
TRUSTWORTHY PEER-TO-PEER

INFRASTRUCTURE

USING HARDWARE BASED SECURITY

by

TIEN TUAN ANH DINH

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science

College of Engineering and Physical Sciences
The University of Birmingham

September 2010

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties.
The intellectual property rights of the author or third parties in respect of this work
are as defined by The Copyright Designs and Patents Act 1988 or as modified by
any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission of
the copyright holder.

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And to know the place for the first time

T.S Elliot – Little gidding

If I have been able to see further, it was only because I

stood on the shoulders of giants

Isaac Newton

Science is what we understand well enough to explain to a

computer. Art is everything else we do

Donald Knuth

The important thing in science is not so much to obtain

new facts as to discover new ways of thinking about them

Kevin Ryan, James M. Cooper

Abstract

Peer-to-Peer (P2P) infrastructure, thanks to its scalability, has been used for designing

many large-scale distributed systems. Of the two types of P2P infrastructure: unstruc-

tured and structured, the latter has received a greater amount of research attention.

Security is one of many challenging problems faced by existing systems based on struc-

tured P2P. Having trust in such the P2P environments can help mitigate many problems

including security, because peers can choose to only interact with the ones that are deemed

trustworthy. However, there exists numerous hurdles that need to be overcome before a

reliable trust infrastructure (or trust system) can be implemented for P2P. This thesis

investigates and seeks to improve the existing reputation metrics and feedback mecha-

nisms which are important components of the trust system. It shows the limitations of

existing reputations metrics and feedback mechanisms, then proposes new algorithms and

protocols addressing these limitations. The new reputation metrics are more resilient to

manipulations, and they take into account negative feedback. The new protocols are de-

signed as parts of the feedback mechanisms, and they allow an honest peer in a structured

P2P system to securely detect if another peer has misbehaved. The mechanism for de-

tecting misbehavior has proved difficult in structured P2P, and has not been considered

by existing feedback mechanisms.

The new protocols leverage hardware-based security which is in the form of trusted de-

vices. Some protocols utilize the Trusted Platform Modules which are currently available

at high-ends computers. The others make use of the newly proposed trusted hardware

called Trusted Token Modules.

The protocols concerning the detection of misbehavior in structured P2P routing are

analyzed in this thesis using both formal methods and simulations. CSP is used to model

and verify the properties of these protocols. The performance of these protocols is then

evaluated using the newly proposed, distributed simulation platform called dPeerSim.

ACKNOWLEDGEMENTS

With greatest gratitude, I would like to dedicate this thesis to my family: my grandpar-

ents, my parents and my little sister. I thank my family for having brought me into this

world and provided me with the nurturing environment that I am very lucky to have. I

thank them for their unconditional love and support, without which I would not have had

the necessary foundation and strength to pursue my dreams.

I am indebted to my supervisor, Professor Mark Ryan, who has served not only as

a mentor to me, but also as a real life role model that I want to see myself become in

the future. I am particularly grateful for his persistent encouragement, his incredible

attention to details, and his perseverance in understanding and contributing to my thesis.

One of the biggest lessons I have learned from working with Mark is the need to express

ideas in the simplest, clearest but also most exact form. I always admire him for being

considerate, and for the way he treats his students as peers. But above all, his charisma,

his positive outlook on life, his kindness and his sense of humor are so infectious that I

feel myself becoming a better person just by working with him.

I am sincerely grateful to my second supervisor, Dr Georgios Theodoropoulos. While

working with Mark has taught me to be meticulous in research, the greatest skills I

have learned from Georgios are how to take a step back, to look at the big picture, and to

evaluate your work in context. I appreciate his conspicuous Greekness, his sense of humor,

and the way he instills confidence into his students. I thank Georgios for his guidance,

both technical and general, during the course of the thesis. I thank him for facilitating

a lively distributed system group which consists of extremely smart and friendly people

with whom I have had a number of successful collaborations.

Doing a PhD, as I have learned in almost four years, is not only about research,

but also about meeting new people and making good friends. As I see old friends from

undergraduate moved on with their jobs, I would have felt left out and sad if it was not

for all the new friends, new colleagues that I have had the pleasure to know. They truly

are exceptional characters that make my four-year PhD such a joyous experience. I would

like to thank Rob Minson, Michael Lees for their early guidance and involvements in my

first publication. Thanks also go to Tom Chothia and Rami Bahsoon for all the fruitful

discussions, and for their valuable advice on doing research. I am grateful to Vinoth

Suryanarayanan, Richard Price for their help in accessing the university cluster. I am

thankful to have known people like Edward Robinson, Seyyed Shad, Peter Lewis, who

always seem to have answers to all my technical, geeky problems. Last but not least, I

would like to thank other colleagues such as Josef Baker and Ben Smyth, who have got

me into running and kept on encouraging me with their great stories of achievements in

running.

CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.2 Scope and Contributions . 3

1.3 Structure of the Thesis . 6

1.4 List of Publications . 9

2 Background and Gap Analysis 12

2.1 Structured P2P and Its Applications . 12

2.1.1 Unstructured . 13

2.1.2 Structured . 15

2.1.3 Application of Structured P2P Overlays 21

2.2 Trust and Reputation . 23

2.2.1 Trust in computer security . 24

2.2.2 Trust based on Reputation . 24

2.2.3 Model of Reputation . 25

2.3 Setting the Scene (or Gap Analysis) . 26

2.3.1 Current Issues with Structured P2P 26

2.3.2 How Trust Could Help . 30

2.3.3 Reliable Trust System for P2P . 31

3 Reputation Metrics 37

3.1 Formal Computational Model of Reputation 37

3.1.1 System Model . 38

3.1.2 Trust Graph . 38

3.1.3 Reputation Metric . 39

3.2 Sybil-resilient Metric . 40

3.2.1 PageRank reputation metric . 41

3.2.2 Sybil Manipulation in the Original PageRank 42

3.2.3 PageRank with Undirected Trust Graph 44

3.2.4 Cluster-Based PageRank (CPR) . 46

3.2.5 Experimental Study of CPR . 48

3.2.6 Related Work and Discussion . 52

3.3 Support for Negative Feedback . 53

3.3.1 Negative Feedback is Different from Distrust 53

3.3.2 Why Negative Feedback? . 55

3.3.3 Reputation Metric with Negative Feedback 56

3.3.4 Experimental Study . 58

3.3.5 Related Work and Discussion . 62

4 Detection of Misbehavior in P2P Using Trusted Platform Modules 65

4.1 Overview . 65

4.2 Trusted Computing and Trusted Platform Modules 67

4.2.1 Trusted Computing and TPMs . 67

4.2.2 A Simple Protocol Involving Monotonic Counters and Transport

Sessions . 70

4.2.3 Why Not Attestation? . 71

4.3 Detection of Misbehavior at the Routing Layer (DTR1) 73

4.3.1 Root Authenticity (RA) Property of a P2P System 74

4.3.2 Proposed System . 77

4.4 Detection of Misbehavior at the Application Layer (DTA1) 80

4.4.1 System Model and Problem Description 82

4.4.2 Proposed System . 83

4.4.3 More Efficient Solutions . 85

4.5 Related Work and Discussion . 87

5 New Hardware for Detection of Misbehavior in P2P 89

5.1 Motivation . 89

5.2 Design Overview of TTM . 91

5.2.1 Logical Design . 92

5.2.2 Architectural Design . 94

5.3 Operations . 96

5.3.1 Creation and Removal of Tokens 96

5.3.2 Transferring Tokens . 98

5.3.3 Cryptographic Operations . 105

5.3.4 Other Operations. 108

5.4 Example With Access Control Systems . 109

5.4.1 Online Access Control. 109

5.4.2 Offline Access Control. 110

5.5 Detecting Misbehavior at the Routing Layer

(DTR2) . 112

5.6 Detecting Misbehavior at the Application Layer (DTA2) 114

5.7 Discussion . 117

6 Formal Analysis 121

6.1 Overview . 121

6.1.1 Formal Verification of RA Property 121

6.1.2 Why CSP? . 123

6.1.3 Methodology . 124

6.2 Introduction to CSP . 125

6.2.1 Syntax . 125

6.2.2 Trace semantics . 126

6.3 Data Independence Technique . 128

6.4 Verifying RA Property for DTR1 . 131

6.4.1 The DTR1 Model in CSP . 131

6.4.2 Specification . 138

6.4.3 Verification . 139

6.5 Verifying RA Property for DTR2 . 143

6.5.1 The Model in CSP . 143

6.5.2 Specification . 145

6.5.3 Verification . 146

6.6 Related Work and Discussion . 147

7 Experimental Analysis 149

7.1 Why Large-Scale Distributed Simulation of P2P? 150

7.1.1 Why Simulation of P2P? . 150

7.1.2 Why Large-Scale Distributed Simulation? 152

7.2 Distributed Simulation Platform (dPeerSim) for P2P Systems 152

7.2.1 Overview . 153

7.2.2 Design of dPeerSim . 154

7.2.3 Scalability of dPeerSim . 157

7.3 Simulation-Based Analysis of DTR1 and DTR2 161

7.3.1 Methodology . 161

7.3.2 Results and Analysis . 164

7.4 Related Work and Discussion . 169

8 Conclusion and Future Work 173

8.1 Contributions and Evaluation . 173

8.1.1 Summary of Contributions . 174

8.1.2 Implications of This Thesis . 176

8.2 Limitations and Future Work . 178

Appendix A: PageRank’s Resilience Against Sybil Manipulations 183

Appendix B: Root Authenticity and Neighbor Authenticity Property 187

Appendix C: CSP Trace Semantics 189

Appendix D: CSP Model for DTR1 191

Appendix E: FDR Implementation for DTR1 CSP Model 197

Appendix F: The Proof for DTR1 203

Appendix G: FDR Implementation for DTR2 CSP Model 209

Appendix H: The Proof for DTR2 213

List of References 219

Summary of Notations 226

Index 229

LIST OF FIGURES

2.1.1 Gnutella architecture . 14

2.1.2 Example of a Chord overlay. 16

2.1.3 Example of routing neighbors of a Pastry node. 18

2.2.1 The core relationships between reciprocity, reputation and trust. Ostrom

et al. [72] . 23

2.3.1 Abstraction levels of P2P applications. Adapted from [23] 28

2.3.2 Trust system . 31

3.2.1 Two Sybil strategies for manipulating PageRank. 42

3.2.2 Sybil effect on Web vs P2P graph . 45

3.2.3 Sybil resilience under a power-law graph with 7 Sybils per attacker 49

3.2.4 Sybil resilience under a small-world graph with 7 Sybils per attacker 50

3.2.5 Resilience against Sybil attacks, with varying number of Sybils per attacker.

The attacker’s initial rank is around 10, 000. 50

3.2.6 Minimum Kendall distance of top-T ranks produced by PageRank and by

CPR . 51

3.3.1 The relationship between feedback, reputation, trustworthiness, trust and

distrust. 55

3.3.2 Ranks of the new node with 7 positive incoming edges 59

3.3.3 Ranks of the new node with 15 positive incoming edges 60

3.3.4 The effect of negative edges on reputations. rNEdges � 0.1 60

3.3.5 Effect of Sybils in the graph having negative edges 61

3.3.6 Effect of Sybils in the graph having no negative edges 61

4.2.1 getSignedCounterValues(mode, n, cid) . 70

4.2.2 Attestation based on virtual machines. 72

4.3.1 Details of the pv.destVerification(k,pd) 75

5.2.1 TTM logical design. 92

5.2.2 High-level hardware design of the Trusted Tokens Module (TTM). 96

5.3.1 init(n,cid,isRT,isRecreatable,h,even) and remove(tks) commands 97

5.3.2 Information flow of the protocol for transferring tokens from p2 to p1 . . . 99

5.3.3 Commands for transferring B-type tokens 100

5.3.4 Prepare a request for a range of tokens . 101

5.3.5 Commands for transferring a range of tokens 103

5.3.6 Commands for generating and loading asymmetric keys. 106

6.1.1 The P2P system evolves from time t to time t� 1 (for t ¥ 0) as peers join

and leave the network . 122

6.4.1 Channels and processes in the model of DTR1 137

7.1.1 Evaluation methods used in unstructured P2Pstudies 151

7.1.2 Evaluation methods used in structured P2Pstudies 151

7.2.1 Components of a Logical Process in dPeerSim 155

7.2.2 Distribution of P2P nodes with multiple LPs 157

7.2.3 Maximum number of nodes that can be simulated for Chord. 158

7.2.4 Maximum number of nodes that can be simulated for Pastry. 159

7.2.5 Execution time of Pastry under churn. 160

7.2.6 Average number of messages handled at each LP during simulation of Pas-

try under churn . 161

7.3.1 The workload at the CA during the simulation. 165

7.3.2 Simulation execution time of DTR1 vs DTR2. 165

7.3.3 The average hop-count in DTR1. 166

7.3.4 The average hop-count in DTR2. 166

7.3.5 Average rate of successful joins in DTR1 vs DTR2. 167

7.3.6 Average rate of query failure per completed query in DTR1 vs DTR2. . . . 168

LIST OF TABLES

2.1.1 Summary of structured P2P overlays . 20

5.2.1 Summary of the data structures used in TTM. 95

5.4.1 Access scenarios for systems and objects 109

6.4.1 Renaming relations and synchronization sets 138

CHAPTER 1

INTRODUCTION

1.1 Motivation

The past decade has witnessed phenomenal developments in Peer-to-Peer (P2P) infras-

tructure, thanks to the vast number of systems based on P2P, and to the research in P2P

systems being an increasingly active field. A P2P system can be defined as a network of

computers (or peers) that communicate mainly with each other without the need for a

centralized party. Compared to a traditional system in which one server deals with re-

quests from many clients, the P2P system is more scalable and its lack of the centralization

components means that there is no single point of failure.

Two types of P2P infrastructure exist, and they differ in the graphs formed by the

connections among peers and the mechanisms for locating objects. In unstructured P2P,

peers form a random graph, as a peer can be a neighbor of any other peer. For locating an

object, the peer broadcasts the request to its neighbors which again forward the request

to their own neighbors. In structured P2P, peers form a rigid topology, which allows for

efficient mechanisms for locating objects.

Well-known examples of systems based on unstructured P2P are file-sharings: Napster,

Limewire [42], eDonkey [55], Bittorrent [22], etc. Because of its scalability, structured P2P

has been used for many large-scale applications. For instance, it has been used for an

application-level multicast infrastructure that enables multicast routing without the need

1

for hardware support [17]. The performance of such the infrastructure can come very

close to that of a hardware-supported multicast infrastructure. Other examples include

P2PSIP [14] (a Voice-over-IP application) and PAST [81] (a network storage system).

Even botnets — networks of compromised computers used for sending spams — are built

on structured P2P [49].

The scalability property of structured P2P comes with a number challenges that need

to be addressed before one could take full advantage of the infrastructure. One of the main

challenges is security, which is inherent in P2P because peers are autonomous and there

lacks a centralized authority that polices peers’ interactions. An adversary could disrupt

the mechanism for locating objects by redirecting the requests to another malicious party,

or by impersonating the final nodes in the routing paths of the requests. It could also

attack properties that are specific to the systems built on structured P2P.

Trust, a concept originating from human society, can help dealing with the security

issues in structured P2P. In real-world societies, trust allows people to interact confidently

with strangers. It also helps people identify and then avoid the untrustworthy. In the con-

text of structured P2P, having trust helps the honest peers identify and avoid interacting

with the adversaries — ones that cause harms to the system and are therefore considered

untrustworthy. Having trust in the system also encourages peers to be trustworthy, since

acting otherwise would impede their opportunities to interact with the others. In other

words, the implication of having trust goes beyond security, as trust induces cooperation,

which is important to systems that rely on peers sharing their resources.

To facilitate trust in P2P (both structured and unstructured), a trust infrastructure (or

trust system) is needed. Such a system provides the information about one peer that can

be used by others to decide whether to trust that peer. The trust system is usually based

on reputation which has been shown to be a good indicator of trust. Particularly, the trust

system comprises the feedback mechanism that allows peers to give each other ratings for

their behavior, and the reputation metric that combines feedback into reputation values

(or scores). A peer having a high reputation score is likely to be trustworthy and to be

2

subsequently trusted by others.

Implementing a trust system for P2P is challenging, since such the system requires two

properties to be met: reliability and efficiency. The latter states that the system is efficient

in terms of resources (memory, bandwidth, etc.) that it uses. The former means that the

system can prevent honest peers from making incorrect trust decisions, even if it is given

inaccurate feedback, and even in the presence of the so-called Sybil manipulation attack

in which the attacker introduces new peers to the system and uses them strategically to

boost its reputation. In other words, in a reliable trust system, feedback elicited by the

feedback mechanism is combined together by the reputation metric to yield reputation

values which are intuitive and resilient to manipulation. It means that high reputation

values are given to well-behaved peers and low reputation values are given to the poorly-

behaved.

1.2 Scope and Contributions

This thesis is concerned with the reliability property of trust systems for structured P2P.

In particular, it seeks the answers to the following research questions:

1. To what extent are existing reputation metrics such as PageRank [73] vulnerable

to Sybil manipulations? Can they be improved? Are the feedback models used by

those metrics strong enough? Can they be made more realistic?

2. Regarding the existing feedback mechanisms for structured P2P applications, is it

always possible for peers to leave feedback to each other after their transactions? If

not, can we design mechanisms that overcome such the limitation?

This thesis focuses on the resilience of the reputation metrics against manipulations, and

on the use of hardware-based security in feedback mechanisms. More specifically, for

reputation metrics, it enhances the capability of being resilient against manipulation, and

it adds the support for negative feedback. For feedback mechanisms, it uses hardware-

3

based security to design mechanisms that enable a peer to detect the misbehavior of

others in the structured P2P environment. It carries out formal analysis to show that

the proposed mechanisms allow the correct detection of misbehavior, and experimental

analysis to evaluate the performance of these mechanisms when implemented in practice.

The detailed contributions of this thesis are as follows:

1. Regarding reputation metrics:

(a) Extending the previous work on the resilience of the PageRank reputation

metric [73] against Sybil manipulation [21], by considering a stronger Sybil

strategy. The result indicates that PageRank has different degrees of sensitivity

against different Sybil strategies.

(b) Showing, through experimental analysis, that PageRank is more sensitive to

Sybil manipulation when used for undirected graphs — which are commonly

found in P2P environments — than for directed graphs.

(c) Proposing a new reputation metric based on PageRank, called Cluster-based

PageRank (or CPR). Experimental results indicate that compared to the orig-

inal PageRank, CPR produces relatively intuitive reputation scores, and that

CPR is more resilient to Sybil manipulation than PageRank when used for

undirected graphs.

(d) Arguing that negative feedback is important for P2P trust system, which then

leads to the proposal of the new reputation metric that is based on PageRank

and supports negative feedback. The new metric, called PRN, is evaluated

through experiments. The results indicate that it produces intuitive reputation

values and is resilient against Sybil manipulation.

2. Regarding feedback mechanisms:

(a) Presenting two examples of structured P2P systems that demonstrate the dif-

ficulties for an honest node to securely detect the misbehavior of another. The

4

detection is necessary in order for the honest node to leave appropriate feed-

back to the other. One example is related to routing protocols, and the other

is a marketplace built on top of structured P2P.

(b) Proposing two mechanisms that enable secure detection of misbehavior. One

mechanism targets the routing layer (called DTR1), the other targets the P2P-

based marketplace application (called DTA1). Both DTR1 and DTA1 rely on

the Trusted Computing infrastructure, particularly on the Trusted Platform

Modules (TPMs), to provide trusted operations involving monotonic counters.

DTR1, in addition, relies on a centralized party called the Certificate Authority

(CA).

(c) Proposing a new general-purpose security hardware called Trusted Tokens

Module (TTM). Examples of using TTMs in access control systems are pre-

sented to demonstrate that TTMs can be useful in other areas of application

beside P2P. Next, new protocols that leverage TTMs for detecting misbehavior

for the two case studies are proposed. DTR2 and DTA2 both improve upon

DTR1 and DTA1. In particular, the centralized party (the CA) in DTR1 is

removed in DTR2.

3. Regarding analysis:

(a) Formalizing DTR1 and DTR2 in CSP, and verifying that they satisfy the prop-

erty that implies the honest peers’ abilities to securely detect misbehavior of

other peers in the context of P2P routing. Data independence is used as a

model abstraction technique that reduces the original CSP models of DTR1

and DTR2 to ones with smaller state spaces. For the small models with a lim-

ited number of nodes, automated proofs showing that they satisfy the desired

property are generated by the model checker tool FDR [37]. The automated

proofs are accompanied by general, hand-written proofs for the models of ar-

bitrary numbers of nodes.

5

(b) Introducing a new condition that when satisfied by a data-independent process

allows the data type to be reduced without introducing new traces to the model.

(c) Designing a new distributed simulation platform, called dPeerSim, by extend-

ing the open-source, application-level P2P simulator named PeerSim [78]. Ex-

perimental studies demonstrate that dPeerSim is capable of simulating large

P2P systems in reasonable time scales.

(d) Using dPeerSim to evaluate the performance of DTR1 and DTR2 in practice.

The preliminary results suggest that the CA in DTR1 is unlikely to be a perfor-

mance bottleneck. Furthermore, the performance of DTR1 and DTR2 under

churn are comparable, and they still leave much room for improvement.

1.3 Structure of the Thesis

Chapter 2 starts with the background on P2P systems, with particular focus on structured

P2P. It explains why P2P is useful by describing a number of applications built on top of

P2P. The chapter also introduces the concepts of trust and reputation in social sciences

and how they have been used in computer science. The next and important part of the

chapter contains the gap analysis of the current literature on P2P. It brings to the fore

a number of currently challenging problems in structured P2P, especially security issues,

and then explains why having a trust system can help mitigate those problems. Finally,

it discusses the difficulties in implementing a reliable trust system for P2P, some of which

are in the main focus of this thesis.

It should be noted here that Chapter 2 only serves as a scene-setting literature survey,

whose goal is to clarify the problems addressed in this thesis, as well as to relate them

to the other works in the field. Distributed over the following chapters are the literature

surveys and related works that are relevant to the topic discussed in the chapters.

Chapter 3 presents the improvements made to the existing reputation metrics. It is a

joint work with Mark Ryan, which elaborates on the contributions of this thesis regarding

6

reputation metrics: contribution 1.a to 1.d. It starts with a detailed model of reputation

for P2P systems, and the model of the PageRank metric. It shows that the resilience of

PageRank depends on the Sybil manipulation strategy, and that PageRank is less resilient

against Sybil manipulation under undirected graphs than under directed graphs. Next,

a new metric called Cluster-based PageRank is presented and demonstrated to be more

resilient than PageRank under undirected graphs. The next part of the chapter focuses

on motivating the integration of negative feedback into existing reputation metrics. It

presents the new metric, called PRN, that includes negative feedback. PRN is then

shown to produce intuitive reputation values and be resilient against Sybil manipulation.

Chapter 4 contains the details of the contribution 2.a and 2.b. It presents the re-

sults from collaborative work with Mark Ryan and Tom Chothia. The chapter starts

by presenting two case studies in which the misbehavior of peers proves hard to detect.

One example concerns the misbehavior in routing protocols, the other concerns the mis-

behavior specific to the P2P-based marketplace application. The chapter introduces the

concept and the main features of Trust Computing and the TPMs. For each case study,

the property stating that peers are able to securely detect the misbehavior of each other is

introduced. For example, in the case study concerning routing protocols, the property is

called Root Authenticity (or RA) property. Finally, the chapter presents the details of two

mechanisms, called DTR1 (for the example with routing protocols) and DTA1 (for the

example with the marketplace application), that aim to satisfy the desirable properties.

