (IPTG).  
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Figure. 2.4. Lactose (left) compared with gratuitous inducers of the lac 
operon; IPTG(middle) TMG (right). 

 

These synthetic chemicals exhibit a number of other features which 

distinguish them from their natural alternative. Methyl-β-D-1-thiogalactoside 

(TMG) concentrates 100-fold within cells when supplied at 10 µM. β-

galactoside permease has approx a 100-fold higher affinity for IPTG than for 

lactose (Sistrom, 1958), although it is also well established that lac permease 

is not a significant factor in the influx of IPTG into cells (Fried, 1977). IPTG is 

becoming less widely used due to its unsuitability for industrial application 

resulting from high cost, potential toxicity to humans (Makrides, 1996) and 

an effect similar to the bacterial heat shock response although with no 

significant change in growth rate observed (Kosinski et al., 1992). 

 

2.3.2.2. Induction Conditions 

 

As mentioned previously, the use of induction to trigger the manufacture of 

the protein of interest provides additional opportunities and scope for 

development and optimisation. The variety of options available is also 

dependent on the promoter system in use: 
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2.3.2.2.1. Temperature 

 

A repressive growth temperature must first be established, which should be 

lower than 37 °C with 100 % repression achieved at 30 °C or below 

(Tabandeh et al., 2004) although the exact optimal repressive and inductive 

temperatures vary depending on the product. This is consistent with all 

expression systems, where the specific recombinant sequence to be induced 

will change the metabolic profile of the cell, and hence, the optimum 

conditions for expression. Following this, a temperature to which the culture 

is raised must be determined, based on desired culture parameters, such as; 

product yield/quality and cell viability. In many cases, the temperature is 

downshifted subsequently to create an environment more conducive to 

minimizing bacterial stress responses (Section 2.1.5.3. Stress Responses). 

 

In tandem with the discovery of optimal temperatures for initial induction 

and post-induction growth and manufacture, the length of time of induction 

must also be considered, with particular attention to the scalability of the 

protocol (Caulcott and Rhodes, 1986; Tabandeh et al., 2004; Soares et al., 

2008). 

 

2.3.2.2.2. Nutrient Limitation 

 

This method of induction allows far less control than is the case with the 

other, more frequently applied, methods. The only real measure of control 

available is adjusting the time at which cells are induced through the use of 
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feeds containing the limited component. This kind of induction also has the 

greatest potential for creating a mosaic effect within the culture due to the 

existence of microenvironments with distinct nutrient limitations or excesses 

causing patches of differential gene expression within the reactor. As 

volumes increase towards production-scale, these effects will become even 

more pronounced as mixing efficiency falls.  

 

2.3.2.2.3. Chemical Induction 

 

2.3.2.2.3.1. Inducer concentration 

 

This is one of the primary factors controlling the level of expression of 

recombinant genes. The relative amounts of inducing agent and lac repressor 

molecules determine to what extent the gene is expressed in a population of 

cells. Furthermore, the induction regime is usually extremely variable based 

on the choice of inducer. In the case of the lac operon, IPTG is usually the 

inducer of choice, although this is often because host strains which are 

lacYZA- are often used for initial cloning procedures. E. coli strains which are 

lacYZA+ allow for the use of lactose as either inducer, or both carbon source 

and inducer enabling a greater level of flexibility within the process.  

 

If lactose is being used as a sole inducer in a lacYZA+ strain of E. coli, the 

metabolism of lactose will cause the concentration to fall within the culture 

as it proceeds. This metabolism, combined with the growth of the cells, 

causes the concentration of lactose (or, more specifically allolactose) to fall 
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both in absolute terms and in proportion to the number of cells. This 

problem can be circumvented by the use of a lactose feed (Gombert and 

Kilikian, 1998; Kilikian et al., 2000), however, the strains utilising the 

lacUV5 operon should enable employment of lactose solely as an inducer, 

with minimal degradation. 

 

The other solution to the problem of falling inducer levels is the use of a 

gratuitous inducer, such as IPTG. The cell’s inability to metabolically process 

IPTG means that the absolute concentration is maintained throughout the 

culture. This could still present the problem of post-induction increases in 

biomass, however, its passage through the cell membrane is not significantly 

restricted even in the absence of β-galactoside permease (Fried, 1977). 

Despite this, Hansen et al (1998), have indicated that the presence of lac 

permease can, in fact, be beneficial for proteins synthesised from lac operon 

controlled genes. Wood & Peretti (1991) showed that protein expression from 

the lac operon increased linearly up to 1 mM IPTG, after which there was no 

further increase in β-galactosidase, a result of mRNA degradation rather 

than a lack of induction. The optimal concentration of IPTG (the 

concentration which achieves the highest yield of functional protein) to be 

used is affected by a number of factors but is heavily influenced by the 

subcellular target (intracellular/periplasmic/secreted). Intracellular proteins 

are often best induced using approximately 1 mM IPTG and extracytoplasmic 

proteins usually achieve best results with 0.1 mM or less (Chalmers et al., 

1990; Shibui and Nagahari, 1992; Laffend and Shuler, 1994). 
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The choice between using a natural physiological inducer (such as lactose) 

and a gratuitous inducer (e.g. IPTG) presents more scope for process 

optimisation in addition to the potential for variation of concentration. 

 

2.3.2.2.3.2. Induction Point 

 

Not only is the concentration of inducer important, so is the bacterial growth 

phase at the point of addition. The optimal point for addition of the inducing 

agent is influenced by manifold and various factors including; pre-induction 

growth rate (Curless et al., 1990), size and type of product, cellular 

localisation of product (Ramirez et al., 1994) and metabolic changes brought 

about by transitions between energy sources (Want et al., 2009). 

  

2.4. Medium 

 

2.4.1. Carbon Source 

 

2.4.1.1. Glucose 

 

Glucose is one of the most widely used carbon sources for microbial cultures. 

Its transport, and metabolism, by the cell is well understood, and it provides 

high yields of biomass (Castan et al., 2002; Soini et al., 2008). 

 

When glucose is used as a carbon source, care must be taken to maintain a 

low concentration at all times. High glucose concentrations have been shown 
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to inhibit growth (Luli and Strohl, 1990) and recombinant product formation 

(Jensen and Carlsen, 1990) from production of acetate through anaerobic 

metabolism. 

 

2.4.1.2. Glycerol 

 

Glycerol is one of the more common alternative carbon sources to glucose, 

with its recent drop in price from being a by-product of biodiesel 

manufacture being a significant factor in this (Yazdani and Gonzalez, 2007). 

Cells metabolising glycerol typically exhibit lower growth rates and a lower 

biomass yield on substrate than similar cultures fed with glucose (García-

Arrazola et al., 2005). This is because each glucose molecule produces twice 

as much pyruvate as each glycerol molecule. 
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Figure 2.5. Central carbon metabolism showing entry of glucose and glycerol. 
GA-3-P (glyceraldehydes-3-phosphate); 1,3-BPG (1,3-bisphosphoglycerate); 2-PG 
(2-phosphoglycerate); PEP (Phosphoenolpyruvate); TCA (tricarboxylic acid 
cycle) (Stryer, 1995) and (Luli and Strohl, 1990) 

 

Cells growing on glycerol are not subjected to overflow metabolism in the 

same way as glucose-grown cells. It is a commonly stated opinion that E. coli 

utilising glycerol as the primary carbon source do not produce acetate 

(Shiloach and Fass, 2005). Where acetate has been shown to coincide with 

glycerol use (García-Arrazola et al., 2005; Guebel et al., 2009), levels are far 

below those shown to inhibit growth and product formation. The use of 

glycerol does present problems from a material handling perspective due to 
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the high viscosity, although it is soluble at higher concentrations than 

glucose. 

 

2.4.1.3. Lactose 

 

Lactose is similar to glycerol in that glucose is preferentially metabolised 

when both are present in the environment (Fraser and Yamazaki, 1983), 

which could be due, in this case, to the extra metabolism required of lactose 

prior to entry into glycolysis. Lactose is also not suitable as a primary carbon 

source in recombinant strains utilising the lac operon for induction of the 

product. 

 

2.4.1.4. Fructose and Others 

 

It has been shown that cultivating E. coli on fructose reduces the level of 

acetate, relative to growth on glucose, whilst simultaneously increasing the 

quantity of overexpressed β-galactosidase (Aristidou et al., 1999). Xylose and 

arabinose have also been used both individually and as a mixture with 

glucose to increase levels of 3-Dehydroshikimic acid produced by 

recombinant E. coli (Li and Frost, 1999). It seems unlikely that glucose and 

glycerol will be deposed as the automatic first and second choices for 

bacterial fermentation in the foreseeable future due to their abundance and 

high biomass yield in fermentation processes.  
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2.4.2. Nitrogen Source 

 

The nitrogen required by growing cell cultures is usually supplied in one of 

two ways; either a so-called “complex” source (e.g. yeast extract, 

tryptone/peptone, etc.) or via a “defined” inorganic means such as an 

ammonium salt.  

 

Using complex medium can increase the amount of both cell mass and 

specific product formation within a bioreactor (Hoffmann et al., 2004). In 

addition, Hoffmann et al showed that yeast extract can prevent accumulation 

of insoluble protein, relative to a defined nitrogen source. It should be noted, 

however, that these effects were only observed at very low cell densities. This 

result was observed using two different products; one under heat-induction 

and the other under IPTG induction of T7 RNA polymerase so it is possible 

that these effects are correlated rather than causative. Tsai et al (1987) have 

also shown that the use of an organic nitrogen source can increase the 

productivity of a recombinant fermentation, however, they also found that 

this increase was concomitant with an increase in the amount of insoluble 

target protein.  

 

Comparison between complex and defined nitrogen sources have also been 

made and a third category included, that of semi-defined medium, a 

compromise between the two extremes (Tabandeh et al., 2004). This work 

showed that in terms of overall growth potential, the semi-defined medium 

ranks, unsurprisingly, between complex (the highest) and defined (the 
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lowest). There was no data presented for the recombinant protein 

productivity of the semi-defined medium, however, more than twice the 

amount of human growth hormone was produced in complex medium 

compared with the defined medium.  

 

2.5. Cultivation Techniques 

 

2.5.1. Batch 

 

The simplest of the available cultivation techniques, comprising a one-step 

process, where all nutrients are supplied to a single inoculum of cells. The 

standard microbiological shake-flask approach uses a batch method, and, 

whilst suitable for achieving growth this method is unable to achieve the 

high-cell densities which are required for biotechnological purposes.  

 

2.5.2. Fed-Batch 

 

Built on the principal of the batch process, the fed-batch begins with an 

initial batch phase. At a pre-defined point in the process, a feed is pumped 

into the fermenter, in order to provide additional nutrients to the cells. Fed-

batch operation allows the attainment of much higher cell-densities than are 

possible with batch processes, which in turn enable higher productivities. On 

top of this, fed-batch processes can control growth rate, limiting the 

accumulation of growth, or product, inhibitory metabolites (Luli and Strohl, 

1990) as a consequence of overflow metabolism. Large arrays of possible 
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feeding strategies also entail greater potential for process optimisation than 

is the case with batch processes (Yee and Blanch, 1992; Korz et al., 1995; 

Belo and Mota, 1998; Kim et al., 2004). The increases in production capacity 

usually outweigh the increase in process time considerably, such that batch 

methods are rarely used in preference.  

 

2.5.3. Continuous 

 

Continuous culture is the third possible option for bacterial cultivations. 

Continuous cultures are operated in such a fashion that a specific parameter 

is maintained at a constant value. This is achieved, first, by growing the cells 

to high density, then using a pump to continually remove the contents of the 

fermenter with replenishment of the same volume of fresh medium. The rate 

of this replenishment controls the growth rate of the organisms (Jung, 2006). 

This method has the benefit of constant removal of growth/product limiting 

metabolites, as well as the ongoing addition of nutrients. This method is 

most commonly used in research, to provide a steady-state reactor where the 

deviations from this state can be attributed to experimental perturbations 

(Villaverde et al., 1993; Aucoin et al., 2006). From a bioprocess standpoint, 

these reactions also enable the continual removal of product from the 

reactor, which can avoid detrimental effects associated with product 

accumulation, such as proteolysis or aggregation. This approach is rarely 

used in industry due to the long process times, where increasing process 

time concomitantly increases the risk of failure, with the associated cost. 
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2.6. Culture Monitoring 

 

2.6.1. Growth 

 

2.6.1.1. OD 

 

Optical density (OD) uses monochromatic light, usually from a white light 

source and filtered to the desired wavelength, shone through a sample, with 

the emerging light detected. Measurements can be taken in either 

transmission or absorbance mode, and for the purposes of biomass 

estimation, are equivalent and reciprocal. This method assumes a linear 

correlation between the absorbance of a sample and the number of cells 

present. This assumption holds as long as the cells in question maintain a 

constant size throughout the culture. 

 

2.6.1.2. CFU.mL-1 

 

Analysis of colony forming units can be used to monitor the growth of a 

bacterial population. Samples are diluted, spread on agar plates and 

incubated 

for at least 24 hours. From these samples, the number of reproductively 

viable cells per unit volume can be determined. The requirement for post-

sampling proliferation from a single-cell to a visible colony places certain 

time restrictions on this type of analysis. In order to form a visible colony, a 

single cell must be incubated for 18-24 hours with the result that 
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information gathered from this analysis is not immediately available. Its 

greater utility, therefore, is in the analysis of bacterial propagation under 

stressful conditions (Section 2.1.5. Stress). This technique must be 

considered alongside the fact that it is estimated that only 2 % of all known 

microorganisms can be grown in an artificial environment (Kaeberlein et al., 

2002). This would suggest that there would have to be relatively little change 

in the physiological state of a cell in order to make it non-resuscitatable 

whilst still being viable as measured by cellular integrity and energy 

generation.  

 

2.6.1.3. DCW 

 

Dry cell weight measures the quantity of cell mass within a defined volume 

by sampling, separating cells from broth, and then drying the cells at high 

temperature (usually between 70 and 100 °C). This method can achieve high 

levels of accuracy, although accuracy falls with falling numbers of cells and 

decreasing sample size. 

 

2.6.1.4. Cell Counting 

 

Direct microscopic visualisation of cells, within a defined volume, allows 

determination of quantity of cells per unit volume. Usually this would need to 

be repeated 3-4 times to increase data reliability, therefore this method is 

both labour-intensive and time-consuming. This is the only method for 
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determining microbial growth listed here which relies on the analysis of 

single-cells rather than analysis of an averaged sample. 

 

2.6.1.5. Microscopy 

 

2.6.1.5.1. White Light Microscopy 

 

Conventional light microscopy can be allied with specific stains, such as 

methylene blue to give an indication of the ability of the cells to exclude the 

dye as a crude measure of cellular metabolism. This method is often carried 

out in conjunction with manual cell counting, which increases the quantity 

of information that can be obtained from cell counting although the method 

is still laborious and time-consuming.  

 

2.6.1.5.2. Fluorescence Microscopy 

 

Fluorescence microscopy obeys many of the same principles of white light 

microscopy, however the illuminating source is usually filtered to allow only 

a specific wavelength (or group of wavelengths) to strike the cells. If the cells 

in the sample are pre-mixed with one or more fluorescent dyes, respondent 

to the filtered light wavelength, extra information can be gathered relating to 

the metabolic status of the cell (covered in more detail in Section 2.6.1.6. 

Multi-Parameter Flow Cytometry). The statistical resolution of this assay is 

extremely poor with samples measured in the hundreds, however, when used 
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in conjunction with flow cytometry the cells which are visualised are taken 

from a subpopulation with similar fluorescence characteristics. 

 

2.6.2. Cell Quality 

 

2.6.2.1. Multi-Parameter Flow Cytometry 

 

Flow cytometry: literally the measuring of cells suspended in a moving fluid. 

Cells are first mono-dispersed in an isotonic liquid (usually phosphate 

buffered saline (PBS)) and then forced to flow through a measurement 

chamber (flow-cell). This stream of cells is hydrodynamically focussed within 

an outer stream of similar fluid such that the stream of cells forms a single 

strand within a laminar flow regime. This moving column of single-cells is 

then intersected with a monochromatic light source (usually a laser, 

although more than one may be used) at right angles to the direction of flow. 

As the light strikes the cells it is scattered, with no change in wavelength 

(elastic scattering), in all directions (Kerker, 1983). This scattered light is 

then focussed and collected using lenses and optical-electronic interfaces in 

two different directions: 

 

• Forward Angle Light Scatter 

• Right Angle Light Scatter 

 

The combination of these two parameters is characteristic for specific 

organisms/particles and deviations imply a change in the cells (such as a 
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change in size/formation of inclusion bodies) (Vives-Rego et al., 2000; Lewis 

et al., 2004).  

 

In order to analyse parameters of cells in addition to size and intracellular 

composition, fluorescent dyes can be added to the cell suspension. These 

chemicals absorb energy from a light source within a defined range of 

wavelengths, resulting in the promotion of an electron to a higher energy 

level. As the electron loses energy and returns to its ground-state, it emits 

light at a wavelength longer than that which excited it, with the difference 

between these two wavelengths known as Stokes’ shift. The fluorescent dyes 

are chosen according to their excitation and emission peak wavelengths, with 

the former as close to that of the laser source as possible, whilst the latter 

should be distinct from all the other dyes used in the mixture.  

 

Most uses of flow cytometry employ some kind of binary live/dead stain, 

often propidium bromide (ethidium bromide is also useful here, although is 

partly permeable through the membrane, whereas propidium is not). 

Propidium is excited, most typically, by a 488 nm (blue-green) laser and 

emits light around 615 nm (red) (Rault et al., 2007). There is an array of 

different fluorescent molecules (chemicals, fluorescent antibodies, reporter 

proteins such as GFP) available for monitoring characteristics such as; 

intracellular pH, membrane potential and intracellular protein content (Tracy 

et al., 2010). The fluorescence characteristics can also be used to select 

specific cells and populations for further study via fluorescence activated cell 

sorting. By sorting into microwell plates or directly onto solid agar, cells 
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which have exhibited a specific fluorescence profile can be further cultivated 

in either solid or liquid medium.  

 

The ability of flow cytometry to analyse very large quantities of cells (up to 

10,000 cells per second in some cases) provides for a high degree of 

statistical reliability on the data obtained from it. If, in addition, sorting is 

employed then some degree of spatial resolution can also be obtained.  

 

Throughout this thesis, four different fluorescent dyes have been employed 

for the elucidation of heterogeneous populations: 

 

2.6.2.1.1. Propidium Iodide 

 

Propidium is a membrane impermeant; positively charged DNA chelator. It 

binds to DNA with a stoichiometry of 1: 4-5 base pairs. Fluorescence is 

considerably enhanced by binding to DNA, relative to free PI.  
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Figure 2.6. Absorption/emission spectrum for propidium iodide from 
www.probes.com.  

 

2.6.2.1.2. DiBAC4(3); BOX 

 

Bis-(1,3-dibutylbarbituric acid)trimethine oxonol is a lipophilic, anionic dye, 

excluded from cells which have a “normal” membrane potential. It freely 

enters cells as the membrane potential approaches zero. 
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Figure 2.7. Absorption/emission spectrum for DiBAC4(3) supplied by 
Molecular Probes (Invitrogen). 

 

2.6.2.1.3. DiOC6(3) 

 

3,3′-Dihexyloxacarbocyanine iodide is a lipophilic cationic dye and follows a 

Nernstian distribution pattern. The ratio of the internal and external 

concentrations of a membrane permeant, cationic molecule is determined by 

the resting potential across that membrane. 
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Figure 2.8. Absorption/emission spectrum for DiOC6(3) supplied by Molecular 
Probes (Invitrogen) 

 

2.6.2.1.4. RedoxSensor Green™ 

 

Supplied by molecular probes, the RedoxSensor Green™ stain exists in two 

forms: an oxidised, afluorescent molecule and a reduced, fluorescent one. If 

the dye enters a cell, with a functioning reduction machinery (one capable of 

generating reducing power in the form of NADH/NADPH/FADH, as well as 

functional reductase enzymes) the fluorescent form of the molecule is 

created. The ability of a cell to carry out this process is, in turn, linked to the 

capacity of a cell to perform central carbon metabolism (Gray et al., 2005). In 
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its reduced state, the molecule absorbs light in the 488 nm region and emits 

light at approximately 525 nm. 

 

2.6.2.2. Productivity 

 

2.6.2.2.1. SDS-PAGE 

 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis is a technique 

which uses charge, as a surrogate for size, to separate protein molecules. 

First described by Laemmli (1970), it entails coating of the protein in a 

detergent, which linearises the peptide chain. This linearization allows the 

detergent to coat the chain along its length, with the resulting charge of the 

molecule being congruent with the number of amino acids. This method is 

limited by the sensitivity of the detection technique, where a non-specific 

protein stain (Coomassie blue or silver) binds to the proteins in the gel, 

however it is the standard technique for laboratory detection and 

quantification of protein species. The correlation of charge with size only 

holds when there is an approximately even distribution of the different amino 

acids within the molecule. If a protein with a preponderance of low molecular 

weight (e.g. glycine) or high molecular weight (e.g. Tyrosine) amino acids is 

analysed, then the correlation could be unreliable. 
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2.6.2.2.2. Size Exclusion Chromatography 

 

Size exclusion chromatography is a high pressure liquid chromatography 

(HPLC) method whereby a protein sample is passed through a porous matrix, 

where larger molecules will be transmitted sooner than smaller ones, in a 

manner consistent with differing molecular weights. Unlike SDS-PAGE, a 

more direct measure of protein mass can be determined with this technique, 

although the 3D structure of the proteins being analysed can also have a 

significant effect on this procedure, where it is assumed that the size of the 

molecule in 3D is strongly correlated with its molecular weight. SEC must, 

however, be used in conjunction with a purified sample due to a necessity for 

low loading volumes (around 10 % of the column volume at any one time) 

and so is not as immediately applicable method as SDS-PAGE. 