Chapter 5 presents the contribution 2.c and 2.d in more detail. It discusses the limita-

tions of TPMs in the context of detecting misbehavior in P2P: inefficiency and having to

rely on a centralized party. It then describes the design of a new hardware device (TTM)

whose main operations include the creation, storage and transferring of tokens between

devices in secure manners. Examples of access control systems using TTMs are presented

as examples to illustrate that TTMs can be used in other applications beside P2P. Finally,

new mechanisms using TTMs that are designed to satisfy the RA property for the two

case studies are presented. DTR2 improves upon DTR1 by removing the need for the CA.

7

DTA2 proves more efficient and allows for more application features than DTR1 does.

Chapter 6 provides the formal analysis for DTR1 and DTR2. The analysis of DTR1

was done in collaboration with Mark Ryan. It essentially contains the contribution 3.a and

3.b. It first explains the reasons behind selecting CSP as the modeling language for DTR1

and DTR2. Next, it presents a model of DTR1, and the formalization of the RA property,

both in CSP. Due to the original of DTR1 being rather large and complex, the chapter

presents two model abstraction techniques: weakening adversary and data independence

that are used to reduce the verification that a model satisfies the RA property to checking

the property of another model with a smaller state space. The existing data independence

technique is extended in the chapter with the new condition that when satisfied allows

the data type to be reduced without introducing new traces to the model. The chapter

includes the automated proofs that DTR1 and DTR2 satisfy the RA property for a small

number of nodes, and the general, hand-written proofs for arbitrary numbers of nodes.

The automated proofs are generated by the CSP model checker called FDR.

Chapter 7 provides further analysis of DTR1 and DTR2 by evaluating their perfor-

mance through simulation. Its contributions to this thesis are the contribution 3.c and

3.d. The first part of the chapter presents the motivations and designs of a new simulation

platform called dPeerSim. It shows that dPeerSim is a scalable platform for simulating

large P2P systems in reasonable time scales. This work was carried out with a number

of collaborators: Michael Lees, Georgios Theodoropoulos and Rob Minson. The second

part of the chapter presents and analyzes the preliminary results from simulating DTR1

and DTR2 under a strict failure model and with a simple maintenance protocol. The re-

sults suggest that in DTR1, CA is unlikely to be a performance bottleneck under normal

network conditions. The performance of DTR1 and DTR2 under churn are comparable,

and they still leave much room for improvement.

Finally, Chapter 8 concludes the thesis and discusses avenues for future work.

8

1.4 List of Publications

Most parts of this thesis have been published in a number of papers and reports, as listed

below.

1. Chapter 3:

(a) Tien Tuan Anh Dinh and Mark Ryan. A Sybil-Resilient Reputation Metric for

P2P Applications. In 3rd International Workshop on Dependable and Sustain-

able Peer-to-Peer Systems (DAS-P2P 2008), in conjunction with the 2008 In-

ternational Symposium on Applications and the Internet (SAINT2008), pages

193-196, Turku - Finland, August 2008.

This paper provides the contents for Section 3.1 and Section 3.2. It describes the

need for, and the details of the Cluster-based PageRank.

2. Chapter 4:

(a) Tien Tuan Anh Dinh and Mark Ryan. Verifying Security Property of Peer-to-

Peer Systems Using CSP. In 2010 European Symposium on Research in Com-

puter Security (ESORICS).

(b) Tien Tuan Anh Dinh and Mark Ryan. Checking Security Property of P2P Sys-

tems Using CSP. Technical report. University of Birmingham, CSR-10-07. Ac-

cessible at http://www.cs.bham.ac.uk/~ttd/files/technicalReport.pdf

(c) Tien Tuan Anh Dinh, Tom Chothia, and Mark Ryan. A Trusted Infrastructure

for P2P-Based Marketplaces. In 9th IEEE International Conference in Peer-

to-Peer Computing (P2P’09), pages 151-154, Seattle - WA, October 2009.

The ESORICS paper and the technical report CSR-10-07 provide the materials

for the first part of the chapter where DTR1 is presented. The details of DTA1

presented in the second part of the chapter are based on the P2P’09 paper.

3. Chapter 5:

9

(a) Tien Tuan Anh Dinh and Mark Ryan. Secure Hardware Abstraction for Dis-

tributed Systems. Technical report. University of Birmingham, CSR-10-08.

Accessible at http://www.cs.bham.ac.uk/~ttd/files/secureHardware.pdf

The contents of the chapter: the design of the new hardware and details of DTR2

and DTA2 are based on the technical report CSR-10-08.

4. Chapter 6: the formal analysis of DTR1 is presented in the ESORICS paper in brief

details, and in the technical report CSR-10-07 in full details. The analysis of DTR2

is included in the technical report CSR-10-08.

5. Chapter 7:

(a) Tien Tuan Anh Dinh, Georgios Theodoropoulos and Rob Minson. Evaluat-

ing large scale distributed simulation of P2P networks. In 12th IEEE Inter-

national Symposium on Distributed Simulation and Real Time Applications

(DS-RT’08), pages 51-58, Vancouver - Canada, October 2008.

(b) Tien Tuan Anh Dinh, Michael Lees, Georgios Theodoropoulos and Rob Min-

son. Large Scale Distributed Simulation of p2p Networks. In 2nd International

Workshop on Modeling, Simulation, and Optimization of Peer-to-peer Environ-

ments (MSOP2P 2008), in conjunction with Euromicro PDP 2008, pages 13-15,

Toulouse - France, February 2008.

(c) Richard Price, Tien Tuan Anh Dinh and Georgios Theodoropoulos. Analysis

of a Self-Organizing Maintenance Algorithm Under Constant Churn. In 3rd

International Workshop on Dependable and Sustainable Peer-to-Peer Systems

(DAS-P2P 2008), in conjunction with the 2008 International Symposium on

Applications and the Internet (SAINT2008), pages 209-212, Turku - Finland,

August 2008.

The first two papers describe dPeerSim and demonstrate its scalability through

experiments with different P2P protocols. The details of dPeerSim being used for

10

studying maintenance protocols is included in the third paper. These papers provide

the contents for the first part of Chapter 7.

11

CHAPTER 2

BACKGROUND AND GAP ANALYSIS

This chapter discusses how trust in general and trust based specifically on reputation are

important for P2P environments, and how the latter comprises reputation metrics and

feedback mechanisms. It outlines the problems faced by reputation metrics and feedback

mechanisms in building a reliable trust system. The chapter sets the scene from which

Chapter 3 extends an existing reputation metric. It links the work done in Chapter 4, 6

and 7, which are the secure mechanisms for detecting misbehavior using hardware based

security, to the context of improving the feedback mechanism.

It should be stressed again that this chapter does not serve as the complete literature

background for this thesis. The rest of the literature survey is distributed over the follow-

ing chapters. This chapter starts with the background of structured P2P systems. The

literature on trust and reputation is presented next. The final section discusses how the

problems being addressed in this thesis are related to the others.

2.1 Structured P2P and Its Applications

The common understanding of P2P systems characterizes them as networks of computers

(which could be referred to as peers or nodes) interacting directly with each other with-

out centralized servers. This concept, however, fails to identify file-sharing systems like

Gnutella [42], eDonkey [55] and Bittorrent [22] as P2P, because in this thesis, I define

12

P2P systems as networks of peers with following properties:

1. Autonomous. Peers are not under control of a central authority. They can join and

leave the system at will.

2. Heterogeneous. The system can accommodate peers of different types, i.e. different

operating systems, network connections, etc.

3. Most traffic passes between peers. A certain degree of centralization is allowed.

Nevertheless, peers mainly interact with each other. This accounts for most of the

system traffic. In P2P file-sharing applications, for example, bootstrapping servers

are commonly used to help new peers join the systems.

P2P systems are overlay networks, because they run on top of another network (the

Internet, for example). In the remaining, the term P2P, P2P overlays, P2P networks,

P2P systems, P2P infrastructures are used interchangeably to refer to systems satisfying

the three properties listed above.

An essential part of a P2P system is the routing protocol that implements the search

(or the lookup) operation for a piece of data. Two types of P2P infrastructures exist in the

literature: unstructured and structured. In the following, a brief survey of unstructured

P2P is presented for completeness and comparison with structured P2P.

2.1.1 Unstructured

File-sharing applications such as Limewire [42], eDonkey [55], and Bittorrent [22] are built

on top of unstructured P2P. This infrastructure has evolved through three generations.

2.1.1.1 First generation — Napster

There exists a centralized indexing server that facilitates the sharing of data among peers.

Search queries for a file, for example, are forwarded to the server. If the file exists, the

server then responds with the contact information of the peers having the file.

13

I

RS1

S2

S3

S4

S5

Normal peer Super peer

Figure 2.1.1: Gnutella architecture

2.1.1.2 Second generation — Gnutella

The centralized index server is removed. A number of powerful peers (ones with high

bandwidth, high up-time) form a network of superpeers. Ordinary peers connect and

publish their shared data to at least one superpeer. Ordinary nodes forward their search

queries to their superpeers. The superpeers then forward the queries to all of its neighbors,

consequently flooding the network. For example, in Figure 2.1.1, peer I searching for a

file residing at peer R first forwards its query S1. The query is then broadcast to S3, S5

and finally to S4 which returns the contact information of R.

2.1.1.3 Third generation — Bittorrent

In the previous systems, peers from a single network to share their files. In Bittorrent [22],

each file is associated with an independent network of peers interested in sharing the same

file, called swarms . Each swarm has a centralized tracker that supplies information of the

sharing peers and the data being shared. Bittorrent is a system of multiple networks with

one file per network, as contrast to Napster and Gnutella — systems of one network with

multiple files. The Bittorrent protocol consists of two key elements. First, the rarest-first

piece selection strategy is used by a peer to select and download the rarest piece of data

14

in the swarm. Second, an uploading peer adopts the tit for tat peer selection strategy

to select and upload data to the peer from which it has downloaded the most. This

strategy provides a robust incentive for peers to share data, rather than to free-ride the

network [57], a major problem in the early file-sharing systems [90].

2.1.1.4 Summary

In unstructured P2P, a peer can be a neighbor of any other peer in the network. Therefore,

the overlay topology approximates a random graph. In the early generation, the lookup

is implemented by broadcasting the queries, which is unscalable. Limiting the number of

hops that the queries propagate seems to mitigate this problem, but introduces nonde-

terminism. In particular, a negative result only means that the searched data may still

exist but cannot be reached within the given number of hops.

2.1.2 Structured

Structured P2P systems are designed to address the weakness in the lookup mechanism

of the early unstructured P2P. Searching in structured P2P is deterministic and more

scalable. This comes at the expense of the system’s robustness under frequent churn —

the process of node joining and leaving the network. A number of structured overlays

exist. The most popular ones can be divided into groups of different topologies: ring,

Plaxton graph, d-dimensional torus, etc..

In a structured P2P system, let P and D be the sets of peers and data in the system.

A non-collision hash function is used to map each member of P and D to a distinct

value in I. Unless stated otherwise, I � r0, 2mq where m is the security parameter with

the typical value of 160. A peer is uniquely identified by a peer ID. A data is uniquely

associated with a key . The values of peer IDs and data keys come from the same set I.

A data k is stored at the node called the destination node or root node of k. Let

root : D Ñ P

15

550

144

609

1000

296

498

775

744

144

609

1000

296

Target Peer

144 + 1

144 + 2

144 + 4

144 + 8

144 + 16 296

144 + 32 296

144 + 64 296

144 + 128 296

144 + 256

144 + 512

144 + 1024 144

296

296

296

296

498

775

Figure 2.1.2: Example of a Chord overlay. ID � r0, 210q, P �t144, 296, 498, 609, 775, 1000u and D � t550, 744u. The small circles represent the IDs
that are used to construct the finger tables of peer 144.

be the function returning the root node of a given key in the set of nodes currently in the

network. Structured overlays differ in the function root and the protocols that resolve the

root nodes.

2.1.2.1 Ring topology — Chord

Chord [88], one of the first structured P2P overlays, is well known for its simplicity and

efficiency. In Chord, the ID space wraps around to make an ID ring. Each Chord node

connects to the peer immediate on its left (called the predecessor) and another immediate

on its right (called the successor). In Figure 2.1.2, the predecessor and successor of peer

144 are 1000 and 296 respectively.

Let succpkq be the function returning the peer immediate on the right of k in the ID

ring. For example, both succp300q and succp400q returns peer 498, whereas succp250q
returns peer 296. In Chord:

root � succ

In Figure 2.1.2, data 744 is stored at peer 775. For efficient routing, every node maintains

connections to other neighbors in a finger table of size m, in addition to the predecessor

and successor. For a node p, the ith (1 ¤ i ¤ m) entry in its finger table, fingerris, is

16

defined as succpp` 2i�1q, where ` is the addition operation in modulo 2m. In the above

example, the 4th and 9th finger of peer 144 are peer 296 and 498 respectively.

To search for the destination node of k, i.e. to resolve succpkq, the searching peer

forwards its query to the neighbor (its successor, predecessor or a node in its finger table)

that is furthest from it but is still on the left of k. This procedure is repeated at the

new node until the current node is the closest on the left of k. In this case, the current

node’s successor is returned. In Figure 2.1.2, the routing path from node 144 for k � 744

is 144 Ñ 498 Ñ 609. Finally, node 775 is returned as the destination of k. With N nodes

in the overlay, the average number of routing hop per query is 1
2
.log2pNq.

When a new peer p joins the network, it uses an existing node to initialize its successor

and predecessor, namely succppq and succppq’s predecessor. It then initializes its finger

entries and notifies its existence to the other nodes that should have p in their finger tables.

When leaving gracefully, p notifies the relevant neighbors, so that they can update their

routing states. On average, the number of messages needed to maintain the network for

a churn event is OplogNq.
2.1.2.2 Plaxton mesh — Pastry

In Pastry [82], rootpkq returns the node whose ID is numerically closest to k (if two nodes

have the same distance to k, the one with smaller ID is returned). Data keys and peers

IDs are are represented in base 2b for a value of b (usually b � 4). Pastry nodes form a

Plaxton mesh topology [75], in which each node is the neighbor to ones sharing similar

prefix with its own ID. In particular, the routing table contains log2bN rows, where N

is the number of peers in the network. Each row has 2b � 1 entries. The entry at row i

(1 ¤ i ¤ log2bN), column j (1 ¤ j ¤ 2b) is a peer whose ID has the same first pi � 1q
digits as the current node and its ith digit is pj � 1q.

Figure 2.1.3 shows the routing table of node 10233102 in the Pastry overlay with b � 2.

In addition to a routing table, each node also maintains a list of l peers closest to its left

and its right (on the circular I space), called the leafset . In the example in Figure 2.1.3,

17

Leafset
10233000 10233001 10233033 10233021
10233120 10233122 10233230 10233232

Routing Table
02212102 10233102 22301203 31203203
10233102 11301233 12230203 13021022
10031203 10132102 10233102 10323302
10200230 10211302 10222302 10233102
10230322 10231000 10232121 10233102
10233001 10233102 10233232
10233102 10233120

10233102

Figure 2.1.3: Routing neighbors of the Pastry node 10233102. This Pastry overlay uses
b � 2 and l � 8. Therefore, all peers’ IDs are in base 4, and each peer has 2*4=8 neighbors
in its leafset

the leafset size is 8 and it contains 4 peers closest to the left and 4 peers closest to the

right of 10233102, sorted by their distances to 10233102. The entry at row 3 column 3,

for instance, contains peer 1022302, because it shares the prefix 102 (of size 3) with the

current node, and its 4th digit is 2. Some entries are empty and some refer to the current

node.

The lookup protocol for the root node of a key k consists of two steps. The query

is first forwarded to the neighbor that is lexicographically closest to k. This neighbor is

selected from the routing table as the node sharing the longest prefix with k. This step

is repeated until the query arrives at a node whose leafset’s range covers k. In this case,

the node in the leafset (including the current node) that is numerically closest to k is

returned. The average number of hops per lookup operation is OplogNq, which is more

efficient than Chord in practice since logarithm of base 2b is used.

A new node joins the network by first asking a bootstrapping node to search for

the root node of its own ID. The routing states can be initialized using most of the

information from the other nodes in the routing path. The newly joined node then

notifies its neighbors of its existence. When a node leaves the network gracefully, it also

notifies the relevant neighbors. On average, the number of messages exchanged during a

18

churn event is OplogNq.
2.1.2.3 XOR space — Kademlia

Kademlia [66] is a structured overlay based on XOR metric. The XOR distance between

two value i and j in I is defined as pi XOR jq. rootpkq returns the node having the

smallest XOR distance to k (if two nodes have the same XOR distance to k, the one with

smaller ID is returned). Each Kademlia node maintains m κ-buckets. The ith bucket

(1 ¤ i ¤ m) contains κ nodes whose XOR distance from the current node is in the ranger2i�1, 2iq. For instance, with m � 3, the 2nd 2-bucket of node 1110 can include node 1010,

the 3rd 2-bucket can contain node 0111 and 0001.

The lookup process is done iteratively and is highly parallel. For a key k, the searching

peer forwards the query to the neighbors that are closest to k. Lists of peers that are

closer to k are returned. The query is then sent to nodes in these lists. This process

is repeated until no closer node can be found. On average, the number of peers visited

peer lookup operation is OplogNq. The joining and leaving process in Kademlia are very

similar to those in Pastry. In particular, the number of maintenance messages exchanged

during a churn event is also OplogNq.
2.1.2.4 Multi-dimensional space — CAN

In previous systems, peers IDs and data keys are from the range r0, 2mq. In Content

Addressable Network (CANs) [77], they come from a d-dimensional torus. A peer ID is

uniquely associated with a region, a key is uniquely mapped to a point in that space. The

destination node of k is the peer whose region contains k.

A peer’s ID can be represented by the vector ppl0, h0q, ..., pld�1, hd�1qq where li, hi is

the low and high value in the ith axis. This region might be split when a new peer

joins and merged with another region when another peer leaves. The peer ID can, as

a consequence, change as the network evolves. The routing table of a node p contains

Opdq nodes whose regions are adjacent to p’s. The lookup process involves forwarding

19

Overlay Topology Routing state Hop counts Maintenance
Chord Ring OplogNq OplogNq OplogNq
Pastry,
Tapestry

Plaxton mesh OplogNq OplogNq OplogNq
Kademlia XOR space OplogNq OplogNq OplogNq
Koorde de Bruijn graph 2 to OplogNq OplogNq to

OplogN{loglogNq -

CAN d-dimensional
torus

Opdq Opd.N1{dq Opdq
Table 2.1.1: Summary of structured P2P overlays

the query to adjacent regions until reaching the region containing the search key. For a

system with N nodes, the lookup operation takes Opd.N1{dq steps on average. During

churn, only Opdq neighbors need to be informed.

2.1.2.5 Other overlays

Tapestry [106] is similar to Pastry regarding the topology and searching protocol. In

Tapestry, a node having data k can publish this information by replicating it at all the

nodes in the routing path from it to root node of k. A search for k is likely to encounter

a replica before reaching the root node.

Koorde [52] extends on Chord and uses a de Bruijn graph to achieve efficient lookup.

It allows the number of neighbors per node to be tuned from 2 to OplogNq to achieve hop

counts ranging from OplogNq to OplogN{loglogNq. An important theoretical result that

comes out of Koorde is that:

An n-node system with maximum degree d requires at least logdn� 1 routing
hops in the worst case and logdn �Op1q on average

2.1.2.6 Summary

Table 2.1.1 summarizes the properties of the previously described overlays.

20

2.1.3 Application of Structured P2P Overlays

Because of their decentralization, scalability and deterministic lookup mechanisms, struc-

tured P2P overlays have been used to build a wide range of large-scale distributed systems.

2.1.3.1 Content delivery — Trackerless Bittorrent

In the original Bittorrent systems, there exist centralized servers providing tracker ser-

vices for many swarms, such as The Pirate Bay [93] and Mininova [69]. The trackerless

Bittorrent protocol [22] is proposed to eliminate such single points of failure. Peers form

a structured overlay, namely Kademlia. Each peer is also a tracker server. A file being

shared is mapped to a key k. The tracker service for file k is provided by the root node

of k.

2.1.3.2 Application-level multicast

Multicast routing can be implemented at the software-layer. Such an application-level

multicast infrastructure requires no hardware support, and it can be carefully designed

to approximate the performance of the IP-level solutions. Structured P2P overlays have

been used to support large multicast groups with low communication overheads.

Scribe [17] is built on top of Pastry. A multicast group is identified by an unique key

k. The root node of k becomes the rendezvous point, to which the multicast source sends

its data to be broadcast to the members of the group. When a node p wishes to join a

group G, it routes a Join message to the rendezvous point. Nodes in the routing path that

have not seen messages belong to group G register an entry indicating that p belongs to

G. The routing of the Join message stops when it arrives at a node that has registered an

entry for G. The data being broadcast is first transferred to the rendezvous node, which

then sends the data to all the members of the group that it knows. Experiments showed

that the median and maximal delay penalty per group are 1.7 and 4.26 respectively.

21

2.1.3.3 Communication infrastructure

Voice-over-IP (VoIP) protocols also benefit from structured overlays. P2PSIP [14] im-

plements the Session Initiation Protocol (SIP), an important part of the VoIP protocol,

over the Chord overlay. VoIP clients form a Chord overlay, each is given an unique name,

which is mapped to a key k. The connection details of the client, such as its IP address,

are stored at the root node of k. When the details change, an update is sent to the root

node. When another peer wishes to establish a connection with the client, it uses the

latest information at the root node of k.

2.1.3.4 Botnets

Botnets are networks of compromised machines (or bots) under the control of a single

attacker. They are mostly used for sending spam. Holz et al. [49] have reverse-engineered

Stormworm [86], a large and popular botnet, and discovered that bots were organized

into a Kademlia overlay. The control command is uniquely identified with a key k that

is based on the current date and a random value known to all bots. The command is

published at the root node of k. Periodically, bots fetch new commands (with the newly

generated keys) and execute them, which could result in new commands being published.

2.1.3.5 Others

A number of P2P network storage systems based on structured overlays have been pro-

posed. PAST [81], for example, is a persistent global storage system built on top of

Pastry. PAST supports only immutable files. It relies on the diversity of nodes (both

geographically and politically) and the replication mechanisms to ensure high availability

for data.

The Internet Indirection Infrastructure (I3) [87] used Chord to build a global rendezvous-

based communication infrastructure. In particular, it supported unicast, multicast, any-

cast routing abstractions and host mobility. Application-level multicast and VoIP appli-

22

(individual and group)

Trust

Reputation

Reciprocity

Institutional
variables

Physical
variables

Cultural
variables

Level of
cooperation

Net benefit

Figure 2.2.1: The core relationships between reciprocity, reputation and trust. Ostrom et
al. [72]

cations could be built on top of this general infrastructure.

2.2 Trust and Reputation

Trust is a social phenomenon emerging from human interaction. Trust is important to

society because it increases and reinforces the level of reciprocity and cooperation, as

depicted in Figure 2.2.1. It is therefore not a coincidence that the concept of trust has

been studied extensively in social sciences. This thesis uses the following definition by

Hardin [46] (Chapter 2, page 11):

To say we trust you means we believe you have the right intentions toward us
and that you are competent to do what we trust you to do

From this definition, trust is subjective and in relation to a given task. It is important

to understand the relationship between trustworthiness (and its adjective: trustworthy)

and trust. Many authors in the literature failed to recognize the differences between these

terms and labeled their works as about trust, even though were in fact about trustworthi-

ness. Roughly speaking, the decision to trust depends on the assessment of trustworthiness

(and perhaps other factors that are specific to the context in which the decision is made).