 

2.6.2.2.3. Western Blotting 

 

Western blotting is a method for increasing the sensitivity of SDS-PAGE. An 

antibody, specific for the protein of interest is conjugated to an enzyme 

capable of catalysing an easily detectable reaction (usually conversion of a 

coloured substrate to a different colour). The protein is transferred from the 

SDS-PAGE gel to a nitrocellulose membrane, again driven by charge. This 

membrane is then treated with the conjugated antibody, following which, the 

enzyme substrate is added for a defined incubation period. After this period 

has elapsed, the reaction is stopped and a visible band can be seen where 

the protein of interest lies. The weakness of this technique is that it requires 
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a number of processes prior to the end measurement, whose efficiency will 

all impact the final reading. 

 

2.6.2.2.4. Enzyme-Linked Immunosorbent Assay (ELISA) 

 

An ELISA uses the same principle as the Western Blot, detailed above, but is 

usually carried out in a microwell plate format, using serial dilutions of 

samples. This difference in technique allows for more accurate quantitation 

of the amount of product present than is capable with SDS-PAGE, when 

compared with a known concentration of reference material. The major 

weakness of the technique is its reliance on serial dilutions, which are prone 

to error 

 

2.6.2.2.5. Quantitative Polymerase Chain Reaction (qPCR) 

 

Quantitative polymerase chain reaction, also encompassing quantitative 

reverse transcriptase polymerase chain reaction is a method by which the 

quantity of DNA in a sample can be determined by the use of a DNA binding 

fluorophore (Bustin, 2000). 

 

When qPCR and reverse transcriptase are used in tandem, it is possible to 

quantify specific mRNA sequences of interest, recombinant products, for 

example. As a technique, qPCR is generally more commonly applied to 

mammalian and higher cell analysis (Lattenmayer et al., 2007) with this 

author only identifying one investigation targeting bacterial fermentation 
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processes, and this was focussed on determination of plasmid copy number 

(Skulj et al., 2008).  

 

Employment of qPCR for the analysis of transcription rates under different 

fermentation conditions could give significant insight into any disjunct 

between expression of the completed recombinant product and the 

transcription of the genes prior to and following induction. 

 

2.7. Aims and Objectives 

 

Bacteria are still the default choice for the production of recombinant 

biomolecules, despite the wealth of alternatives, due to their rapid growth 

rate, and low-cost process. It is clear that E. coli-based manufacturing 

methods are currently more suitable for some products than others. In order 

to improve the processes by which biologics are made, a deeper 

understanding of the product and its effect on the organism must be 

obtained. This can be achieved by the application of niche analysis 

techniques, such as flow cytometry, which allow rapid, statistically-reliable, 

detection of bacterial stress as a consequence of protein overproduction. 

 

The purpose of this work is as follows: 

 

• To increase the variety of staining procedures available for 

determination of stress on bacterial cells by flow cytometry. 
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• To employ extant, and newly-developed, staining protocols for the 

analysis of recombinant E. coli fermentations to produce antibody 

fragments; a poorly understood industrial process. 

• Use the information gained, regarding the ability of cells to withstand 

the production environment, to make alterations to the protocol in 

order to maximise productivity. 

• Monitor the new process using flow cytometry, to detect early signs of 

stress, which precede cellular disruption, resulting from the foreign 

protein expression. 
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3. Materials and Methods 

 

3.1. Chemicals 

 

Table 3.1 Chemicals List 
Chemical Supplier 
Nutrient Agar Oxoid, Hampshire, UK 
Nutrient Broth Oxoid, Hampshire, UK 
Peptone Difco (BD, NJ, USA) 
Yeast Extract Difco (BD, NJ, USA) 
NaCl Sigma-Aldrich, MO, USA 
(NH4)2SO4 Sigma-Aldrich, MO, USA 
Glycerol Sigma-Aldrich, MO, USA 
KH2PO4 Sigma-Aldrich, MO, USA 
K2HPO4 Sigma-Aldrich, MO, USA 
Citric Acid Sigma-Aldrich, MO, USA 
MgSO4 Sigma-Aldrich, MO, USA 
CaCl2 Sigma-Aldrich, MO, USA 
Tetracycline Sigma-Aldrich, MO, USA 
Polypropylene Glycol 2000 (PPG 2000) Sigma-Aldrich, MO, USA 
FeSO4.7H2O Sigma-Aldrich, MO, USA 
ZnSO4.7H2O Sigma-Aldrich, MO, USA 
MnSo4.H2O Sigma-Aldrich, MO, USA 
Na2MoO4.2H2O Sigma-Aldrich, MO, USA 
CuSO4.5H2O Sigma-Aldrich, MO, USA 
H3BO3 Sigma-Aldrich, MO, USA 
Conc. H3PO4 Fisher Scientific, MA,  USA 
NaOH Sigma-Aldrich, MO, USA 
NH4OH Fisher Scientific, MA, USA 
Isopropyl β-D-1-thiogalactopyranoside 
(IPTG) 

Melford Laboratories, Suffolk, 
UK 

Phosphate Buffered Saline (PBS) Oxoid, Hampshire, UK 
Coulter Clenz™ Beckman Coulter, CA, USA 
Isoton II Beckman Coulter, CA, USA 
Propidium Iodide Invitrogen, CA, USA 
Bis-(1,3-dibarbituric acid)-trimethine 
oxanol (DiBAC4(3)) 

Invitrogen, CA, USA 

3,3'-Dihexyloxacarbocyanine iodide 
(DiOC6(3)) 

Invitrogen, CA, USA 

RedoxSensor Green™ Invitrogen, CA, USA 
TrisHCl Sigma-Aldrich, MO, USA 
Trizma Sigma-Aldrich, MO, USA 
Tetrasodium ethylenediaminetetra-
acetate (EDTA) 

Sigma-Aldrich, MO, USA 
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Sucrose Sigma-Aldrich, MO, USA 
Na2CO3 Sigma-Aldrich, MO, USA 
NaHCO3 Sigma-Aldrich, MO, USA 
Lysozyme Sigma-Aldrich, MO, USA 
Bovine Serum Albumin (BSA) Sigma-Aldrich, MO, USA 
Goat anti-human Fab peroxidase 
conjugate 

Sigma-Aldrich, MO, USA 

KPL peroxidase substrate KPL, MD, USA 
pH 4 standard solution Sigma-Aldrich, MO, USA 
pH 7 standard solution Sigma-Aldrich, MO, USA 
Glutaraldehyde Sigma-Aldrich, MO, USA 
PBS Sigma-Aldrich, MO, USA 
Osmium Tetroxide Sigma-Aldrich, MO, USA 
Ethanol Fisher Scientific, MA, USA 
Propylene oxide Sigma-Aldrich, MO, USA 
Uranyl Acetate Sigma-Aldrich, MO, USA 
Reynold’s Lead citrate Sigma-Aldrich, MO, USA 
 

3.2. Consumables 

 

Table 3.2. Consumables 

Item Supplier 
Microcentrifuge tube (1.5 mL) Triple Red, Bucks, UK 
Centrifuge tube (50 mL) Nunc, NY, USA 
Microwell plate (96 well) Sarstedt,Nürnbrecht, Germany 
Constricted Cuvette (2 mL) Sartorius, Göttingen, Germany 
Minisart (0.2 µm) Sartorius, Göttingen, Germany 
Nitrocellulose Filter (0.2 µm) Sartorius, Göttingen, Germany 
Midisart filter (0.2 µm) Sartorius, Göttingen, Germany 
Sartobran-PH 0.2 µm Sartorius, Göttingen, Germany 
 

3.3. Equipment 

 

Table 3.3 Equipment List 

Equipment Manufacturer 
Shaker Incubator Gallenkamp, Germany 
FerMac 310/60 Fermentation 
Controller 

Electrolab, Gloucestershire, UK 

Electrolab Fermentation Manager Lite 
software  

Electrolab, Gloucestershire, UK 

Dissolved Oxygen (DO) probe Broadley Technologies, CA, USA 
pH probe Broadley Technologies, CA, USA 
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Uvikon 922 Spectrophotometer Kontron Instruments, Eching, 
Germany 

5415D Microcentrifuge Eppendorf, Hamburg, Germany 
C422 Centrifuge Jouan, France 
pH meter Hanna Instruments, RI, USA 
EPICS ELITE Flow Cytometer Beckman Coulter, CA, USA 
Coulter Electronics Elite software Beckman Coulter, CA, USA 
Windows Multiple Document Interface 
(WinMDI) v. 2.8 

Available from 
http://facs.scripps.edu 

Microwell plate shaker/incubator Infors-HT, Bottmingen, Switzerland 
Multiskan MS plate reader Thermo Fisher Scientific, MA, USA 
Ortholux II Leitz, Wetzlar, Germany 
Camera Nikon, Japan 
Ultracut E microtome Reichert-Jung, NY, USA 
1200 EX Electron Microscope Jeol, Tokyo, Japan 
 

All water used was filtered by a Millipore ultrafiltration unit (Millipore, MA, 

USA). All materials, for which it was suitable, were sterilised by autoclaving 

at 121 °C for 30 minutes. Materials unable to be autoclaved were filtered 

through 0.20 µm Minisart filter as indicated in 3.2. Consumables. All 

chemical concentrations expressed are final values in the relevant solution. 

All flask cultures were grown in an orbital shaker incubator with a 2.5 x 5 

cm throw. 
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3.4. Culture Techniques 

 

3.4.1. Organisms 

 

3.4.1.1. Bacillus cereus 

 

Bacillus cereus NCTC 11143 was obtained from the National Collection of 

Type Cultures (NCTC, London, UK) (Part of the United Kingdom National 

Culture Collection). 

 

3.4.1.2. Escherichia coli 

 

E. coli W3110 (F-; λ-; IN(rrnD-rrnE)1; rph-1) was obtained from the American 

Type Culture Collection (ATCC, Virginia, USA).  

 

E. coli W3110::pAVE046 was obtained from Avecia Biologics Ltd. pAVE046 

was derived from pZT7#2.0 (Kara et al., 2003) and described as E. coli 

CLD048 in WO/2007/088371 (Hodgson et al., 2006). 
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3.4.2. Medium 

 

Nutrient agar was used as the non-selective solid medium for the cultivation 

of both B. cereus and E. coli.  

 

3.4.2.1. Bacillus cereus 

 

B. cereus was grown in nutrient broth as liquid medium, for both inoculum 

and experimental cultures. 

 

3.4.2.2. Escherichia coli 

 

E. coli starter cultures were grown using modified lysogeny broth (LB) 

(Bertani, 1951) (5 % peptone; 10 % yeast extract; 10 % NaCl, all (w/v)). 

 

Stirred-tank reactor cultures of E. coli were grown in the medium shown in 

Table 3.4. 
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Table 3.4. Fermentation medium composition 
Medium Component Concentration  
(NH4)2SO4 14 g.L-1 
Glycerol 35 g.L-1 
Yeast Extract 20 g.L-1 
KH2PO4 2 g.L-1 
K2HPO4 16.5 g.L-1 
Citric Acid 7.5 g.L-1 
1 M MgSO4 10 mL.L-1 
1 M CaCl2 2 mL.L-1 
Trace Element Solution 34 mL.L-1 
Tetracycline 15 µg.mL-1 
 

The shaded portion of Table 3.4. indicates where solutions were added, 

aseptically, after sterilisation and cooling of the medium. For stirred-tank 

reactor fermentations 0.66 mL.L-1 of Polypropylene glycol 2000 (PPG) was 

added to the medium, as antifoam, prior to sterilization. In order to return 

the pH to 7 prior to fermentation, ammonium hydroxide (35 % w/v) was 

added. 

 

Table 3.5. Trace element solution composition 
Trace Element Component Concentration 
FeSO4.7H2O 3.36 g.L-1 
ZnSO4.7H2O 0.84 g.L-1 
MnSO4.H2O 0.51 g.L-1 
Na2MoO4.2H2O 0.25 g.L-1 
CuSO4.5H2O 0.12 g.L-1 
H3BO3 0.36 g.L-1 
Conc. H3PO4 48 mL.L-1 
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3.4.3. Shake Flask 

 

3.4.3.1. Bacillus cereus 

 

Cultures were performed using 500 mL Ehrlenmeyer flasks, each with four 

baffles placed at 90° intervals. A liquid volume of 50 mL nutrient broth was 

sterilised inside each of the flasks, with 2 flasks for the inoculum and 24 for 

the experimental culture. An agar plate was prepared with B. cereus seeded 

from a glycerol stock, using a sterile loop, and incubated overnight (16 ± 4 h 

at 37 ± 1 °C). Single colonies were then picked, again with a sterile loop, and 

used to inoculate two flasks which were incubated overnight (14 ± 2 h; 37 ± 1 

°C; 200 RPM). The contents of the flasks were visually assessed for growth, 

and the contents of one flask were used to inoculate the 24 experimental 

flasks (2 % v/v). The contents of the second flask were assayed for optical 

density. The experimental flasks were placed into a shaking incubator (37 ± 1 

°C; 200 RPM). Sampling was performed every 1-2 hours via the sacrifice of 

two flasks per time point. Each flask was analysed as described in Section 

3.5. Methods. 

 

3.4.3.2. Escherichia coli 

 

Cultures were performed using 500 mL Ehrlenmeyer flasks, each with four 

baffles placed at 90° intervals. A liquid volume of 50 mL LB was sterilised 

inside two flasks for the inoculum. After cooling, and immediately prior to 

commencement of the cultivation, 15 µg.mL-1 tetracycline was added to each 
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flask. The 24 experimental culture flasks had 50 mL of the medium 

described in Table 3.4, sterilised in situ, with the post sterilisation additions 

(Table 3.4 and Table 3.5.) made, aseptically, after cooling of the medium. For 

the preparation of the inoculum, 0.1 % (v/v) of a glycerol stock was thawed 

and added aseptically, and incubated overnight (14 ± 0.5 h at 37 ±1 °C; 200 

RPM). The contents of the flasks were visually assessed for growth, and the 

contents of one flask were used to inoculate the 24 experimental flasks (2 % 

v/v). The contents of the second flask were assayed for optical density. The 

experimental flasks were placed into a shaking incubator (37 ± 1 °C; 200 

RPM). Sampling was performed every 1-2 hours via the sacrifice of two flasks 

per time point. Antibody production was induced using 0.1 mM IPTG. Each 

flask was analysed as described in Section 3.5. Analysis Techniques. 

 

3.4.4. Stirred-tank reactor 

 

Fermentations were carried out in a 5 L cylindrical bioreactor, with 

dimensions as indicated in Figure 3.1. 

 

Table 3.6. Fermentation parameters 
Parameter Set Point 
Agitation (RPM) 1000 ± 50 
Temperature (°C) 37.0 ± 0.2 
pH 7.00 ± 0.1 
Air flow rate (vvm) 1.0 ± 0.1 
 

The fermenter was equipped with two 6-bladed, paddle-type, impellers. Four 

baffles were positioned around the edge of the reactor. The aerated liquid 

height was, at all times below the level of the baffles. Oxygenation of the 
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medium was performed using compressed air through a 0.2 µm filter 

(Midisart) and sparged beneath the lower impeller. Water vapour in the off-

gas was condensed, and the air filtered with a Sartobran capsule. 

Temperature was maintained at 37 °C throughout each of the fermentations. 

The fermenter was filled with 3 L of culture medium (Table 3.4.) and 

autoclaved. Immediately prior to the fermentation, the post-sterilisation 

additions (Table 3.4. and Table 3.5.) were filter-sterilised (Minisart) and 

added to the fermenter. The pH of the medium was adjusted to 7.0 using 35 

% (w/v) ammonium hydroxide. Antibody production was induced using 0.1 

mM IPTG. 
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Figure 3.1 Fermenter Geometry. Scale 1:2 

 

3.4.4.1. Dissolved Oxygen & pH 

 

Dissolved oxygen (DO) was monitored by means of a polarographic probe. 

The probe was cleaned, sterilised and calibrated prior to use. pH was 

measured using a suitable probe and adjusted by adding 35 % (w/v) 

ammonium hydroxide via a computer controlled pump. 
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3.4.4.2. Inoculum 

 

A LB medium (120 mL) was sterilised within a baffled 500 mL Ehrlenmeyer 

flask, with a sealed side arm port for connection to the fermenter. For E. coli 

CLD048 cultivations, 15 µg.mL-1 tetracycline was added after cooling, before 

addition of 100 µL of glycerol stock. For cultivations of E. coli W3110 

antibiotic was not added. The inoculum was then incubated overnight (14 ± 

0.5 h; 37 ± 1 °C; 200 RPM) before being added to the fermenter. 

 

3.4.4.3. Batch Fermentation 

 

Batch fermentations were carried out as described with 30-40 mL samples 

being taken, aseptically, at 1-2 hour intervals and submitted to appropriate 

testing for growth, product formation and cell viability.  

 

3.4.4.4. Fed-Batch Fermentations 

 

Fed-batch fermentations were carried out using the same process as the 

batch fermentations in the first instance, with samples taken every two 

hours. As the dissolved oxygen measured in the fermenter began to rise, the 

feedstock was added at a rate of 45 mL.h-1. The feed was supplied via a 

manually activated pump, external to the bioreactor controller, operated 

according to Avecia’s standard protocol at 11 g(glycerol).L-1.min-1 with 
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approximately constant volume over the course of the fermentation, due to 

sample taking, and evaporation. 

 

Table 3.7. Feed Composition 
Component Concentration (g.L-1) 
Glycerol 714 
Magnesium Sulfate (1 M) 30 mL.L-1 
 

3.5. Analysis Techniques 

 

3.5.1. Optical Density (OD) 

 

Measurements were taken at 580 nm and 600 nm for B. cereus and E. coli 

respectively. All samples were measured in the range 0-0.6, using serial 1:10 

dilutions with PBS where necessary, with actual OD values determined by 

calculation. 

 

3.5.2. Dry Cell Weight (DCW)  

 

3.5.2.1. Shake Flask 

 

3.5.2.1.1. Bacillus cereus 

 

First, a filtration method was used to determine DCW, using pre-weighed  

0.2 µm filters (Nitrocellulose) inserted into a capsule. A defined volume was 

syringed through the filter and the filters were dried out in an oven at  

100 ± 5 °C overnight until a constant weight was achieved. Initially, the 
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applied volume was used to determine DCW, however, this was changed to 

use of the permeate volume due to leakage of liquid following filter blocking 

at high cell-densities. The latter was more accurate (as can be seen from a 

comparison of the error bars in Figures 4.3. and 4.15.); however, 

subsequently a simpler, alternative method was found. This method was 

then used the E. coli analysis and is described below in; 3.5.2.1.2 Escherichia 

coli. More realistic correlations between optical density and dry cell weight 

were yielded, based on comparisons with literature values. 

 

3.5.2.1.2. Escherichia coli 

 

Between six and eight 1 mL samples were taken from the flask and each 

transferred to a pre-dried, pre-weighed microcentrifuge tube. The samples 

were then spun down (16,100 g; 5 minutes; ambient temperature), after 

which the supernatant was discarded and the tubes placed in an oven at 100 

± 5 °C overnight until they achieved a constant weight. Concurrently, 8 

empty tubes were also placed in the oven for the same time period and the 

average weight-loss from these tubes determined. This value was then used 

to correct for any weight loss in the experimental tubes. 

 

3.5.2.2. Stirred-tank Reactor 

 

From the sample removed from the fermenter, 20 mL was taken and divided 

equally between two pre-weighed 50 mL centrifuge tubes. These tubes were 

then centrifuged (3,260 g; 10 minutes; ambient temperature), the 
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supernatant discarded and the tubes dried in the oven at 100 ± 5 °C 

overnight until constant weight was achieved. In addition, 8 empty, pre-

weighed, tubes were oven-dried over the same time period, and the average 

weight-loss determined. This value was then used to compensate for the 

weight-loss experienced by the experimental tubes. 

 

3.5.3. pH measurement 

 

pH was measured off-line for shake-flask cultures and online for fermenters. 

 

3.5.4. Colony Forming Units (CFU.mL-1) 

 

Samples were taken and diluted into PBS using 10-fold serial dilutions, 100 

µL of three consecutive dilutions were spread onto nutrient agar plates using 

a sterile spreader. Each dilution was analysed in duplicate, and placed into a  

25 °C incubator for 72 h or 37 °C overnight. All colonies were counted on 

plates containing fewer than 400 colonies; plates with more than 400 

colonies were discarded. 

 

3.5.5. Multi-Parameter Flow Cytometry  

 

3.5.5.1. Analysis 

 

Prior to analysis, samples were diluted to at least 1:2000 in PBS, such that 

the flow cytometer was operating in the region of 1-1500 cells.s-1 and a total 
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of 25,000 cells were counted from the gated region of the forward 

scatter/side scatter plot. Dyes were used at the working concentrations in 

table 3.8. 

 

Table 3.8. Fluorescent dyes used and final concentrations 

Dye Conc. 
B. cereus 
(µg.mL-1) 

Conc. 
E. coli 

(µg.mL-1) 
Propidium Iodide (PI) 0.30 3.03 
Bis-(1,3-dibarbituric acid)-trimethine oxanol 
(DiBAC4(3); BOX; bis-oxonol) 

0.30 0.61 

3,3'-Dihexyloxacarbocyanine, iodide (DiOC6(3)) 0.30 3.03 
RedoxSensor Green™ 3.03 µM N/A 
 

The working concentrations for PI and BOX were arrived at based on 

previous experience in the laboratory with these fluorophores (Lewis et al., 

2004; Lopes-Silva et al., 2005). The other dyes were applied to the cellular 

systems to be tested at varying concentrations and incubation periods until 

the results achieved were in agreement with the established PI/BOX system 

for both healthy and heat-treated control cells. 

 

Cells were analysed immediately following addition of PI/DiBAC4 and 

PI/RedoxSensor Green™. B. cereus cultures were also analysed immediately 

following addition of PI/DiOC6(3), however, E. coli cultures were incubated for 

30 seconds prior to analysis. Propidium iodide was used in all dye staining 

protocols in conjunction with one of the other dyes. 

 

Where appropriate, samples were subjected to flow-activated cell sorting 

(FACS) based on their fluorescence characteristics, and the resulting samples 
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were further analysed either by spotting onto agar plates and incubation  

(25 °C; 24 h) or by visualization by fluorescence microscopy (Section 3.5.8. 

Fluorescence Microscopy). 