While trust is a boolean-valued relation, there are degrees of trustworthiness. Once we

have evaluated how trustworthy another person is, we have the knowledge to trust or

distrust. Hardin went as far as arguing that trust is cognitive and therefore is not a

choice.

23

A well known conception of trustworthiness is the encapsulated interest conception [46],

in which one’s trustworthiness is measured by one’s interest or incentive to be trustworthy

in the relevant context. Reputation, defined as record of the past deeds ([92], page 71),

fits in this model because one with good reputation has the incentive to sustain that

reputation, i.e. to behave in a trustworthy way.

2.2.1 Trust in computer security

In computer security, works in authentication implicitly make use of the notion of trust.

However, they are not concerned with the question of how trust is formed or how trust-

worthiness is computed. Yahalom et al. [104] proposed three trust classes: direct trust,

indirect trust and recommendation trust. In distributed environments where one client

might not know another directly, a set of rules was proposed to derive indirect trust from

the other classes of trust.

Maurer [65] extended the work in [104] to design a distributed public key infrastructure

(PKI). Given a certificate graph and the trustworthiness values that peers give to each

other, a set of derivation rules was used to determine the authenticity of a public key.

This approach is similar to that in the Pretty Good Privacy (PGP) system. The PGP

system represents trustworthiness as fuzzy values, as opposed to integer values in [65].

2.2.2 Trust based on Reputation

In sociology, reputation is studied in the encapsulated interest model [46]. A person with

good reputation has the incentive to behave in certain ways that maintain the reputation.

This is because a good reputation encourages others to choose him for future transactions

that could be in his interest. This is important in society, because people increasingly have

interactions with those with whom they might never have the occasion to interact again.

In many cases, one can turn to the law of contracts to be protected from uncooperative

behavior. Often enough, however, there is no such safeguard, especially for small-scale

24

exchanges.

As shown in Figure 2.2.1, reputation is an important factor contributing to trustwor-

thiness. The other variables are physical, cultural and institutional variables. In online

settings, both physical and cultural information are not available. Furthermore, many

exchanges online are not protected by institutional safeguards. As the consequence, rep-

utation is the main indicator of trustworthiness.

2.2.3 Model of Reputation

In computer science, research on computational models of reputation extends on the

following model. Let Fi be the set of feedback given to agent i. Let F be the set of all

feedback in the system, i.e. F � ¤
i

Fi. The reputation value Ri of i is computed by

applying a reputation metric (or reputation function) µi to the set of feedback. More

specifically:

Ri � µipFq (2.2.1)

Xiong et al. [103], investigated a simple reputation system, in which feedback is the

amount of satisfaction regarding the transaction. The reputation metric was a simple

averaging function, i.e. µipFq � °
Fi|Fi| . More discussion of other works on reputation

models can be found in Section 2.3.

Another formal model of reputation exists and is based on game theory. Game the-

orists first noticed the reputation effects on repeated games [54] and how it drives the

system’s equilibrium to more socially desirable outcomes. Later studies focused on the

nature of feedback in different environments. Perfect information (or imperfect informa-

tion, conversely) means feedback is truthful (or contains noises). Public monitoring (or

conversely private monitoring) indicates that the entire feedback history is (or is not)

publicly available.

Aberer [4] analyzed the usefulness for game-theoretic models of reputations in online

settings. The author argued that current computation models of reputation systems are

25

ad-hoc and rather intuitive. Game-theoretic models can predict how different strategies

result in different equilibria, meaning that one can tune the system variables in order to

achieve the desirable equilibrium (maximal overall profit, for example). In addition, one

can also explain and predict how the users do exchanges with each other, for in the game

theoretical framework players are rational utility maximizer and cannot do better than

playing the equilibrium strategy. Nevertheless, the limitation of the game-theoretical ap-

proach lies in its complexity. In terms of feedback, online environments need to be modeled

as imperfect information and private monitoring. Furthermore, investigating non-trivial

aggregation strategies in this framework is difficult. Finally, many argues against how well

game-theoretic models approximate the real world, especially since research has shown

that humans do not normally act as rational economic agents.

2.3 Setting the Scene (or Gap Analysis)

This section discusses current issues in structured P2P and motivates the use of trust in

P2P. The problems with establishing trust in P2P are discussed next, which servers as

the motivation to the work done in this thesis.

2.3.1 Current Issues with Structured P2P

Robustness under churn. The main advantage of structured P2P overlays compared with

its unstructured counterpart is the lookup efficiency. The trade-off, however, is the cost

to maintain the rigid topology under churn. The metric used to assess this cost is the

number of messages exchanged during the churn event, called the maintenance messages.

The original Chord protocol requires OplogNq maintenance messages. In the extended

version, each Chord node periodically runs the stabilization protocol, which prioritizes

fixing successor and predecessor pointers over fingers. Liben-Nowell et al. [62] constructed

a mathematical model of the evolution of Chord networks. A half-life is defined as the

minimum period of time after that the network’s size is doubled (N new nodes joined) or

26

halved (N
2

nodes departed). Their model showed that the cost for correct routing (queries

arrive at the correct destination) is ΩplogNq messages per half-life. For efficient routing

(i.e. OplogNq hops), the cost amounts to Ωplog2Nq rounds of stabilization protocols per

half-life.

There exists a considerable number of works in the literature focusing on improving

the performance of structured P2P under frequent churn. The node availability model

consists of:

• Session time: the period during which the node stays in the network.

• Life time: the sum of the node’s session times (the node can have multiple sessions,

i.e. joining and then leaving for many times).

A high churn rate implies a short session time. Unstructured P2P applications perform

reasonably well under high churn rate [58]. In structured overlays, however, the lookup

performance drops significantly. Rhea et al. [79] showed via simulations that the lookup

success falls well under 45% when the session time is as small as 23 minutes. Bamboo [79]

is an improved version of Pastry and more resilient to churn. In particular, Bamboo

introduces three extensions to Pastry. First, the push-pull mechanism for maintaining the

leafset removes the need for newly joined node to announce itself to its leafset neighbors.

Second, the global and local tuning protocol are executed periodically, which helps a node

find better entries for its routing tables. Third, each node actively probes its neighbors to

gather their up-to-date response time. If a neighbor has been unresponsive for longer than

expected, it is considered as having departed and subsequent lookups can be forwarded to

an alternative neighbor. Under the non-concurrent churn model with the median session

time as short as 1.5 minutes, experiments showed that lookup success always exceeded

95%.

Load balancing. The load balancing problem in P2P systems arises because of the

nodes’ heterogeneity and the non-uniform distribution of data. The use of secure hash

functions to generate data keys and nodes’ IDs does not sufficiently address the problem,

27

Auction App−multicast

DHT

Routing

CAST/DOLR

Storage Content distribution Communication

Application Interface layer

Routing layer

Application layer

Figure 2.3.1: Abstraction levels of P2P applications. Adapted from [23]

because the hash function does not produce perfectly random values, especially when the

number of of nodes and data is small.

One approach to mitigate this problem is to split an ordinary node into multiple

virtual nodes. Godfrey et al. [43] used virtual nodes as load balancing units which can

be transferred from a heavily loaded peer to a lightly loaded one. Simulation results

showed that in a system with the utilization rate of 0.9, up to 99.9% of the nodes are

still underloaded, and the overhead of virtual nodes transferring is small. However, under

high churn rate, this overhead could become significantly large. Byers et al. [15] proposed

another approach, in which at least two hash functions are used to map data to different

places in the ID space. Among all the possible root nodes, the data is stored at the node

with the lightest load. Compared with the approach using virtual nodes, experimental

results showed that the system load can be more balanced.

Security. Security is an inherent problem in P2P, because of peers being autonomous

and the lack of centralized authorities that police peers’ interactions. As illustrated in

Figure 2.3.1, a P2P system can be categorized as belonging to different groups corre-

sponding to these layers. The hierarchy in these layers suggests that to achieve security

at one layer, the lower layers need to be secure first.

1. Routing layer : The overlays discussed in Section 2.1 belong to this layer. They

implement the lookup protocol that returns the root node of a given search key. An

adversary targeting this layer can do the following:

28

+ No routing: routing queries are dropped. As the consequence, the network is

partitioned into regions that cannot reach each other.

+ Redirection: queries are forwarded to other malicious nodes. They could also

be forwarded to innocent nodes, in an attempt at a DDoS attack.

+ Impersonating the root node: claims to be root node in order to control traffic

relating to the data key.

2. Application interface layer : this layer builds upon the lookup mechanism to im-

plement the store(k,data) operation, which stores the tuple (k,data) at a node.

In many systems, this tuple is placed at the root node of k. In some others, it is

replicated at several nodes along the routing paths towards the root node of k. An

adversary can compromise this layer by dropping the tuple at the destination nodes

that it controls. It can also tamper with the data.

3. Application layer : this layer consists of application-specific protocols that utilize

the lower levels. For instance, P2P communication systems make use of the rout-

ing layer, whereas P2P storage systems use the application interface layer to store

data in a scalable way. The adversary at this layer attacks application-dependent

properties, such as quality of services, availability, etc. For example, it could target

replication, access control mechanisms or corrupt the application data.

Douceur [33] described another attack that is inherent to P2P environments, called

the Sybil attack, in which the adversary gains multiple identities and appears as different

peers in the network. Without proper identity management, Sybil attacks present real

threats to P2P applications. In particular, the adversary can introduce Sybils in order to

perform an attack at different places in the network, consequently increase the damage

caused by the attack. For example, when attacking a system at the routing layer by

dropping queries, the adversary can introduce additional Sybils so that more queries are

routed through and subsequently dropped by it.

29

2.3.2 How Trust Could Help

The security problems described previously arise because honest nodes interact with the

adversarial ones, which is what expected in a decentralized environment where peers do

not know each other in advance. This model of interaction resembles human interactions

in real-world societies. Trust in human society allows one to interact confidently with

another stranger. It also helps one to identify and avoid the untrustworthy. In P2P,

similarly, having trust encourages cooperation between nodes, which is important to sys-

tems relying on cooperation such as content delivery and network storage systems. More

importantly, in a trust-enabled environment, an honest peer could identify the adversarial

(i.e. untrustworthy) ones and avoid interacting with them. As a result, the adversaries

are isolated and eliminated from the network.

In the context of security, untrustworthy peers are defined as ones with the intentions

to cause harms to the system. This definition can be extended to include unintentional

but frequent activities that disrupt the normal operations of the system. Thus, the role of

trust could go beyond security and into the realm of robustness. For example, peers with

high churn rates that leave ungracefully can be considered as untrustworthy neighbors,

because they induce high maintenance overhead and an increase in lookup failure. In this

case, being trustworthy means being available and reliable for a long period of time.

Another implication of having trust is that it opens up new areas of applications

for P2P. E-commerce systems, for instance, are currently based on n-tier client-server

architecture because of the lack of a trust enabling infrastructure among the participants.

Similarly, current implementations of anonymity systems (Onion routing [91], for example)

are unscalable and inefficient, for they have to consider the interactions between honest

and dishonest nodes.

30

Reputation
metric

Trust Infrastructure

ImplementationReputation Model

Feedback Data storage Computation
and retrieval

Figure 2.3.2: Trust system

2.3.3 Reliable Trust System for P2P

As discussed earlier in Section 2.2, reputation is a main indicator of trustworthiness in

online settings, such as P2P. A trust system (or trust infrastructure) for P2P provides

the knowledge necessary for peers to evaluate the trustworthiness of each other and then

make trust decisions. The knowledge, in particular, is in the form of reputation values

(or scores). The design of such an infrastructure must have the following properties:

• Reliability. Peers do not make incorrect trust decisions even if the system is given

inaccurate information. This property can be translated into the requirement that

the system generates intuitive reputation scores and is resilient to manipulation. In

other words, well behaved peers are given high scores and badly behaved ones are

given low scores. In addition, badly behaved peers are prevented from colluding

with each other in order to boost their reputations.

• Efficiency. The system is efficient with respect to its response time and the resources

(memory, bandwidth, etc.) it consumes.

Figure 2.3.2 depicts two components of a reputation-based trust system for P2P. First,

the component marked as Reputation Model represents the computational model for rep-

utation, which consists of a feedback model and a reputation metric. The feedback model

defines the process (or the mechanism) by which one peer can give ratings to another.

It also describes the nature and values of the ratings. The reputation metric specifies

how to combine feedback into reputation scores. Peers are then sorted in descending

31

order of their reputation values. The positions in the ordered list are called the reputa-

tion ranks, i.e. peers with lower ranks have higher scores. The reliability property of the

trust system is concerned with the reputation model. More specifically, it requires the

feedback mechanism to elicit feedback which are then combined by the reputation metric

to yield intuitive reputation scores which are also resilient against manipulation. Second,

the details of how to manage feedback and compute reputation values are included in

the component marked as Implementation. The efficiency property of the trust system is

concerned with this component. It states that the implementation of the trust system is

efficient with respect to its response time and its required resources.

2.3.3.1 Reputation metric

Aberer et al. [3] proposed a reputation metric that is the inverse of the number of com-

plaints (the feedback is in the form of complaints). In [103], the metric is the average

function over feedback. These functions are vulnerable to manipulation. For instance, a

malicious peer can alter its reputation ranks by giving fake feedback to others. Finding

better reputation functions has been an active area of research. In the literature, the ad-

vanced metrics make use of the system’s trust graph GpV, E, W q that is constructed from

the set of feedback. Each peer is represented by a graph node in V . An edge pi, jq P E

indicates that i and j have been involved in a transaction. The weight wpi, jq of the edgepi, jq represents the rating that i gives to j regarding the past transactions. Cheng et al.

[20] divides the advanced metrics into two groups:

• Symmetric: these functions return global, objective reputation scores, i.e. the values

that are agreed by all peers. They are dependent of the structure of the trust graph

and are invariant under node-relabeling. The global reputation is useful to newly

joined peers, ones that have not had interaction with others. Furthermore, for peers

that have never interacted with each other and there is no path connecting them in

the trust graph, the global reputation is the only information that could help them

evaluate the trustworthiness of each other. The PageRank metric [73] is the most

32

well-known example of this group.

• Asymmetric: these functions produce reputation values that are relative to a set of

root nodes, i.e. reputation is subjective with respect to the root nodes. When the

set of root nodes includes all the peers in the network, these functions become sym-

metric. In Advogato [59], the reputation of a node j relative to a root node i is the

maximum flow from i to j in the trust graph. Other reputation metrics in this group

are based on personalized PageRank, k-step Markov chain and shortest path [102].

They are computationally more expensive than the symmetric ones. Additionally,

they cannot evaluate the reputation value for a node that is unreachable from the

root nodes.

This thesis chooses to investigate the PageRank metric. One reason for it is that

in P2P environments, it is common for the trust graphs to be partitioned into regions

that cannot reach each other, therefore a symmetric reputation function like PageRank

is more suitable than an asymmetric one. Furthermore, computing PageRank is less

expensive than the other asymmetric functions. In particular, the main operation in the

computation of PageRank is matrix multiplication, whose complexity is OpN2q where N

is the size of the network. On the contrary, the cost of a network flow algorithm, for

example, is OpN3q.
All existing metrics are subject to manipulation attacks in which peers collude or use

their Sybils to boost their reputations. In the collusion attack, peers would participate

only if they could all have their reputations increased as the result. Zhang et al. [105]

showed that in PageRank, a group of nodes could collude and change the trust graph

structure in between them to boost their PageRank scores by up to 1
ǫ

(where ǫ is the

jumping factor, whose typical value is 0.15).

The Sybil attack, in which a node attempts to boost its reputation at the expense

of its Sybils, is one of the focuses of this thesis. Cheng et al. [20] showed that under

certain conditions, the asymmetric functions are immune from Sybil manipulation. The

PageRank function was shown to have a degree of resilience against such attack. The

33

next chapter extends this result and describes how the PageRank’s resilience in P2P trust

graphs can be improved.

2.3.3.2 Feedback model

In building a reputation-based trust system, the role of feedback model is often under-

stated. It has as an important role as that of reputation metrics, because it describes the

elements necessary to construct trust graphs upon which the metrics operate. A number

of problems faced by the feedback mechanisms have just recently been identified.

First, the lack of incentives for peers to leave feedback could hinder the trust system.

Insufficient feedback results in an incomplete trust graph that is likely to consist of many

unconnected regions. In addition, theory predicts that a minimum amount of feedback is

required for the reputation effects to induce cooperation (Bakos et al. [8]). Dellarocas [25]

explained that economic theory predicts voluntary feedback is under-provided, because

feedback is considered as public goods, and once provided, every peer will costlessly benefit

from it. Avery et al. [6] proposed a mechanism in which early evaluators were paid for

their information. The authors concluded that out of the three desirable properties of their

mechanism: voluntary participation, no price discrimination, and budget balance, only

two can be achieved. In [63], Liu et al. designed a system that reinforces the relationship

between the feedback incentive and the Beta reputation metric. The Beta metric is

quite simple and therefore subject to manipulation. Nevertheless, the work is interesting

because on the one hand, the incentive induces sufficient feedback so that the Beta function

can yield meaningful and robust values, and on the other hand, a peer’s recommendation

reputation is used by another to determine whether to provide its feedback information

to that peer. Therefore, the peer has an incentive to leave more feedback in order to

maintain and increase its recommendation reputation.

Second, inducing honest feedback is also important, as most game-theoretic models of

reputation rely on truthful information. Dellarocas [26] argued that dishonest feedback

causes a noisy environment and drives the system to a less efficient equilibrium (with a sub-

34

optimal cooperation level). The incentive mechanism in [63] was shown, via simulations,

to also encourage peers to be truth tellers.

Third, negative feedback is commonly used in the literature to represent distrust .

This type of feedback plays the role of stabilizing the system, as it punishes peers that

misbehave. Studies of eBay [53] showed that the fear of being retaliated discourages users

from giving negative feedback. A possible solution suggested by Dellarocas et al. [28]

involves keeping the feedback secret until after the period for leaving feedback expires.

The number of reputation metrics in the literature supporting negative feedback, even

when sufficiently elicited, is limited. Chapter 3 first argues for a clearer semantic of this

type of feedback in P2P, and then proposes a new reputation function based on PageRank

that supports negative feedback.

Fourth, existing works assume that a peer is always able to evaluate its transactions

with others before giving feedback. It is trivial in a market application, for example, for

a buyer to assess the quality of the goods and then leave the appropriate feedback. This

thesis presents two scenarios in structured P2P environments where it is difficult to check

if the outcome of a transaction is good or bad. In particular, the lookup protocol in a

structured overlay returns a node claiming to be the root node of the search key, but it

is problematic for the searching peer to know if what returned is the correct root node

in the current configuration of the network. Chapter 4, 6 and 7 discuss the mechanisms

that enable the peer to verify results of the routing protocol. These mechanisms equip

the peer with the necessary knowledge so that it can leave feedback (regarding the quality

of routing) to the nodes involved in the routing path.

2.3.3.3 Implementation

Despite not being in the scope of this thesis, the efficiency requirements arising when

implementing trust systems in P2P could influence the re-designing of the reputation

model. The first challenge is to be able to store and retrieve feedback efficiently. Next,

the computation of reputation metrics must be done in a reasonable time frame. In the

35

literature, progress has been made in addressing these obstacles:

1. Storage and retrieval. Aberer et al. [3] and Li et al. [103] used P-Grid, a struc-

tured P2P overlay, to store feedback which are in the form of complaints and trans-

action’s ratings. The object key used to identify a peer’s feedback is defined as the

hash of the peer’s ID.

2. Computation. Even in a centralized environment, the computation of advanced

reputation metrics, which involves large matrix multiplications or other exponen-

tially complex algorithms, is expensive. In P2P, it becomes even more problematic.

First, the data is scattered across the network. Second, the computation needs to

be split into independent sub-tasks which are carried out at different peers and later

aggregated to yield the overall result. Parreira et al. [74] proposed a decentralized

evaluation of the PageRank metric. Each peer is responsible for a small portion of

the network, and it runs the PageRank algorithm locally. When two peers meet, the

local PageRank results are merged to produce a closer approximation of the global

result. Experiments via simulation showed that with a large number of meetings

among peers, the decentralized PageRank metric closely approximates the central-

ized version.

36

CHAPTER 3

REPUTATION METRICS

This chapter extends an existing reputation metric, namely PageRank, by improving

its resilience against Sybil manipulation, and enabling support for negative feedback. Its

contents come from a joint work with Mark Ryan. It has been discussed in Chapter 2 that

a Sybil-resilient reputation function with support for negative feedback is a building block

for a reliable trust system. Section 3.1 presents the computational model of reputation

in more detail. It is followed by the introduction of a new reputation metric based on

PageRank, called Cluster-based PageRank (or CPR). CPR is designed to be more resilient

to Sybil manipulation than the original PageRank, which is confirmed by experimental

analysis. Finally, Section 3.3 describes another reputation metric based on PageRank,

called PRN, that takes negative feedback into account. This new metric is shown to meet

a set of desirable properties.

3.1 Formal Computational Model of Reputation

As highlighted in Section 2.2, a computational model of reputation consists of two main

components: a feedback mechanism and a reputation metric. This section describes in

more detail the model in a P2P environment.

37

3.1.1 System Model

The building blocks for evaluating reputation are user feedback in the form of transaction

ratings. A transaction could be an upload/download operation in a content distribution

applications, or a buying/selling interaction in an online market. The feedback mecha-

nisms in P2P determine how peers giving ratings to each other. The result is a set of

ratings used by the reputation model.

More formally, a P2P system is modeled as the tuple pP, T , init, resp, Rtq where:

• P � t0, 1, 2, .., pn � 1qu is the set of peers. It is the same as the set of peers first

introduced in Section 2.1, except that the peers’ IDs are in the range r0, nq.
• T � tt0, t2, ..., ts�1u is the set of transactions.

• init : T Ñ P and resp : T Ñ P are functions returning the initiator and responder

of a transaction respectively. In a content distribution application, for example,

the initiator and responder of a transaction is the peer downloading and the peer

uploading the file respectively. Suppose pi, pr P P completed a transaction t, then

initptq � pi and respptq � pr.

• Rt : T Ñ R is a function returning the rating that one peer gives to another. More

precisely, Rtptq is the rating that initptq gives to respptq.
Notice that this model does not stop a peer from leaving ratings to itself. In particular,

there could exists t such that initptq � respptq. From this model, the set of feedback F

mentioned in Section 2.2 can be defined as follows:

F � tpt, respptq, Rtptq | t P T u
3.1.2 Trust Graph

A trust graph GpV, E, W q is constructed from the system model, in which:

38

• V is the set of nodes, which is the same as P.

• E is the set of edges. For any i, j P V , pi, jq P E if there exists t P T such that

initptq � i ^ respptq � j. This means an edge exists between two nodes if they

have engaged in a transaction with each other. The direction of the edge is from

the initiator to the responder.

• W : E Ñ R returns the weight of a given edge. W ppi, jqq, for example, represents the

average rating that i has given to j over the past transactions with j. In particular,

denote Tij � tt P T | initptq � i ^ respptq � ju, then:

W ppi, jqq � ¸ptPTij qRtptq|Tij|
If the graph GpV, E, W q is undirected if it satisfies the condition:�i, j P V
 pi, jq P E � pj, iq P E

Otherwise, it is directed.

3.1.3 Reputation Metric

A reputation metric uses the trust graph to evaluate peers’ reputations. Let Ri be the

reputation of peer i. The metric µ is applied to G and returns reputations for all the

peers. In other words:

µpGq � pR1, R2, ..., Rnq
The simple reputation function in [103], which returns the averages of the feedback

as reputations, can be represented in this model as follows. Let E�
i , W�

i be the set of

edges to i and ratings given to i respectively. More precisely, E�
i � tpj, iq | pj, iq P Eu and

39

W�
i � tW peq | e P E�

i u. Then,

µpGq � pµ1pGq, µ2pGq, ..., µnpGqq
where

µipGq � ¸
xPW�

i

x|W�
i | (3.1.1)

More advanced reputation functions are divided into two groups: symmetric and asym-

metric. They differ mainly in the semantics of Ri: in the former, Ri is agreed by all peers,

whereas in the latter, Ri is subjective to a set of root nodes. As explained in Section 2.3,

this thesis chooses to investigate a symmetric function, namely PageRank.

3.2 Sybil-resilient Metric

A reputation metric is defined as being Sybil-resilient if it does not allow the adversary

to arbitrarily increase its reputation by introducing a large number of Sybils. In other

words, the reputation scores produced by the metric are not easily manipulated by the

Sybil strategies executed by the adversary.

As an example, the reputation metric introduced in [103] and formalized in Sec-

tion 3.1.3 is not Sybil-resilient. Consider an adversary that has been behaving badly

and as the consequence been given bad ratings by other peers. Equation 3.1.1 indicates

that the adversary’s reputation is likely to be low. However, the adversary can cheat the

system by introducing a large number of Sybils, then faking transactions between the

Sybils and itself. The outcomes of those transactions are positive ratings being given to

the adversary. As the result, the adversary reputation, as computed by Equation 3.1.1,

increases proportionally with the number of Sybils. This means the reputation metric is

subject to manipulation.

40

3.2.1 PageRank reputation metric

PageRank [73] is the most well-known symmetric reputation function. It is used by Google

for ranking web pages. PageRank can be explained intuitively by the random surfer model.

In particular, the random surfer starts at a random node i. With a probability p1 � ǫq
where 0 ǫ 1, she moves to a neighbor node j with the choice of j determined by

W ppi, jqq. With the probability of ǫ, she jumps to another randomly chosen node. ǫ is

called the jumping factor , whose typical value used in PageRank is 0.15. The portion of

time the surfer would spend on a node if she continued the walk forever is interpreted as

the node’s reputation. This fits well with the intuition that a good web page is linked

from other good web pages and therefore is visited more often.

Formally, the surfer’s random walk is modeled as a Markov process. Let
ÝÑ
R be the

vector containing R1, R2, .., Rn.
ÝÑ
R

T
, the transposed vector of

ÝÑ
R , is the stationary vector

of the Markov process (the eigen vector with the corresponding eigenvalue of 1). More

specifically, let E�
i , W�

i be the set of edges from i and ratings given by i. In other words,

E�
i � tpi, jq | pi, jq P Eu and W�

i � tW peq | e P E�
i u. T is the n � n transition matrix

derived from G, in which:

Ti,j � $'&'% W ppi,jqq°
W�

i

if pi, jq P E

0 otherwise

PageRank assumes G contains no negative edge, so that W ppi, jqq ¥ 0 for all pi, jq P E.ÝÑ
R is the solution of the following equation:ÝÑ

R
T � p1� ǫq.ÝÑRT

.T � ǫ.
ÝÑ
1

T
(3.2.1)

in which
ÝÑ
1 is the identity vector with n elements. The reputation rank of peer i is the

position of Ri in the list obtained from sorting the elements in
ÝÑ
R in descending order.

Equation 3.2.1 always has a solution. In practice, the iterative method is used to computeÝÑ
R that is very close to the real solution. More specifically,

ÝÑ
R is refined over many

41

NETWORK

n

n
sybil 1

sybil 0

sybil (k−1)

NETWORK

(a)

nn
sybil 1

sybil 0

sybil (k−1)

NETWORK NETWORK

(b)

Figure 3.2.1: Two Sybil strategies for manipulating PageRank, in which the attacker n

introduces k new Sybils and uses them in different ways. (a) is considered in [21]

iterations. Let
ÝÑ
R

it
be the value of

ÝÑ
R at iteration it. One starts with the vector

ÝÑ
R

0
whose

elements have the same value of 1
n
. Next, for it ¥ 0:pÝÑRT q it�1 � p1� ǫq.pÝÑR T q it.T � ǫ.

ÝÑ
1

T

This process is repeated until it converges, i.e. the difference between
ÝÑ
R

it�1
and

ÝÑ
R

it
is

insignificantly small for a value of it.

3.2.2 Sybil Manipulation in the Original PageRank

In the following, the resilience of PageRank against Sybil manipulation is discussed. Un-

less otherwise stated, the edges in G are assumed to have the same weight, i.e. W ppi, jqq �
1 for all pi, jq P E.

Cheng et al. [21] provided a formal analysis of the PageRank ’s resilience against Sybil

manipulation. The Sybil strategy considered in [21] is depicted in Figure 3.2.1a. Peer n is

an attacker. It introduces k new Sybils into the network, each Sybil has a link to and from

n. The attacker also removes its outgoing links to the other nodes in the network. Cheng

42

et al. concluded that n’s new reputation value, R1
n, satisfies the following inequality:

Rn � k.
1� ǫ

2� ǫ
¤ R1

n ¤ Rn

ǫ.p2� ǫq � k.
1 � ǫ

2 � ǫ
(3.2.2)

This result shows that the attacker can boost its reputation considerably by increasing the

number of Sybils. The improvement is more noticeable if the Rn is small. In particular,

with ǫ � 0.15, 1 � 0.46 k
Rn

¤ R1n
Rn

¤ 3.6� 0.46 k
Rn

. If Rn � 0.3, for example, the adversary

needs only 1 Sybil to double its reputation score.

[21] only considered one simple Sybil strategy. In the following, a new investigation

on the vulnerability of PageRank against a different Sybil strategy is presented. In this

strategy, as depicted in Figure 3.2.1b, n adds a link to itself and removes its links to

the other nodes, including the Sybils. Compared with the strategy in Figure 3.2.1a, this

allows the attacker to keep the random walk at the node for longer, which according to

PageRank’s surfer model could result in higher reputation.

Theorem 3.2.1. Let R1
n be the reputation value of node n after executing the Sybil strategy

in Figure 3.2.1b. Then:p2� ǫq.Rn � p1� ǫq.k ¤ R1
n ¤ Rn

ǫ
� p1� ǫq.k

Proof. The detailed proof can be found in Appendix A. Briefly, in addition to the trust

graph G,G 1 representing the network before and after the attack, another graph G2 is

considered. In the network represented by G2, n removes its outlinks and creates a link

to itself without adding Sybils to the network. Let R2
n be the reputation value of n in G2,

then R1
n � R2

n � p1� ǫq.k, and for all i ¤ n, Rn ¥ R2
n

Theorem 3.2.1 indicates that this Sybil strategy has a different impact on the original

43

PageRank. More specifically, because k, Rn ¥ 0 and 0 ǫ 1, the following is true:p2� ǫq.Rn � p1� ǫq.k ¡ Rn � k.
1� ǫ

2� ǫ
(3.2.3)

Rn

ǫ
� p1� ǫq.k ¡ Rn

ǫ.p2� ǫq � k.
1� ǫ

2� ǫ
(3.2.4)

These inequalities imply that compared with the Sybil strategy depicted in Figure 3.2.1a,

the attacker using this strategy can achieve larger minimum and maximum gain in rep-

utation. In other words, this Sybil strategy is more effective at boosting the attacker’s

reputation. If Rn � 0.3 and k � 1, for example, the adversary using the strategy depicted

in Figure 3.2.1a and Figure 3.2.1b can boost its reputation by the factor of at least 2.5

and 4.25 respectively.

3.2.3 PageRank with Undirected Trust Graph

Most of the graphs used for studying PageRank are directed. A trust graph derived from

a typical P2P system, however, is likely to be undirected. In a P2P environment, two

node i and j are likely to have more than one transactions with each other. In some

transactions, i is the initiator and j is the responder; in others, the roles reverse. In a

P2P-based online market application, for example, i might buy an item from j in one

transaction, and it might sell another item to j in another transaction. In trackerless

Bittorrent, i might use the tracker service run at j to download a file in one transaction,

it might provide the tracker service for j in another transaction regarding another file.

In structured P2P routing, i might forward a query to j in one transaction, it might

forward another query from j in another transaction. Assume these scenarios and that

the initiator always leaves a feedback to the responder for each transaction, it follows thatpi, jq P E and pj, iq P E for all i, j. In other words, G is undirected. In practice, two peers

do not always rate each other the same. This section assumes, however, for the sake of

simplicity, that W ppi, jqq � W ppj, iqq � 1.

44

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

6K−node graph with 5 sybils per attacker

Attacker rank

R
an

k
un

de
r

sy
bi

l a
tta

ck

Original attackers rank
PR rank in P2P (power−law)
PR rank in P2P (small−world)
PR rank in Web

Figure 3.2.2: Sybil effect on Web vs P2P graph

For directed graph, simulation results in [21] showed that on average, the attacker

can increase its reputation rank by more than an order of magnitude using as few as 5

Sybils. Figure 3.2.2 illustrates the effect of Sybils on undirected (or P2P) trust graphs,

and compares it with the effect on directed (or Web) trust graphs. The graphs used for

the experiments consists of over 6000 nodes. The Web graph is derived from actual Web

links published in the academic Web link database [85]. In a simulated P2P graph, the

node’s degree follows a power-law distribution. The other generated P2P graph has the

small-world property. The Sybil strategy consists of 5 Sybils. The attacker creates extra

links to and from its Sybils. In the Web graph, the reputation gains agree with the result

in [21]. In the P2P graphs, the improvement in reputations is significantly higher. In

particular, in the small-world graph, the attacker seems to always obtain the highest rank

after introducing the Sybils, regardless of its original rank. An observation that could

help explain this is that the distribution of reputation values in the P2P graphs has a

smaller variance than in the Web graph. In undirected graphs, a link from a low-ranked

node to a high-ranked one requires another link going in the opposite direction, which

is not the case in Web graphs where it is more difficult to be linked from a high-ranked

45

Web page. This could have been the reason behind the small variance in the distribution

of the reputation values, which means a little increase in the reputation value leads to a

noticeable boost in rank.

3.2.4 Cluster-Based PageRank (CPR)

Figure 3.2.2 shows that PageRank is very sensitive to Sybil manipulation in P2P graphs.

This subsection presents a modification to PageRank that alleviates the problem.

The intuition behind the new reputation function is that the attacker creates a graph

region consisting of itself and the Sybils, in which it creates extra links in order to trap

the random walk process inside the region for as long as possible. As a result, the region

would have many internal links and only a small number of links with the rest of the

network. In other words, it forms a typical graph cluster. The denser the region, the more

likely it is controlled by the attacker. Therefore, the clustering information of a graph

can be helpful in detecting and dealing with the Sybil attacks.

In the new metric, called Cluster-based PageRank (or CPR), when the random walk

arrives at a highly clustered region, it adjusts the jumping factor ǫ to quickly jump out of

the region, and therefore avoid being trapped. This modification would not significantly

affect the rank of an originally high-ranked node, because the node would have links from

many parts of the graph, therefore the random walk process would still end up spending

more time at the node.

Given the trust graph GpV, E, W q 1, CPR comprises the following:

• A clustering algorithm CA that partitions G into a set of clusters

C � tC0, C1, ..., Cc�1u. A function CL : V Ñ C can be derived from CA that maps

a node to the cluster it belongs.

• dens : C Ñ R returns the density value of a given cluster in C. Cluster Ci is

consider denser than Cj if denspCiq ¡ denspCjq.
1W ppi, jqq � W ppj, iqq � 1 for any pi, jq P E

46

• dens2ep : R Ñ p0, 1q maps a density value to a value of the jumping factor. In

addition, dens2ep satisfies the following condition:�d1, d2 P R
 dens2eppd1q ¡ dens2eppd2q � d1 ¡ d2

In CPR, each node has a personalized jumping factor, as opposed to every node having

the same global value ǫ. More precisely, the personalized jumping factor ǫi of node i is

defined as:

ǫi � dens2eppdenspCLpiqqq
It can be seen that two nodes belonging to the same cluster have the same jumping factor.

Moreover, if the cluster containing i is denser than that containing j, then ǫi ¡ ǫj , which

means the random walk is less likely to follow the graph links from i than from j. Let M

be a n� n matrix defined as follows:

M � ������p1� ǫ1q.T1,1 p1� ǫ2q.T1,2 � � � p1� ǫnq.T1,n

...
...

. . .
...p1� ǫ1q.Tn,1 p1� ǫ2q.Tn,2 � � � p1� ǫnq.Tn,n

������� 1

n
.

������ǫ1 ǫ2 � � � ǫn

...
...

. . .
...

ǫ1 ǫ2 � � � ǫn

������
where Ti,j is the element of the transition matrix T defined in Section 3.2.1. The reputation

vector
ÝÑ
R is defined as the stationary vector of the Markov process having M as its

transition matrix. Because M is ergodic, i.e. stochastic and irreducible,
ÝÑ
R always exists,

and it is the solution of the equation:ÝÑ
R

T � ÝÑ
R

T
.M

Using the iterative method as in PageRank, Ri can be approximated by iterating the

following:

Rit�1
i �

j̧

p1� ǫjq.Mj,i �Rit
j � 1

n
.

j̧

ǫj .R
it
j (3.2.5)

To implement CPR, one needs to implement CA and specify the dens and dens2ep

47

functions. Graph clustering is a NP-complete problem. There are different approaches in

finding good clusters in graphs: multi-level, hyper-graph, etc. In this thesis, a Markov-

based clustering algorithm, called MCL [99], is used. MCL has been shown to produce

good clusters out of large graphs. In MCL, a random walk starting from a node in a dense

region tends to stay within the region for a long time before moving on to another region.

Given a transition matrix M , the algorithm consists of two main operations:

• The expansion operation, EXTepMq, extends the current random walk to e extra

hops, i.e. EXTepMq � Me

• The inflation operation with a parameter lr, Γlr, promotes the probability of jumping

to a node in the local region: ΓlrpMq � M 1 where M 1 is a matrix in which

M 1
i,j � pMi,jqlr

ņ

j1�0

pMj1,jqlr
These operations are applied alternately on M until reaching the matrix M 1 that is doubly

idempotent, i.e. EXTepM 1q � M 1 and ΓlrpM 1q � M 1. The matrix M 1 is extremely sparse,

and its structure is interpreted as consisting of independent clusters.

3.2.5 Experimental Study of CPR

3.2.5.1 Setup

Using the results in [89, 107], P2P trust graphs are generated that resemble real P2P sys-

tems. In particular, small-world graphs are created using the Watts-Strogatz model [101],

and have the clustering coefficient value of 0.018. Power-law graphs are created using the

Eppstein model [34]. The sizes of these graphs vary from 1,000 to 50,000 nodes.

The attacker’s initial rank varies from the top 1% to 95%. A number of Sybils, nSybils,

as large as 5% of the total number of nodes, are introduced into the network. The attacker

has links to and form the Sybils. The Sybils do not have links among them.

An open-source implementation of MCL [98] is used to derive clusters from the graphs.

Let iLpCiq and eLpCiq be the functions returning the number of external and internal links

48

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

20K−node power−law graph, 7 sybils per attacker

Attacker rank

R
an

k
un

de
r

sy
bi

l a
tta

ck

Original attackers rank
PR rank
CPR rank

Figure 3.2.3: Sybil resilience under a power-law graph with 7 Sybils per attacker

of the given cluster, then denspCiq � eLpCiq
2.iLpCiq and dens2eppxq � 0.15x. Finally, the value

of ǫ is 0.15.

3.2.5.2 Sybil resilience

Figure 3.2.3 and 3.2.4 illustrate the resilience of CPR against Sybil manipulation in com-

parison with the original PageRank. CPR shows significantly better resilience. In small-

world graphs (Figure 3.2.4), the attacker’s new ranks are always close to the initial ones.

More interestingly, for most of the time, the attacker gets lower ranks than before, i.e. it

gets punished. In power-law graphs (Figure 3.2.3), attacks caused by high-ranked nodes

are hard to detect. But as the initial rank of the attacker declines, CPR becomes more and

more effective in dealing with the attacks. More specifically, when the attacker’s initial

ranks are below the top 50%, its new ranks are close to the original ones, and sometimes

event lower. Figure 3.2.5 shows the resilience of CPR when varying the number of Sybils.

The attacker’s initial rank is around 10, 000. Its new ranks are close to the initial one,

even when it controls up to 1000 Sybils.

49

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

20K−node smallworld graph, 7 sybils per attacker

Attacker rank

R
an

k
un

de
r

sy
bi

l a
tta

ck

Original attackers rank
PR rank
CPR rank

Figure 3.2.4: Sybil resilience under a small-world graph with 7 Sybils per attacker

200 100 10005 10 50

1

1.5

0.5

0.2

Ranks manipulation under MPR, with varying number of Sybils on 20K−node graphs

Number of sybils per attacker

N
ew

 r
an

k
/ o

ld
 r

an
k

ra
tio

PL graph
SW graph

Figure 3.2.5: Resilience against Sybil attacks, with varying number of Sybils per attacker.
The attacker’s initial rank is around 10, 000.

50

100 1000 20000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Minimum K−distance of top−T ranks produced by PR and CPR for 20K−node graphs

Top T ranks

M
in

im
um

 K
en

da
ll

di
st

an
ce

PL graph
SW graph

Figure 3.2.6: Minimum Kendall distance of top-T ranks produced by PageRank and by
CPR

3.2.5.3 Intuitiveness of CPR rankings

In the absence of Sybils, the intuitiveness of the reputations produced by CPR can be as-

sessed by comparing them with what produced by PageRank. The similarity between

the two rank lists is measured by the normalized minimum Kendall distance (or K-

distance) [35] metric. Essentially, this metric quantifies the number of pairwise disagree-

ment between two lists. The larger the distance, the more dissimilar the two lists are. As

shown in Figure 3.2.6, the power-law and small-world graphs have different K-distances

to the original PageRank. In both cases, however, the top-100 ranks produced by CPR

are quite similar to those produced by PageRank. More specifically, the K-distance is

always smaller than 0.4. The similarity increases as longer lists are compared. For the

lists containing all the nodes, the K-distance is under 0.2 (and less than 0.05 in case of

the small-world graph).

51

3.2.6 Related Work and Discussion

This section has discussed the impact of Sybils in the context of reputation metrics for

P2P systems. It assumes the existence of Sybils in the system, then analyzes and proposes

a method to mitigate the effect. Danezis et al. [24] and Castro et al. [16] studied the effect

of Sybils in the context of P2P routing. [24] took advantage of the bootstrap graph during

routing to avoid having a small set of nodes being predominantly present in all the query

paths. In other words, it proposed to alleviate the impact of Sybils by diversifying the

nodes used in routing. It assumed existing off-line relationships between nodes, and a

node joins the network via another. During routing, the statistics of the nodes (in the

bootstrap graph) that appear in the previous query paths is used to determine the next

hop. [16] discussed two approaches that restrict the number of Sybils introduced into

the network. One approach relies on a central authority (CA) to assign an unique ID

to each participant. The other approach makes use of cryptographic puzzles during the

assignment of node IDs, which only limits the rate at which Sybils can be introduced, but

does not completely eliminate the attack.

This section has investigated PageRank’s resilience against Sybil manipulation in undi-

rected trust graphs. The result led to the design of a new reputation metric, namely CPR,

that is based on graph clustering. Experimental analysis of the metric that uses MCL as

the clustering algorithm suggests that CPR is intuitive and more resilient than PageRank

in undirected graphs. Scalability is the weakness of MCL, for it involves many large-matrix

multiplications. However, there exists a number of other clustering algorithms [50], since

cluster analysis has been an active area of research. A comparative study of those algo-

rithms in the context of CPR could be an interesting direction for the future work. In

addition, the future work could investigate the effect of more complex dens and dens2ep

functions on CPR.

Finally, the undirected graphs studied in this section have the common property that

W ppi, jqq � W ppj, iqq � 1 for all pi, jq P E. This is, to an extent, an oversimplification of

the real P2P systems. In particular, the weights W ppi, jqq and W ppj, iqq may not be the

52

same, and either of them may be negative. When W ppi, jqq � W ppj, iqq but W ppi, jqq ¡ 0

and W ppj, iqq ¡ 0, it means i and j both rate each other positively, but they have different

degrees of satisfaction with each other behavior. In this case, a possible hypothesis is

that the result in Section 3.2.3 can be extrapolated, i.e. the Sybil effect would have a

similar trend to what depicted in Figure 3.2.2. It would have been caused by the small

variance in the distribution of the reputation values. More work is needed to confirm or

invalidate this hypothesis. Finally, both PageRank and CPR do not consider the case

when W ppi, jqq 0 or W ppj, iqq 0. The next section improves upon PageRank with

added support for negative edges.

3.3 Support for Negative Feedback

Both PageRank and CPR are based on the Markov model. The transition matrices need to

be strictly non-negative for the stationary vectors to exist. As the consequence, PageRank

and CPR lack the support for negative feedback. This section first discusses the nature

of feedback in reputation systems. It then argues for the importance of having negative

feedback in the system, which then leads to the design of a new reputation metric based

on PageRank, called PRN.

3.3.1 Negative Feedback is Different from Distrust

In the (computing) literature, the trust graph GpV, E, W q is commonly used in studying

the notion of trust. In many works such as those from Maurer [65], Guha et al. [45]

and Ziegler et al. [108], W ppi, jqq ¡ 0 indicates that i trusts j to the degree of W ppi, jqq.
Interestingly, in [3], [39], [44] and [60], W ppi, jqq 0 is used to represent a low level of

trust, which is then identified as distrust. These interpretations of the trust graph are

misleading, for the following reasons.

First, to say we distrust you means that we believe you do not have the right intentions

towards us or that you are not competent enough to do what we trust you to do. Distrust

53

includes both the absence of trust, which is different from having a low level of trust, and

something more — suspicion [67].

Second, according to the definition of trust in Section 2.2, trust (and similarly distrust)

is a boolean-valued relation. Therefore, it is inaccurate to represent this concept with real

values.

Finally, assigning W ppi, jqq with a value in t�1, 1u raises both philosophical and tech-

nical challenges:

• W ppi, jqq � 1 or W ppi, jqq � �1 indicates that i either trust or distrust j, but

not both. However, research in social sciences has shown that trust and distrust

can co-exist. i may trust j in one task, but distrust it in another task. Even

for the same task, i may trust j at one time, but distrust it at another time. It

has also been shown that both trust and distrust are important to a functional

society. Without distrust, one makes himself vulnerable to unnecessary risks when

the trustee misbehaves. Without trust, one is deprived of the benefits that would

have resulted from trusting. Luhmann [64] suggested that trust cannot exist without

distrust, for trust and distrust simplify humans’ process of making decisions. Trust

reduces the complexity by compelling one to take actions that expose her to risks;

distrust reduces the complexity by inducing her to take measures that reduce risks.

McKnight et al. [67] argued that trust and distrust have distinct emotions. While

trust is like a “docile zoo elephant munching on hay”, distrust is like a “raging wild

bull elephant protecting the herd from attack”.

• The question concerning how distrust is propagated in a network is difficult to

answer. Trust can be transitive, that is assuming A trusts B and B trusts C, then

it follows that A trusts C. But the same cannot be said for distrust.