 

3.5.6. Osmotic Shock Procedure 

 

Table 3.9. Composition of Osmotic Shock Solutions 
Solution Name Composition 

TrisHCl 0.39 g.L-1 
Trizma 2.64 g.L-1 
Tetrasodium EDTA 1.04 g.L-1 

Osmotic Shock Solution 1 (OS1) 

Sucrose 200 g.L-1 
TrisHCl 0.39 g.L-1 
Trizma 2.64 g.L-1 Osmotic Shock Solution 2 (OS2) 
Tetrasodium EDTA 1.04 g.L-1 

 

Samples were diluted to OD600nm ≈ 5, then centrifuged (16,100 g; 2 minutes; 

ambient temperature). The supernatant was transferred to -20 °C and the 

pellet resuspended in 1 mL of OS1. The resulting suspension was incubated 

(4 °C; 10 minutes), before being centrifuged (16,100 g; 2 minutes; ambient 

temperature). The OS1 supernatant was stored at -20 °C and the pellet 

resuspended in OS2 and incubated at 4 °C for 10 minutes. The OS2 

suspension was centrifuged (16,100 g; 2 minutes; ambient temperature), and 

the supernatant and pellet frozen separately at -20 °C. 
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3.5.7. ELISA 

 

Table 3.10. Composition of ELISA Solutions 

Solution Components 
Na2CO3 1.59 g.L-1 
NaHCO3 2.93 g.L-1 Coating buffer 
pH 9.6 
Coating buffer Coating with 

Lysozyme Lysozyme 1 g.L-1 
Blocking buffer BSA (Bovine Serum Albumin) 0.1 g.L-1 in PBS 
Washing buffer Tween 20 1 mL.L-1 in PBS 

Goat anti-human Fab peroxidase conjugate (Sigma 
A0293) 2 µL  Detection antibody 
20 mL blocking buffer 

Substrate 
Peroxidase substrate kit as per manufacturer’s 
instructions 

Phosphoric Acid 1 M Phosphoric acid 
 

Coating buffer with lysozyme was added to a microwell plate (120 µL per well) 

and incubated overnight at 4 °C. Coating buffer with lysozyme was replaced 

with 200 µL blocking buffer and incubated with shaking (37 °C; 500 RPM; 1 

h). 

A dilution plate with 180 µL of neat sample in each well in one row, and 120 

µL of blocking buffer added to the remaining wells. Serial dilutions were 

performed, transferring 60 µL per well down the plate.  

 

After the incubation, the first plate was washed with 3 x 300 µL washing 

buffer. The diluted samples were then transferred from the dilution plate to 

the coated plate, 100 µL per well. 
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The coated plate was incubated (37 °C; 500 RPM; 1 h) then washed with 3 x 

300 µL washing buffer. 100 µL detection antibody was added to each well 

and incubated (37 °C; 500 RPM; 1 h).  

 

The coated plate was washed once more (3 x 300 µL washing buffer) and 100 

µL peroxidase substrate solution added to each well, incubated at room 

temperature for 10 minutes.  

 

The reaction was stopped by the addition of 100 µL of phosphoric acid and 

the plate analysed by absorbance at 450 nm. Antibody concentrations were 

determined following construction of a standard curve based on a known 

concentration of the antibody (Figure 3.2.), purified from fed-batch 

fermentation by protein G chromatography and ultrafiltration, concentration 

established by BCA assay. 
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Figure 3.2. ELISA calibration curve. The points plotted here are average values 
taken from two separately performed ELISAs. The curve was fitted using 
Sigmaplot v. 10.0.  

 

3.5.8. Fluorescence Microscopy 

 

Two thousand cells were sorted, according to specific fluorescence 

parameters, onto a filter membrane. The cells were then covered with 

aluminium foil prior to observation, where they were illuminated with a 

mercury lamp, and the wavelength filtered to 488 nm. Images were recorded 

through a 40x objective lens. 

 



 90 

3.5.9. Transmission Electron Microscopy 

 

Samples were taken and spun in a microcentrifuge (16,100 g; 2 minutes; 

ambient temperature), after which the supernatant was aspirated and 

discarded. The cells were then resuspended in 2.5 % glutaraldehyde in 0.1 

PBS pH 7.2, and placed into the fridge for a maximum of 2 days. They were 

then passed onto the University of Birmingham Centre for Electron 

Microscopy where they were dehydrated using ethanol. The sample was then 

embedded in a 1:1 mixture of polypropylene oxide and araldite resin and left 

to polymerise. Ultra-thin sections (70 nm) were cut using a Reichart-Jung 

Ultracut E microtome and stained with uranyl acetate and Reynold’s lead 

citrate. 



 91 

4. Results & Discussion 

 

4.1. B. cereus Shake-Flask Fermentation 

 

Shake flask cultures are used in a wide variety of biological research 

environments, and are the most basic tool to control and monitor the growth 

and behaviour of microorganisms. These experiments are usually performed 

as a sacrificial culture where a large number of flasks are initially seeded and 

at each time point where analysis is required, one or, usually, more flasks 

are removed and subjected to testing. The assumptions governing this type of 

experiment are that the flasks are homogeneous, relative to each other, at 

the beginning of the experiment, and that they are given the same conditions 

throughout. At such a small scale, the assumption of equal treatment of each 

flask holds due to rapid mass and heat transfer within, and without, the 

culture entailing low flask-flask variation (Solomons, 1969).  

 

The ultimate aim of the work presented here is to arrive at a greater 

understanding of an E. coli fermentation process. The first step to approach 

this was an evaluation of new flow cytometric staining protocols compatible 

with the analysis of Gram positive organisms in a model system. For this 

reason, a number of shake-flask cultures were carried out using Bacillus 

cereus. This particular strain of B. cereus is non-sporulating, and it was 

originally recovered from a patient’s emesis. As a result of this, its behaviour 

under stress is of particular interest, as well as the potential for exploitation 
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as a model for the development of flow cytometric dye combinations for use 

with other Gram positive organisms.  

 

In the course of this work, reference will be made to three broad cell states 

informed by the measurement of fluorescence with the various dyes used. A 

complete explanation of the mechanism of action of the dyes used in this 

thesis is included in 2.6.1.6.1-4. The first condition of note is that of 

“healthy” cells, these are generally stained green with DiOC6(3) and 

unstained with DiBAC4(3) (also referred to as bis-oxonol, or BOX) due to their 

ability to maintain their membrane potential, and lacking red fluorescence 

indicating their ability to exclude PI. The measurement of membrane 

potential as an indicator of viability of bacteria is well established and has 

been used extensively (Nebe-von-Caron et al., 2000; Shapiro, 2001). The 

converse condition is that of “unhealthy” cells, which have for whatever 

reason lost the ability to maintain sufficient membrane potential to exclude 

DiBAC4(3) (or include DiOC6(3)). The flow cytometer can measure the 

presence or absence respectively of these cells and inferences can be made 

about the overall condition of the cells. The final major cell-state of interest is 

the dead, intact cell where the contents of the cell are still contained within 

the membrane, but the cell has lost all ability to segregate the internal 

environment from the external. If there is a hole in the membrane big enough 

for PI to pass through, but small enough to still contain the genome, PI will 

penetrate the cell (by diffusion), intercalate into the DNA and fluoresce red.  
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The first experiment that was performed was a brief evaluation of the 

difference between using baffled and unbaffled flasks. Baffled flasks provide 

the vessels with increased capacity for mass transfer, which should increase 

the growth rate of the cells within (Gupta and Rao, 2003; Galindo et al., 

2004). This increased growth rate may accentuate the effect of any stresses 

present, which would amplify the signal. These results (Figure 4.1.) show a 

superficial analysis comparing the optical density and pH of the growing 

cultures. 
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Figure 4.1. Comparison of growth of B. cereus in baffled and unbaffled shake-
flask fermentations (n = 1). All points plotted are mean values of 2-4 replicates 
from a single pair of experiments. Error bars show the standard deviation. 

 

The data in Figure 4.1. seems to indicate that, in this particular case, the 

baffles have provided no discernible advantage in terms of growth rate or 

final achieved turbidity. The variation in pH appears consistent when 
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comparing the baffled and unbaffled flasks, reflecting a similar rate of 

nutrient consumption; with both cultures experiencing a switchover to 

gluconeogenic metabolism at the same time. Interestingly, the growth rate of 

the baffled flask was lower than that of the unbaffled for all but one of the 

time points. Between 3 and 4 hours, in the mid-exponential phase of growth, 

the baffled flasks achieved a higher growth rate than the unbaffled (1.0 h-1 vs 

0.8 h-1). This is just after the peak of the growth rates, and suggests that 

there may be a minimal effect whereby the specific growth rate can be 

maintained at a higher level for longer as a result of the baffles. The limited 

observation of this effect might be attributable to the nutritive quality of the 

medium. Even if oxygen transfer was increased by the baffles, a metabolic 

bottleneck could have developed in the processes which supply material to 

the electron transport chain, limiting the potential growth rate of the culture. 

 

Figure 4.2. shows typical growth characteristics associated with cultivation of 

bacteria in shake-flask culture; a short lag phase, followed by a rapid period 

of growth indicated by both the OD580nm and CFU.mL-1 curves. The OD580nm 

curve is then marked by a deceleration, plateau and slight decline after 24 

hours in culture (reaching the peak optical density between 7 and 10 hours 

after inoculation). The lack of a high energy-providing component to the 

medium, such as glucose or glycerol, significantly limits the productivity of 

the fermentation, achieving a maximum OD580nm of < 5. In concert with this, 

the pH drops from approximately 7 to 6.5, probably as a result of build up of 

acidic by-products of metabolism of an undefined carbon source in the 

medium, before rising again after only 3 hours. The exception to this is 



 96 

shake-flask culture 3, indicated by the closed square, where the minimum 

pH is achieved after 4 h in culture. This reinforces the reliability of this 

simple method as an indirect measure of metabolism, because it coincides 

with a protracted lag phase, as measured by optical density.  

 

The progression of pH variation is likely caused, firstly, by utilisation of the 

aforementioned acidic by-products to supply energy once whatever preferred 

sources had been consumed. Secondly, catabolism of proteinaceous 

compounds to yield ATP-generating compounds results in the release of 

ammonium, which would significantly raise the pH (Morita, 1957). This 

explanation seems reasonable given the make-up of the medium in which the 

cells are growing consisting of three different kinds of complex media 

(peptone, yeast extract and “Lab Lemco” powder) with no single, defined, 

carbon source and an abundance of hydrolysed proteins.  
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Figure 4.2. B. cereus shake-flask fermentation (n = 4). All points plotted are 
mean values from replicates within each experiment. The error bars show the 
standard deviation.  

 

The comparison of OD580nm and dry cell weight in Figure 4.3. below shows 

that the correlations established here are consistent with others in the 
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literature, although are on the low-end of the scale (Tännler et al., 2008; 

Balagurunathan and Jayaraman, 2008) with values in the range of 0.3-0.6 

more common. The two fitted curves in Figure 4.3. correspond with two 

different methods of dry cell weight analysis. The first method, signified by 

the open circles used a filtration-based method which was prone to 

overloading of the filter with sample, leading to blockage before all of the 

sample could be passed. The second method, indicated by the open, inverted, 

triangle was more consistent, as measured by the higher r2 value. This new 

method employed centrifugation of samples, which enabled the analysis of 

more replicates per sample, giving less variation among the samples from any 

given time point. The combination of these factors lead to the discarding of 

the filtration method in favour of the centrifugation for the remainder of this 

thesis. 
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Figure 4.3. OD580nm vs DCW with r2 value for B. cereus shake-flask fermentation  
(n = 2). The data plotted mean values of 2-4 replicates within each experiment. 
The error bars indicate the standard deviation. 
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Figure 4.4 shows the variation of colony forming units with time for the B. 

cereus shake-flask cultures. It can be seen that the same generally 

increasing trend is repeated here, as with the optical densitometry; the 

corollary being that the increase in turbidity and mass are as a result of the 

increase in number of cells. The CFU analysis shows an increase in cells 

from approximately 106 to 108, a 100-fold increase, which appears 

inconsistent with the magnitude of the observed changes in turbidity and cell 

mass. Assuming that the total observed dry mass is distributed amongst the 

constituent cells equally, and that there is no significant change in cell size 

during the shake-flask culture, one might expect the linear relationship 

between OD and DCW to extend to the CFU analysis. It is estimated that the 

mass of a bacterial cell is approximately 1 x 10-12 g (Davis, 1973), which 

would mean that, for the range of optical densities recorded here, CFU.mL-1 

could be expected to vary from 108 - 5 x 108. The apparent underestimation 

of cell numbers by this technique, at least, in the early stages of the culture 

could reflect the difficulty of cultivating any bacterium in vitro (Kaeberlein et 

al., 2002). This apparent viable but non-culturable state (Oliver, 2005) may 

not be the only reason for this disparity, for instance there could be a wide 

distribution of cell sizes or masses, although neither of these is particularly 

likely given the lack of available evidence that either of these parameters 

varies significantly during a bacterial growth cycle over such a short period of 

culture.  
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Figure 4.4. B. cereus CFU analysis. The data plotted show 3 experiments and 
each point is a mean value of 4-6 replicates. The error bars indicate the 
standard deviation of the data. 

 

The flow cytometer is capable of detecting subtle changes in cell size and 

intracellular composition by detecting the incident light scattering 

characteristics as seen in Figure 4.5. In this case, it seems that there is no 

significant change in cell size over the course of the culture, from mid-

exponential culture (3-4 h), peak optical density (7-8 h) through to the 

declined 24 h sample. The consistency of the position of these populations 

throughout the culture indicates that, along with consistent size (as 

demonstrated by forward scatter (FS Log)), there is no detectable change in 

the intracellular composition, as would be detected by right-angle scatter on 

PMT1 Log. 
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Figure 4.5. Flow cytometric analysis of forward scatter (FS Log) and side 
scatter (PMT1 Log) for B. cereus at 3; 7 and 24 h post-inoculation 

 

It appears that the most likely explanation for this mismatch between the 

different methods’ assessments of cell number may be the existence of viable 

but non-culturable cells. Normally, when this term is applied, it is used in 

reference to a drop in observed viability (Oliver, 2005), rather it appears that 

in this instance there is a large underestimate of the number of cells in the 

early stages of the culture. During the early stages of growth, the cells adapt 

their metabolism to grow rapidly in the liquid medium environment; it may 

be that the different demands of metabolism for growth on solid agar prevent 

the cells from forming observable colonies. 

 

 The use of PI/DiBAC4(3) for differentially staining healthy (unstained), 

unhealthy (DiBAC4(3) positive; Green fluorescent) and dead (PI and DiBAC4(3) 

positive; concurrent green and red fluorescence) cells is well established for 

use with Gram negative organisms, such as E. coli (Hewitt et al., 1999; 

Onyeaka et al., 2003; Lewis et al., 2004). Density plots, of the kind in Figure 

4.4. are the simplest method of representing multiparameter flow cytometric 

data of the kind generated in this work. The plot indicates the fluorescence 

parameters of a particular cell with, in this case, a single blue dot whose X 
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value is red fluorescence and Y value is green fluorescence. The dot plot 

shows the accumulation of 25,000 data points, and, where multiple cells are 

detected with coincident fluorescence characteristics the colours transition 

from green > yellow > red for each additional cell. The gating method is 

designed to bisect specific populations such that they can be quantified. The 

plot is divided into quadrants, the divisions of which are drawn such that the 

lines are found at the lowest point of fluorescence intensity between two 

populations. 

 

Overall, a highly heterogeneous starting material is indicated by Figure 4.4. 

exhibiting significant green fluorescence (almost 75% of the cells), indicating 

an abnormal membrane potential. 
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Figure 4.6. Flow cytometric analysis of the B. cereus shake-flask culture in 
Figure 4.2. stained with PI & BOX. Each quadrant shows plots from two 
different experiments. Clockwise, from top-left: Inoculum, 4 hours, 9 hours 
and 24 hours. 

 

Between two and four hours following inoculation however, the proportion of 

cells able to exclude the two dyes is > 95 %, evidence that the previously 
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observed fluorescent cells have either lysed, become diluted out, or 

recovered, the latter only in the case of solely green fluorescent cells. 

 

Sampling of the cells in stationary phase, around 9 hours after inoculation, 

shows the number of green fluorescent cells has increased again to 

approximately 18 %. Given the changes in metabolism undergone during this 

time, and the previously demonstrated widespread fluorescence after 16 

hours in culture, it was expected that the cells would transition towards a 

higher level of fluorescence (both green, and eventually red/green).  

 

After 24 hours it can be seen that there are non-fluorescent (21 %), green 

and red/green fluorescent cells but distinguishing discrete populations of 

fluorescent cells has become an entirely arbitrary process. All that can be 

concretely determined is that around 52 % of the cells are PI positive, where 

there is still good resolution, but the same cannot be said for DiBAC4(3) 

positive populations.  

 

Thus, for most of the bacterial culture described here, the PI/DiBAC4(3) 

protocol can be used to analyse Gram positive organisms, but it is likely that 

a more robust staining procedure can be found which is able to achieve clear 

discrimination under all growth conditions. 

 

With this in mind, it was decided to evaluate the possibility of using DiOC6(3) 

as an alternative. The use of DiOC6(3) is already well established in the 

measurement of mitochondrial membrane potential in eukaryotic organisms 
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(Ko et al., 2007; Maftoum-Costa et al., 2008), but its use in the analysis of 

bacterial cells is far more limited to only a handful of investigations 

(Ratinaud and Revidon, 1996; Lopes-Silva et al., 2005; Reis et al., 2005). 

 

The same cultures as those analysed in Figure 4.6. were also stained with PI 

and DiOC6(3) with the data shown in Figure 4.7. 
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Figure 4.7. Flow cytometric analysis of the B. cereus shake-flask culture in 
Figure 4.2. stained with PI & DiOC6(3). Each quadrant shows plots from two 
different cultures. Clockwise, from top-left: Inoculum, 4 h, 9 h and 24 h.. 
Populations A-E were subjected to cell sorting as shown in Figure 4.8. 

 

A 
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When the population sizes of the DiBAC4(3) and DiOC6(3) are compared as in 

Table 4.1. it can be seen that as far as the non-PI positive populations there 

is good agreement between the two methods: 

 

Table 4.1. Amalgamation of the flow cytometry plots from the inoculum of 
Figures 4.4. and 4.5 (upper left quadrant, largest plot). The proportion of cells 
from each quadrant in those figures is listed below as a percentage of the total. 
The background colours have been chosen to demonstrate the colour of that 
specific population as recorded by the fluorescence detectors in the flow 
cytometer. 

 
 

The two green fluorescent dyes react to the cells in different ways; DiBAC4(3) 

is unable to penetrate the membrane of a healthy cell, therefore cells with a 

normal membrane potential do not exhibit any green fluorescence. DiOC6(3) 

works in the opposite manner, enabling detection of green fluorescence from 

cells with a “normal” membrane potential. Table 4.1. briefly shows a 

comparison of the cultures used for inocula prior to experimentation with the 
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displayed percentages of the whole population attributed to particular 

staining characteristics. The non-PI stained populations are in broad 

agreement over the proportion of healthy and unhealthy cells (unhealthy 

being those cells unable to generate a normal physiological membrane 

potential (around -100 to -200 mV)) (Shapiro, 2000) with the amounts being 

within approximately 1.5 %. When this is compared with the PI population, 

however, there is a disparity between the measurements of nearly 3 times 

this amount, and, in fact when the respective quadrants of the dot plot are 

compared, there is no visible evidence of a single population for DiBAC4(3) in 

this region. The flow cytometry data indicates that 0.5 % of the cells are 

solely PI positive (indicated by a * in Table 4.1.), however on closer inspection 

of the relevant quadrant, there is no visible population suggesting that this 

may be experimental error, attributable to electronic noise. Given this fact, it 

is probable that all of the flow cytometry data presented here is subject to 

this same margin of error. In order to properly mitigate this, two populations 

would only be considered significantly different if there was more than 10% 

deviation between them. 

 

The remainder of the plots in Figure 4.7. show a similar progression as seen 

in Figure 4.6., from an initially heterogeneous culture, through homogeneity 

(in terms of membrane potential) and back to a highly heterogeneous culture 

after 24 hours. The proportion of cells which exhibit both red and green 

fluorescence simultaneously at the 24 hour time point is greater than in the 

inoculum, but only by a few percent. This apparent limitation on the size of 

this population may be indicative of a short lifetime of the particular 
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phenomenon generating this dual fluorescence. This population is of 

particular interest due to the known action of DiOC6(3) and PI, whereby PI 

stains cells whose membrane integrity has failed whilst DiOC6(3) 

fluorescence is usually only associated with cells capable of generating a 

normal membrane potential. This unusual population was also discovered 

during previous work with B. licheniformis (Reis et al., 2005; Lopes-Silva et 

al., 2005) however, they were unable to demonstrate why these cells were 

simultaneously absorbing both stains. For this reason, these populations 

were subjected to fluorescence activated cell sorting onto agar plates for 

further determination of post-sampling growth potential of specific 

populations and visualisation using a fluorescence microscope.  

 

The top-most image in Figure 4.8. (U) shows cells sorted from mid-

exponential growth phase, in order to demonstrate that the sorting process 

itself has no impact on the ability of the cells to grow on the agar. 
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Figure 4.8. Sorted B. cereus cells analysed by cultivation on nutrient agar 
and fluorescence microscopy. Labelled as follows U. Unstained cells. A. 
Healthy (mid-exponential phase), B, C i, D and E (24 hours after 
inoculation) DiOC6(3) & PI stained cells from the populations indicated in 
Figure 4.7. C ii: Fluorescence microscopy of cells sorted from population 
C on Figure 4.7. The agar plates shown here are representative of 4-6 for 
each sample (full breakdown of plate counts shown in Table 4.2.). 
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Plate A features cells from the same population, with PI and DiOC6(3) applied 

at the working concentrations used in the protocol. Plates B, C, D and E 

correspond to the populations highlighted in Figure 4.5. 

 

Table 4.2. Results of counting colonies 
on sorted plates from Figure 4.6. after 
24 h incubation at 25 °C. The bottom 
two rows show the mean and standard 
deviation (SD) of the values. 