In this thesis, W ppi, jqq is the feedback that i gives to j, which represents the degree

of trustworthiness of j from the perspective of i. Being a rating, W ppi, jqq can be given

any value in R. The decision to trust and distrust a peer can be made from inspecting

54

Positive Negative

Feedback

Reputation Trustworthiness

Distrust

Trust

Figure 3.3.1: The relationship between feedback, reputation, trustworthiness, trust and
distrust. Feedback is combined into reputation by using a reputation metric. Reputation
can be used as a direct indicator of trustworthiness. The decision to trust or distrust is
positively or negatively influenced by the degree of trustworthiness respectively.

the peer’s trustworthiness. More specifically, W ppi, jqq ¡ 0 indicates a positive evaluation

of j’s trustworthiness by i. When i rates j as untrustworthy, it assigns a negative value

to W ppi, jqq. The feedback is combined (by a reputation function) to produce reputation

values. As indicated in Section 2.2, a high reputation value implies a high level of trust-

worthiness. Benamati et al. [10] hypothesized that one’s belief of another trustworthiness

negatively influences her distrust decision. This hypothesis was later verified by the em-

pirical data from the interactions between users and online banking systems. The relation

between negative feedback and distrust is shown in Figure 3.3.1.

3.3.2 Why Negative Feedback?

This section argues that for reputation to be a reliable indicator of trustworthiness, at

least two types of feedback: negative and positive are needed. While positive feedback is

used for rewarding good behavior, negative feedback is a means of punishing bad behavior.

The terms negative and positive are purely qualitative, they do not imply the numerical

value of feedback. For example, in a binary feedback system like the one used by eBay,

negative and positive feedback have the value �1 and 1 respectively. In a Amazon-like

feedback system based on 1-5 star ratings, feedback with the value less than 3 may be

considered as negative.

Consider a feedback system that supports only positive feedback. Translated into the

trust graph G, it means pi, jq P E and W ppi, jqq � 1 if and only if i had a satisfactory

transaction with j. Transactions in which one party cheats are not represented in G. The

55

reputation of node i is therefore an indicator of i’s popularity among other peers, and

is proportional to the number of good transactions that i had with others. This value

is clearly not an accurate reflection of i’s trustworthiness, because it does not take into

account the bad behavior of i. For example, let x be the number of positive feedback

received by i and j from a same set of nodes. Assume that x is reasonably large, and i

has cheated in 2.x transactions, while j has never cheated. i and j would have the same

reputation (at least when PageRank is used as the reputation metric), but i is in fact less

trustworthy than j.

Another implication of the hypothetical reputation system above is that it induces

peers to cheat, because cheating goes unpunished and the peers are able to build up high

reputation just by having many transactions. As a consequence, the level of distrust

will increase, resulting in a low level of cooperation in the system. Negative feedback

is the necessary extension, because it punishes peers that behaved badly. A reputation

metric taking both positive and negative feedback into account is likely to produce a

good indicator for trustworthiness, since peers having high reputations must not have

been cheating frequently in the past. Furthermore, peers are discouraged from cheating

in order to maintain their reputations. Dellarocas [27] showed analytically that a sim-

ple feedback mechanism with binary values (one for positive feedback, and another for

negative feedback) can achieve maximum level of cooperation between traders in online

environments. Interestingly, the effect of reputation on the price and level of cooperation

cannot be improved with more complex feedback systems such as a 1-5 star rating system.

3.3.3 Reputation Metric with Negative Feedback

The previous section has explained the importance of (qualitatively) negative feedback.

PageRank and CPR use numerically positive trust graphs, i.e. 0 W ppi, jqq ¤ 1 for

all pi, jq P E. The range p0, 1s can be split into two sets representing negative and

positive feedback. For instance, let 0 nl, nr, pl, pr ¤ 1 be the end points of the rangepnl, nrq and ppl, prq. An edge pi, jq is considered as representing a negative feedback

56

if W ppi, jqq P pnl, nrq. When W ppi, jqq P ppl, prq, pi, jq is considered as representing a

positive feedback.

An advantage of this approach, splitting the range p0, 1s to represent both positive and

negative feedback, is that PageRank can be used as it is. However, it is the interpretation

of the results that poses problems. More specifically, PageRank has an interesting property

that for any node i and j, E�
i � E�

i1 implies Ri ¤ Ri1 1. Suppose W ppj, i1qq P pnl, nrq for

all pj, i1q P E�
i1 , then the fact that Ri ¤ Ri1 is not intuitive, because i1 has received more

negative feedback and should be given lower reputation.

The new metric proposed in this section, called PRN (for PageRank with Negative

feedback), uses numerically negative values to represent negative feedback. Specifically,

the co-domain of W is extended to the range r�1, 1s. The main ideas behind PRN are as

follows:

1. Similar to PageRank, Ri is proportional to the reputations of the nodes that have

links to i and the values of the links. However, unlike in PageRank, only nodes with

positive reputations can contribute to i’s reputation. The intuition is that a node

with negative reputation should not be able to influence the reputations of others.

2. As in PageRank, node i also gets a reputation value of ǫ
n

from other nodes that do

not have links to i.

Let T and ǫ be the transition matrix and jumping factor defined in Section 3.2. Then, Ri

is a solution of the following equation:

Ri � p1� ǫq.
Ŗj¡0

Tj,i.Rj � ǫ

n
(3.3.1)

If a solution for Equation 3.3.1 exists, I conjecture that it can be approximated using

the iterative method similar to the one used in PageRank. More precisely, let R0
i be the

1This can be derived directly from Equation 3.2.1

57

initial value of Ri which is chosen at random. Then for it ¥ 0:

Rit�1
i � p1� ǫq.

Ŗit
j ¡0

Tj,i.R
it
j � ǫ

n
(3.3.2)

in which Rit
i is the value of Ri at the itth iteration. Let t be the number of iterations after

which the difference between
ÝÑ
R

t
and

ÝÑ
R

t�1
is insignificantly small, then Rt

i can be used

as i’s reputation.

3.3.4 Experimental Study

Experiments (via simulations) were carried out to evaluate five properties of PRN:

1. The iterative method for approximating Ri converges. In particular, for a reasonably

large value of t, the difference between
ÝÑ
R

t
and

ÝÑ
R

t�1
gets very small.

2. A node having links from others with high reputations will have high reputation.

3. Receiving negative feedback from others with positive reputations will reduce the

node’s reputation.

4. A node with low or negative reputation has small (or zero) impact on others’ repu-

tations.

5. Being resilient against Sybil manipulation.

3.3.4.1 Experiments Setup

The trust graph G used in all the experiments contains 49, 290 nodes. It is derived from

the Epinion data-set [94], which has almost 500, 000 users ratings. An user in Epinion is

rated for her reviews about certain topics. The edges in G have values in t�1, 1u. The

fraction of negative edges in G, denoted as rNEdges, varies from 0.1 to 0.5.

The attacker is introduced to the network as a new node. The distributions of nodes

having link from (and similarly to) the new node, called the edge distributions, have the

58

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

negRatio=0.1 negRatio=0.3 negRatio=0.5

N
ew

 n
od

e’
s

ra
nk

Ratio of negative edges

Rank of the new node in graphs with differen ratio of negative edges

Edge distribution = (0.25, 0.25, 0.25, 0.25)
Edge distribution = (0.1, 0.4, 0.4, 0.1)
Edge distribution = (0.5, 0.2, 0.2, 0.1)
Edge distribution = (0.1, 0.2, 0.2, 0.5)

Figure 3.3.2: Ranks of the new node with 7 positive incoming edges

form of pd1, d2, d3, d4q. In particular, a fraction of d1 nodes are from the top 25% nodes

with highest ranks, d2 from the next 26 � 50%, d3 from the next 51 � 75% and d4 from

the set of nodes ranked in the bottom 25%. The fraction of negative edges in the set of

edges coming to and from the attacker is rNEdges.

A simple Sybil strategy is implemented, in which the number of Sybils varies from 3

to 10. The strategy is the same as the one depicted in Figure 3.2.1b, except the attacker

does not remove its links to other nodes, nor does it create a link to itself.

Finally, as in PageRank and CPR, the value of ǫ is 0.15.

3.3.4.2 Results and Analysis

First, the experiments suggest that the iterative method converges quickly (Property 1).

Interestingly, the rate of convergence is slower than that of PageRank. However, as the

number of iterations increases beyond 60, the differences between the subsequent runs

become insignificantly small.

Figure 3.3.2 and 3.3.3 show the ranks of the new node having 7 and 15 incoming edges,

while varying nEdges and the edge distribution. The attacker’s reputation is highest and

lowest when the edge distribution is p0.5, 0.2, 0.2, 0.1q and p0.1, 0.2, 0.2, 0.5q respectively.

In the former, most edges come from nodes with high reputations. In the latter, most edges

59

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

negRatio=0.1 negRatio=0.3 negRatio=0.5

N
ew

 n
od

e’
s

ra
nk

Ratio of negative edges

Rank of the new node in graphs with differen ratio of negative edges

Edge distribution = (0.25, 0.25, 0.25, 0.25)
Edge distribution = (0.1, 0.4, 0.4, 0.1)
Edge distribution = (0.5, 0.2, 0.2, 0.1)
Edge distribution = (0.1, 0.2, 0.2, 0.5)

Figure 3.3.3: Ranks of the new node with 15 positive incoming edges

 100

 1000

 10000

 100000

 100 1000 10000 100000

N
ew

 r
an

k
af

te
r

ha
vi

ng
 a

 n
ew

 n
eg

at
iv

e
ed

ge

Original rank

Effect of negative incoming edges to nodes’ rank

Origin node rank = 3153
Origin node rank = 18516

Origin node rank (with negative score) = 49291

Figure 3.3.4: The effect of negative edges on reputations. rNEdges � 0.1

are from nodes with low reputations. These results suggest that a node receiving positive

feedback from other nodes with high reputations also have high reputation (Property 2).

It is interesting to notice that the new node’s rank increases with rNEdges, and with

the number of incoming edges. The possible explanations are as follows. First, as rNEdges

increases, more nodes are assigned negative reputations, and the variance in reputation

values decreases. Second, adding more positive incoming links increases the reputation

value, which subsequently improves the rank.

Figure 3.3.4 illustrates the effect of negative feedback on reputations. In the experi-

ments, negative edges come from the attacker whose rank is 3153, 18516 or 49291. The

60

 1000

 10000

 100000

 46000 36000 21000 6000

N
ew

 r
an

k

Original rank

Effect of the Sybil attack on the modified PageRank, the graph with 10% of negative edges

No Sybil
3 Sybils
7 Sybils

10 Sybils

Figure 3.3.5: Effect of Sybils in the graph having negative edges

 1000

 10000

 100000

 46000 36000 21000 6000

N
ew

 r
an

k

Original rank

Effect of the Sybil attack on PageRank, the graph has no negative edges

No Sybil
3 Sybils
7 Sybils

10 Sybils

Figure 3.3.6: Effect of Sybils in the graph having no negative edges

nodes receiving the negative edges have their original ranks shown in the x�axis. Their

new ranks, after the edges are added, are represented in the y�axis. It can be seen that

the attacker with a higher rank can bring the other’s reputations down more substantially

(Property 3). The attacker negative reputation has no impact on the other’s reputations

(Property 4). For example, the attacker whose rank is 3153 brings the rank of another

node from 2342 down to 29289. With the rank of 18516, it reduces the rank of another

node from 1834 down to 6044. With negative reputation (ranked 49291), however, the

attacker has no impact on the reputations of others.

Finally, Figure 3.3.5 illustrates the resilience of PRN against Sybil manipulation in the

61

graph having negative edges, in comparison to the resilience of PageRank in the positive

graph depicted in Figure 3.3.6. The attacker in PRN gains higher rank than in PageRank,

with the same number of Sybils, which can be explained by the smaller variance in the

reputation values produced by PRN. The attacker’s rank produced PRN differs to the

one computed by PageRank by less than an order of magnitude. Therefore, the Sybil

resilience of PRN can be considered as comparable with that of PageRank (Property 5).

3.3.5 Related Work and Discussion

In [45] and [108], the authors proposed methods to propagate trust and distrust in P2P-

like environments. It has been argued earlier in Section 3.3 that it can be misleading to

represent trust and distrust as real-valued edges in the trust graph. Instead, by considering

the edges as representing negative and positive feedback, both [45] and [108] offered

different approaches that integrate negative feedback into reputation metrics. In [45],

negative feedback is converted to positive and a new graph is constructed in addition to

the original graph. Two sets of reputation values are evaluated on the two graphs and

then combined together. As discussed in [108], this approach may yield counter-intuitive

results. In particular, it super-imposes the computation of negative reputations after

the computation of positive reputations, therefore allows for a node with equally high

numbers of positive and negative feedback to have disproportionately large impact on

others. In [108], an Advogato-like function that takes into account both types of feedback

is presented. This reputation function is asymmetric, and therefore is different from PRN

which is symmetric.

As discussed in Section 3.3.2 and Section 3.3.3, the word negative does not impose

that negative feedback should only be represented by negative numbers. Section 3.3.3 has

argued that it is not straightforward to simply take a range p0, xq � p0, 1s to represent

negative feedback, and then to use the PageRank function as it is. It would be interesting

to investigate on modifying PageRank or other advanced reputation function that use a

range of positive numbers to represent negative feedback.

62

The results from Section 3.3.4 are encouraging, but only preliminary. More experi-

ments are needed to further validate the properties of PRN. It would also be interesting

to examine PRN’s performance in undirected graphs, which could lead to exploring a

combination of PRN and CPR. Finally, a more formal analysis is necessary to study

mathematical properties of PRN, or at least to conclude whether the iterative method

used to compute PRN reputations (Equation 3.3.2) does indeed converge.

63

64

CHAPTER 4

DETECTION OF MISBEHAVIOR IN P2P USING

TRUSTED PLATFORM MODULES

Feedback mechanisms rely on peers’ abilities to evaluate outcomes of their transactions

with each other. This implies the need for a peer to be able to securely detect if an-

other has misbehaved in the transaction. This chapter discusses how peers can achieve

such capabilities using security devices. It considers two case studies that demonstrate

how nodes can misbehave in different ways. The chapter starts with an overview of the

challenges in detecting misbehavior in structured P2P, and outlines the two case studies.

Section 4.2 introduces the Trusted Computing paradigm and Trusted Platform Modules

(TPMs). The following sections present in detail new protocols for each case studies that

allow an honest peer to tell if another peer has misbehaved. These protocols are results of

collaborative efforts involving Mark Ryan and Tom Chothia. Finally, Section 4.5 discusses

the related works and open issues.

4.1 Overview

Recall that the reputation model, described in Section 3.1.1, consists of T — the set

of transactions — and a partial function Rt : T Ñ R returning the rating that a peer

receives for a given transaction. For a transaction t, Rtptq represents the feedback given to

respptq of the transaction t, and Rtptq P t�1, 1u. So far, the model has implicitly assumed

65

that Rt can be readily implemented in P2P settings. However, this section argues that

in structured P2P, the implementation of Rt is not always straightforward.

This thesis investigates the nature of transactions and the realization of Rt at two

layers of abstraction: routing layer and application layer. As shown in Figure 2.3.1, the

routing layer implements the lookup protocol and returns the root node of a given search

key. The application layer consists of protocols specific to the application. Most existing

P2P applications based on structured overlays use Chord, Pastry or Kademlia. Given a

key k, these overlays use very similar functions to determine the root node of k. In Chord,

rootpkq is the node closest on the right of k in the ID ring. In Pastry or Kademlia, the

root node is the one with closest numerical or XOR distance to k. When the correctness

of rootpkq is the main concern, any of these overlays can be chosen to study, because the

results in one overlay can be translated to the results in another overlay. In fact, this and

the following chapters (except for Chapter 7) assume that Chord is the underlying the

overlay.

At the routing layer, a transaction involves a peer asking another to route its query for

a key k. It is assumed in this thesis that the routing protocol always terminates, which

means that it is always possible to define the transaction’s outcome to be another node

returned as the root node of k. The searching peer then gives ratings to other peers in the

routing path. If the returned node is the correct destination node of k, positive feedback

is given. Otherwise, the peers in the routing path are considered as having misbehaved,

and are given negative feedback. However, detecting such misbehavior, or in other words

verifying if the returned node is the correct root node, is difficult because peers do not

have full knowledge of which nodes currently in the network. Furthermore, adversarial

nodes might collude to impersonate the destination node.

At the application layer, a marketplace application based on structured P2P is con-

sidered. In such a system, a seller publishes its offer for an item k to a listing node that

is in fact the root node of k. A transaction involves a buyer finding the offers for a par-

ticular item at the listing node. The transaction’s outcome is a list of offers for the items

66

that have been published by the sellers. It is difficult to verify if the list is complete,

because the listing node has total control over the offers and can decide not to report

them. If the list returned to the buyer is incomplete, the listing node is considered as

having misbehaved, and negative feedback is given accordingly.

The main focus of this thesis is on protocols that make the misbehavior mentioned

above detectable by honest peers. This chapter presents protocols based on Trusted

Platform Modules (TPMs). At the routing layer, the TPMs are used for guaranteeing

the freshness of the neighbor information. At the application layer, the TPMs are used

for building undeniable histories of transactions that can be verified by the buyer. More

efficient protocols using a new type of secure hardware are discussed in Chapter 5.

4.2 Trusted Computing and Trusted Platform

Modules

4.2.1 Trusted Computing and TPMs

Trusted Computing is a collection of current and future initiatives to root security in

hardware that have been under development since about 2003. It is set to transform the

computing security landscape over the next decade. Currently, the most noticeable mani-

festations are the Trusted Platform Module (TPM), Intel’s Trusted eXecution Technology

(TXT) and Virtualization Technology (VT-d).

The TPM is a hardware chip currently shipped in high-end laptops, desktops and

servers made by all the major manufacturers and destined to be in all devices within the

next few years. It is specified by an industry consortium [95], and the specification is now

an ISO standard [1]. There were 100 million TPMs in existence in 2008, and this figure

is expected to reach 250 millions in 2010 [96, 97]. The TPM provides hardware-secured

storage, secure platform integrity measurement and reporting, and platform authentica-

tion. Software that uses this functionality will be rolled out over the coming years. More

67

specifically, TPMs are designed as passive devices that enable the following:

1. Secure storage. TPM is the root of trust for storage. Encryption keys are gen-

erated from and protected by a Storage Root Key (SRK). The SRK is embedded

inside the TPM.

2. Platform authentication. A TPM can create a public/private key pairxKPriv ,KPuby, called an Attestation Identity Key (AIK), and uses this to authen-

ticate itself to another party. The authenticity of the AIK can be certified by a

certificate authority (Privacy CA), or directly by using the Direct Anonymous At-

testation (DAA) protocol [12]. The latter does not require an online, trusted party

to be available when the authenticity of the AIK is being verified. In the protocols

using TPMs that are proposed in this thesis, peers identities are linked in certain

ways with the AIKs. Therefore, the authentication protocol is essential to establish

peers’ identities. Additionally, it limits the adversary’s capability of introducing a

large number of fake identities (or Sybils).

3. Platform measurement and reporting. TPM is the root of trust for measuring

the platform, and for reporting the measurements. TPM measures an application

before passing the control to it. The chain of trust up to the point when the

application is running is:

TPM Ñ BIOS Ñ Hardware Ñ Bootloader Ñ OS Ñ Application (4.2.1)

Here, X Ñ Y means that X measures Y , then extends the PCR, and finally passes

control to Y . TPM has a set of Platform Configuration Registers (PCRs), to which

integrity measurements of software (hashes of the binaries) are recorded. In par-

ticular, a new integrity measurement (IM) is recorded to a PCR by the following

operation:

PCR � SHA-1pconcatpPCR, IMqq
68

Here, the arrow means assignment, and concat is the bitwise concatenation function.

The PCR values are used as a report of the platform’s current configuration, as they

contain descriptions of software that has run or is running. To prove the authenticity

of the report, the TPM signs the PCR values with one of its AIK.

The implementation of TPM also supports other features, two of which are monotonic

counters and transport sessions.

4.2.1.1 Monotonic counters.

TPM has a set of monotonic counters, each is identified by a unique counter ID. The

counters can only be updated by incrementing the current values. The TPM restricts the

rate at which updates happen, so that the values do not wrap around, at least not until

after a number of years. On counter cid, the following operations are possible:

1. TPM ReadCounterpcidq: returns the current value of the counter cid.

2. TPM IncrementCounterpcidq: increments and returns the new value of the counter

cid.

4.2.1.2 Transport sessions.

TPM commands can be grouped and executed together within a transport session. The

session can be exclusive, meaning that no other commands can be executed outside of

the session when it is active. Furthermore, the session’s log, which includes inputs and

outputs of the commands executed in the session, can be signed by the TPM with one of

its AIKs.

1. TPM EstablishTransportpexcq: sets up a transport session. The flag exc indicates

if the session is exclusive. A session handle, sHandle, is returned.

2. TPM ExecuteTransportpcomm, sHandleq: executes comm, which contains a wrapped

TPMs command, inside the session sHandle.

69

1. sHandle <- TPM_EstbalishTransport(true)

2. if (mode=read)

wc <- wrap command TPM_ReadCounter(cid)

else

wc <- wrap command TPM_IncrementCounter(cid)

3. TPM_ExecuteTransport(wc, sHandle)

4. sig <- TPM_ReleaseTransportSigned(sHandle,n)

5. return sig

Figure 4.2.1: getSignedCounterValues(mode, n, cid) is executed by the local TPM at B.
Two modes: ’read’ and ’inc’ can be invoked that return different signatures. The TPM
uses the private part of the AIK that can be authenticated to other parties as the signing
key for the transport session’s log.

3. TPM ReleaseTransportSignedpn, sHandleq: closes the transport session and signs

its log with an AIK, using n as the non-replay nonce.

4.2.2 A Simple Protocol Involving Monotonic Counters and Trans-

port Sessions

Figure 4.2.1 illustrates a procedure in which the current value of a given counter is read

and signed by the TPM. Let KPriv be the signing key, which could be the private part

of an AIK. If the mode is set to ’read’, the returned signature contains the current value

of counter cid, called value, and a non-replay nonce n. The signature is denoted as:xread, cid, value, nyKPriv

If the mode is ’inc’, the returned signature is xinc, cid, value, nyKPriv where value is the

latest value of the counter cid after it has been incremented.

Suppose that agent A is interested in the latest value of the counter cid of agent B’s

TPM. Protocol 4.2.1 illustrates how A obtains the latest value of cid. First, A sends the

counter ID and a fresh nonce n to B. B then executes getSignedCounterValuespread, n, cidq
on its local TPM, which first establishes a transport session with the TPM, then executes

TPM ReadCounterpcidq within that session. Finally, the session is closed and the TPM’s

70

A B

cid, nxread, cid, value, nyKPrivB
�

getSignedCounterValuespread, n, cidqxread, cid, value, nyKPrivB

Protocol 4.2.1: A queries B for the latest value of its counter cid

signature on the session’s log is returned. The TPM uses the private part of its AIK that

can be authenticated to other parties as the signing key. n is used as the non-replay nonce

in the returned signature. It is not possible for B to generate such a signature without

having its TPM executing the TPM ReadCounterpcidq command inside a transport session.

4.2.3 Why Not Attestation?

Most TPMs’ features are originally designed to enable platform remote attestation. The

basic idea is that the local platform (the attestee) uses the TPM to measures and faithfully

reports its states to a remote party. Having had the report, the attester then decides if

the attestee’s platform is trustworthy based on its own list of approved software.

Using an attestation-based approach, the problem of detecting misbehavior becomes

that of attesting if remote peers are running trustworthy P2P software. The implication

goes beyond reputation systems, as any problem in a P2P system can be solved by having

all peers running the same trustworthy software. In practice, there are at least three

approaches for software attestations, all having serious drawbacks:

1. Binary attestation. Suppose a trustworthy P2P application A were written, whose

binary hash is HA. To check if a remote peer is not misbehaving, the verifying peer

must make sure that: (1) all the components in the chain of trust (Equation 4.2.1)

are trustworthy (2) the application A is running (3) the communication channel

71

Hypervisor kernel (XEN, etc..)