 U A B C D 
 90 94 72 73 42 
 94 97 76 74 40 
 90 99 78 70 30 
 98 98 68 74 37 
 97 100 78 74 39 

     39 
Mean 93.8 97.6 74.4 73.0 37.8 
SD 3.8 2.3 4.3 1.7 4.2 

 

Table 4.3. Results of unpaired student’s t-tests on colony number (%) from 
sorted plates shown in Figure 4.6 and Table 4.2. T-tests performed using 
Sigmaplot v. 10. If the P value for the data is greater than the threshold, this 
indicates that the means are significantly different. 

Comparison Mean (n) P value P value 
thresholds 

U/A 93.8 (5)/97.6 (5) 0.091 > 0.05 
A/B 97.6 (5)/74.4 (5) 0.0000056 < 0.001 
A/C 97.6 (5)/73.0 (5) 0.000000058 < 0.001 
A/D 97.6 (5)/37.8 (6) 0.00000000040 < 0.001 
B/C 74.4 (5)/73.0 (5) 0.52 > 0.05 
B/D 74.4 (5)/37.8 (6) 0.000000178 < 0.001 

 

The null hypothesis under which these t-tests were performed was that there 

is no significant difference between the mean values of the compared 

populations, with the P value indicating the probability that discarding it 

would be incorrect. A P value of greater than 0.05 is the most widely used 

confidence limit and the comparisons of U/A and B/C are the only ones 

which can be demonstrated to be similar with a high degree of confidence. No 
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comparisons were made with plate E, which exhibited no growth as would be 

expected of cells which are unable to maintain their membrane integrity. 

 

Populations A & D were demonstrated to be different, and this is no surprise 

when the plates and their respective means are analysed. Cells from 

population A showed almost 2.5-fold recovery in comparison with their 

counterparts from population D. Both of the populations seem to generate 

homogeneous colony sizes, although there probably aren’t enough individual 

colonies analysed from population D to make a definitive statement in this 

regard.  

 

The difference observed between A and B is a little more confounding, given 

that both of these populations exhibit similar levels of green fluorescence. It 

is clear from the disparity here that there is more going on than can be 

detected through this staining protocol and subsequent sorting. It is possible 

that this result is an artefact of the technique, where cells which have long-

adapted for stationary phase culture and the metabolic demands associated 

with it. These cell’s proteome may not transition sufficiently quickly to the 

alternative requirements for propagation on solid medium leading to 

underrepresentation of the viable cell number on the nutrient agar despite 

other signs of a functional metabolism, the so-called viable but non-

culturable cell state (Xu et al., 1982; Boaretti et al., 2003; Oliver, 2005).  The 

flow cytometric methods employed here only assay very small, specific, areas 

of cellular physiology. As a result of this analysis, all that can be definitively 

stated about these two populations is that they have similar membrane 
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potentials. Populations A and B, as a result of being from markedly different 

cell growth phases (exponential and stationary, respectively) likely have 

widely divergent internal biochemistries (Cohen et al., 2006; Dreisbach et al., 

2008) which happen to produce a similar fluorescence, indicative of 

membrane potential.    

 

Having established that there is a significant difference between populations 

A and B, it follows naturally that populations A and C are different also. This 

is shown by similar levels of green fluorescence along with congruent mean 

values of colony counts from plates B and C. A visual assessment of the 

plates yields yet more information, where it can be seen that plate C has 

more variation in colony size than plate B. However, a longer/higher 

temperature incubation period was not a viable option to try to increase the 

number of colonies, due to the overgrowth on the higher recovery plates. 

 

Image C ii from Figure 4.8. shows the fluorescence micrograph of the sorted 

cells from population C in Figure 4.4. showing the source of the 

counterintuitive, dual-stained bacterial cell population to be two associated 

cells, one green fluorescent and one red. The consistent attachment of these 

cells along the longitudinal axis suggests that they were mid-way through 

cell division (Haeusser and Levin, 2008) when one of the cells died before the 

separation of the cells could be completed, but after one of the committed 

steps in the process. The appearance of cells conjoined in this way is 

interesting due to the rarity of the event. It has been demonstrated amply 

that cells with specific mutations in the pathway involving cell division can 
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form long filaments (Lau and Zgurskaya, 2005). No further analysis was 

performed here due to the fact that, even if a mutation was evident in this 

population, its effect was clearly fatal on one of the cells, suggesting that it 

would not persist in the culture long-term. Populations B & C were not 

shown to be statistically significantly different, in terms of the mean colony 

counts (Table 4.3.), however, there appears to be considerable variation in 

colony size. This is probably caused by the reasons suggested earlier 

concerning prolonged lag phase due to adaptation however might be due to 

an observed bacteriostatic effect of the flow cytometric dyes on bacteria 

(Browning et al., 1924). The effect observed by Browning was recorded with 

dyes of the carbocyanine-type, making it likely that DiOC6(3), rather than PI, 

was responsible for any detriment to the growth of the bacterial colonies. As 

mentioned previously, the bacterial cell membrane is impervious to 

propidium (the main reason for its use in this assay), therefore, even though 

molecules of that type, specifically ethidium, have been shown to be 

bacteriostatic (Grant, 1969) it was not a factor here. 

 

The comparison between the two control populations (U and A) would not be 

expected to be significantly different, indeed, one might expect that the 

stained cells may have a less robust recovery due to the presence of the dyes 

which might exert a bacteriocidal/bacteriostatic effect, limiting the growth 

rate sufficiently that colonies cannot be detected visually. This was not the 

case, in this instance, with the stained cells having a slightly higher mean 

colony count than the unstained cells, but the result of the unpaired 
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student’s t-test ensures that this can be attributed to random variation in 

this instance.  

 

Due to the small number of people using flow cytometry (and other 

fluorescence methods) to analyse bacterial cultures, it is important that the 

maximum utility is extracted from every resource possible when new dyes 

and reagents become available. For this reason, the RedoxSensor Green™ kit 

(Molecular Probes) was of particular interest with its ability to assay for 

enzymatic activity within living cells. The RedoxSensor Green™ is altered by 

reductase enzymes in the cell (Molecular Probes catalogue), which causes the 

generation of a fluorescent product that can be detected by e.g. flow 

cytometers.  

 

Figure 4.9. shows similar trends to those observed with the previous two 

staining methods, an initially heterogeneous population, in this case, green, 

red and neither green nor red cells. On addition to fresh medium, there is a 

rapid transition towards a homogeneous, healthy population before 

degradation as the culture ages. 
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Figure 4.9. Flow cytometric analysis of the B. cereus shake-flask culture in 
Figures 4.2. stained with PI & RedoxSensor Green™. Clockwise, from top-left: 
Inoculum, 4 hours post, 9 hours and 24 hours. Analysis shows data from 3 
fermentations. Populations A-F were sorted according to their fluorescence onto 
nutrient agar, and the results displayed in Figure 4.10. 

 

Interestingly, after 24 hours, there are 5 clearly distinguishable populations 

(population F can, in fact, be seen as two populations however they were not 

sufficiently separated for individual analysis but it is likely that the 
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respective cells contain different quantities of DNA similar to Gasol et al 

(1999). In the work reported by Gasol et al, the differing DNA concentration 

was linked with an apparent increase in cellular volume at approximately 

constant density, as measured by centrifugation. The magnitude of the 

fluorescence measured by flow cytometry is linked to the cellular volume, 

which almost certainly made the difference between the populations greater 

than is the case in this work. The situation observed here is much more 

analogous to the work of Michelson et al (2010) who demonstrated, via flow 

cytometric DNA staining, that L. lactis exists as a diploid cell-line, exhibiting 

higher quantities of DNA, in this case in a similar cell volume. The difference 

observed here is far more minor, indicating that the quantity of DNA in the 

respective population’s cells is much closer, probably a result of a well-

aligned and sensitive system combined with multiple replication forks which 

appear within bacterial cells. The populations labelled B, C, D and F are the 

populations that appear to be analogous to those discovered using the other 

staining techniques, with the additional fifth population, E.  

 

The most easily identified population stained with the PI/RedoxSensor 

Green™ couple is E. The detection of ghost cells (cells with no DNA/protein 

contents, but with sufficient intact membrane to be detected with distinct 

light scatter characteristics to intact cells) by flow cytometric methods is well 

understood (Lewis et al., 2004; Reis et al., 2005), and in some cases 

techniques have been optimised to increase the sensitivity to provide 

maximum discrimination between them (Haidinger et al., 2003). These cells 
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were probably not detected during the other methods due to the voltages 

required on the photomultiplier tubes of the flow cytometer for those dyes. 

 

Population B, shown in a similar position to population A in the upper right 

plot from Figure 4.7. indicates healthy, green fluorescent cells. D and F 

represent “stressed cells” where there is insufficient available energy to carry 

out the reduction of the fluorophore and red fluorescent, PI positive cells, 

with a compromised membrane, respectively.  

 

Evidence, again, of a population which confounds expectations by fluorescing 

both red and green simultaneously which was further interrogated by 

fluorescence microscopy (Figure 4.10.; C ii). 



 119 

 

   

 

 

 

  
Figure 4.10. Sorted cells from B. cereus shake-flask fermentation analysed 
by cultivation on nutrient agar and fluorescence microscopy. Top-Left: 
Unstained cells. A. Healthy (mid-exponential phase), B, C i, D, E and F (24 
hours after inoculation) RedoxSensor Green™ & PI stained cells from the 
populations indicated in Figure 4.9. C ii: Fluorescence microscopy of cells 
sorted from population C on Figure 4.7. The agar plates shown here are 
representative of 4-6 for each sample (full breakdown of plate counts 
shown in Table 4.4.). 

 

Following sorting onto nutrient agar none of the cells from populations E and 

F, ghost cells and perforated membrane cells respectively, managed to 

produce colonies.  

 

Table 4.4. shows the colony counts from the sorted agar plates following 

incubation, along with means and standard deviations. 
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Further, when subjected to the same unpaired student’s t-test as the 

DiOC6(3) stained cells, the following data were revealed: 

 

Table 4.5. Results of unpaired student’s t-tests on colony number (%) from 
sorted plates shown in Figure 4.8. T-tests performed using Sigmaplot v. 10. If 
the P value for the data is greater than the threshold, this indicates that the 
means are significantly different. 

Comparison Mean (n) P value P value 
thresholds 

U/A 93.8 (5)/94.2 (6) 0.88 >0.05 
A/B 94.2 (6)/70.5 (4) 0.00059 <0.001 
A/C 94.2 (6)/73.3 (4) 0.0000091 < 0.001 
A/D 94.2 (6)/ 90.8 (4) 0.14 > 0.05 
B/C 70.5 (4)/73.3 (4) 0.60 > 0.05 

 

The results from the statistical tests in Table 4.5. indicate that there exists 

no significant difference between the number of colonies comparing 

unstained cells (U) and stained healthy cells (A) and non-fluorescent cells.  

 

This test indicates, again, that population A is different from population B, 

this corroborates the same observation made with DiOC6(3) stained cells, and 

Table 4.4. Colony counts from sorted 
cells, stained with PI/RedoxSensor™ 
Green and incubated on solid agar. The 
bottom two rows show the mean and 
standard deviation (SD) of the values. 

 U A B C D 
 90 89 60 74 89 
 94 94 72 71 91 
 90 90 83 75 90 
 98 98 67 73 93 
 97 98    

  96    
Mean 93.8 94.2 70.5 73.3 90.8 
SD 3.8 3.9 9.7 1.7 1.7 
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the same explanations can be reasonably made in justification. The same is 

true of A/C where the comparison is between mid-exponential phase cells 

and stationary phase cells which have demonstrably lost some metabolic 

activity, being unable to perform the reactions necessary to be able to 

activate the fluorophore. 

 

As before, the cells from populations B & C are shown to be similar, 

indicating that the cells in population C are able to produce sufficient energy 

to become green fluorescent despite existing in tandem with a dead cell as 

shown in Figure 4.8. C ii. Population C does, however, seem to have a greater 

heterogeneity than population B in terms of colony size, with a larger 

proportion of small colonies in contrast with the PI/DiOC6(3) where there was 

no noticeable difference in colony size distribution. This effect is also 

noticeable when comparing plates U and A, with plate A exhibiting a few 

colonies that are visibly smaller than those on the unstained plate. It is 

possible that long-term exposure to the PI/RedoxSensor™ is detrimental to 

the health of the cells, the latter of which is supplied in DMSO which might 

enable penetration of PI into healthy cells which might disrupt the genome 

and alter the reproductive output of the cell on nutrient agar as shown with 

ethidium by Grant et al (1969). 

 

4.1.1. Conclusions 

 

Even at small-scale, the assumption of a truly homogeneous culture is 

optimistic at best. PI/DiBAC4(3) can be used with Gram positive cells to 
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monitor cell viability, however there are flaws in the technique which lead to 

difficulties in interpretation of the data. PI/DiOC6(3) gives a much clearer 

resolution of the populations of cells present within a “homogeneous 

environment” and has shown the presence of a fourth population consisting 

of cellular couplets of a single live and dead cell joined along the longitudinal 

axis. PI/RedoxSensor Green™ can be utilised as an alternative/adjunct to 

PI/DiOC6(3) but care must be taken with length of exposure of the cells. This 

last point is especially important, because DiOC6(3) is a dye which stains 

cells in response to the energy status, whereas RedoxSensor Green is energy 

independent. In this example, the results given by the two systems are very 

similar. 
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4.2. E. coli CLD048 Shake-Flask Fermentation 

 

Following completion of the work in the previous section with B. cereus in 

shake flasks, the work was repeated using E. coli CLD048, using the 

production of an anti-lysozyme antibody as a model for antibody fragment 

production in general. All experiments were carried out using the same 

baffled flasks as before, ensuring maximum oxygen transfer capacity within 

this batch culture, where it is expected that other factors will become limiting 

(e.g. soluble nutrients, such as glycerol and lack of pH control). The aim here 

was to obtain preliminary data, replicating the observation by Avecia 

Biologics Ltd. (the source of the recombinant E. coli strain, and funding for 

this research) of a large reduction in OD600nm following induction of the 

recombinant Fab. These experiments were also used to determine the 

suitability, or otherwise, of the staining protocols developed for analysis of B. 

cereus cultures. 

 

Figure 4.11. shows the resulting growth of shake-flask cultures when 

induced with 0.1 mM IPTG at OD600nm ≈ 1. The rapid curtailment of the 

growth of the cells, indicated by the OD600nm curve, suggests that induction 

of the cells this early prevents their growth and productivity. This is 

confirmed by the pH plot, which shows that the cells had barely begun to 

metabolise the medium components in significant quantities, with cell death 

occurring prior to the onset of the pH drop in the control culture. This 

experiment, in combination with discussions with Avecia, lead to inductions 

henceforth being performed at a minimum OD600nm ≈ 10. Due to the nature of 
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the experimental protocol, this was within the range of 7.5 – 12.5 OD600nm 

units each time. This experiment ably typifies the rapid reduction in culture 

viability following induction, reported by Avecia Biologics, which was the 

impetus for this research. 
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Figure 4.11. E. coli CLD048 shake-flask fermentation (n = 1). All points plotted 
are mean values from replicate analyses. The error bars show standard 
deviation of the data from which the mean was calculated. Induction carried 
out at OD600nm ≈ 1 using 0.1 mM IPTG immediately following analysis of the 
sample indicated with the arrow. 
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As may have been expected, from the optical densitometry in Figure 4.11. the 

reproductive growth on agar, demonstrated in Figure 4.12. is also severely 

impacted by the induction of recombinant protein expression. Interestingly, 

where the peak optical densities of the induced and uninduced cultures differ 

by a factor of 15, the peak CFU.mL-1 also show a similar degree of 

separation. This suggests that this CFU.mL-1 method may be more reliable 

for the E. coli cultures than for the Bacilli where the method appeared to 

under-estimate the CFU.mL-1, relative to the DCW and OD580nm, quite 

considerably. 
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Figure 4.12. Colony forming units per millilitre for E. coli shake-flask culture. 
Each point displays a mean value from 4-6 dilution plates, with the error bars 
showing the standard deviation of those data. The point of induction 
(OD600nm ≈ 1) is indicated by the arrow. 
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Figure 4.13. compares the recombinant E. coli cultures during induced and 

uninduced fermentations. The uninduced cultivation was performed once to 

demonstrate growth of the microorganism within the system. This was then 

compared with a similarly grown, induced culture, with IPTG added to 0.1 

mM final concentration after 6 hours, indicated by the arrow on Figure 4.13. 

 

Scrutiny of the OD600nm curve, in Figure 4.13. shows that, following 

induction, the cells are limited to an OD600nm < 25, more than 10 % lower 

than that achieved in the uninduced culture. It can also be seen that there is 

a significant different between the two induced cultures. The earlier of the 

two inductions (induction occurred at OD600nm ≈ 7.5) had a more profound 

effect on the final achievable optical density of the culture. This is 

characteristic of metabolic load, suppressing the growth potential of the cells 

as a result of diversion of resources to production of the recombinant 

product (Glick, 1995; Kilikian et al., 2000). It can be seen that as the 

strength of induction increases (from induction at 7.5-12.5; no induction) the 

metabolic toll on the cells also increases, as determined by optical density 

measurement. This observation is confirmed by the pH measurement, used 

here as an indirect measure of metabolism. The pH deviation observed was 

greatest for the uninduced culture, where the rates and onset of the 

deviations were approximately the same for all three cultures. This is 

reflective of the diversion of metabolic energy away from “normal” functions 

and into recombinant protein production. That the three cultures experience 

changes in pH to differing degrees, suggests that the contribution of 

recombinant protein production is minor in comparison with that of 
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vegetative growth. There is also a large downturn in the culture as it ages, 

with the 24 hour culture exhibiting an OD600nm of less than 15 compared 

with 25 for the uninduced fermentation. This drop in the measured OD600nm 

indicates probable cell lysis, which, in the context of an industrial 

fermentation, is undesirable causing increasing demands on the downstream 

purification (Dwyer, 1984). It has previously been mentioned (Sommer et al., 

2009) that one of the benefits of periplasmic expression as used with this 

strain, is the potential to avoid the need for whole cell lysis to liberate the 

product. It appears that there is significant lysis occurring at a late stage in 

the culture, and in fact it may be occurring earlier, masked by the rapid 

growth of the non-lysing cells. The analysis of pH for the two cultures is very 

similar, with both following the same pattern, out of step by the difference 

recorded at the start. Ordinarily, a culture that is observed to be lysing 

following stationary phase would be expected to increase in pH, as a result of 

gluconeogenesis resulting from scarcity of high-energy carbon sources. The 

fact that this culture, in fact, decreases in pH is suggestive that there is still 

sufficient carbon source in the medium to support further growth, suggesting 

that the stationary phase may have been induced by a lack of some other 

fundamental nutrient. 
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Figure 4.13. Comparison of shake-flask cultures of E. coli CLD048 with and 
without induction. All points plotted are mean values from replicate analyses. 
The error bars show the standard deviation of the data from which the mean 
was calculated. Induction carried out at OD600nm ≈ 10 using 0.1 mM IPTG 
immediately following analysis of the sample indicated with the arrow. 

 

Figure 4.14. shows the growth of the induced, recombinant, culture in terms 

of both turbidity and CFU.mL-1. It can be seen that the CFU.mL-1 and 
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OD600nm increase in a similar manner up to the point of induction, after 

which, there is a 10-fold drop in CFU.mL-1 for little change in OD600nm. The 

impact of induction on the cells is felt almost immediately afterwards, with a 

sharp decline in the number of colonies formed on nutrient agar falling by a 

factor of 100 from 1 to 3 hours post-induction. 
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Figure 4.14. E. coli CLD048 shake-flask fermentation. All points plotted are 
mean values from replicate analyses within a single experiment. The error bars 
show the standard deviation of the data from which the mean was calculated. 
Induction carried out at OD600nm ≈ 10 (indicated by the arrow) using 0.1 mM 
IPTG immediately following analysis of the sample indicated with the arrow. 
The Fab fragment samples shown are the only samples tested in this instance. 

 

In common with the CFU analysis of the Bacillus cereus, the same parameter 

appears to have been underestimated for this E. coli culture as well, in the 

early stages at least. Above an optical density of 10, the CFU data appears to 

be far more congruent with what would be expected based on the estimation 

of bacterial cell mass in combination with the measured dry cell weight from 
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Figure 4.13. The recombinant Fab fragment was produced in small quantities 

over the course of this fermentation, with a maximum of 7 mg.L-1 for any one 

sample. This production was also limited to only two of the intracellular 

regions under test; within the periplasm, and associated with the pellet. The 

first measurement detected Fab fragment within the periplasm (OS1) at a 

concentration of 5 mg.L-1, with the concentration in this partition falling 

rapidly over time. This fall was in concert with an increase in the quantity of 

material associated with the cell pellet; implying that it was insoluble.  

 

In comparison with the published information on this strain (Hodgson et al., 

2006), the specific quantity of recombinant protein produced in this batch 

shake-flask culture is much lower; 0.29 mg.L-1.OD600nm-1 compared with  

4.5 mg.L-1.OD600nm-1. This results from a much stronger induction in the 

process described in the patent (addition of 0.1 mM IPTG at OD600nm ≈ 0.5-

0.7) however, there is no mention of any detrimental effect on the optical 

density of the culture. A similar effect on the post-induction growth would 

indicate that this production was achieved at very low optical density. The 

shake-flask fermentation described in Figure 4.11., then, was almost 

certainly more productive in terms of total Fab concentration than that used 

by Hodgson et al (2006). 

 

After 24 hours in culture, the Fab concentration has dropped to a fraction of 

that observed at the peak of growth. This corroborates the inference that 

widespread cell lysis is responsible for the drop in OD600nm, an ancillary effect 
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of which would be the liberation of intracellular proteases that would degrade 

the product.  

 

The method of quantification of Fab, ELISA, can only detect Fab where the 

complimentarity determining regions are intact and able to bind their antigen 

as well as the epitope recognised by the secondary antibody. As such, the 

total amount of protein produced (including any that may be in insoluble 

forms) cannot be ascertained using this method. In order to determine the 

total quantity of protein, a more generic procedure could be utilised such as 

SDS-PAGE, however, the quantity of protein was insufficient to detect the 

purified protein.  

 

Figure 4.15. displays the relationship between OD600nm and DCW for this E. 

coli culture when the DCW is determined by centrifugation rather than 

filtration, followed by drying. In contrast with the previously used filtration 

method, this example displays an good r2 value, nearly 0.95, with the slope of 

the curve (DCW = 0.381OD600nm + 0.110) is well within the normal range 

found in the literature (Tännler et al., 2008; Balagurunathan and 

Jayaraman, 2008).  
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Figure 4.15. OD600nm vs DCW for E. coli shake-flask fermentation. The data 
plotted are mean values of 2-4 replicates with the error bars indicating the 
standard deviation. Induction was carried out by addition of 0.1 mM IPTG at an 
OD600nm ≈ 10. 

 

As seen in Figure 4.13., the OD600nm reaches a plateau and then falls sharply 

following induction. Despite this observation, consideration of the specific 

growth rate in Figure 4.16. illustrates that, in fact, the cells had already 

passed beyond their maximum growth rate at the point of induction. The 

average specific growth rate (µ) for the length of the process, approximately 

0.2 h-1 is a little misleading due to the long, slow decline in OD600nm between 

12 and 24 hours and may lead one to infer that, over this time period, growth 

was relatively slow. Growth-rate controlled cultures are usually maintained 

in the region of 0.1-0.3 h-1 to diminuate the build up of harmful by-products 
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and to ensure that the production of recombinant protein is not hampered by 

the stress associated with nutrient limitation at high growth rates (Åkesson 

et al., 2001; Eiteman and Altman, 2006). Thus, the average specific growth 

rate between the beginning of the experiment and the peak OD600nm is a more 

appropriate guide for the overall growth of the culture at 0.6 h-1. It is likely 

that the combination of a rate of growth unrestrained by nutrient limitation 

and the recombinant protein production causes many of the cells to break 

down, resulting in the effects seen here. 
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Figure 4.16. Variation of specific growth rate for E. coli shake-flask fermentation 
in Figure 4.13. The data are calculated from the mean DCW. Induction was carried 
out by addition of 0.1 mM IPTG at the point indicated by the arrow. 
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Following the initial overnight incubation, Figure 4.17. detects a significant 

proportion of the culture exhibiting green fluorescence with DiBAC4(3) (38.7 

%). This is a repeat of the observation of the Bacillus cereus culture, also 

prior to inoculation in Figure 4.6, indicating that the initial incubation period 

may be too long from the perspective of an industrial process, causing a 

breakdown in the overall quality of the cells prior to the beginning of the 

fermentation. It is worth noting that the B. cereus culture recorded a far 

higher quantity of DiBAC4(3) positive cells, nearly 75 % with around 40 % of 

these having compromised membrane integrity. The magnitude of the impact 

of the initial culture conditions seems to be greater for the Gram positive 

organism. Barcina et al (1995) showed a similar effect when using 

ciprofloxacin to artificially arrest cell division, with Gram positive bacteria 

showing a lower recovery on solid medium than the E. coli strains tested. 

Interestingly, it appears that a rod-shaped morphology seems to minimise 

this effect with the worst recoveries being demonstrated by the cocci in 

Barcina et al’s work (1995). It’s possible that, were this flow cytometric 

analysis to be performed on spherical Gram positive cells, such as 

Streptococcus gordonii, the extent of the unhealthy populations may be even 

greater than seen here. 
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Figure 4.17. Flow cytometric analysis of E. coli shake-flask fermentation in 
Figure 4.13. stained with PI & DiBAC4(3). Each grid space shows similar time 
points for two different fermentations, clockwise from top left: Inoculum; 4; 7; 
9; 11; 24 hours. Cultures were induced at OD600nm ≈ 10 using 0.1 mM IPTG.  

 

This large population of stressed cells impacts heavily on the remainder of 

the fermentation and in order to avoid this issue the cells would have to be 

grown over a far shorter time period. This approach is less amenable to a 

process executed by people, because the setup of the inoculum may fall 

outside the normal working day. 

 

As seen earlier in the analysis of B. cereus with this same combination of 

stains, the culture attains homogeneity at least according to the fluorescence 

of the cells with these two stains. The E. coli cells actually managed to reach 
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this homogeneously fluorescent population after only 2 hours in culture, 

whereas the Bacilli generally needed 4 hours to completely dilute out or 

otherwise eradicate the green fluorescent cells. This is likely attributable in 

part to the content of their respective media. The very high glycerol 

concentration (35 g.L-1) probably enabled the healthy E. coli cells to grow at a 

much faster rate than the Bacilli, preventing detection of the green 

fluorescent cells even by such a sensitive technique as flow cytometry. 

Another explanation, given the lack of PI positive cells in the inoculum, is 

that, rather than being diluted out, the green fluorescent cells had sufficient 

nutrients to recover their ability to generate a normal physiological 

membrane potential. The image displayed for the four hour time point 

accurately depicts the condition of the cells from 2 hours post-inoculation 

through to 6 hours, immediately prior to induction.  

 

One hour after induction, 7 hours post-inoculation, the green fluorescent 

population begins to re-appear, although only in very small quantities (4 %). 

The CFU analysis at this point (Figure 4.14.) indicates the peak in the 

number of colonies, prior to the fall that is observed immediately afterward. 

This increase in the number of cells unable to maintain their cytoplasmic 

membrane potential contributed to the observed drop in the expected 

recovery of the cells on nutrient agar, demonstrating that this flow cytometric 

method can yield signs of bacterial stress at-line, more sensitively than 

detectable by CFU analysis. 
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Three hours after induction, the proportion of green fluorescent cells has 

increased to 16 %, and it is in this period that the amount of Fab produced 

becomes detectable by ELISA. At the peak quantity of measured Fab, the 

culture is 30 % green fluorescent, indicating the onset of significant cellular 

stress, compared with the value of 38.7 % for the inoculum after an 

additional 5 hours of growth in a far less nutrient rich medium. This large 

number of cells that have become metabolically compromised can be 

extenuated by observation of the location of the Fab produced in this time. At 

11 hours, most of the Fab is located within the pellet, and only very small 

quantities are associated with the periplasm. The Fab is passed from the 

cytoplasm to the periplasm utilising part of one of the Tat or Sec pathways, 

which are dependent on the proton motive force (de Leeuw et al., 2002) or 

nucleoside triphosphate hydrolysis (Pugsley, 1993) respectively. As such, this 

inability of the cells to maintain their cytoplasmic membrane potential could 

directly prevent passage of the Fab through the membranes as a result of a 

depressed proton-motive force (PMF), or it could be symptomatic of a general 

increase in the energy demands within the cell diverting resources away from 

recombinant protein translocation (Natale et al., 2008). 

 

After 24 hours cultivation, the culture further degrades in quality with 50 % 

of the cells exhibiting green fluorescence, of which, approximately one third 

are also red fluorescent. This is the first point where PI positive cells can be 

detected in significant quantities during this shake-flask culture. The dearth 

of red fluorescent cells observed prior to this may be caused by a number of 

factors, the first of which would be that the cells aren’t dying. This doesn’t 
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seem to make sense given the large falls in OD600nm, CFU.mL-1 and DCW in 

the same time frame. It has been well established that propidium is 

incapable of penetrating an intact cellular membrane (Phe et al., 2007), 

therefore, only cells whose membrane structure has been compromised 

fluoresce red when exposed to propidium. Due to the action of propidium as 

an intercalator into DNA, it naturally follows that the perforations in the 

membrane must be sufficiently small to contain the genome. Once the holes 

in the membrane reach sufficient size for the DNA to leak out, PI is no longer 

an effective means of determining the number of dead cells. This would 

require a rapid breakdown in the cellular structures, such that it remains 

undetected by flow cytometric analysis. The cells under stress, resulting from 

the combination of nutrient limitation and recombinant protein production 

(specifically with periplasmic targeting, known to increase the burden on 

producing cells (Aldor et al., 2005))) could have succumbed to programmed 

cell death (Engelberg-Kulka et al., 2006). This process would bring about a 

rapid and complete breakdown in the cell integrity releasing the contents 

sufficiently quickly that an intermediate stage exhibiting PI fluorescence may 

not have been present long enough to be detected. The death and release of 

intracellular contents would by no means reduce the productive capacity of 

the culture, due to the release of IPTG along with the cell’s contents. This 

IPTG would then be taken up by surrounding cells causing a stronger 

induction leading to a continuing increase in recombinant Fab, even with 

falling cell numbers. 
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When compared with the work performed by Hewitt et al (2007) the effect of 

performing periplasmic expression appears to have little impact on the 

viability of the cells as measured by flow cytometry. Both this investigation, 

and Hewitt et al (2007) used E. coli culture for production, however, there 

were significant differences also. Where Hewitt et al used a T7 promoter, 

controlling the expression of a product targeted to the bacterial cytoplasm, 

here a T7A3 promoter was used, which reduces the strength of expression, 

as well as eradicating the need for co-transformation with the viral RNA 

polymerase. The main reason for the divergence in subcellular target for 

expression was that the antibody fragment used requires an oxidising 

environment in order for disulfide bonds to form, whereas the AP50 protein 

produced by both sets of experiments show small levels of green fluorescence 

shortly after induction with higher levels observed with increasing temporal 

displacement. However, Lewis et al (2004) showed a large degree of culture 

heterogeneity and green fluorescence (>65%) within 3 hours of induction, 

when these cells are grown and analysed in stirred-tank reactors then more 

appropriate comparisons can be made. 

 

Figure 4.18. shows that, whilst the DiOC6(3) stain seems to be efficient at 

staining healthy cells in mid-exponential phase of growth when the culture 

approaches stationary phase, the PI positive, DiOC6(3) negative population 

observed with B. cereus is not seen in these samples. The presence of the 

green/red fluorescent population later in the culture is anomalous, especially 

considering the lack of any, solely, PI positive cells. The apparently red/green 

fluorescent cells are an artefact of the high concentration of the dye, 



 140 

confirmed by the absence of this population with the PI/DiBAC4(3) stained 

cells (Figure 4.17.). 

 

  

  

  
Figure 4.18. Flow cytometric analysis of E. coli shake-flask fermentation in 
Figure 4.13. stained with PI & DiOC6(3). Cells were induced at OD600nm ≈ 10 
using 0.1 mM IPTG. Clockwise from top left: Inoculum; 4; 7; 9; 11; 24 hours.  
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Following identification of the PI/DiOC6(3)  double-positive population in 

Figure 4.18. additional fluorescence parameters were investigated, displayed 

in Figure 4.19. During mid-exponential phase, where the cells were 

demonstrated to be at their most homogeneous and healthy by a lack of 

DiBAC4(3) fluorescence, Figure 4.19. shows that the forward scatter (FS)/side 

scatter (SS) plot yields a similarly homogeneous culture to that observed for 

PI/DiOC6(3) fluorescence of the same samples. 

 

The 24 hour time point from Figure 4.19. shows a deviation away from the 6 

hour samples, with an observed reduction in forward scatter. When the 

forward scatter is then plotted against DiOC6(3) fluorescence, it becomes 

clear that the highly green fluorescent population is coincident with the 

reduced forward scatter population. This change in forward scatter is 

associated with a change in cell size (López-Amorós et al., 1994), and, the 

population can be seen to encroach on the area where small particles and 

electronic noise are filtered out, indicating a significant reduction in size of 

the particles. If the pressure on the cells caused by the protein production is 

great enough to lyse the cells (as suggested by the fall in OD600nm) this might 

account for the reduction in observed particle size. The high level of green 

fluorescence of these small, probably fragmented, cell particles could be 

attributed to the hydrophilic nature of the dye allowing it to remain 

associated with the cellular fragments following lysis. 
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Figure 4.19. Flow cytometric analysis of E. coli shake-flask fermentation in 
Figure 4.13. stained with PI & DiOC6(3). Cells were induced at OD600nm ≈ 10 
using 0.1 mM IPTG. Left: 6 hours post-inoculation; Right: 24 hours post-
inoculation  
(18 hours post-induction).  
 



 143 

4.2.1. Conclusions 

 

Flow cytometry can be used in conjunction with PI/DiBAC4(3) to reliably 

detect the effect of recombinant protein production on these cells. The 

expression of the Fab fragment inhibits cell growth, as compared with 

uninduced control samples, and, additionally, causes cell lysis later in the 

fermentation. This lysis is undesirable from a process perspective, and is one 

of the conditions which this method was employed to avoid. Relatively little 

recombinant protein is actually produced in this example, less than 7 mg.L-1 

(and most of that associated with the cells rather than free in the periplasmic 

space). DiOC6(3) is unsuitable as a dye for use with E. coli. Whilst it appears 

able to demonstrate the presence of homogeneous, viable cultures, the lack 

of resolution of different populations in heterogeneous cultures produces 

inconsistent results. 
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4.3. E. coli Stirred-Tank Reactor Batch Fermentations 

 

The process that is central to this thesis entails cultivation of the bacteria 

within a conventional stirred-tank reactor, followed by induction with IPTG to 

enable recombinant protein expression. Following demonstration within the 

scaled-down shake-flask model that the deleterious effect of the expression of 

this Fab fragment can be duplicated in our laboratories, the next step was to 

perform the same experiments in stirred-tank reactors. The standard 

protocol provided by Avecia Biologics Ltd. describes a fed-batch process, 

designed to achieve the optimum productivity, with the same widespread cell 

disruption. The first analysis performed was the determination of the 

conditions within a batch culture to provide a baseline for the process at this 

scale from which the fed-batch might be better understood. 

 

Figure 4.20. shows the data from batch stirred-tank reactor fermentations, 

with data shown from two runs each of the induced GMO, uninduced GMO 

and induced wild type. It is clear from this plot that the induction of the 

recombinant gene is having a significant, and deleterious, effect on the 

growth of the culture. Interestingly, it appears that the uninduced GMO cells 

indicated by the open shapes, have an advantage in terms of their growth 

over the wild type organism. There are two factors at work in this instance 

which might impact on the growth of these cells; the uninduced GMO cell (E. 

coli CLD048) culture has a metabolic burden, not experienced by the wild 

type organism, that of maintenance of the recombinant plasmid (diverting 

resources away from genome replication) (Sato and Kuramitsu, 1998). In 
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addition, these cells also have to manufacture antibiotic resistance 

components (efflux pumps, in this case (Chopra, 2006)) enabling the cells to 

grow in the presence of the selecting antibiotic. In contrast with this, the wild 

type organism has been exposed to a xenobiotic compound, IPTG, that has 

been shown to affect the proteome in E. coli (Kosinski et al., 1992). In 

Kosinski et al’s work, however, it was not sufficiently demonstrated that this 

alteration in expression profile (affecting only a handful of genes) impacted 

the growth of the cells significantly. Analysis of the genotype of the W3110 

strain indicates that the organism is lac+, which would lead to gratuitous 

induction of the lac operon and would likely cause a significant metabolic 

load in itself. It appears from these results that the metabolic toll taken by 

the gratuitous inducer is of a greater magnitude than the combined 

requirement of plasmid maintenance and antibiotic resistance (although 

these two are linked, the requirements of the cell to fulfil the respective tasks 

comprise different spheres of metabolism, and so their effect can and should 

be separated). Addition of the IPTG to E. coli CLD048 leads to a drastic 

decline in the optical density of the cultures. Prior to induction, all of the 

cultures appear to be growing at approximately the same rate (bar the closed 

square, which experienced a prolonged lag phase), with the only exception, 

matching the other cultures after exiting the initial lag period.  

 

When compared with the shake-flask culture it can be observed that the 

productive capacity (the extent to which the bioreactor can create biomass) is 

twice as great in the stirred-tank. This is due to the increased mass transfer, 

as well as the control of factors such as pH that can deleteriously affect the 
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metabolism of the constituent organisms (Glass et al., 1992). This may also 

increase the magnitude of any detrimental effect of the induction conditions 

on the cells, with a greater quantity of resources diverted to cellular growth, 

fewer are available to respond to the stresses associated with the 

recombinant protein production (Jishage and Ishihama, 1995; Chatterji et 

al., 1998; Graves et al., 2008; Rosano and Ceccarelli, 2009).  
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Figure 4.20. E. coli batch stirred-tank fermentation; CLD048 is the code for the 
recombinant organism, W3110 is the identity of the wild type organism from 
which the recombinant organism is derived. All points plotted are mean values 
from replicate analyses. The error bars show the standard deviation of the data. 
Induction was carried out at OD600nm ≈ 20 using 0.1 mM IPTG immediately 
following analysis of the sample closest to the dashed horizontal line in the 
induced samples. 
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The first feature of Figure 4.21. which draws attention is the presence of 

measurable Fab production without the addition of any inducing agent. 

During the shake-flask culture, it was assumed that non-induced production 

of the recombinant product was nil, or negligible due to the use of a putative 

leak-free promoter system (Hodgson et al., 2006). The production of antibody 

fragment in the non-induced case was easily in excess of that achieved for 

the induced shake-flask fermentation but without the associated collapse in 

the turbidity. This is likely due to a large number of cells producing small 

quantities of Fab, consistent with promoter “leakiness”, rather than the 

converse case of a smaller number of highly active operons under the 

influence of an inducing agent. It has, however, also been demonstrated that 

yeast extract can often contain small quantities of lactose (Nair et al., 2009) 

which would undertake a natural induction of the expression system without 

the addition of IPTG. 
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Figure 4.21. Batch fermentation of E. coli CLD048 (top; uninduced, bottom; 
induced). The arrow shows where 0.1 mM IPTG was added as an inducing 
agent. 

 

It can also be seen in Figure 4.21. that the expression of the Fab fragment in 

the induced system has resulted in a more even distribution of the protein 

among the various intracellular compartments. This is evidenced by the 
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increased quantity of total protein in the induced culture, relative to the 

uninduced (a maximum of 27 mg.L-1 and 18 mg.L-1, respectively). It should 

also be noted, that, the specific productivity of the induced fermentation is 

approximately 2 mg.L-1.OD600nm-1, considerably greater than the comparable 

shake-flask fermentation, although still lower than recorded by Hodgson et al 

(2006). There is no evidence of preferential partitioning of the Fab in the 

periplasmic space (as would be illustrated by a high proportion of Fab in 

osmotic shock solution 1). It is unlikely that the extent of collapse observed 

in the optical density observed here can be attributed to the production of 

the quantity of recombinant protein seen here. Even if a combined effect of 

gratuitous induction of the native lac operon and pre-induction derepression 

of the operon by lactose in the yeast extract were taken into account, this 

impact is anomalous. The best explanation for this data is that there is some 

portion of recombinant protein unobserved by the assay.  

 

An ELISA is only capable of quantifying and antigen where the specific 

epitope is available and conformationally similar to that in which the initial 

antibody-antigen interaction took place. If protein is being produced at a 

sufficient rate to overwhelm the protein translocation system, this can lead to 

an accumulation of improperly folded or truncated recombinant proteins that 

sequester chaperone functions within the cell for their disposal, rendering 

the organism less able to respond to other stresses it might encounter, such 

as endogenous protein misfolding at high growth rates (Gasser et al., 2008; 

Johansson et al., 2008). 
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It should also be noted that the induction was carried out in the stirred-tank 

at twice the optical density of that in the shake-flask culture. This value was 

arrived at in an attempt to utilise approximately the same proportion of the 

growth curve for induction in each experiment; inducing at OD600nm ≈ 10 for 

shake-flasks with a maximal potential OD600nm ≈ 25, compared with 

induction at OD600nm ≈ 20 for stirred-tanks with a maximal potential OD600nm 

≈ 50. This would entail a necessarily stronger induction (with more IPTG 

molecules per cell) in the shake-flask. Using the correlation mentioned earlier 

(Section 4.1. p. 108), which delivers a value of 1 OD unit ≈ 108 cells, it can be 

shown that the 0.1 mM solution of IPTG ensures that there are 

approximately 3 x 107 molecules per cell under stirred-tank induction and 6 

x 107 molecules per cell for shake-flask induction. This quantity is likely 

enough to fully titrate all available binding sites on all copies of the lac 

repressor molecule even after expansion of the culture to the peak OD600nm 

(10 molecules per cell, 4 binding sites per molecule (Lewis et al., 1996)). 

 

The protein production within the bioreactor fermentation demonstrated that 

not only can greater quantities of protein be made than in shake-flask, but 

that there is a difference in the subcellular distribution of the recombinant 

product. The Fab found within the shake-flask culture was limited to the 

periplasm and latterly, the pellet. When produced by the stirred-tank reactor, 

recombinant Fab was first detected associated with the pellet, and a lesser 

quantity in the cytoplasm. This first detection of the Fab is an interesting 

departure from the observations made with the shake-flask culture, where 

there was no protein detected prior to induction (the time point where 
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induction is indicated was taken first, measured and the remaining culture 

subsequently induced). This is the first indication that there is some 

“leakiness” of the promoter allowing expression of the protein in the absence 

of the inducing agent. The patent which this cell line forms a part of 

specifically concerns the development of a non-leaky promoter system 

(Hodgson et al., 2006) making this result all the more intriguing.  

 

Figure 4.22. correlates OD600nm and DCW for the bioreactor culture and is 

much less convincing than in the shake-flask with an r2 value of only 0.752 

(compared with 0.948 in shake-flasks) described by the solid line. The 

uninduced fermentation of E. coli CLD048 and the wild type E. coli W3110 

with IPTG (dashed and dotted lines respectively) both display significantly 

better correlations (1.000 and 0.999), suggesting that the deviation observed 

in the E. coli CLD048 induced fermentation is a result of the fall in optical 

density, and, further, that that fall is caused by the expression of the 

recombinant product. A qualitative observation was made during 

performance of the experiment; following induction there was difficulty 

compacting the pellet prior to dry cell weight analysis with E. coli CLD048 

after induction with IPTG. The uncompacted mass was poured away with the 

supernatant, which should have caused the DCW to be underestimated, 

relative to previous cultures. In this case, the DCW is overestimated, in 

comparison with the highly-correlated cultures. This inability to form a 

compact pellet (along with an unclarified supernatant) was probably not 

related to the differences in the relationship between OD600nm and DCW. The 

most probable explanation for this observation is cells in the bioreactor have 
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become more dense than those in the shake-flask culture with the 

unsedimented particles being cellular debris, where the centrifugal force was 

not sufficient to sediment them along with the cells. 
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Figure 4.22. OD600nm vs DCW with r2 value for E. coli batch stirred-tank 
fermentation. The data plotted are mean values of 4-6 replicates from single 
experiments. The error bars indicate the standard deviation of the data from. 
Induction was carried out by addition of 0.1 mM IPTG at an OD600nm ≈ 20.  