Rich (fully featured) OSThin OS

App App App App App

Hardware with TPM

Figure 4.2.2: Attestation based on virtual machines. The hypervisor kernel provides
multiple hardware interfaces, so that more than one operating systems could utilize
the underlying hardware at the same time.

with A is secure. In practice, this approach has serious weaknesses [19]:

• It is difficult to verify if the P2P software is trustworthy.

• Many different applications behave the same way but have different hash values.

In addition, a particular software might have many different versions, each

version hashes to different value. The list of trustworthy binary hashes, which

the attester must maintain, could be infeasibly long.

2. Virtual machine based attestation. Notice that in the binary attestation approach,

attesting an operating system is one of the biggest challenges, as the operating

system may change regularly. In this approach, a hardware-based hypervisors like

Xen is used so that applications can run on top of thin operating systems which

are simple enough for them not to be changed frequently (Figure 4.2.2). Even

though the list of trustworthy software is then smaller and thus easier to manage,

the attester still needs to verify the integrity and especially the trustworthiness of

the other components in the chain of trust. The latter is the most difficult.

3. Property-based attestation. In this approach, it is the properties of the software that

get attested, not the binary hash [19]. As a consequence, two different applications

are attested as being the same if they have the same set of properties. This could

72

enormously reduce the work by the attester in keeping track of the variations and

updates of the software. The biggest obstacle, however, is how to specify and verify

properties of software. Code analysis, proof carrying code and relying on humans

are the mentioned techniques. But current effort in these fields is not sufficient to

correctly identify and analyze all the possible behavior of the software.

In summary, to use attestation with TPMs in practice, many challenges will needed

to be addressed. Based on its current stage of development, software attestation is not

used in this thesis. Instead, the protocols presented in this chapter make use of the low-

level features of the TPM, particularly platform authentication, monotonic counters and

transport sessions.

4.3 Detection of Misbehavior at the Routing Layer

(DTR1)

This section presents the mechanism for DeTecting misbehavior at the Routing layer,

called DTR1 (as opposed to DTR2 which is presented in the next chapter). The protocols

are devised in collaboration with Mark Ryan. It enables peers to assess the outcome of

routing transactions. More specifically, given a node claiming to be the root node of a

key k, an honest peer can verify if it is the correct root node of k, namely rootpkq, in the

current configuration of the network.

As briefly explained in Section 4.1, the verification is difficult, because of adversarial

nodes colluding to impersonate the root nodes. In Figure 2.1.2 (shown again below), for

example, the adversary controlling node 498 and 775 could convince node 144 that 775

is the root node of key 550 (the correct root node of 550 is in fact node 609). There is a

practical explanation for this misbehavior. Since k is stored at the rootpkq, the adversary

might misbehave to gain control or to censor a particular piece of data. In a P2P storage

system, for example, the attacker having the data can modify or remove it from the

system. In other applications such as P2P-based marketplaces, controlling more (or a

73

550

144

609

1000

296

498

775

744

144

609

1000

296

Target Peer

144 + 1

144 + 2

144 + 4

144 + 8

144 + 16 296

144 + 32 296

144 + 64 296

144 + 128 296

144 + 256

144 + 512

144 + 1024 144

296

296

296

296

498

775

particular piece of) data could imply monetary gains. In a P2P-based communication

system like VOIP or instant messaging, the data generally contains connection details of

the communicating clients. Having gained control of such data, the attacker might be

able to eavesdrop the communication, or even prevent it from happening.

A P2P system in which peers can correctly identify this misbehavior is said to have

the root authenticity (or RA) property. A more formal definition of this property is given

next, which is followed by descriptions of the protocols that aim to achieve this property.

4.3.1 Root Authenticity (RA) Property of a P2P System

For any x, y P I, denote cdpx, yq as the function returning the clock-wise distance between

y and x. More precisely:

cdpx, yq � t � 0 ¤ t 2m ^ y ` t � x

where ` is the addition operation in modulo 2m. Let inBetweenpz , x , yq be the predicate

indicating if z is in the clock-wise range between x and y. In other words, going clockwise

from x, one will reach z before y. More precisely:

inBetweenpz , x , yq � � cdpz, xq � cdpy, zq � cdpy, xq �
74

1. pl <- pv.getPredecessor(pd);

2. if (pv.neighborVerification(pl,pd))

if (inBetween(k,pl,pd))

return true;

3. return false;

Figure 4.3.1: Details of the pv.destVerification(k,pd) protocol, which is ex-
ecuted by pv. It returns true if pd is correct root node of k, and returns false
otherwise.

Let pv be an honest peer that searches for the root node of a key k and verifies if the

returned node is the correct root node. pv has the following set of operations:

1. pv.routepkq : the P2P routing protocol. route can be any function returning a

peer.

2. pv.getPredecessorppdq : pv contacts pd and asks for its predecessor. getPredecessor

can be any function returning a peer.

3. pv.neighborVerificationppl, prq : pv checks if pl is the predecessor of pr in the current

network. This protocol is the main focus of Section 4.3.2.

4. pv.destVerificationpk, pdq : p checks if pd is the root node of k in the current

network. The details of this protocol are shown in Fig.4.3.1. This protocol assumes

a Chord overlay, therefore only returns true if pv thinks there is no node in between

k and pd in the ID ring.

Definition 4.3.1 (Root Authenticity (RA) Property). Let P t be the set of current

nodes in the P2P system, at a given time t. Assume that the system evolves from t topt � 1q as a new peer joins or an existing peer leaves the system. Let pv be the honest

peer that performs lookup queries and verifies if the returned nodes are the correct root

nodes of the search keys. Let destVerf pk, pd, tq be the operation pv.destVerificationpk, pdq
75

executed by pv at time t. The RA property is defined as:�pd, k P I, t . destVerf pk , pd , tqñ pd P P t ^ ��p1d P P t z tpdu . cdpp1d, kq ¡ cdppd, kq �
Informally speaking, the RA property states that if destVerificationpk , pdq returns

true for any value of k and pd, then pd is the destination node of k given the current

configuration of the network.

Definition 4.3.2 (Neighbor Authenticity (NA) Property). Let P t be the set of

current nodes in the P2P system, at a given time t. Assume that the system evolves from t

to pt�1q as a new peer joins or an existing peer leaves the system. Let pv be the honest peer

that performs lookup queries and verifies if the returned nodes are the correct root nodes

of the search keys. Let neighVerf ppl , pd , tq be the operation pv .neighborVerificationppl , pdq
executed by pv at time t. The NA property is defined as:�pl, pd, t . neighVerf ppl , pd , tqñ tpl, pdu � P t ^ � �p1d P P t z tpl, pdu . cdpp1d, plq ¡ cdppd, plq �

This property states that if neighborVerificationppl , pdq returns true for any value of pl

and pd, then pl and pd are currently in the network and pl is the immediate left neighbor

of pd.

Theorem 4.3.1. Given the definition of NA and RA above, it follows that:

NA ñ RA

76

Proof. The proof for this theorem can be found in Appendix B

This theorem means that if the neighbor verification protocol is correct, then the

system satisfies the RA property.

4.3.2 Proposed System

This section introduces protocols that promise to satisfy the NA property. The main

idea is to rely on a trusted party to issue certificates to peers during churn events, and

the certificates are linked to the latest counter values at the peers’ TPMs in order to

guarantee their freshness. The formal proof that the system does indeed satisfy the NA

(and consequently RA) property is left until Chapter 6.

4.3.2.1 Assumptions.

First, peers are equipped with running TPMs. Furthermore, counter cid at each TPM is

used exclusively for the P2P application. This assumption could be used to establish a

simple ID scheme for peers in which public part of the AIK is assigned as the peer ID.

This scheme is simpler than the one proposed by Balfe et al. [9], but it still guarantees

uniqueness even though multiple AIKs can be generated for the TPM. It is because cid is

unique per TPM, therefore if multiple IDs are used then updating cid using one ID will

invalidate the states of others.

Second, for the churn model, it is assumed that peers leave the network gracefully,

meaning that they notify their neighbors (and other relevant entities) before exiting.

4.3.2.2 Certificate Authority.

There exists a certificate authority (CA) that is trusted to issue neighbor certificates as

peers join and leave the network. The CA does not need to run on trusted hardware. It is

a single point of trust, but as discussed later, is unlikely to be a performance bottleneck.

77

The CA has an asymmetric key pair xKPrivCA,KPubCAy. At the end of a joining

process, for example, a new peer pn contacts CA to get a neighbor certificate, which is of

the form: xcid, v, pn, pl, pryPrivKCA

where v is the current value of the counter cid of pn’s TPM. pl, pr are the immediate left

and right neighbor of pn, at the moment the certificate being issued. They also receive

new neighbor certificates from the CA. It is important that the CA knows the correct

immediate left and right neighbors of pn in order to issue such certificates. There are

several ways for the CA to acquire this knowledge. For simplicity, it is assumed that the

CA maintains a list of peers currently in the network. When pn joins, it checks that pn

is not already in the list, then issues the relevant certificates and adds pn to the list. It

performs the opposite when pn leaves the network.

4.3.2.3 Joining/Leaving Protocol.

Protocol 4.3.1 illustrates the protocol between the CA and other nodes when pn joins the

network. The CA knows that pl, pr are the immediate left and right neighbor of pn in the

current network. First, it asks pn, pl and pr to increment their counters. Once receiving

the signatures on the new counter values, the CA adds pn to its list of existing peers, then

issues new certificates for pn, pl and pr containing information of their new neighbors.

When a node leaves the network, the protocol is similar, except that the CA only

issues certificates for the current neighbors of the leaving nodes.

4.3.2.4 Routing Protocol.

Suppose that pv searches for the root node of a key k. The normal P2P routing protocol

is executed first, which returns a peer pd. As shown in Figure 4.3.1, before accepting pd

as the destination of k, pv performs the verification protocol with pd, which is depicted in

Protocol 4.3.2. pv queries the latest value of pd’s counter, namely cpd
. It then asks pd for

78

CA pl pn pr

cid, nnxinc, cid, cn, nnyKPrivpn

cid, nlxinc, cid, cl , nlyKPrivpl

cid, nrxinc, cid, cr , nryKPrivprxcid, cn, pn, pl, pryKPrivCAxcid, cl, pl, , pnyKPrivCAxcid, cr, pr, pn, yKPrivCA

Protocol 4.3.1: Peer pn joins in between pl and pr in the network. ’-’ indicates that the
value of the field is not important

pv pd pl

cid, ndxread, cid, cd, ndyKPrivpdxcid, cd, pd, pl, yKPrivCA

cid, nlxread, cid, cl, nlyKPrivplxcid, cl, pl, , pdyKPrivCA

Protocol 4.3.2: Peer pv verifies if pl is the current left neighbor of peer pd. ’-’ indicates
that the value of the field is not important. This protocol essentially implements the
pv.neighborVerificationppl, pdq operation.

79

the certificate of Certpd
that contains cpd

. pv can be confident that Certpd
is the latest

certificate issued by the CA to pd.

Certpd
contains information of pd’s left neighbor, namely pl. pv then asks pl for its

latest certificate, namely Certpl
. The verification returns true if Certpd

and Certpl
match,

i.e. in Certpd
, pd is the right neighbor of pl and in Certpl

, pl is the left neighbor of pd.

Certificates from both pd and pl are required in order to avoid the following sce-

nario. Assume that only the certificate from pd is asked for during verification, i.e.

pv.neighborVerificationppl, pdq always returns true regardless of pl. Suppose that pd is

the adversary that executed the joining protocol properly and has already left the net-

work (gracefully), but it is still online. The routing protocol returns pd. Since it is still

online, pd provides its out-of-date certificate during verification, which is accepted by the

pv. Consequently, pv.destVerificationpk, pdq could return true, violating the RA property

that requires the destination node to be a node currently in the network.

4.4 Detection of Misbehavior at the Application Layer

(DTA1)

This section presents the protocols for DeTecting misbehavior at the Application layer,

called DTA1 (as opposed to DTA2, which is presented in the next chapter). These

protocols are the results from the joint work that was done with Tom Chothia. They

targets a P2P-based marketplace application, and enables peers to assess the outcomes

of transactions. Marketplace applications based on P2P offer a number of advantages

over the centralized systems. First, they scale better and have no single points of failure.

Second, there would be no limitation on the types of items being exchanged. Thus,

the P2P infrastructure allows for a censorship-free environment. Finally, no centralized

authority means a monopoly cannot arise.

In a P2P-based marketplace, the overlay consists of nodes and data representing the

buyers, sellers and sale offers for items being exchanged. The sale offer for item k is

80

listed at rootpkq, called the listing node. Structured overlays are more suitable for this

application, because:

1. The deterministic search helps locating the items more efficiently.

2. Structured overlays allow for the offers of a particular items from all the sellers to

be found at one place. This reduces the time buyers spent on selecting the best

offers.

A consequence of using structured overlays is that sellers need to trust the listing

nodes to truthfully report their offers to potential buyers. There are economic incentives

for a listing node to misbehave. For example, if it gets a percentage for each item sold,

it will earn more profit by reporting items with the highest price. If it is also selling

the same item, the rational choice is just to report its own offer. Such misbehavior is a

real concern and needs to be addressed if P2P-based marketplaces are to be realized in

practice. Notice that it does not help for the seller to constantly query the listing node

to check that it reports the offer, since the listing node might check the identity of the

querier before reporting, so that it could choose to report the offer only to the original

seller, not to the potential buyers.

In the following system, each peer is assumed to have a running TPM. The main idea

is to tie sale offers to counter values so that a peer cannot lie about the offers it stores

without being detected. Essentially, TPM is used for constructing an undeniable history

of offers being published at the peer. What returned by the publisher to the buyer is then

checked against the history in order to determine if the publisher has truthfully reported

the offers.

In the next section, the system model and problem’s description are presented. Sec-

tion 4.4.2 describes the protocols and stretches the proof that they allow for the detection

of the misbehavior. More efficient protocols are discussed in Section 4.4.3.

81

4.4.1 System Model and Problem Description

4.4.1.1 System Model

In the P2P-based marketplace, P represents the set of buyers and sellers, D represents

the items being exchanged. Peers form a Chord overlay. It is assumed that the network

is static, i.e. no churn. In addition:

• S : D Ñ PpPq is the function returning the set of sellers of a given item.

• v : P �D Ñ R
� is the partial function returning the price that a peer offers for a

given item. vpp, dq is defined if p P Spdq.
• ∆ : D Ñ PpPq is the function returning the set of listing nodes for a given item.

Assume there exists a well-defined replication mechanism so that an item can be

stored at more than one listing nodes (one of which is the root node, others are the

replicas).

• Wp � tpd, s, vps, dqq | d P D, s P Spdq, p P ∆pdqu is the set of sale offers stored at

peer p.

• Wp
d � tpd1, s, cq P Wp | d1 � du is the set of sale offers for item d stored at peer p.

Wp
d � Wp

• f P R
�, r P p0, 1q are the flat rate and variable payment respectively. The payments

are made by the seller to the listing nodes of its items.

Two main protocols in the system are:

1. p.publish(d): a seller p first selects a node pd P ∆pdq, then executes the following:

(a) p sends pd, p, vpd, pqq to pd.

(b) If pd is honest, it updates the its states, i.e. Wpd �Wpd Y tpd, p, vpd, pqqu
(c) p sends the flat payment f to pd for listing the sale offer.

82

2. pr.retrieve(d): a buyer pr interested in the item d (pr R Spdq) first finds the set of

listing nodes ∆pdq. For every pd P ∆pdq, pr requests the offers for d, for which a set

ρd � Wpd

d is returned. If there is an offer pd, ps, vq P ρd satisfying pr’s requirements,

pr makes the payment of value v to ps. If pd takes a commission with the rate r

from selling d, then its total profit from the sale amounts to r.v � f .

4.4.1.2 Problem Description

The misbehavior considered is that the listing node does not report all the offers for d.

In other words,

ρd �Wpd

d

There is a number of reasons why this might arise. First, the variable profit that pd gets

for the sale is r.v, therefore, if both e � pd, ps, vq and e1 � pd, p1s, v1q are in Wpd

d and v ¡ v1,
pd might be likely to gain more profit by not including e1 in ρd. Second, if vpp, dq is the

same for all p P Spdq and pd P Spdq, meaning that pd also sells d, pd would gain the most

profit by reporting only its own offer, i.e. ρd � tpd, pd, vppd, dqqu. Third, when pd R Spdq,
pd might choose to only report offers from p1d which is colluding with pd or pays higher

fees.

In the system described in Section 4.4.2, if the retrieve(d) operation terminates suc-

cessfully, it means pd is behaving properly and pr has received all the offers for d stored

at pd, i.e. ρd �Wpd

d .

4.4.2 Proposed System

By utilizing the TPM at each node, the publish and retrieve operations are enhanced as

follows:

4.4.2.1 publish(d):

It is illustrated in Protocol 4.4.1. First, p sends its offer e � pd, p, vpp, dqq to pd. pd asks

83

p pd

e � pd, p, vpp, dqq
σ � getSignedCounterValuespinc, cid, SHA1peqq

Wpd �Wpd Y teu
σ � xinc, cid, cpd

, SHA1peqyKPrivpd

f

Protocol 4.4.1: Peer p publishes its offer for item d to pd, where pd P ∆pdq.
its TPM to increment the counter and sends back the signed receipt σ of that operation.

The hash of e is used as the non-replay nonce in σ. pd also updates its states to include

the new offer. p verifies that σ is correct. Finally p sends the payment f to pd and the

operation terminates successfully. At the end of this operation, the offer e is tied to the

value cpd
of the counter cid.

4.4.2.2 retrieve(d):

It is depicted in Protocol 4.4.2. First, pr asks pd for its the latest value, to which pd

returns the signature on a value cpd
. Then, pd sends all the offers tied to the counter

values from 1 to cpd
. More specifically, it sends the set of tuples U defined as:

U � tpwi, σiq | i P r1, cpd
s, σi � pinc, cid, i, SHA1pwiqqu

In other words, U contains elements having the form pwi, σiq where wi is the offer tied to

the counter value i, σi is the receipt issued to the seller when the offer was published. The

retrieve operation terminates successfully if pd has received all tuple pwi, σiq for i P r1, cpd
s

and all the signatures are correct. Finally, pr can extract the set of the offers for item d

84

pr pd

n

σ � getSignedCounterValuespread, cid, nq
σ � xread, cid, cpd

, nyKPrivpd

U � tpwi, σiq | i P r1, cpd
s, σi � pinc, cid, i, SHA1pwiqqu

Protocol 4.4.2: Peer p publishes its offer for item d to pd.

from U as follows:

ρd � tpd1, s1, v1q | ppd1, s1, v1q, σ1q P U, d1 � du
Theorem 4.4.1. Suppose that the publish and retrieve operations terminate successfully,

then pd is behaving properly, or:

ρd �Wpd

d

Sketch of proof. This can be proved by showing that U � Wpd . First, |W pd| � |U |,
because U contains all the receipts of all the publishing operations with counter values

from 1 to the latest value. Next, for all wi P U , it follows that wi P W pd. If this is not true,

pd must be able find w1
i � wi such that SHA1pwiq � SHA1pw1

iq (so that the verification

of σi succeeds). This contradicts the non-collision property of the hash function. Thus,

wi P Wpd . Therefore, U � W pd.

4.4.3 More Efficient Solutions

The retrieve protocol requires pd to send back the set Wpd . This does not scale well,

as |Wpd| can be very large. This section presents two implementations that are more

85

scalable. It both cases, the number of offers being sent back to pr is at least |ρd|.
4.4.3.1 Probabilistic Solution

pd builds a 2-3 Merkle trees [71] from Wpd . The hash value of an item d is stored at a

leaf of the tree. The leaves are ordered. On average, the insertion and update operations

involve updating Ophq tree nodes in the hash path. The latest root hash is included in

the TPM’s signature containing the latest counter value.

To check if the hash tree was constructed correctly by pd, p can use a challenge -

response protocol. When publishing an offer, p verifies if the new root hash is updated

correctly by comparing it with its own calculation using the hash path given by pd.

Because the leaves are ordered, in retrieve(d), pr can efficiently count the number of item

d stored in the leaf set. pr then ask pd for all the valid tuples of the form (wi, σi) where

d is included in wi. There is a clear trade-off between the communication, computation

overhead and the probability that ρd �Wpd

d .

4.4.3.2 Extra Counters

So far, only one monotonic counter is used to tie offers to counter values. Having c

counters, c ¡ 1, will reduce the communication and computation overhead to Op |Wpd |
c
q.

More specifically, for an item d, both the publish(d) and retrieve(d) operations use the

counter cid such that cid � SHA1pdq modulo c. It can be seen that if c is large enough,

significant improvement can be achieved.

The current implementation of TPM supports a small number of counter. Sarmenta

et al. [84] proposed a slight extension to the TPM that allows it to support up to 2160

monotonic counters. The basic idea is to build a Merkle tree whose leaves store the

counter values. The TPM only stores the root of the tree, and it has operations to verify

and update the leaves.

86

4.5 Related Work and Discussion

A closely related work on detecting the misbehavior in structured P2P routing is that by

Wang et al. [100], which proposed a mechanism for Pastry allows an honest node to verify

if another is the root node of the search key. It assumes the existence of a certificate

authority (CA). When a node joins, the CA issues certificates to l � 1 neighbors, where

l is the leafset’s size. This approach is probabilistic, and its effectiveness increases with

l. Ganesh et al. [38] proposed another system that relies on peers regularly publishing

their ID certificates. For verification, it relies on name-space density estimation, which

is probabilistic. The protocols described in Section 4.3 and Section 4.4 allow the honest

peer to tell categorically whether another node is the root node of the search key.

A major assumption in DTR1 and DTA1 is that peers are equipped with TPMs. For

a large-scale P2P system, one might question if this assumption is reasonable. It is partly

due to past controversy about the TPM [5] and the TPM being in early stages of devel-

opment. However, more computers are being shipped with TPMs. Moreover, DTR1 and

DTA1 are not necessarily bound to TPM. They can be implemented with any other infras-

tructure supporting platform authentication, monotonic counters and transport sessions.

These alternatives could be in the form of smart-cards [61] or online services. If available

in large scale, such devices or services could be better choices than TPMs because of their

flexibility and wider ranges of trusted functionalities. In fact, Chapter 5 describes a new

secure hardware that is more powerful than TPM and can improve the efficiency of the

current systems.

The churn models assumed in DTR1 and DTA1 are quite strict. More specifically,

DTR1 assumes peers leave the network gracefully, which can be made more realistic by

taking into account fail-stop and Byzantine failure. To deal with these failures, a time-

out mechanism is needed that indicates when a certificate expires. Peers would need

to contact the CA regularly to have their certificates renewed, or else they would be

considered as having left the network. This would imply more overhead for the CA, as

it needs to issue more certificates and keep track of which peers have left the network.

87

Detailed investigation of the time-out mechanism is left for future work. In DTA1, only

static networks are considered, which means more work is needed to study the system

under dynamic conditions.

In DTR1, the CA is a relatively off-line entity, since it is only involved during churn

events and is not consulted during routing. In a typical P2P system, the rate of query

is considerably more frequent than the rate of churn. Therefore, it can be argued that

the CA is unlikely to be a performance bottleneck. More specifically, churn events can be

modeled by a Poisson distribution. Let cr be the churn rate, so that the session times are

exponentially distributed with the expected value of 1
cr

. It then follows that the expected

number of churn events the CA has to deal with per time unit is cr.|P|. For a large (but

relatively stable) network, i.e. P is in order of millions and the average session time is in

the order of days, cr.|P| is small enough so that the CA would not become a bottleneck.