 

Akerlund et al (1995) demonstrated that the medium and growth conditions 

experienced by a cell can significantly affect the size of the cell, without a 

concomitant effect on the turbidity. It is, therefore, a reasonable postulation 

that other growth parameters (such as DCW) may become disconnected from 

spectrophotometric determination of cell proliferation. It has also been 



 153 

established that for thy- phenotypes, the average cell mass increases with 

decreasing thymine availability in the medium (Zaritsky and Pritchard, 1973; 

Begg and Donachie, 1978) however, the complexity of the medium used here 

makes it impossible to determine whether there might be some component in 

this medium causing a similar phenomenon. The development of several 

subpopulations of cells differing in their buoyant density was discovered by 

differential gradient centrifugation of Escherichia coli cells following transition 

from exponential to stationary phase (Makinoshima et al., 2002), lending 

further weight to the interpretation that the growth conditions the cells find 

themselves in can strongly affect simple bioprocess metrics such as dry cell 

weight. Whilst it cannot be definitively stated that any of the above 

mechanisms are at work in the batch fermentation, it, at least, demonstrates 

that these kinds of effects can be explained in terms of cellular 

physiology/biochemistry, though such an investigation is beyond the scope 

of this work. 

 

A much lower specific growth rate was achieved in the stirred-tank reactor 

(Figure 4.23.) than in the shake-flask (Figure 4.16.). The maximum specific 

growth rate achieved in the shake-flask culture was 1.2 h-1, compared with  

0.4 h-1 for the bioreactor. Both of these measurements were taken for their 

respective cultures between 2 and 4 hours, although the OD600nm was 4 and 

2 for the bioreactor and shake-flask respectively. Robinson et al (2001) 

showed a marked effect of inoculum size (in terms of total cell number) on 

length of lag phase. The shake-flask and stirred-tank fermentations in this 

study used 4 and 2 % inocula respectively, which could have been 
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responsible for the unexpected differences in growth rate. An increase in the 

percentage inoculum may negatively impact growth rate by increasing 

competition for resources, although there are no studies which have 

investigated this. Interestingly, the variation in specific growth rate appears 

to be consistent across each of the fermentations, whereas the optical 

densities are significantly different. It is probable that, without the disjunct 

between optical density and dry cell weight, observed in the induced, GMO, 

fermentation there would have been a concomitant downturn in the specific 

growth rate 
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Figure 4.23. Variation of specific growth rate for E. coli batch stirred-tank 
fermentation in Figure 4.17. The data plotted are calculated from the mean 
DCW of 6-8 replicates per time point. Induction was carried out by addition of 
0.1 mM IPTG at an OD ≈ 20. 
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Figure 4.24. shows the variation of specific growth rate as calculated as a 

function of optical density, rather than dry cell weight or cell number. What 

is much more clearly shown, in this example is that, despite a similar picture 

overall, the end of the fermentation is clearly differentiated by dropping much 

farther below 0 than the two control experiments. 
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Figure 4.24. Variation of specific growth rate, as calculated using optical 
density from the same dataset shown in Figure 4.23. 

 

The induction of the bioreactor fermentation exerts a similar effect, over a 

similar timescale, as in the shake-flask culture, in spite of the fact that the 

bioreactor was induced at double the OD600nm of the shake-flasks. This may 

have resulted from the shake-flasks remaining unagitated during induction 

with an associated confinement of the added IPTG to a subpopulation of cells 
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within the locus of the addition. However, the stirred-tank reactor was kept 

operational whilst the inducing agent was added, distributing the compound 

more thoroughly among the cells enabling induction of a greater number of 

them, causing the steeper decline in the culture. 

 

When analysed by flow cytometry, the inoculum culture consistently yielded 

similar results showing a large proportion of the cells to be green fluorescent, 

indicating a compromised cytoplasmic membrane potential. As can be seen 

in Figure 4.25. below, this, much like the shake-flask culture transitions to a 

healthier state, exhibiting negligible green fluorescence. The sample 

immediately following induction (8 h) already shows signs of an increase in 

green fluorescent cells, 6.5 %; comparable with a similar stage in the shake-

flask fermentation. After only 2 more hours, however, the proportion of green 

fluorescent cells has increased to more than 65 % (including 11 % 

fluorescing red and green simultaneously). In contrast, the shake-flask 

culture achieves a maximum of just over 50 % green fluorescent cells, further 

evidence of the additional deleterious effect of the bioreactor on the cells 

relative to the shake-flask experiments. Images from control experiments can 

be found in appendix (8.1. and 8.2.) 
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Figure 4.25. Flow cytometric analysis of E. coli batch stirred-tank 
fermentation stained with PI & DiBAC4(3). Cells were induced at OD600nm ≈ 20 
using 0.1 mM IPTG. Clockwise from top left: Inoculum; 6.5; 8(8.5) and 10(9.5) 
hours. Figures in parentheses show the time points from the alternative 
fermentations. Each quadrant shows similar time points from different batch 
fermentations Data from equivalent control experiments can be found in 
Appendix (8.1. & 8.2.) 
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Following the repeat of the analysis performed on the shake-flask 

fermentation, transmission electron microscopy was employed in order to 

attempt to discern any visible effect on the cell as a result of induction. The 

resulting electron micrographs (Figure 4.26.) show that prior to induction the 

periplasm is clearly visible between the two constituent membranes, 

representing a very small portion of the cell. Images from the uninduced E. 

coli CLD048 batch fermentation are included in the appendix (8.1.1. and 

8.2.1.). 

 

  
  

  
Figure 4.26. Transmission Electron Micrographs of E. coli CLD048 induced, 
batch stirred-tank fermentation in Figure 4.17. Cells were induced at OD600nm ≈ 
20 using 0.1 mM IPTG. Clockwise from top left: 6; 8, 9 and 10 hours. Analysis 
was performed on samples from a single fermentation. Data from equivalent 
control experiments can be found in Appendix (8.1. & 8.2.) 

 

Only 1.5 hours after induction an obvious increase in the breadth of the 

periplasm can be observed, even when the increased magnification is taken 
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into account. At this stage, the levels of Fab detected by ELISA were similar 

to that of the uninduced control (where this breakdown of the periplasmic 

membrane was not observed; Figure 8.1.1 and 8.2.1.).  

 

At this stage in the culture, there was no Fab detectable in the periplasmic 

fraction (OS1) however; the presence of additional material in the periplasm 

seems the most plausible explanation for this effect. Ami et al (2009) 

demonstrated that protein misfolding and aggregation adversely affected 

bacterial membrane structure, and these events would also explain the lack 

of protein detected by the ELISA. 

 

When the same analysis is performed after 9 and 10 hours, the breakdown of 

the periplasm can be seen directly, especially after 9 hours where intact 

sections of membrane can be seen interspersed with gaps. These images 

confirm the proposed mechanism of release of recombinant protein into the 

extracellular space, with only a partial periplasmic membrane. The ideal goal, 

from a complete bioprocess perspective would be to manage this 

membranous breakdown such that the periplasmic membrane is removed, 

whilst maintaining the integrity of the individual cells.  

 

The transmission electron microscopy failed to detect any partially disrupted 

or ghost cells, however, one of the major weaknesses in this technique is the 

low level of statistical resolution. Only a handful of cells can be captured in 

any one image, and these images are, as far as possible, representative of 

those observed in a wider observation of 30-40 microbes per analysis point.  
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With the analysis of this batch fermentation, we appear to have conflicting 

data, with some indications of widespread cell death (OD600nm, CFU.mL-1, 

DCW) and some techniques in which the effects of this are conspicuously 

absent (flow cytometry, transmission electron microscopy).  

 

4.3.1. Conclusions 

 

There is considerable evidence that the repression system used in this 

organism is “leaky” with the induced culture producing 27 mg.L-1 compared 

with 18 mg.L-1 for the uninduced culture. The increased Fab expression is 

associated with a sudden and rapid decline in both total and viable cell 

number, moreso than shown in shake-flasks. Despite the expression system 

being designed for periplasmic expression, there is no preference for this 

compartment in terms of accumulation of conformationally active Fab (as 

would be demonstrated by increased Fab concentrations in OS1). In fact, 

During the decline phase of the culture the quantity associated with the 

insoluble fraction is dominant comprising 30-40 % of the total. The 

leakiness, combined with the increasing proportion of Fab present in cellular 

compartments other than the periplasm show that this system, at least in 

batch mode, is poorly optimised for the intended purpose. 
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4.4. E. coli CLD048 Fed-Batch 1 Stirred-Tank Reactor Fermentation 

 

Following on from the batch fermentation, a fed-batch protocol was obtained 

from Avecia. The protocol consists of an initial batch phase, followed by a 

feed, enabling the bacteria to achieve a higher optical density than that in 

the original batch experiment. The fed-batch culture was induced at an 

OD600nm of approximately 50. The onset of feeding was triggered by an 

increase in the dissolved oxygen within the reactor, at which point it was 

assumed that the level of glycerol in the reactor had been exhausted. With no 

reliable, at-line method in use during this process to measure glycerol, the 

dissolved oxygen in the medium was used as a surrogate. As the E. coli 

culture switches from metabolising glycerol to a secondary energy source (in 

this medium likely to be some constituent of the yeast extract) a brief pause 

in the consumption of oxygen would be expected as the cells upregulate the 

enzymes necessary to carry this out.  

 

The point at which to add the feedstock was determined by monitoring of the 

dissolved oxygen. Figure 4.27. shows the variation of dissolved oxygen for 

duplicate runs of E. coli CLD048 induced, uninduced and E. coli W3110 

induced. The onset of feeding was triggered by manual activation of a pre-

calibrated pump, when the dissolved oxygen began to rise. Each of the 

cultures shows that, from an initially saturated state, the oxygen in the 

medium is consumed at a rate faster than it can be supplied by the growing 

organisms. Midway through this descent, there is a distinct, and conserved, 

double-peak where the dissolved oxygen rises, before continuing its fall. It is 
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believed that this rise is attributable to an alteration in the cells’ primary 

source of energy, due to exhaustion. Attempts to quantify the glycerol in this 

culture were unsuccessful, however, alteration in growth as a result of 

adaptation to an alternative energy source is well-understood (Loomis and 

Magasanik, 1967). In this case, there is no observable change in the growth 

rate, however, it is plausible that a shift in the intracellular biochemistry 

required to make a change of this type would likely alter the usage of oxygen. 

The fact that this lapse in oxygen usage is so short also explains the 

apparent lack of an effect on the growth of the bacteria. Hofmann et al (2010) 

showed that it is possible to detect exactly the change in metabolism that has 

been proposed here using an online probe, whilst Losen et al (2004) showed 

that the depletion of glycerol in a rich medium caused the oxygen transfer 

rate to fall, which would have the effect of increasing dissolved oxygen as 

observed in Figure 4.23. 
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Figure 4.27. Top: Plot of the dissolved oxygen measured in the first fed-batch 
fermentation protocol. Bottom Left-Right: Plots showing close-up views of the 
point of feeding for E. coli CLD048 induced and and uninduced and E. coli 
W3110 induced, respectively. Arrows indicate the point of onset of feeding for 
each fermentation 

 

The lower plot in Figure 4.28. shows the variation of optical density during 

the fed-batch process. The top plot indicates the detail of when the cultures 

were fed, using the time points from Figure 4.27. What is evident from the 

top plot here is that each of the cultures was fed at approximately the same 

optical density (20-24). That this fluctuation in dissolved oxygen occurs 

consistently across a specific, small, range of optical density values, provides 
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additional support for the suggestion that said fluctuation is related to a 

change in internal metabolism. 
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Figure 4.28. E. coli CLD048 fed-batch stirred-tank fermentation. All points 
plotted are mean values from 4 replicate analyses. The error bars show the 
standard deviation. Induction was carried out at OD600nm ≈ 50, the point on the 
curve nearest to the dashed line, using 0.1 mM IPTG, immediately following 
analysis of the sample. The top plot indicates the point of feeding onset with 
droplines.  
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When the antibody productivity for the induced and uninduced 

fermentations is compared (Figure 4.29.) it is clear that the promoter 

leakiness observed during the batch culture is still evident. The level of 

expression from the uninduced system is lower than seen in the equivalent 

batch fermentations however shows a similar trend of being unconcentrated 

into any particular subcellular compartment, as well as being approximately 

constant over the range of samples analysed. However, the induced culture 

produced far more antibody, based on peak values, than either the 

uninduced or batch cultures with a maximum of 35 mg.L-1. This value was 

achieved a very short time following induction, with the titres in samples 

following it markedly lower (although still achieving a total of 11 mg.L-1). The 

sudden drop in optical density, following induction, that was previously 

observed in the batch experiment was not found here. This might be 

attributable to a number of factors; firstly, the induction of the fed-batch was 

carried out at a much higher optical density, necessarily meaning a lower 

quantity of inducer per cell than in the batch fermentation, although the 

inducing agent is still likely in excess, relative to lac repressor binding sites 

(p.150). 

 

The fed-batch was also successful in preventing the large drop in optical 

density, post-induction. Due to the large excess of inducer, it is unlikely that 

the increased cell numbers at induction is responsible. However, the 

continual supply of glycerol has probably enabled the cells to mount a better 

response to the stress of heterologous protein production. 
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Figure 4.29. Fed-batch fermentation 1 of E. coli CLD048 (top; uninduced, 
bottom; induced). The dashed lines indicate the point where feeding was 
initiated, in response to a change in dissolved oxygen (Figure 4.27.). The 
dotted line shows where 0.1 mM IPTG was added as an inducing agent. 

 

This feeding strategy is markedly dissimilar to others found in the literature, 

which usually rely on using the feed to control the concentration of a growth 

limiting substrate (Ramírez and Bentley, 1995; García-Arrazola et al., 2005). 

It is overly simplistic to suggest that merely the combination of feed strategy 

and feed composition was sufficient to limit the productivity of the 
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fermentation. Garcia-Arrazola et al (2005) used a similar level of glycerol in 

both the primary medium and the feed in order to obtain significantly higher 

yields of a periplasmic Fab, in the region of 0.1 g.L-1. This increased yield 

relative to the fed-batch protocol described here is just that available in the 

periplasmic space, so it is likely that additional optimisation or recovery from 

additional subcellular fractions could increase this yield still further. There 

are a number of factors whose effect probably accumulated to exert this 

positive effect on productivity. The most important of these would be; 

 

• Temperature: Garcia-Arrazola controlled at 30 °C before reducing to  

27 °C after induction. The stated aim of this was to reduce the level of 

misfolding of protein. 

• Induction with lactose: lactose is a less potent inducer than IPTG, and 

is also actively metabolised in the cells which it induces, reducing its 

effectiveness with time. This prevents the cellular protein production 

apparatus from being overwhelmed by recombinant transcripts. 

• Gas blending: Maintaining constant impeller speed at a relatively low 

leve, and combining this with gas-blending with oxygen, enabled the 

creation of an oxygen unlimited environment within the bioreactor, 

without the necessity of harsh agitation conditions. 

 

The rationale for using glycerol as the primary carbon source was, at least in 

part, a result of the commonly held belief that E. coli is unable to produce 

acetate when utilising glycerol as a primary carbon source (Koh et al, 1992; 

Han et al, 2003 Shiloach and Fass, 2005). An extension of this opinion is 
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that there is no requirement for feed rate restriction when using a glycerol 

feed, as compared to glucose-based cultures capable of producing acetate 

concentrations sufficient to inhibit growth and recombinant protein 

production (Luli and Strohl, 1990). However, both Garcia-Arrazola et al 

(2005) and Guebel et al (2009) have both shown that acetate can be 

produced by Escherichia coli growing on glycerol. The latter used principal 

component analysis to determine that the acetate was not a by-product of 

overflow metabolism caused by oversupply of glycerol. Both studies also 

failed to produce enough acetate to reach 2 g.L-1, the level known to cause 

product and growth inhibition (Luli and Strohl, 1990). The source of acetate 

suggested by Guebel et al (2009); ornithine, was likely not present in 

significant quantities in the defined medium of Garcia-Arrazola, hence their 

conflicting conclusion that overflow metabolism was the cause of the acetate 

accumulation in that case. 

 

Figure 4.30. illustrates that the linear correlation between OD600nm and dry 

cell weight is maintained throughout the fed-batch process. This trend is 

consistent across both induced and uninduced GMO cultures, as well as 

induced wild type fermentations. This is in contrast with the batch 

processes, where a significant drop in the optical density was recorded 

following induction. It is clear from the control experiments that this 

breakdown is not attributable to an effect of the inducer on the cell, in the 

absence of the inducer, nor to the presence of the recombinant material and 

associated selection pressure.  
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Figure 4.30. E. coli fed-batch stirred-tank fermentation. All points plotted are 
mean values from replicate analyses within single experiments. The error bars 
show the range of the data from which the mean was calculated. Induction 
carried out at OD600nm ≈ 50 with 0.1 mM IPTG. The included correlation 
coefficients refer to the closest fitted curves. 

 

The variation of specific growth rate for the fed-batch culture (Figure 4.31.) 

was very similar to the batch fermentation for the first 4 hours, 

unremarkable given that this is the “batch” phase of the fed-batch process. 

Feeding had an immediate impact on the cells, with the fed-batch culture 

reaching a peak of 0.5 h-1 compared with 0.4 h-1 for the batch. Following this 

peak, the cells in the fed-batch experience a gradual descent in their specific 

growth rate, with their deceleration into stationary phase. Conversely, the 

batch culture experienced a precipitous decline in specific growth rate, 

further showing the lesser impact of the induction on the cells in the fed-

batch culture. Ihsen & Egli (2004) have shown that reduction of specific 

growth rate can increase the general stress response in E. coli. The fed-batch 

process experiences a protracted decline in µ as the fermentation proceeds; 
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this could lead to increases in concentration of intracellular proteases 

yielding one explanation for the reduced product yield in this fed-batch, 

compared with the batch protocol. 

 

Time (h)

0 2 4 6 8 10 12 14 16 18 20

S
p
ec

if
ic

 G
ro

w
th

 R
a
te

; 
µ 

(h
-1

)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

E. coli CLD048 Induced
E. coli CLD048 Uninduced
E. coli CLD048 Uninduced
E. coli W3110 Induced

 
Figure 4.31. Variation of specific growth rate for fed-batch stirred-tank 
fermentations in Figure 4.24. The data plotted are calculated from the mean 
DCW. Induction was carried out by addition of 0.1 mM IPTG at an  
OD600nm ≈ 50 (CLD048, dashed line; W3110, dotted line). 

 

Multiparameter flow cytometry using PI and DiBAC4(3) (Figure 4.26.) shows a 

dearth of either green or red fluorescent cells, concurring with the 

maintenance of high optical density and dry cell weight, even after induction. 

Given this large proportion of healthy cells (> 90 % throughout the 

fermentation), it is apparent that the induction of this fed-batch culture is 

having a far less detrimental effect on the survival and proliferation of the 

cells. 
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The lack of deviation from the physiological norm in the cytoplasmic 

membrane potential is supported by the absence of OD600nm decrease 

following induction. Despite the higher level of total protein manufactured by 

the fed-batch fermentation, the reason for the lack of an observable effect on 

the culture may be illuminated by the specific productivity. The batch 

fermentation Fab concentration peaked at 3.5 mg.L-1.gDCW-1, however, this 

was measured in the period of culture decline after the optical density had 

halved from the highest value. The importance of this is the impact of this 

point in the culture on the future processing of the product, increasing the 

quantity of contaminating materials (host cell protein, host cell DNA, etc.) 

which complicates the purification. In comparison, the fed-batch 

fermentation achieved a specific productivity of 1.4 mg.L-1.gDCW-1 at the peak 

total Fab concentration. This difference explains why the levels of stress 

observed, by flow cytometry, in the batch fermentation were greater than in 

the fed-batch method. 



 172 

 

  

  
  

  

  
Figure 4.32. Flow cytometric analysis of E. coli CLD048 fed-batch stirred-tank 
fermentation in Figure 4.28. stained with PI & DiBAC4(3). Cells were induced at 
OD600nm ≈ 50 using 0.1 mM IPTG. Quadrants show similar time points from two 
different fermentations; clockwise from top left: 4; 8; 10 and 14 hours. Data 
from equivalent control experiments can be found in Appendix (8.1. & 8.2.) 

 

Images of the cells in Figure 4.33. show that prior to induction the periplasm 

is intact, as would be expected for healthy cells and demonstrated earlier 
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with the batch fermentation. Following induction and at the latter stages of 

the culture, the two membranes (cytoplasmic and periplasmic) are less well 

defined. This could be the result of a similar breakdown that was more 

clearly observed during the batch fermentation (Figure 4.26.) precipitated by 

the passage of large quantities of protein through the cytoplasmic membrane 

into the periplasm. Damage to the cell membrane integrity is a well-studied 

phenomenon resulting from periplasmic overexpression of recombinant 

proteins (Shokri et al., 2003; Balagurunathan and Jayaraman, 2008). Shokri 

et al (2004) showed that changes in membrane structure during fed-batch 

processes at low specific growth rate can increase the robustness of the 

organism to mechanical and other stresses, which offers a reason for the 

maintenance of cell membrane integrity here. 

  
  

  
Figure 4.33. Transmission electron micrographs of E. coli fed-batch stirred-
tank  fermentation in Figure 4.28. Cells were induced at OD600nm ≈ 50 using 0.1 
mM IPTG. Clockwise from top left: 6; 8, 12 and 14 hours. Analysis was 
performed on samples from a single fermentation. Data from equivalent 
control experiments can be found in Appendix (8.1. & 8.2.) 
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4.4.1. Conclusions 

 

A simple feeding strategy using a high-glycerol feedstock can achieve 

significant increases in culture turbidity over the batch process. 1.4 mg.L-

1gDCW-1 recombinant Fab can be expressed during the fed-batch process, 

which, whilst less than achieved in batch mode (3.5 mg.L-1.gDCW-1), is 

attained without the associated decline in the culture. There is no apparent 

partitioning of the product into the periplasmic space (as would be indicated 

by more of the Fab being present in OS1 following osmotic shock). This fed-

batch process is a viable method for production of this Fab, without the 

associated breakdown in cell integrity observed in the batch process. 

Employment of a method of this type would decrease the load on subsequent 

downstream purification, but the low titres observed here indicate that there 

is considerable room for optimisation. 
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4.5. E. coli CLD048 Fed-Batch 2 Stirred-Tank Reactor Fermentation 

 

Having demonstrated that recombinant Fab could be manufactured by the 

cells with both a batch and fed-batch operating mode, it was decided to alter 

the protocol in an attempt to improve product yield. It was surmised that, 

rather than separating the induction phase from the feeding phase, Fab yield 

might be improved through feeding and inducing at the same time, with the 

feed triggered by the same rise in DO as in the previous protocol. The 

concentration of IPTG per cell is greater at the point where feeding is 

commenced (OD600nm ≈ 20) than in the earlier fed-batch method (OD600nm ≈ 

50), resulting in a stronger induction. In concert, the addition of a highly 

concentrated glycerol feed may serve to mitigate the impact of this induction 

on the cells by increasing the available energy resources. 

 

Figure 4.34. shows the variation of dissolved oxygen with time for 

fermentations of E. coli CLD048 (with control experiments performed with 

uninduced CLD048 and E. coli W3110). It can clearly be seen that the same 

fluctuation in dissolved oxygen is apparent in this culture, with the second of 

these perturbations signifying the point of addition of feed (and inducing 

agent where relevant). 
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Figure 4.34. Top: Plot of the dissolved oxygen measured in the second fed-batch 
fermentation protocol. Bottom Left-Right: Plots showing close-up views of the point 
of feeding for E. coli CLD048 induced and and uninduced and E. coli W3110 
induced, respectively. Arrows indicate the point of feeding, and induction where 
applicable, for each fermentation. 

 

When the point of feeding (and induction) is transposed onto the optical 

density curves in Figure 4.35. it can be seen, as in the prior fed-batch 

fermentation all of the feed additions are commenced at an OD600nm of 

approximately 20. What is clear from the optical densitometry is that there is 
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a stark difference in the growth capacity of induced GMO cultures and the 

control experiments. The maximum OD600nm achieved by the induced 

recombinant fermentation was 50, a lower level compared to that of the first 

fed-batch protocol, whilst the control experiments reached the same, or 

higher, levels as previously observed (Figure 4.28.). This suggests that the 

effect of the simultaneous feeding and induction on the organism lies 

between the two extremes already shown (batch and first fed-batch protocol). 
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Figure 4.35. E. coli CLD048 fed-batch stirred-tank fermentation 2. All points 
plotted are mean values from replicate analyses. The error bars show the 
standard deviation. Induction using 0.1 mM IPTG, and concurrent feeding was 
carried out at the points indicated by the droplines on the top plot. 

 

Reported earlier, there is also evidence here of expression of the Fab 

fragment before addition of the inducing agent (IPTG) (Figure 4.36.), further 
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suggesting incomplete repression. This is supported by the uninduced 

control, which also shows measurable quantities of recombinant protein, 

although at low levels. This “leakiness” could be caused by the single, 

perfect-palindrome sequence (Hodgson et al., 2006) not binding the LacI 

repressor molecule strongly enough, but may also result from stochastic 

effects from use with the artificial induction system (van Hoek and Hogeweg, 

2007). The productivity of this system is more than both the batch and prior 

fed-batch method achieved in terms of total yield, with this protocol attaining 

a peak Fab titre of 40 mg.L-1 compared with 27 mg.L-1 (batch) and 35 mg.L-1 

(fed-batch 1). The predominant location of the Fab in this fed-batch method 

is also distinct, with the majority of the Fab associated with the insoluble, 

pellet fraction (previously there was no obvious partitioning in the batch 

culture and a majority for cytoplasmic expression in the first fed-batch 

method). The specific productivity using this fed-batch protocol is mid-way 

between the batch and first fed-batch method, approximately  

1 mg.L-1.OD600nm-1 (2 mg.L-1.gDCW-1). This is the first indication that Fab 

productivity can be disconnected from the collapse in cellular numbers seen 

in the previous batch cultures (cultures in the first fed-batch culture 

remained at peak OD600nm levels, but with very low productivity, relatively 

speaking). 
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Figure 4.36. Fed-batch fermentation 2 of E. coli CLD048 (top; uninduced, 
bottom; induced). The dashed lines indicate the point where feeding was 
initiated (and 0.1 mM IPTG added: bottom), in response to a change in 
dissolved oxygen (Figure 4.30.).  

 

Figure 4.37. shows that, whilst there appears to be a tendency for the 

induced culture to produce correlations between OD600nm and DCW with 
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larger gradients, all of the cultures manifest similar correlation coefficients (> 

0.95). A demonstration that, unlike the batch fermentation, the linear 

relationship between turbidity and dry cell weight is consistent even after 

induction for this fed-batch culture. When the gradients are compared for the 

CLD048 and W3110 induced cultures (0.515 and 0.380, respectively) it is 

clear that caution should be taken in using optical density as a proxy for dry 

cell weight, but that a correlation factor of 0.4 seems reasonable, taking into 

account all of the stirred-tank reactor data, with r2 > 0.95, presented 

previously. 

 

Table 4.6. Correlation coefficients (r2 values) for all 
of the stirred-tank reactor fermentations 
performed in this work. Supporting data can be 
found in Figures 4.22., 4.30., 4.37. and 4.44. 

  CLD048i CLD048ui CLD048ui W3110i 
Batch 0.752 0.999 1.000 
FB1 0.975 0.991 0.992 0.983 
FB2 0.973 
FB3 0.920 

0.975 0.992 0.988 
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Figure 4.37. E. coli CLD048 fed-batch stirred-tank fermentation 2 in Figure 4.35. 
All points plotted are mean values from replicate analyses. The error bars show the 
standard deviation from which the mean was calculated. Induction and feeding 
were carried out at OD600nm ≈ 20 with 0.1 mM IPTG and glycerol feedstock. 

 

The specific growth rate, again, shows a steep increase during the 

logarithmic portion of the growth curve, Figure 4.38., toward the maximum 

for each culture (0.5-0.6 h-1). This peak is similar to both previous 

fermentation methods (batch and first fed-batch) before the addition of the 

inducer, indicating that the initial gradient of decline is part of the natural 

deceleration associated with depletion of nutrients. Both of the induced fed-

batch methods exhibit a more prolonged descent of specific growth rate than 

the batch culture and this is closely associated with the lower Fab titres. It 
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appears that this breakdown in cellular integrity is, if not required, then, at 

least strongly correlated with production of large amounts of antibody. It is 

unclear whether this is a discrete or continuous process, but the data 

gathered here so far is suggestive of the latter, with no sign of a threshold of 

productivity which limits the ability of the culture to proliferate. 
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Figure 4.38. E. coli fed-batch stirred-tank fermentation 2 in Figure 4.35. The 
data plotted are calculated from the mean DCW. Induction and feeding were 
carried out by addition of 0.1 mM IPTG and glycerol feedstock at an OD600nm ≈ 20. 
CLD048 induced at dashed line; W3110 induced at dotted line. 

 

The behaviours of these cells have been well-characterised as showing an 

almost uniform population, in terms of cytoplasmic membrane potential, up 

to the point of induction with the prior analysis of the batch fermentation. 

The data in Figure 4.39. shows the effect on the cell’s membrane potential 
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following induction in this second fed-batch method. As the experiment 

proceeded, the proportion of cells in each of the quadrants representing non-

fluorescent, green fluorescent and green/red fluorescent remains consistent 

at approximately 85, 10 and 5 % respectively. This effect was observed for 

both fermentations run according to this protocol. As described earlier, this 

fed-batch method uses a stronger induction than the primary one, and the 

elevated level of green fluorescence, relative to that same fermentation is 

entirely expected. The impact of the expression of the recombinant product 

on these organisms is sufficient to retard the growth potential as evidenced 

by the limitation on the optical density and dry cell weight analyses. The 

cells, however, do not experience the same widespread breakdown in 

cytoplasmic membrane integrity, mediated by the supplementation of the 

glycerol in the feed providing a much-needed source of energy.  

 

The MgSO4 in the feed might additionally influence the condition of the cells 

by bolstering the membrane, providing additional interactions with LPS 

(Neidhardt, 1996). The effect of feed components exerting a protective effect 

on the producing cells was not considered for the first fed-batch protocol due 

to the lower level of induction used for that process. If present, however, this 

protective effect would have been greater in the first fed-batch, due to the 

feed being initiated in advance of the induction, rather than along with it. 
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Figure 4.39. Flow cytometric analysis of E. coli fed-batch stirred-tank 
fermentation in Figure 4.35. stained with PI & DiBAC4(3). Cells were fed and 
induced at OD600nm ≈ 20 using 0.1 mM IPTG. From top: 7.25(10); 10.5(12) and 
12.5(16) hours with fermentation 1 on the left and fermentation 2 on the right. 
Figures in parentheses are time points for fermentation 2. Data from equivalent 
control experiments can be found in Appendix (8.1. & 8.2.) 

 

When analysed by transmission electron microscopy (Figure 4.40), the data 

gathered share a great deal in common with the first fed-batch method: A 
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small, almost undiscernible periplasm just after induction, a reflection of the 

time required for the newly formed polypeptide chain of the recombinant 

product to make its way through the secretory system. After 9.5 h, a swelling 

of the periplasm can clearly be seen on the organism for which there is a 

longitudinal view, a feature also seen during the batch fermentation (Figure 

4.26.). This appearance of an enlarged periplasm does not feature in the first 

fed-batch method (Figure 4.33.), suggesting that the increased strength of 

induction is exerting a pressure on the membrane. This swelling of the 

periplasm was not observed during any of the control experiments (see 

Appendix 8.1.1., 8.1.2. & 8.1.3.) 

 

  
  

  
Figure 4.40. Transmission electron micrographs of E. coli CLD048 fed-batch 
stirred-tank fermentation 2 in Figure 4.35. Cells were induced at OD600nm ≈ 20 
using 0.1 mM IPTG. Clockwise from top left: 7.25; 9.5, 11.5 and 12.5 hours. 
Analysis was performed on samples from a single fermentation. Data from 
equivalent control experiments can be found in Appendix (8.1. & 8.2.) 
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As the fermentation proceeds, the same difficulty in resolving the periplasmic 

space becomes apparent although, as with the first fed-batch method, this 

seems to have had little impact on the ability of the cell to maintain its 

cytoplasmic membrane potential in this instance. 

 

Figure 4.40. also shows the presence of “ghost” cells, cells which have 

become emptied of their contents with retention of the cytoplasmic 

membrane and structure (Lubitz et al., 1999; Reis et al., 2005), unseen with 

this organism in the prior fermentations. This appearance might be a 

function of the low statistical resolution of electron microscopy as a 

technique, mentioned previously. If this culture is indeed the only one of the 

three fermentation methods followed so far to actually contain ghost cells, 

then it’s likely that these were not present in the other fed-batch due to the 

weaker induction. The cellular breakdown may be too rapid in the batch 

culture for ghost cells to exist in any more than a transient state making 

them almost impossible to detect. 

 

4.5.1. Conclusions 

 

Feeding the cells along with inducing agent of similar concentration to the 

batch method provides protection to the cells against widespread disruption. 

Volumetric productivity of Fab for this method is the lowest so far, however, 

specific productivity is higher here than in the previous fed-batch. At one of 

the time points (9.5 h) the whole of the measured Fab concentration (35 
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mg.L-1) is located within the extracellular medium, a higher extracytoplasmic 

titre than has been achieved in either of the two other methods. This fed-

batch method was the first instance where ghost cells were detected in 

culture following induction. These cells, emptied of their contents but 

maintaining the cellular structure, are dead cells which exhibit no PI 

fluorescence due to the lack of a genome. They have only been identified in a 

single TEM image, and maybe be a result of the low statistical resolution of 

the technique, because they would probably have been detected by flow 

cytometry (by a change in the side scatter) before this point.  
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4.6. E. coli CLD048 Fed-Batch 3 Stirred-Tank Reactor Fermentation 

 

This fed-batch method was discovered serendipitously, on attempting to 

repeat the second fed-batch protocol (Figure 4.35.). A very slight, relative, 

difference in induction/feeding time between the two runs caused a very 

large impact on the behaviour of the cells, with a much more “batch-like” 

rapid decline in OD600nm.  

 

Figure 4.41. illustrates the difference in induction/feeding times between fed-

batch 2 and 3 with the relative difference (i.e. the separation of the distinct 

characteristic points on their respective curves) being approximately 6 

minutes.  
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Figure 4.41. DO of a single run each of fed-batch 2 and 3, with the arrows 
indicating the addition of 0.1 mM IPTG and feeding of glycerol feedstock. Each 
curve is representative of 2 separate experiments, with the DO measurements 
taken online, every minute. 

 

This unusual double-peak that occurs as the DO drops from its initial value 

of 100 % is seen consistently across all of the cultures performed where 

online DO measurement was performed and action taken on it (Figures 4.23. 

and 4.30.). This fluctuation in the ability of the culture to remove oxygen 

from the environment has been discussed in the previous chapters as likely 

due to a change in the metabolism of the cells, brought about by transition to 

dependence on a new metabolite.  
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As displayed previously, for the other fed-batch methods used in this thesis, 

Figure 4.38. shows the variation of dissolved oxygen for the cultures utilising 

this method. Due to issues of scale, it is not possible to identify the difference 

in the feed/induction time points, hence why an example has been expanded 

to form Figure 4.37. The DO plots for the induced GMO fermentation, both 

cases, show a sudden rise in dissolved oxygen after 2-2.5 h of plateau. This 

was caused by a large quantity of foam formation during the culture, which 

was counteracted by a bolus of polypropylene glycol antifoam (1 mL) in order 

to continue the culture. 
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Figure 4.42. Top: Plot of the dissolved oxygen measured in the third fed-batch 
fermentation protocol. Bottom Left-Right: Plots showing close-up views of the 
point of feeding for E. coli CLD048 induced and and uninduced and E. coli W3110 
induced, respectively. Arrows indicate the point of feeding, and induction where 
applicable, for each fermentation 

 

Figure 4.43. illustrates the significance of the relative difference in 

feeding/induction points for fed-batch 3, compared with both uninduced 

GMO and induced wild type fermentations. This shows that the combination 
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of the metabolic switch that is presumed to be occurring at this point, and 

the powerful derepression of the recombinant gene causes a much more 

“batch-like” profile, in terms of optical density achieved and length of 

process. 

 

What is apparent, more obviously from the lower plot in Figure 4.43., is the 

plateau in optical density after induction. Where the equivalent batch 

fermentation peaked and fell into a steep decline between 1 and 2 h after 

induction it seems as though this fed-batch method does not. The spacing of 

the samples (2 h separation) means that this may not be a real effect, where 

the middle hour of the plateaux could, in fact be a peak. However, this would 

still mean that the cultures continued to increase turbidity for at least 1.5 h 

post-induction; an improvement on the batch fermentation. It is likely that 

this improvement is a result in the addition of the feedstock at the early part 

of the DO fluctuation, where the cells have not undergone the metabolic 

changes hypothesised earlier.  
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Figure 4.43. E. coli fed-batch stirred-tank fermentation 3. All points plotted are 
mean values from replicate analyses. The error bars show the standard deviation. 
Induction using 0.1 mM IPTG, and concurrent feeding was carried out at the 
points indicated by the droplines on the top plot. 

 

The effect of this altered induction regime can be seen in Figure 4.44. where 

the induced GMO is compared with the uninduced equivalent fermentation 

(where only the feed was added to the fermenter). As in the previous cultures, 
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the non-induced GMO fermentation exhibited very little Fab production 

peaking at approximately 5.5 mg.L-1. Due to the maintenance of optical 

density at, or near to, peak values, this translates to a very small specific 

productivity (less than 0.1 mg.L-1.OD600nm-1). 

 

In comparison, the induced E. coli CLD048 outstrips the productivity of all 

previous fermentations so far in this thesis with a peak productivity of  

105 mg.L-1. More importantly, when considering a holistic perspective is that 

most of that Fab was located in the periplasm; the originally intended target 

for subcellular location. In addition, this high level of Fab production 

preceded the reduction in optical density, indicating that the protein 

production and cellular breakdown can be temporally distinct, although not 

significantly, giving a small window in which the cells might be harvested 

and the product recovered prior to the release of contaminating intracellular 

materials. 
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Figure 4.44. Fed-batch fermentation 3 of E. coli CLD048 (top; uninduced, 
bottom; induced). The dashed lines indicate the point where feeding was 
initiated (and 0.1 mM IPTG added: bottom), in response to a change in 
dissolved oxygen (Figure 4.42.). 

 

The correlation between OD600nm and DCW is shown in Figure 4.45. and 

displays the excellent linear fit for the control experiments, as demonstrated 
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earlier (Figures 4.22, 4.30 & 4.37.). The same cannot be said for the induced 

GMO fermentation, whilst still displaying a coefficient greater than 0.90, 

showing a much less robust relationship. This is an improvement on the 

batch fermentation r2 value, indeed, the reason for this drop can likely be 

attributed to the outlier on Figure 4.45. (DCW ≈ 15; OD600nm ≈ 12), with the 

rest of the points clustered around the fitted curve.  
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Figure 4.45. E. coli CLD048 fed-batch stirred-tank fermentation 3 in Figure 
4.42. All points plotted are mean values from replicate analyses. The error bars 
show the standard deviation. Induction and feeding were carried out at OD600nm 
≈ 20 with 0.1 mM IPTG and glycerol feedstock. Correlation coefficients apply 
to the closest curve to each one. 

 

Following the peak specific growth rate (Figure 4.46.), the descent observed 

for the third fed-batch fermentation is less steep than the batch process but 

a steadier decline than the other fed-batch methods. The first and second 

fed-batch processes follow a “first-order” logarithmic fall in µ, which results 

in a faster decline whose rate falls as it approaches zero. This difference 
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results from the entry into stationary phase experienced by the other 

cultures, whereas the third fed-batch is marked by a steep decline in OD600nm 

after induction. 
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Figure 4.46. E. coli fed-batch stirred-tank fermentation 3 in Figure 4.42. The 
data plotted are calculated from the mean DCW. Induction and feeding were 
carried out by addition of 0.1 mM IPTG and glycerol feedstock at an OD600nm ≈ 
20. CLD048 induced at dashed line; W3110 induced at dotted line. 

 

Figure 4.46. displays the flow cytometry data for this third fed-batch method 

with distinct similarities with the batch process, ending with significant 

green and red fluorescence. As with the batch fermentation, the point of 

maximum productivity doesn’t actually coincide with the point of maximum 

stress as measured by this method. Instead, the highest proportion of green 
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and red cells, relative to the non-fluorescent, healthy, population is highest 

at the point where cell breakdown is the greatest, at the end of the cultures.  

 

  

  

  
Figure 4.47. Flow cytometric analysis of E. coli CLD048 fed-batch stirred-tank 
fermentation 3 in Figure 4.42. stained with PI & DiBAC4(3). Cells were induced 
at OD600nm ≈ 20 using 0.1 mM IPTG. Data gathered from: 6; 8 and 10 hours with 
fermentation 1 on the left and 2 on the right. Data from equivalent control 
experiments can be found in Appendix (8.1. & 8.2.) 
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The electron microscopy of fed-batch 3 shows two major differences with the 

majority of the other cultures. First, the ghost cells appear much earlier in 

this culture than detected in the prior fed-batch (Figure 4.40.). Second, at 

the culmination of the experiment, there were far more ghost cells present 

than were found at any stage in the other three stirred-tank reactor 

protocols. 

 

  
  

  
Figure 4.48. Transmission electron micrographs of E. coli fed-batch stirred-tank  
fermentation 3 in Figure 4.42. Cells were induced at OD600nm ≈ 20 using 0.1 mM 
IPTG. Clockwise from top left: 5, 7; 8 and 10 hours. Analysis was performed on 
samples from a single fermentation. Data from equivalent control experiments can 
be found in Appendix (8.1. & 8.2.) 

 

The appearance of these cells might be a result of the statistical resolution of 

the technique, mentioned earlier, where they may have been present in the 

cultures for which they were undetected but too few cells were analysed to 
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provide a fully representative sample. However, the limitation on growth 

observed in this culture is greater than in any of the previous experiments 

also, therefore the abundance of ghost cells in this case might be caused by 

this alternative method. If this increase in ghost cells is not an artefact, or 

result of the sampling errors mentioned prior, this would have a significant 

impact on the downstream purification of the Fab. An abundance of ghost 

cells would entail large quantites of host cell protein and host cell DNA being 

released into the liquid medium, increasing the challenges associated with 

purification.  

 

4.6.1. Conclusions 

 

This third fed-batch produced the greatest peak Fab yield of any of the fed-

batch processes, 105 mg.L-1. This protocol was also successful in achieving 

far higher periplasmic expression than any of the other methods, more than 

50 mg.L-1 of Fab being present in the periplasm at peak productivity. Whilst 

the same total cell breakdown was observed, in common with the batch 

method, this was significantly asynchronous with the cellular breakdown, 

suggesting that there may be scope for this to be avoided by alternative 

processing. 