In the current design, the CA maintains a list of peers currently in the network. For

scalability, it will be better to relieve the CA from keeping such a list. One alternative

would be for the CA to ask for the certificates of the joining or leaving peer as well as of

its immediate neighbors during churn. If the certificates match, the CA then issues new

certificates as usual. It can be conjectured that if all the certificates before a churn event

were issued correctly, then so are the new ones after the event is completed.

The current design of DTA1 leaves some room for future work. The flat-rate payment

f is used as an incentive for peers to accept storing and reporting sale offers. In practice,

more advanced incentive mechanisms might be needed to discourage peers from denying

storing and reporting sale offers. As time passes, the retrieve operation will only send

more (irrelevant) data. Even with the improvement proposed in Section 4, the amount of

data grows without bound. One method to address this could be to use sliding windows

to regulate the maximum number of offers stored at any given time. Finally, the system

model in DTA1 can be made more realistic by letting pd remove an offer from Wpd

d after

the item has been paid for by a buyer. The system must ensure that pd cannot arbitrarily

remove items without being detected.

88

CHAPTER 5

NEW HARDWARE FOR DETECTION OF

MISBEHAVIOR IN P2P

This chapter introduces a new type of security hardware, called TTM, that aims to be a

general security device and be able to support more security applications than TPM. When

used instead of TPM, this hardware offers improvements to the misbehavior detection

mechanisms described in the previous chapter. Another use of TTM, which is presented

in this chapter, is for access control systems. Section 5.1 discusses the motivations in

designing TTM. The next three sections detail the main components, data structures and

operations of the hardware. Section 5.4 shows how access control systems can benefit

from TTM. Section 5.5 and Section 5.6 focus on using TTM to improve the misbehavior

detection protocols (DTR1 and DTA1). Finally, Section 5.7 discusses the related works

and open issues with TTM.

5.1 Motivation

In the previous chapter, DTR1 and DTA1 used Trusted Computing Modules (TPMs) as

the underlying security mechanism. Due to the TPM’s restricted set of functionalities,

there are limitations when implementing DTR1 and DTA1 in practice. As discussed in

Section 4.5, DTR1 has to rely on a single trusted party (the CA) to issue certificates

as peers join and leave the system, which is not always desirable. DTA1 currently does

89

not scale very well, as TPM supports only a small number of monotonic counters. The

improved version of DTA1, proposed at the end of Section 4.4, is probabilistic and incurs

noticeable overhead.

Using only the TPMs, extending DTR1 to remove the role of the CA is difficult.

Consider a hypothetical extension of DTR1, denoted as DTR1’, that requires no CA. As

in DTR1, a peer’s left and right neighbor constitute the peer’s state. The TPM’s counter

can be used to time-stamp the state, so that any peer can verify if a state is the latest one.

This is similar to the way peers in DTA1 time-stamping the sale offers. As a peer joins

the system, it creates a new local state and also causes the neighbors’ states to change.

In DTR1, the state of p is certified by the CA. As a result, DTR1 satisfies the following

property:

Property 5.1.1 (Non-overlapping property). For any peer p and p1, let ppl, prq and pp1l, p1rq
be the states of p and p1 respectively. Then:Ex
 inBetweenpx, pl, prq ^ inBetweenpx, p1l, p1rq

DTR1’, however, does not meet this property, mainly because a peer in DTR1 can

generate any valid state by itself . Failure to meet this property gives rise to the following

challenges when verifying the correctness of a (latest) state:

1. A history of states is needed so that a peer can verify if a state at time t is correctly

derived from the previous state at time pt� 1q. More specifically, suppose pl and pr

are the left and right neighbor of p at time pt� 1q, and pn joins between pl and p at

time t, then p’s state at t is derived correctly from the state at pt� 1q if it contains

pn and pr as its immediate neighbors. In addition, one has to verify that the state

at pt� 1q, pt� 2q, etc. are also correctly constructed from their previous states. In

other words, the history starting from the beginning (or at least from time t1 where

90

it can be trusted) need to be verified. Notice that such the history grows without

bounds as nodes join and leave the system.

2. The correctness of a peer’s state also depends on the correctness of its neighbors’

states. For example, if p’s state indicates that pl and pr are its left and right neigh-

bor, then pl’s and pr’s state must also indicate that p is the right and left neighbor

respectively. As a consequence, the current state of p depends on a long chain of

trust consisting of many nodes whose states need to be verified for correctness.

In a large system with frequent churn, these additional checks imply very expensive

verification processes. For this reason, to design an efficient, yet completely decentralized

system satisfying Property 5.1.1, TPM alone is not sufficient. In other words, a new

security hardware is needed. Such the hardware must be able to maintain representations

of peers’ states. Furthermore, for Property 5.1.1 to hold, when one peer changes its state,

the state of another peer must also be updated. The following sections describe the design

of a new hardware module called Trusted Tokens Module (or TTM). TTM is designed

with the aim of improving DTR1 and DTA1, and at the same time being general enough

to be used in other security applications.

5.2 Design Overview of TTM

A TTM is a security hardware that is designed to provide trusted operations involving

tokens. A token is simply a piece of data maintained by a TTM. As seen later, it is a tuple

consisting of three other data fields. The TTM can perform the following operations:

1. Creation and removal of tokens.

2. Transferring tokens from one TTM to another. This operation is irreversible, mean-

ing that the giving TTM is no longer in possession of the tokens until they are given

back to it by the other TTM.

91

Token State

TTM

Counter

TTypeToken

B−T

R−T

B−TS

R−TSID

is a

is a

has a

has a

is a

is a

has 1..*

has 1..*

has 1..*

stored at

linked with

1

0..1

has 1..*

stored at

isRecreatable

tVal

Figure 5.2.1: TTM logical design. A TTM contains a number of states and monotonic
counters. A token state is linked with a unique counter. It stores either a number of
R-T tokens having the same type, or a number of B-T tokens having the same type. The
type of a token consists of a type ID and a flag indicating if tokens of this type could be
created more than once. A token is either a B-T token, which is identified by its type, or
a R-T token which is identified by its type and an identifier.

5.2.1 Logical Design

Figure 5.2.1 illustrates the components of a TTM and their relationships at the logical

level. Basically, a TTM consists of a number of token states and monotonic counters.

R-T tokens or B-T tokens of the same type are maintained at a token state.

5.2.1.1 Token

Every token has a type belonging to TType. Every type has a value and a flag indicate

if the type is unique. More specifically, a type ttype has:

• tVal : the type ID.

• isRecreatable: the flag indicating if this type could be created more than once.

A token is either a B-T token or a R-T token.

• A B-T token (or bulk token) is identified by its type ttype.

92

• A R-T token (or range token) is identified by its type ttype and an identifier be-

longing to I.

For example, ttype represents a B-T token of type ttype, whereas pttype, idq represents a

R-T token whose type is ttype and whose ID is id.

5.2.1.2 Token State

A token state is where the TTM stores the tokens of the same type. More precisely,

a token state, denoted as tspttypeq where ttype P TType, belongs to one the following

groups:

• B-T Token State: tspttypeq stores B-T tokens of type ttype. It basically stores the

number of B-T tokens of type ttype that the TTM has.

• R-T Token State: tspttypeq stores R-T tokens of type ttype. It basically groups

tokens with consecutive ID together into ranges of tokens, then stores the ID of the

tokens at the end points of those ranges. More specifically,

Definition 5.2.1 (Range of tokens). A range of R-T tokens of type ttype, written

as ra, bsttype where a, b P r0, 2mq is a set of tokens of type ttype whose IDs are all the

values in between and including a and b. In other words:ra, bsttype � tpttype, iq | i � a _ i � b _ inBetweenpi, a, bqu
The efficient datastructure for storing ranges of tokens in the token state is discussed

later in Section 5.2.2.

Each token state has a pointer to a unique monotonic counter, which is incremented

when the token state is updated (addition or removal of tokens). The counter is an useful

time-stamping mechanism for the operations involving the token state.

93

5.2.1.3 Counter

A monotonic counter in TTM is similar to that in TPM: it has an ID and contains a value

field cv that can only be read or incremented. In addition, it has a flag ced indicating if

the counter is pointed to by a token state.

5.2.2 Architectural Design

5.2.2.1 Data Structures

A token type ttype is represented in TTM as a tuple ptVal , isRecreatableq where tVal is a

bit string (tVal P t0, 1u�) and isRecreatable is a boolean value indicating if this type can

be created more than once.

A token state is represented in TTM as a tuple consisting of the following fields:

• ttype P TType: the type of the tokens stored at the token state.

• isRT : a boolean value indicating if the tokens stored at this token state are R-T or

B-T tokens.

• cid: the ID of the monotonic counter linked with this token state. It is assumed

that there exists c counters with the IDs 0, 1, .., pc� 1q.
• count: the number of tokens stored in this state.

When isRT � T , that is the tokens stored at the state are R-T tokens, they are grouped

into ranges which are then stored in the leaves of an external h-level Merkle tree. A Merkle

leaf has an ID id P r0, 2hq and two other data fields: offset P r0, 2mq and size P r0, 2mq. It

represents the range ra, bsttype where a and b are derived as follows:

a � pid ! pm� hqq ` offset (5.2.1)

b � a` psize � 1q (5.2.2)

94

TType
tVal P t0, 1u�
isRecreatable P tT, F u

Token State

ttype P TType

isRT P tT, F u
cid P r0, cq
count P r0, 2mq
h P r0,mq
root P t0, 1u�

Counter
cid P r0, cq
cv P N

ce P tT, F u
Merkle Leaf

id P r0, 2mq
offset P r0, 2mq
size P r0, 2mq

Table 5.2.1: Summary of the data structures used in TTM. c is the number of monotonic
counters supported by the TTM. m is the security parameter, whose typical value is 160.

(! is the shift-left operation). The height h and the root value root of the Merkle tree

are included in the token state and stored inside the TTM.

It can be noticed that R-T tokens are never represented explicitly in TTM. Instead,

they are stored externally in the leaves of a Merkle tree whose root node is maintained

inside the TTM. The trade-off for such the compact representation of R-T tokens is the

computational complexity required when checking if the TTM contains a specific R-T

token.

A monotonic counter in TTM is represented by the following data fields:

• cid: its ID, which is in r0, cq.
• cv: its value, which is a natural number.

• ce: a boolean value indicating if the counter is linked with a token state.

Table 5.2.1 summarizes the data structures used in TTM.

5.2.2.2 Hardware Components of a TTM.

Figure 5.2.2 sketches the main hardware components of TTM. A TTM is identified by a

unique asymmetric key pair, pKPriv ,KPubq, the private part of which is protected by the

95

ProgramsVolatile Memory

KPriv

Key
Certificate

CPU
Cryptographic
Co−processor

cid cv ce

...

Counters

...

Token States

h rootcountcidisRTisRecreatabletVal

Non−volatile Memory

.

0 1

Trusted Token Module (TTM)

2^h−2 2^h−1

Figure 5.2.2: High-level hardware design of the Trusted Tokens Module (TTM). Note that
the token state does not store R-T tokens explicitly. Instead, those tokens are stored in
the leaves of an external Merkle tree whose root value is maintained inside the TTM.

device. The manufacturer supplies the key certificate embedded in the device that can be

used as the authenticity proof for the TTM.

The TTM has a limited amount of non-volatile memory used by a number of token

states and monotonic counters. The cryptographic co-processor is used for fast execution

of basic cryptographic operations such as SHA-1, RSA signing, AES encryption. TTM’s

commands are provided in the Programs module. The volatile memory is used during the

execution of the commands.

5.3 Operations

5.3.1 Creation and Removal of Tokens

A TTM can create a new set of tokens using init(n,cid,isRT,isRecreatable,h,even) com-

mand, as detailed in Figure 5.3.1. An existing token state tks can be removed using the

remove(tks) command. If init returns successfully, 2m tokens of type ttype are created,

where ttype is initialized as follows:

96

Command: init

Inputs: n - random nonce
cid - counter ID
isRT, isRecreatable
h - height of the tree
even - flag used to initializethe tree

Outputs: If successful, returns thenew state andareceipt
Elsereturns error

Actions:
1. Check the number of active token states, ABORT if not less

than c

2. Check that ct.ce = F where ct.cid = cid. ABORT if not
true

3. If (intOpt isTrue) then
Generate arandom noncen′ using the RNG engine

4. Create anew type ttype

(a) Set ttype.isRecreateable = isRecreatable

(b) If (isRT = T) then
Set ttype.tV al = SHA-1(KPub||n)

(c) Else
Set ttype.tV al = SHA-1(KPub||n||n′||c.cv)

5. Create anew token state tks.

6. Set tks.ttype = ttype

7. Set tks.isRT = isRT , tks.cid = cid and tks.h = h

8. Set tks.count = 2m

9. Initializetks.root value

(a) If (isRT = F) then
Set tks.root = DEFAULT ROOT

(b) else set tks.root = initialRoot(h,even)

10. Increment the counter, c.cv++

11. Create the signature
σ = (tks; c.cv; INTERNAL FLAG)Kpriv

12. Return tks, σ

NOTES: (1) the function initialRoot(h,even) is explained in
Section 5.3.1
(2) INTERNAL FLAG indicates the signature is generated using
data within the device

Command: remove

Inputs: tks - token state to be removed
Outputs: error code if the removal fails

Actions:
1. Check that tks isone of the active states

ABORT if not true

2. Remove tks from the set of active states

3. Set c.ce = F where c.cid = tks.cid

Figure 5.3.1: init(n,cid,isRT,isRecreatable,h,even) and remove(tks) initializes new to-
kens and removes the given token state respectively.

• ttype.tVal is set to SHA1(Kpub||n) or SHA1(Kpub||n||n1||c.cv) depending on the

value of the input isRecreatable. When isRecreatable � T , tV al � SHA1pKpub||nq,
which means that tokens of this type can be created again by invoking the same

command. When isRecreatable � F , tVal � SHA1pKpub||n||n1||c.cvq, which means

it would be infeasible to recreate tokens of this type, because the type value uses

a second nonce n1 generated internally by the TTM’s Random Number Generator

(RNG).

• ttype.isRecreatable is set to value of the input isRecreatable.

The newly created tokens are then stored in a new token state tks, which is initialized

as follows:

• tks.ttype is set to the newly created type ttype.

• tks.cid, tks.isRT , tks.h are set to the values of the corresponding inputs.

• tks.count is set to 2m.

97

• When isRT � T , meaning that the stored tokens are R-T tokens, the function

initialRootph, evenq is used to compute the root of the initial Merkle tree whose

leaves together represent all the tokens created. initialRoot can be implemented

efficiently as follows:

– When even � T , the Merkle tree consists of 2h leaves, all of which are the

same. More precisely, Li.offset � 0 and Li.size � 2m�h for all i P r0, 2hq.
Because the tree is symmetric, computing the root takes only Ophq steps

– When even � F , the tree consists of 2h leaves, in which L0.offset � 0, L0.size �
2m, and Li.offset � Li.size � 0 for all i P r1, 2hq. This tree is mostly symmetric,

and computing the root can also be done in Ophq steps.

It can be seen that there are at most 2.m possible initial roots, and they can all

be kept in the device’s ROM. As a result, implementing initialRoot simply requires

reading values from the memory.

Once the initialization completes, the device owns 2m new tokens of the newly created

type. Using init, some types of tokens cannot be re-issued. More specifically, TTM

satisfies the following property:

Property 5.3.1 (Non-recreatability). Let tks be the state returned from a successful

initialization in which tks.isRecreatable � F . It is infeasible to find another state tks1
such that tks1 is the result of another initialization, and that tks.ttype � tks1.ttype.

5.3.2 Transferring Tokens

Both R-T and B-T tokens can be transferred from one TTM to another by the protocol

depicted in Figure 5.3.2. Let p1, p2 be the peer that requests for the tokens and gives out

the tokens respectively. The protocol consists of three phases:

1. The TTM of p1 prepares a request to be forwarded to p2.

98

p1’s TTM p1 p2 p2’s TTM

prepare request for tokens

Prepares the request, returning
n - random nonce
σ - signed request

n, σ

n, σ

n, σ

Gives the requested tokens, returning
φ - transfer blob
ρ - receipt

φ, ρ

Keep the receipt ρ

φ

the token request, φ

Adds new tokens, returning a
receipt ρ′

ρ′

Figure 5.3.2: Information flow of the protocol for transferring tokens from p2 to p1

2. The TTM of p2, once received the request, creates a transfer blob containing the

requested tokens.

3. Finally, the TTM of p1 updates its token state with the tokens included in the

transfer blob.

5.3.2.1 Preparing Request

In the first phase of the token transferring protocol p1 asks its device to prepare a request

for the tokens. It is important that the transfer requests come from the trusted devices.

prepareBTokensTransferRequest and prepareRTokensTransferRequest commands

(detailed in Figure 5.3.3 and Figure 5.3.4) return the TTM-prepared requests for B-T and

R-T tokens respectively. In these commands, the requested tokens’ type, ttype, is passed

as a parameter. Another parameter is the requested number of tokens in case of B-T to-

kens, or the requested range in case of R-T tokens. If the requesting TTM is not currently

in possession of the requested token type, it creates a new token state (line 2). The new

token state is different from the ones created when executing the init commands in two

99

Command: prepareBTokensTransferRequest

Inputs: ttype - type of the tokens
cid - the counter ID
quantity - number of the tokens requested

Outputs: If successful, return a signed request
Elsereturn error

Actions:
1. Generate arandom noncen, using the RNG

2. If there is no active token state tks such that tks.ttype =
ttype and tks.isRT = F , then: Initializes anew states

(a) Check the number of active token states. ABORT if
equal to c

(b) ABORT if c.ce = T where c.cid = cid

(c) Create anew statenTks

(d) Set nTks.ttype = ttype, nTks.isRT = F ,
nTks.count = 0

(e) Set nTKs.cid = cid, nTKs.h = 0, nTKs.root =
DEFAULT ROOT

3. Store (nTks, quantity, n) in itsmemory

4. Create the signature
σ = (nTks, quantity, n, INTERNAL FLAG)Kpriv

5. Return n; σ

NOTES: the INTERNAL FLAG indicatesthat signature is
generated on data within the device

Command: giveBTokens

Inputs: ttype - type of the tokens
cid - counter ID
quantity - number of the token requested
n - random nonce
σ - signature on the request
KCert - key certificate

Outputs: If successful, return a transfer blob containing
the given quantity of tokens, and a receipt
Elsereturn error

Actions:
1. Check if it hasthe requested tokens

(a) Check that there is an active token state tks that
tks.ttype = ttype, tks.isRT = F and tks.cid =
cid

ABORT if not true

(b) Check that tks.count ≥ quantity

ABORT if not true

2. Check the request

(a) Check that KCert is the valid certificate for a public
key K′

pub. ABORT if not true

(b) Check the signature
σ = (tks′, quantity, n, INTERNAL FLAG)K′

priv

ABORT if not valid, or tks′.ttype 6= ttype

3. Prepare the transfer blob

(a) Create the signature
φ = (tks, quantity, n, INTERNAL FLAG)Kpriv

(b) Remove quantity tokens from tks

tks.count = tks.count− quantity

4. Prepare areceipt

(a) ct.cv++ where ct.cid = cid

(b) Create the signature
ρ = (tks, ct.cv, K′

pub, INTERNAL FLAG)Kpriv

5. Return φ, ρ

Command: takeBTokens

Inputs: ttype - type of the tokens
cid - counter ID
quantity - number of the token requested
n - random nonce
σ - signature on the transfer blob
KCert - key certificate

Outputs: If successful, return a areceipt
Elsereturn error

Actions:
1. Check that there is an active state tks such that tks.ttype =

ttype, tks.isRT = F and tks.cid = cid

ABORT if not true

2. Check that there is atuple (tks, quantity, n) in thememory

3. Check the validity of the transfer blob

(a) Check that KCert is the valid certificate for a public
key K′

pub. ABORT if not true

(b) Check the signature
σ = (tks′, quantity, n, INTERNAL FLAG)K′

priv

ABORT if not valid or tks′.ttype 6= ttype

4. Set tks.count = tks.count + quantity

5. Prepare areceipt

(a) ct.cv++ where ct.cid = cid

(b) Create the signature
ρ = (tks, ct.cv, K′

pub, INTERNAL FLAG)Kpriv

6. Remove the tuple (tks, quantity, n) from the memory

7. Return ρ

Figure 5.3.3: Commands for transferring B-type tokens

100

Command: prepareRTokensTransferRequest

Inputs: ttype - type of the tokens
cid - counter ID
h - height of the tree
a,b - representingtherequested range [a, b]ttype

Outputs: If successful, returns a signed request
Elsereturns error

Actions:
1. Generate arandom noncen, using the RNG

2. If there is no active statetks such that tks.ttype = ttype,
tks.isRT = T and tks.cid = cid, then
Initialize anew state

(a) Check that the number of active states is less than c
ABORT if not true.

(b) ABORT if c.ce = T where c.cid = cid

(c) Create anew statenTks

(d) Set nTks.ttype = ttype, nTks.isRT = T ,
nTks.cid = cid

(e) Set nTks.count = 0, nTks.h = h and
nTks.root=initialRootEmptyTree(auth.h)

3. Store (nTks, a, b, n) in its memory

4. Create a signature
σ = (nTks, a, b, n, INTERNAL FLAG)Kpriv

5. Return n, σ

NOTES: the initialRootEmptyTree(h) function returns the root
hash of a Merkle treewhoseheight is h and all of its leaves are
empty (do not store any token)

Figure 5.3.4: Prepare a request for a range of tokens

ways:

• The field count is set to 0, as opposed to 2m in init.

• For the state storing R-T tokens, the field root is set to initialRootEmptyTree(h)

that returns the root of the Merkle tree whose leaves represent empty ranges. It

is as opposed to using initialRoot(h,even) which computes the root of a different

Merkle tree in which at least one of its leaves represents a non-empty range.

Finally, the TTM signs the request using a non-replay nonce generated by its internal

Random Number Generator. The nonce and the signed request are returned at the end

of prepareBTokensTransferRequest and prepareRTokensTransferRequest.

5.3.2.2 Giving Tokens

p1 forwards the signed request it received from the TTM to p2 which then asks its own

TTM to remove the requested tokens from the corresponding state and include them

101

in a transfer blob. giveBTokens and giveRTokens command (depicted in Figure 5.3.3

and Figure 5.3.5) ask the TTM to prepare the transfer blobs. Both commands take as

parameters a signed request and an attestation proving its validity. giveRTokens requires,

in addition, the Merkle’s leaf containing the requested range and the verification path for

the Merkle tree. The TTM then executes the following steps:

1. First, it uses the given attestation to verify that the signed request comes from

another TTM.

2. Next, it checks if the requested tokens are stored in an active token state tks. For

B-T tokens, it checks if tks.count is greater than the requested quantity. For R-T

tokens, the check requires two more steps:

(a) It uses the given leaf and verification path to compute the root of the Merkle

tree. The result must match with tks.root.

(b) It checks that the range represented by the given leaf can be split into two

smaller ranges, one of them is the requested range.

3. The requested tokens are then removed from tks and as the result, the fields tks.count

and tks.root (if applicable) are updated.

4. The transfer blob, constructed and signed by the TTM, contains the same informa-

tion as in the original request.

5. Finally, the TTM increments the counter linked with tks, and then produces a

signed receipt containing the latest tks.

5.3.2.3 Taking Tokens

Having received the transfer blob and receipt from the TTM, p2 keeps the receipt and

forwards the transfer blob to p1. The p1’s TTM then uses the blob to add new tokens to

its token state.