The large difference in the number of detected ghost cells during this culture, 

suggests that the contamination of the process fluid with host cell molecules 

has become a significant factor. It does seem like this is even more likely to 

be an artefact, given that the first appearance of ghost cells is apparent in a 

culture which appears healthy by all other measurements.  
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5. Conclusions 

 

Even at small-scale, the assumption of a truly homogeneous culture is 

optimistic at best. PI/DiBAC4(3) can be used with Gram positive cells, such 

as B. cereus, to monitor cell viability, however there are flaws in the 

technique which lead to difficulties in interpretation of the data. PI/DiOC6(3) 

gives a much clearer resolution of the populations of cells present within a 

“homogeneous environment” and has shown the presence of a fourth 

population consisting of cellular couplets of a single live and dead cell joined 

along the longitudinal axis. PI/RedoxSensor Green™ can be utilised as an 

alternative/adjunct to PI/DiOC6(3) but care must be taken with length of 

exposure of the cells. Flow cytometry can be used in conjunction with 

PI/DiBAC4(3) to reliably detect the effect of recombinant protein production 

in Escherichia coli. The expression of the Fab fragment inhibits cell growth, 

as compared with uninduced control samples, and, additionally, causes cell 

lysis later in the fermentation. This lysis is undesirable from a process 

perspective, and is one of the conditions which this method was employed to 

avoid. Relatively little recombinant protein is actually produced in this 

example, less than 7 mg.L-1 (and most of that associated with the cells rather 

than free in the periplasmic space). DiOC6(3) is unsuitable as a dye for use 

with E. coli. Whilst it appears able to demonstrate the presence of 

homogeneous, viable cultures, the lack of resolution of different populations 

in heterogeneous cultures produces inconsistent results. There is 

considerable evidence that the repression system used in this organism is 

“leaky” with the induced culture producing 27 mg.L-1 compared with 18 
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mg.L-1 for the uninduced culture. The increased Fab expression is associated 

with a sudden and rapid decline in both total and viable cell number, moreso 

than shown in shake-flasks. Despite the expression system being designed 

for periplasmic expression, there is no preference for this compartment in 

terms of accumulation of conformationally active Fab (as would be 

demonstrated by increased Fab concentrations in OS1). In fact, During the 

decline phase of the culture the quantity associated with the insoluble 

fraction is dominant comprising 30-40 % of the total. The leakiness, 

combined with the increasing proportion of Fab present in cellular 

compartments other than the periplasm show that this system, at least in 

batch mode, is poorly optimised for the intended purpose. A simple feeding 

strategy using a high-glycerol feedstock can achieve significant increases in 

culture turbidity over the batch process. 1.4 mg.L-1gDCW-1 recombinant Fab 

can be expressed during the fed-batch process, which, whilst less than 

achieved in batch mode (3.5 mg.L-1.gDCW-1), is attained without the associated 

decline in the culture. There is no apparent partitioning of the product into 

the periplasmic space (as would be indicated by more of the Fab being 

present in OS1 following osmotic shock). This fed-batch process is a viable 

method for production of this Fab, without the associated breakdown in cell 

integrity observed in the batch process. Employment of a method of this type 

would decrease the load on subsequent downstream purification, but the low 

titres observed here indicate that there is considerable room for optimisation. 

Feeding the cells along with inducing agent of similar concentration to the 

batch method provides protection to the cells against widespread disruption. 

Volumetric productivity of Fab for this method is the lowest so far, however, 
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specific productivity is higher here than in the previous fed-batch. At one of 

the time points (9.5 h) the whole of the measured Fab concentration (35 

mg.L-1) is located within the extracellular medium, a higher extracytoplasmic 

titre than has been achieved in either of the two other methods. This third 

fed-batch produced the greatest peak Fab yield of any of the fed-batch 

processes, 105 mg.L-1. This protocol was also successful in achieving far 

higher periplasmic expression than any of the other methods, more than 50 

mg.L-1 of Fab being present in the periplasm at peak productivity. Whilst the 

same total cell breakdown was observed, in common with the batch method, 

this was significantly unsynchronised with the cellular breakdown, 

suggesting that there may be scope for this to be avoided by alternative 

processing. 
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6. Further work 

 

The most widespread method for the manufacture of low-volume high-value 

products usually begins with a fermentation phase, optimised in isolation to 

maximise product formation. In an environment where 80 % of the total 

operating cost of the final bioprocess is estimated to be accounted for by the 

downstream purification, there is an ever-increasing need to formulate a 

holistic optimisation approach whereby the impact of the output from the 

production phase is more fully accounted for. The aim of the work in this 

project was to begin this process, by attempting to express a protein product 

to the periplasm, thereby making it more easily recoverable during 

downstream purification. The challenge when exploiting this route of 

manufacture is to create sufficient quantities of product whilst preserving the 

integrity of the cells, as demonstrated in the batch cultures (shake-flask and 

stirred-tank) displayed in Chapter 4: Results & Discussion. 

 

There is a wealth of available methods that can be used to make changes to 

this process beyond the simple alterations of induction conditions 

investigated here. One widely used method is the use of a defined medium 

(García-Arrazola et al., 2005; Hewitt et al., 2007; Bäcklund et al., 2008), from 

which the effect of changes to the process can be more precisely measured in 

the absence of complex, undefined media components. Moreover, the 

variability in the growth rates and final achievable biomass should also 

become more consistent than in this case where, whilst general trends were 

replicable, the exact values varied in both value and timescale. There is also 
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strong evidence that control of the specific growth rate at low values (less 

than 0.3 h-1) can have beneficial effects on the recombinant protein 

production, even in glycerol-fed cultures, where acetate accumulation is not 

a primary concern (García-Arrazola et al., 2005). A variety of molecular 

methods have been employed to improve productivity such as altering the 

protease profile of the cell (Chen et al., 2004), altering codon usage in the 

expressed product (Angov et al., 2008) or adjusting the amino acid content of 

the primary sequence to more closely reflect the tRNA pool of the host 

(Bonomo and Gill, 2005).  

 

A variety of strategies are available to accomplish expression of a 

recombinant protein via the lac operon, with inducer concentration and time 

of addition being the most obvious. The most commonly used gratuitous 

inducer, IPTG, was used in this work however, this chemical is not ideal for 

use at large scales due to toxicity problems associated with disposal and 

exposure of operating personnel (Makrides, 1996). The absolute 

concentration here (0.1 mM) was not changed because some research has 

shown that concentrations in this range are most often conducive to 

periplasmic expression of recombinant products in Escherichia coli (Shibui 

and Nagahari, 1992). Additional studies have investigated the use of lactose, 

both as a carbon source for a fed-batch method, as well as a tool to induce 

the lac operon (García-Arrazola et al., 2005) demonstrating a viable 

alternative to use of IPTG. In addition to modification of the induction 

conditions, it has also been shown that lowering the temperature of the 
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reactor following addition of the inducer can also improve the quality and 

quantity of manufactured product (Marx et al., 2007; Ruiz et al., 2009).  

 

The basic analysis methods, which have a long history of use with 

microorganisms, such as optical densitometry and dry cell weight analysis 

yielded an acceptable overview of the cultures. The flow cytometric dying 

protocols employed were limited, using only 4 dyes in total, with only two for 

E. coli. The number of dyes available for use with bacteria is relatively 

limited, with flow cytometry mainly associated with analysis of mammalian 

cells. It would, therefore, be prudent to extend the range of dyes used to 

encompass others which have been used successfully with bacteria, such as 

carboxyfluorescein diacetate succinimidyl ester, for the measurement of 

intracellular pH (Hoefel et al., 2003) or alternative redox dyes e.g. cyano-2,3-

ditolyl tetrazolium chloride (CTC) (Fiksdal and Tryland, 1999). During the 

course of this research, there were no cell counts performed due to the 

labour-intensity of the process, and in consideration of the volume of other 

analyses that were also being utilised.  

 

HPLC analysis was performed for quantification of organic acids and glycerol 

in the E. coli fermentations, however, the data was inconsistent at best and 

not reliable enough to draw useful conclusions. This method has been used 

for analysis of bacterial cultures (Ruiz et al., 2009) previously, so it is likely 

that the system and method in use at Birmingham needs optimisation. A 

more robust, but also more limited, method for metabolic analysis is 

provided by bioanalysers, which utilise a combination of enzyme-based 
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assays and ion selective electrodes, so this might be a further option 

although the cost of these items is significant (minimum £14,000 at time of 

writing). 

 

Analysis of product formation by ELISA was used as a benchmark, with 

insufficient quantities of protein produced to be detectable by routine SDS-

PAGE. Further information regarding the levels of production detectable by 

ELISA (as mentioned earlier, ELISA can only detect functional antibody 

fragments, able to bind to their antigen) could be gained by using size 

exclusion chromatography. This method would not give the same, functional, 

data gained from the ELISA (the ELISA could still be employed in tandem) 

however, it would detect antibody fragment fragments or dimers and other 

multimers. RT-PCR of the cell lysate, following RNA isolation, can show the 

levels of transcription to assess the strength of induction from the promoter. 

  

Given this plethora of possible opportunities, this work could best be 

furthered by utilisation of lactose in the feed, combined with a control of 

oxygen by agitation speed around a set point between 30 and 50 %. This 

would enable better control of the specific growth rate both before induction 

and during the fed phase also. RT-PCR and a more robust HPLC method 

could also add significant knowledge regarding the pre-translation 

productivity from the recombinant gene and a more comprehensive metabolic 

profile than the use of inference based on indirect measurements such as the 

DO. The process-based changes are much more easily implanted than the 

more fundamental molecular alterations listed above, which would be more 
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suitable at the beginning of the project or if the organism itself was deemed 

to be irretrievably insufficient for the required purposes after extensive 

attempts at process optimisation. 
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8. Appendix  

 

8.1. Uninduced E. coli CLD048 Culture 

 

8.1.1. Batch: Flow Cytometry and TEM data 
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Figure 8.1. Flow cytometric analysis of E. coli CLD048 uninduced, batch 
stirred-tank fermentation in Figure 4.21. stained with PI & DiBAC4(3). 
Quadrants show plots from two different fermentations, clockwise from top 
left: 4; 6.5; 9.5 and 10.5 hours.  
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Figure 8.2. Transmission Electron Micrographs of E. coli CLD048 batch 
stirred-tank fermentation in Figure 4.21. Cells were induced at OD600nm ≈ 20 
using 0.1 mM IPTG. Clockwise from top left: 6; 8, 9 and 10 hours. Analysis was 
performed on a single fermentation, which was similar to the others performed 
in the other measured characteristics. 
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8.1.2. Early Fed-Batch: Flow Cytometry and TEM Data 

 

  

  
  

  

  
Figure 8.3. Flow cytometric analysis of E. coli CLD048 uninduced, fed-batch 
stirred-tank fermentation in Figure 4.29. stained with PI & DiBAC4(3). 
Clockwise from top left: 6; 10; 14 and 18 hours. Each quadrant shows 
equivalent data from two different fermentations 
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Figure 8.4. Transmission electron micrographs of E. coli CLD048 fed-batch 
stirred-tank fermentation in Figure 4.29. Clockwise from top left: 6; 10, 14 
and 18 hours. Analysis was performed on samples from a single fermentation. 
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8.1.3. Late Fed-Batch: Flow Cytometry and TEM Data 

 

  

  
  

  

  
Figure 8.5. Flow cytometric analysis of E. coli fed-batch stirred-tank 
fermentation in Figure 4.29. stained with PI & DiBAC4(3). Clockwise from top 
left: 6; 10; 14 and 18 hours. Each quadrant shows equivalent data from two 
fermentations. 
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Figure 8.6. Transmission electron micrographs of E. coli fed-batch stirred-tank  
fermentation in Figure 4.29. Clockwise from top left: 6; 10, 14 and 18 hours. 
Analysis was performed on samples from a single fermentation.  
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8.2. Induced E. coli W3110 Stirred-Tank Reactor Culture 

 

8.2.1. Batch: Flow Cytometry Data 

 

  
  

  
Figure 8.7. Flow cytometric analysis of E. coli batch stirred-tank fermentation in 
Figure 4.21. stained with PI & DiBAC4(3). Cells were induced at OD600nm ≈ 20 
using 0.1 mM IPTG. Data shows cells analysed at 7 and 10 hours.  
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8.2.2. Fed-Batch 1: Flow Cytometry Data 

 

  

  
  

  

  
Figure 8.8. Flow cytometric analysis of E. coli fed-batch stirred-tank 
fermentation 1 in Figure 4.29. stained with PI & DiBAC4(3). Cells were induced 
at OD600nm ≈ 50 using 0.1 mM IPTG. Each quadrant shows equivalent data from 
two fermentations; clockwise from top left: 6; 10; 12 and 14 hours.. 
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8.2.3. Fed-Batch 2: Flow Cytometry Data 

 

  

  
  

  

  
Figure 8.9. Flow cytometric analysis of E. coli fed-batch stirred-tank 
fermentation in Figure 4.35. stained with PI & DiBAC4(3). Cells were induced at 
OD600nm ≈ 20 using 0.1 mM IPTG. Each quadrant shows equivalent data from 
two fermentations; clockwise from top left: 7; 9; 13 and 17 hours.  
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8.2.4. Fed-Batch 3: Flow Cytometry Data 

 

  

  
  

  

  
Figure 8.10. Flow cytometric analysis of E. coli W3110 fed-batch stirred-tank 
fermentation in Figure 4.43. stained with PI & DiBAC4(3). Cells were induced at 
OD600nm ≈ 20 using 0.1 mM IPTG. Each quadrant shows equivalent data from 
two fermentations; clockwise from top left: 7; 9; 13 and 15 hours.  
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8.3. Publication 

8.3.1. Conferences 

8.3.1.1. Poster 

 

Society for General Microbiology 158th Meeting: Warwick University, 
UK; 3-6th April 2006. 

 
Individuals behave differently – multi-parameter flow 
cytometry for monitoring Bacillus cereus batch fermentation 
processes 
 
Microbiology is important to both human health and industry, therefore 
many methods have been developed to count microorganisms in the process 
environment. Accurate measurements relating to cell proliferation and 
viability are essential if informed decisions about a process are to be made, 
since process performance will depend largely upon cell number and 
individual cell 
physiological state. The development of multi-parameter flow cytometric 
techniques in our laboratories has led to a functional classification of the 
physiological state of single celled microorganisms. This classification is 
based on the presence or absence of an intact fully polarized cytoplasmic 
membrane and the transport systems across it. Using these techniques it is 
possible to resolve a cell’s physiological state, beyond culturability to include 
metabolic 
activity enabling assessment of population heterogeneity. Importantly results 
are available in real-time, 1-2 minutes after a sample is taken enabling 
informed decisions to be taken about a process. 
 
http://www.sgm.ac.uk/meetings/pdfabstracts/warwick2006abs.pdf 
Accessed: 7th July 2010 
 
Society for General Microbiology Spring Meeting: Edinburgh, UK. 31st 
March-3rd April. 
 
Analysis of recombinant protein production in Escherichia coli and its effects 
on the organism, during batch and fed-batch fermentation 
 
Due to the overwhelming body of knowledge surrounding E. coli, it is a 
natural choice for use as a vector for the manufacture of recombinant 
biological products. The aim of this work was to attempt to improve the fate 
of the micro-organisms and gain some measure of control over the 
breakdown of said organisms by adjusting fermentation parameters or other 
extraneous factors. We have utilized flow cytometry alongside more 
traditional techniques, to better understand the effect of protein 
overexpression on the E. coli cell using differing modes of operation and 
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inducer concentration. We have seen that the effort expended in directing the 
product in question to the periplasm has been misspent, with widespread cell 
fragmentation and product aggregation resulting from induction of protein 
expression. 
 
http://www.sgm.ac.uk/meetings/pdfabstracts/edinburgh2008abs.pdf 
Accessed 7th July 2010  
 

8.3.1.2. Oral 
 
European Symposium on Biochemical Engineering Science 6th Meeting: 
Salzburg, Austria; 27-30th August 2006  

 
Individuals behave differently - multi-parameter flow cytometry for 
monitoring bacterial batch fermentation processes. 
 
 
Microbiology is important to both human health and industry, therefore 
many methods have been developed to count micro-organisms in the process 
environment. Accurate measurements relating to cell proliferation and 
viability are essential if informed decisions about a process are to be made, 
since process performance will depend largely upon cell number and 
individual cell physiological state. The advantages of using cytometric 
techniques over the more traditional microbiological analyses are well-
documented and the development of multi-parameter flow cytometric 
techniques in laboratories around the world has led to the functional 
classification of the physiological state of single-celled micro-organisms. This 
classification is often based on either 1) the presence or absence of an intact, 
fully polarised cytoplasmic membrane and the transport systems across it or 
2) energy dependent/independent intracellular enzyme activities. Using all of 
these techniques it is possible to resolve an individual microbial cell’s 
physiological state, beyond culturability (the latter usually based on the 
measurement of number of c.f.u./mL) to include metabolic activity enabling 
assessment of population heterogeneity and dynamics. In this work we 
compare three well-known flow cytometric techniques for measuring cell 
physiological state, namely PI/DiBAC4(3), PI/DiOC6(3) and the RedoxSensor 
Green™ kit (Molecular Probes/Invitrogen) on batch cultures of Bacillus 
cereus, Bacillus Licheniformis and Escherichia coli. All three methods were 
found to work well with comparable results but the RedoxSensor Green™ kit 
(Molecular Probes/Invitrogen) may have advantages when endospores as well 
as vegetative cells are present in a culture. 
 
http://www.esbesweb.org/esbesweb_media/Downloads/ESBES+6+Salzburg
/esbes_final_programme.pdf 
Accessed: 7th July 2010 
 
Analysis of microbial cells at the single cell level 3rd Meeting: Bad 
Schandau, Germany. 22-25th May 2008 
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Measuring the Effect of Recombinant Antibody Fragment (Fab) Production in 
Escherichia coli at the Single-Cell Level Using Multiparameter Flow Cytometry 
 
Despite a long history of successful exploitation of the E. coli cell for mass 
production of medicines, there is still much more information that can be 
gathered. In this study, we have been able to identify and follow cellular 
changes during batch and fed-batch manufacture of Fab fragments. We have 
observed that onset of induction during batch culture has had an immediate 
and deleterious effect on the ability of the cells to grow and reproduce. Flow 
cytometric analysis using DiOC6(3), a carbocyanine and DiBAC4(3), an oxanol 
dye both in conjunction with propidium iodide, has shown us that this 
negative effect can be monitored at the single-cell level giving us at-line 
information regarding the level of metabolic stress being exacted on the cell 
by the process conditions. Subsequent analysis has also shown that the cells 
have also been unable to manufacture significant quantities of the desired 
product in batch culture. Analysis of fed-batch cultures has shown that the 
cells have produced significant quantities of Fab enabled by their ability to 
withstand the demands placed on them by the process with the flow 
cytometry indicating a slower transition from a healthy state to that of a 
metabolically compromised organism. 
 
http://www.organobalance.de/EFB/ 
Accessed: 7th July 2010 
 
Society for General Microbiology Spring Meeting: Edinburgh, UK. 31st 
March-3rd April. 
 
Analysis of recombinant protein production in Escherichia coli and its effects 
on the organism, during batch and fed-batch fermentation 
 
Due to the overwhelming body of knowledge surrounding E. coli, it is a 
natural choice for use as a vector for the manufacture of recombinant 
biological products. The aim of this work was to attempt to improve the fate 
of the micro-organisms and gain some measure of control over the 
breakdown of said organisms by adjusting fermentation parameters or other 
extraneous factors. We have utilized flow cytometry alongside more 
traditional techniques, to better 
understand the effect of protein overexpression on the E. coli cell using 
differing modes of operation and inducer concentration. We have seen that 
the effort expended in directing the product in question to the periplasm has 
been misspent, with widespread cell fragmentation and product aggregation 
resulting from induction of protein expression. 
 
http://www.sgm.ac.uk/meetings/pdfabstracts/edinburgh2008abs.pdf 
Accessed 7th July 2010 – Note; this material was presented in both oral and 
poster form, due to a last moment replacement of a speaker who failed to 
attend the conference. As a result, this abstract is not mentioned in the oral 
presentation section of the conference details linked above. 
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European Symposium on Biochemical Engineering Science 7th Meeting: 
Faro, Portugal. 7-10th September 2008 
 
Flow cytometric analysis of recombinant antibody fragment production in 
Escherichia coli under Batch and Fed-Batch cultures 
 
Micro-organisms are in widespread use throughout the biopharmaceutical 
industry. It is their rapid growth, and simple, robust physiology that makes 
them the ideal microscopic “factories” for the manufacture of complex 
biological medicines. In this study our research concerns the production of a 
recombinant antibody fragment (Fab), targeted to the periplasm, in E. coli. 
Flow cytometry was used to gain a more complete understanding of the 
effects of cultivation and Fab production on the cells and their population 
heterogeneity within the bioreactor. Production was performed in both batch 
and fed-batch modes of operation, to examine the effect of different, 
industrially-significant processes on cell vitality. During batch manufacture 
of Fab, significant stress effects were observed on the cells following addition 
of the inducing agent which were not due to a toxic effect of the inducer, and 
the level of Fab expression (measured by ELISA and SDS-PAGE) was very 
low. In contrast, much higher Fab expression and longer cell survival post 
induction was observed in fed-batch operation mode. Taken collectively these 
findings imply that together protein production and depletion of resources 
combine to exhibit a strongly deleterious effect on E. coli cell physiology. 
When the cells are supplied with additional nutrients, they can survive much 
longer, consequently giving rise to increased yields of target protein. 
 
http://www.esbesweb.org/esbesweb_media/Downloads/ESBES_7__Faro-p-
90/Programm_ESBES_2008.pdf 
Accessed: 7th July 2010. 
 
Society for General Microbiology Autumn Meeting: Trinity College, 
Dublin, Ireland. 8-11th September 2008 

 
Analysis of recombinant protein production in Escherichia coli and its effects 
on the organism, during batch and fed-batch fermentation 
 
Due to the overwhelming body of knowledge surrounding E. coli, it is a 
natural choice for use as a vector for the manufacture of recombinant 
biological products. The aim of this work was to attempt to improve the fate 
of the micro-organisms and gain some measure of control over the 
breakdown of said organisms by adjusting fermentation parameters or other 
extraneous factors. We have utilized flow cytometry alongside more 
traditional techniques, to better 
understand the effect of protein overexpression on the E. coli cell using 
differing modes of operation and inducer concentration. We have seen that 
the effort expended in directing the product in question to the periplasm has 
been misspent, with widespread cell fragmentation and product aggregation 
resulting from induction of protein expression. 
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Accessed 7th July 2010 
Note; this abstract is the same content as that presented at the SGM 
conference in Edinburgh. As a result of that poster presentation, I was 
invited to give a presentation at the Dublin meeting as a contestant in the 
Young Microbiologist of the Year Award. 
 

8.3.2. Peer-Reviewed Literature 

 

Following this page are copies of one publication in the journal Cytometry 

Part A, as well as a manuscript in the final stages of preparation for 

submission to the Journal of Microbiological Methods. 