102

Command: giveRTokens

Inputs: ttype - typeof the tokens
cid - counter ID
h - height of the tree a,b - representing the requested range
[a, b]ttype

n - random nonce
σ - signatureon the request
KCert - key certificate
L - a leaf of aMerkle tree
path - verification path, the leaf L is path[0]

Outputs: If successful, return a transfer blob containing given range of
tokens, anda receipt
Elsereturn error

Actions:

1. Check the request

(a) Check that KCert is the valid attestation for a public key K′

pub.
ABORT if not true

(b) Check the signature
σ = (tks, a, b, n, INTERNAL FLAG)K′

priv
is valid, and

tks.ttype 6= ttype andtks.isRT = F andtks.h = h.
ABORT if not true

2. Check if it has the requested range

(a) Check that thereisan activetoken statetks′ such that tks′.ttype =
ttype, tks′.isRT = T , tks′.cid = cid andtks′.h = h
ABORT if not true

(b) Check that tks′.count > cd(b, a). ABORT if not true

(c) Derive arange [x, y]ttype from L

(d) Check that (y=b OR x=a) AND [a, b]ttype ⊆ [x, y]ttype

ABORT if not true

(e) Compute the root hash rHash, using path andL

(f) Check that rHash = tks′.root. ABORT if not true

3. Create transfer blob
φ = (tks′, a, b, n, INTERNAL FLAG)Kpriv

4. Update the state tks′

(a) Set L.size = L.size − |[a, b]ttype|

(b) If (x=a), then set L.offset = L.offset + cd(b, a)

(c) Computethenew root hash newRHash, usingpath andtheupdated
leaf.

(d) Set tks′.count = tks′.count − |[a, b]ttype|

(e) Set tks′.root = newRHash

5. Prepare areceipt

(a) ct.v++ wherect.cid = cid

(b) Create the signature
ρ = (tks′, ct.cv, K′

pub, INTERNAL FLAG)Kpriv

6. Return φ, ρ

Command: takeRTokens

Inputs: ttype - type of the tokens
cid - counter ID
h - height of the Merkle tree
a,b - representing the requested range [a, b]ttype

n - random nonce
σ - signature on the transfer blob
KCert - attestation
L - a leaf of aMerkle tree
path - verification path, the leaf L is path[0]

Outputs: If successful, return a areceipt
Else return error

Actions:

1. Check that there is an active token state tks such that tks.ttype = ttype,
tks.isRT = T , tks.cid = cid andtks.h = h.
ABORT if not true

2. Check that there is the tuple (tks, a, b, n) in thememory
ABORT if not true

3. Check thevalidity of the transfer blob

(a) Check that KCert is thevalid key certificate for apublic key K′

pub.
ABORT if not true

(b) Check thesignature
σ = (tks′, a, b, n, INTERNAL FLAG)K′

priv
is valid and

tks′.ttype = ttype, tks′.isRT = T , tks′.cid = cid and
tks′.h = h.
ABORT if not valid

4. Compute the root hash rHash using path andL

5. Check that rHash = tks.root. ABORT if not true

6. If (L.size = 0):

(a) Set L.offset = cd((L.id ≪ (m − h)), a)

(b) Set L.size = |[a, b]ttype|

7. Else

(a) Derive the range [x, y]ttype from L and leafID

(b) Check that [x, y]ttype and[a, b]ttype can bemerged into onerange.
ABORT if not true

(c) Set L.size = L.size + |[a, b]ttype|

(d) If [a, y] is the merged range, then
Set L.offset = L.offset − |[a, b]ttype|

8. Update tks

(a) Computethenew root hashnewRHash, usingpath andtheupdated
leaf L.

(b) Set tks.root = newRHash

(c) Set tks.count = tks.count + |[a, b]ttype|

9. Prepare areceipt

(a) ct.v++ wherect.cid = cid.

(b) Create thesignature
ρ = (tks, ct.v, K′

pub, INTERNAL FLAG)Kpriv

10. Remove the tuple (tks, a, b, n) from the memory

11. Return ρ

Figure 5.3.5: Commands for transferring a range of tokens

103

takeBTokens and takeRTokens command, depicted in Figure 5.3.3 and Figure 5.3.5,

update the TTM state with the tokens included in the given transfer blob. A key cer-

tificate is passed as a parameter as a proof of the blob’s authenticity. For R-T tokens,

takeRTokens additionally requires the Merkle leaf to which the new tokens can be added,

and the verification path for the Merkle tree. Given the inputs, the TTM performs the

following steps:

1. First, it checks that it has previously issued a request for the tokens, and there

exists an active token state tks that stores the tokens. It then verifies the validity

and authenticity of the transfer blob.

2. For R-T tokens:

(a) The leaf and verification path are used to compute the root of the Merkle tree,

the result of which must match with tks.root.

(b) TTM checks if the range represented by the given leaf and the range included

in the transfer blob can be merged together into a bigger range (line 7, Fig-

ure 5.3.5).

3. New tokens are added to tks, and as the result, tks.count and tks.root (if applicable)

are updated accordingly.

4. Finally, TTM increments the counter linked with tks, and then produces a receipt

containing the latest tks.

5.3.2.4 Property.

Given the the above operations and Property 5.3.1, it can be seen that for R-T, non-

recreatable tokens, it is not feasible to find two TTMs that have overlapping ranges of

the tokens. More specifically:

Property 5.3.2. Consider a type ttype of R-T tokens where ttype.isRecreatable � F .

104

Let ra, bsttype and rx, ysttype be two ranges of tokens stored in some TTMs. Then:Ei
 inBetweenpi, a, bq ^ inBetweenpi, x, yq
5.3.3 Cryptographic Operations

Asymmetric keys can be generated and protected by TTM. They are wrapped in key

blobs and stored outside of the device. Similar to wrapped keys in TPM, one can specify

conditions on which the key blobs can be loaded and used. Such unwrapping conditions

in TPM are usually based on PCR values. In TTM, these conditions are related to the

tokens stored in the device. Figure 5.3.6 show the details of the commands for creating,

loading and using wrapped keys.

5.3.3.1 Creating Wrapped Keys.

TTM creates asymmetric keys and wraps them in key blobs that can be used only when

certain conditions are met. TTM CreateWrappedKey command takes the unwrapping con-

dition cond as a parameter and returns a signed key blob. The blob contains the encrypted

private part of the newly generated key and the unwrapping condition. The public part

of the new key pair is returned together with the blob.

The possible values of cond are:

1. NULL: the key can be unwrapped without any condition.

2. pttype, cid, h, count, range, discq: the parameters represent the type of tokens, the

counter ID, the height of a Merkle tree, the number of tokens, a specific range of

tokens, and the discount value respectively. The range element is used only for R-T

tokens. The value of disc, where 0 ¤ disc 2m�1, is directly related to the number

of time this blob can be unwrapped. More specifically, let ct be the current number

105

Command: TTM CreateWrappedKey

Inputs: cond - condition to unwrapped the key.
NULL if key can beunwrapped unconditionally

Outputs: If successful, return a key blob
Elsereturn error

Actions:
1. Generate an asymmetric key pair (Kpub′, Kpriv′)

2. Set blob = (enc(Kpriv′, Kpub), cond)
3. Create the signature

σ = (blob,INTERNAL FLAG)Kpriv

4. Return Kpub′, blob, σ

Command: TTM LoadBKey

Inputs: blob - thekey blob
σ - signature on the blob

Outputs: If successful, return the key handle
Elsereturn error

Actions:
1. Check that σ is the correct signature of blob

ABORT if not true
2. Check that blob isof the form (enc(Kpriv′, Kpub), cond)

ABORT if not true

3. If (cond isnot NULL) then

(a) Check that cond is of the form
(ttype, cid, h, count, range, disc). ABORT if
not true

(b) Check that there is an active token state tks such that
tks.ttype = ttype, tks.cid = cid and tks.isRT =
F . ABORT if not true

(c) Check that tks.count ≥ count + disc

ABORT if not true
(d) Set tks.count = tks.count − disc

4. Decrypt enc(Kpriv′) andset handle to Kpriv′

5. Return handle

Command: TTM LoadRKey

Inputs: blob - thekey blob
σ - signature on the blob
L - a Merkle tree’s leaf
path - verification path, in which L is path[0]

Outputs: If successful, return the key handle
Elsereturn error

Actions:
1. Check that σ is the correct signature of blob

ABORT if not true
2. Check that blob isof the form (enc(Kpriv′, Kpub), cond)

ABORT if not true

3. If (cond is not NULL) then

(a) Check that cond is of the form
(ttype, cid, h, count, range, disc). ABORT if
not true

(b) Check that there is an active token state tks such that
tks.ttype = ttype, tks.cid = cid, tks.h = h and
tks.isRT = T . ABORT if not true

(c) Check that range represents [x, y]ttype. ABORT if not
true

(d) Check that |[x, y]ttype| = count, and tks.count ≥
count + dis. ABORT if not true

(e) Derive [a, b]ttype from the leaf L

(f) Check that [x, y]ttype ⊆ [a, b]ttype, and disc ≤
cd(y, b)
ABORT if not true

(g) Compute the root hash rHash, using path andL

(h) Check that rHash = tks.root. ABORT if not true
(i) Set L.size = L.size − disc

(j) Computenew root hash newHash using path andthe
updated leaf

(k) Set tks.root = newHash

(l) Set tks.count = tks.count − disc

4. Decrypt enc(Kpriv′) andset handle to Kpriv′

5. Return handle

Command: TTM Decrypt/TTM Sign

Inputs: keyHandle - key handle, DEFAULT HANDLE if
the identity key is used
data - data to be decrypt/sign

Outputs: If successful, return the encrypted data or sig-
nature
Elsereturn error

Actions:
1. If keyHandle isnot DEFAULT HANDLE, then

set key to the key pointed to by the handle, namely KPriv.
ABORT if such key doesnot exist

2. If this is a sign operation, then
set res = (data, EXTERNAL FLAG)key

3. If this is adecrypt operation, then
set res = dec(data, key)

4. If keyHandle isnot DEFAULT HANDLE, then
remove key from the memory

5. Return res

Figure 5.3.6: Commands for generating and loading asymmetric keys. enc(KPriv’, KPub)
encrypts KPriv’ using KPub as the encryption key

106

of tokens with type ttype that belong to the TTM. The blob can be unwrapped only

if the following conditions are met:

(a)

ct ¥ pcount� discq (5.3.1)

(b) For R-T tokens, let rx, ysttype be the range of tokens represented by range, and

let ra, bsttype be the range belonging to the TTM, then:

cdpy, xq � count ^ rx, ysttype � ra, bsttype ^ cdpy, bq ¡ disc (5.3.2)

These conditions basically imply that the TTM must have at least count � disc

tokens. For R-T tokens, it must additionally have a range bigger than the one

specified by range.

Once unwrapped successfully, a number of disc tokens are removed from the device.

As a result, the blob can be unwrapped at most tct� count

disc
u times.

5.3.3.2 Loading Wrapped Keys.

Key blobs are stored outside of TTM, and they need to be loaded into the device, using

either TTM LoadBKey or TTM LoadRKey command before being used. TTM LoadBKey is

called when unwrapping requires B-T tokens. TTM LoadRKey is called when R-T tokens

are needed to unwrap the blob. TTM LoadRKey requires as input the details of the Merkle’s

leaf containing the specified range. TTM then checks if the conditions in Equation 5.3.1

and Equation 5.3.2 are met. If true, the key is unwrapped (or decrypted) and stored in

the device’s memory where it is accessible via a handle.

5.3.3.3 Decrypting and Signing.

Loaded keys can be used for decrypting (using TTM Decrypt command) or signing (using

TTM Sign command). Before returning the decrypted or signed data, TTM removes the

107

loaded key from the memory. As the consequence, the wrapped key is used at most once

after loaded, meaning that the blob needs to be re-loaded for the key to be used again.

5.3.4 Other Operations.

5.3.4.1 Transport session.

As in TPM, a number commands can be grouped and executed within a transport session.

1. TTM EstablishTransportSession(exc, isLog): opens a transport session and re-

turns the session handle handle. exc and isLog flag indicate if the session is ex-

clusive and logged. When the session is exclusive, no command can be executed

outside of the session when it is still active.

2. TTM ExecuteTransport(handle, comm): executes command comm in the transport

session. If the session is logged, the inputs and outputs of comm are written to a

log.

3. TTM ReleaseTransport(handle, nonce): closes the session. If the session is logged,

TTM also returns its signature on the log, using nonce as the non-replay nonce.

5.3.4.2 Counters.

The monotonic counters in TTM can either be read or incremented:

1. TTM ReadCounter(cid): returns the current value of the counter cid.

2. TTM IncrementCounter(cid): increments the counter cid and returns the new value.

5.3.4.3 States.

An active token state in the TTM can be read by the following command:

TTM ReadState(ttype): returns the token state storing tokens with type ttype.

108

Condition / Usage n times unlimited

R-type tokens Type 1 Type 2
B-type tokens Type 3 Type 4

Table 5.4.1: Access scenarios for systems and objects

5.4 Example With Access Control Systems

This section describes how access control systems can benefit from TTM. Tokens stored

in TTM can be used as access tokens for accessing systems or objects. Gaining access to a

system may require one to have particular tokens, whereas access to objects may require

the ability to use wrapped keys. Table 5.4.1 summarizes different types of access policies

that can be implemented with TTM. In a system supporting Type 3, for instance, access

is granted up to n times for agents having certain B-T tokens. In the following, examples

of systems supporting these access policies are discussed.

5.4.1 Online Access Control.

Consider a system consisting of a number users, an admin AD and an access control server

AS. An user U needs to prove his credentials to AS in order to gain access to the system’s

resources. Suppose that users are equipped with TTMs. AD initializes new tokens whose

types are ttype, and distributes them to existing users. Assume for simplicity that B-T

tokens are used. The admin can implement two interesting policies detailed as below.

1. AS grants access only to users that have the tokens, and for unlimited number of

times (Type 4 access). The protocol is as follows:

(a) AS sends a nonce to U .

(b) U opens a transport session with its TTM, in which TTM ReadState(ttype) is

executed. When the session is released, its log containing a token state tks is

signed by the TTM using the nonce given by AS.

(c) AS receives the log containing tks, and the signature on the log by U ’s TTM.

109

It verifies the signature and checks that tks.ttype � ttype and tks.isRT � F .

It grants U access to the resources only if tks.count ¡ 0.

2. AD grants limited access, namely n times per user, to users who have the tokens

(Type 3 in Table 5.4.1). In this scenario, AD gives n tokens to every user. The

protocol is similar to that of Policy 1, except in the final step, before granting the

access, AS asks U to transfer one token to it. U will not be able to gain access

to the system’s resources once it has run out of the tokens. Users could lend their

tokens to each other, but the maximum number of access granted to all users is

n� u (u is the number of users).

In these policies, the users can send their tokens back to AD at anytime and consequently

give up their abilities to access the system’s resources.

5.4.2 Offline Access Control.

Consider a party DP that wishes to implement an access policy to its objects. The objects

considered in this case are signing or decryption keys. The delegated key can be used

by an user U only if U has certain R-T tokens. This scenario resembles a Digital Right

Management (DRM) system consisting of a party DP that distributes encrypted objects

to users. U needs to have specific tokens (given by to it by a separate payment system, for

example) in order to decrypt the objects. A typical use-case scenario for such the system

is as follows:

• The payment system gives U a range of tokens.

• DP ask U to create a wrapped key whose unwrapping condition are linked with the

tokens that U just received.

• DP encrypts the data with a symmetric key sK which is in turned encrypted by

the public part of the wrapped key given by U . The encrypted data and key are

sent back to U .

110

• U is only able to decrypt the data if it can load and use the wrapped key to decrypt

the encryption key.

DP can implements the following two policies.

1. For unlimited usage (Type 2):

(a) DP asks U to prove its possession of a range rx, ysttype. The proof can be

generated by U returning its TTM’s signature on the token state tks where

tks.ttype � ttype and tks.isRT � T . U also returns the Merkle leaf containingrx, ysttype and the verification path. DP then computes the root of the Merkle

tree and checks that it is the same as tks.root.

(b) DP asks U to create a wrapped key inside a transport session. The wrapped

key wK is returned together with the proof (the session log and signature on

the log from U ’s TTM) that the key was created properly. In particular, the

unwrapping condition is set to be:pttype, cid, h, |rx, ysttype|, x, y, 0q
(c) After verifying that wK was generated correctly, the public part of wK can

be certified (when wK is used as a signing key) or used to encrypt data (when

wK is used as a decryption key) by DP

To use wK for signing or decrypting, U must load it into the device using TTM LoadRKey

command. Because the unwrapping condition specifies disc � 0, U can use wK the

key for as long as it has the range rx, ysttype.

2. For n-time usage (Type 1):

(a) DP asks U to prove its possession of a range consisting of at least pn � 2q
tokens whose types are ttype. U returns the proof for a range rx, ysttype where|rx, ysttype| � n�2. The protocol for this is similar to the one for the unlimited

usage case.

111

(b) U transfers the range ry, ysttype to DP .

(c) Similar to the unlimited usage case, U creates a wrapped key wK inside a trans-

port session and sends it back to DP . The main data fields of the unwrapping

condition are set as follows:

i. cond.ttype � ttype

ii. cond.count � 1

iii. cond.range � px, xq
iv. cond.disc � 1

To sign or decrypt with wK, U needs to load it into TTM using TTM LoadRKey

command. disc tokens are removed from the range each time the key is used.

Notice that step b is necessary, for it ensures that U cannot merge ranges together

in order to use wK for more than n times.

The policies above could be implemented with B-T tokens (instead of R-T). However,

U may need to maintain different types of tokens for different wrapped keys. Because the

number of states in TTM is limited, such an implementation would not scale well. Using

R-T tokens, up to 2160 ranges can be maintained in one state. Therefore R-T tokens allow

many wrapped keys to be linked with different non-overlapping ranges maintained by the

same state.

5.5 Detecting Misbehavior at the Routing Layer

(DTR2)

As described in the previous chapter, DTR1 consists of a set of protocols that allow a peer

to verify if another is the correct root node of a given search key. DTR1’s main limitation

is that it relies on a centralized CA to issue neighbor certificates as peers join and leave

the network. As noted earlier in this chapter, the CA plays an important role in ensuring

the non-overlapping property. This section shows how the TTM’s non-recreatability prop-

112

erty (Property 5.3.1) can be leveraged to construct a new set of protocols for DeTecting

misbehavior at the Routing layer, called DTR2, that also satisfies the non-overlapping

property without requiring a CA. In other words, DTR2 is a decentralized mechanism for

detecting misbehavior at the routing layer.

Let B be the set of bootstrapping nodes for the P2P systems. B comprises a number

of peers that start and never leave the network. Assume that peers are equipped with

TTMs, and they leave the network gracefully.

Initialization. First, a node pb0 P B initializes a new type of R-T tokens, namely ttype.

It distributes the new tokens to the other members of B, in such a way that pbi
gets the

range rpbj
` 1, pbi

sttype where pbj
P B is the immediate left neighbor of pbi

in the ID ring

consisting of only nodes in B.

Routing. Suppose pv is searching for the root node of a key k. First, the normal P2P

routing protocol (Chord) is executed, which returns a node pd. Next, pv asks pd for its

immediate left neighbor, for which pl is returned. pv verifies that pl is indeed the correct

left neighbor of pd in the current network by asking pd to prove that it has the rangerpl ` 1, pdsttype. Let tks be the token state in pd’s TTM such that tks.ttype � ttype and

tks.isRT � T . The proof can be constructed from the signature of pd’s TTM on the

latest value of tks, together with the Merkle leaf representing the range, and with the

verification path for the Merkle tree. pv computes the Merkle root from the leaf’s details,

and then verifies that the result is the same as tks.root.

Joining. A new node pn joins the network through a bootstrapping peer pb P B that it

knows. The joining protocol is as follows:

1. pn asks pb to perform lookup for the root node of the key that has the same ID

as pn’s. Using the routing protocol above, a node pd is returned as the root node.

Suppose that pd returns pl as its left neighbor, and that pd is accepted by pn after

verification to be the correct root node.

113

2. pn asks pd to transfer the range rpl ` 1, pnsttype to it.

3. Only after successfully receiving the requested range does pn become part of the

network and the joining process terminate successfully.

Leaving. Suppose pn is leaving the network. Let pr be its immediate right neighbor.

When leaving gracefully, pn simply transfers its current range of tokens to pr. Only after pr

has received the range is pn considered as having left the network successfully. Otherwise,

it is assumed to still be in the network but fail temporarily.

5.6 Detecting Misbehavior at the Application Layer

(DTA2)

As described in Section 4.4, DTA1 consists of protocols that enable an honest peer to

detect misbehavior of another peer in a P2P-based marketplace. It has been noted early

that scalability is one of the main obstacles that must be addressed before DTA1 can

be realized in practice. This section describes how TTM helps improve the scalability

of DTA1. The new set of protocols for DeTecting misbehavior at the Application layer,

called DTA2, reduce the cost of verifying if a publishing peer has truthfully reported the

sale offers. DTA2 also allows the publishing peer to securely remove an offer from its list,

but only when agreed by the seller.

Assume that peers are equipped with TTMs. In addition, at each TTM, one monotonic

counter, namely cid, is used exclusively for the marketplace application. For simplicity,

assume further that the initial values of cid at all peers are 0. Let 2si be the maximum

number of types of items that is accepted by a publishing peer, for 0 ¤ si ¤ m. The main

idea behind DTA2 is that each peer creates 2m R-T tokens, from which 2m�si tokens are

used for sale offers of each item. When a seller publishes its sale offer for an item, it takes

away one token from the range of tokens reserved for the item. Once the the sale offer

is accepted and the item is sold, the seller gives the token back to the publishing node.

114

During verification, the publishing node returns the Merkle’s root, list of missing tokens

and the list of sale offers for the item.

Initialization. A peer pi initializes a set of new tokens as follows:

1. Establishes a transport session with the TTM.

2. Executes TTM IncrementCounter(cid) inside the session.

3. Executes init(n,cid,isRT,isRecreatable,h,even) where:

• isRecreatable � F

• isRT � T

• h � m

4. Closes the session. The session’s log sli is returned, together with a TTM’s signature

σi on the log.

At the end of the initialization, 2m tokens whose types are ttypei are created. The external

Merkle tree storing the tokens have 2m leaves, and Li.offset � 0, Li.size � 1 for all

i P r0, 2mq. For item d, the sale offers stored at pd are linked with tokens in the rangerdsi.2
m�si, pdsi� 1q.2m�si � 1sttypei

where dsi � SHA1pdq modulo 2si. Notice that different

peers initialize different types of tokens; but all the tokens are R-T, and non-recreatable.

publish(d). The seller p first asks the publisher pd to prove that it has tokens of the

appropriate types, then publishes its offer for d. More specifically:

1. p asks pd to execute TTM ReadCounter(cid) and TTM ReadStatepttypepd
q command

inside a transport session. The results of these commands and the proof that they

are executed inside a transport session are sent back to p. pd also sends the proof

σd that shows tokens whose types are ttypepd
were initialized correctly at pd, and

details of a Merkle’s leaf representing one token.

115

2. p verifies the proof, and checks that the leaf is part of the current Merkle tree. In

addition, the leaf represents a token in the range rdsi.2
m�si, pdsi�1q.2m�si�1sttypepd

where dsi � SHA1pdqmodulo 2si. If the verifications are correct, p asks pd to transfer

to it the token represented by the returned leaf.

3. Finally, p sends the payment f to pd and the protocol terminates successfully.

retrieve(d). To retrieve the list of offers for item d stored at pd, the buyer pr first asks

pd to prove its latest token state tks storing the tokens of type ttypepd
. This is similar to

the first step in publish(d) protocol.

Next, pd returns a list of tokens missing from the range rdsi.2
m�si, pdsi � 1q.2m�si �

1sttypepd
. In particular, the list consists of details of the Merkle’s leaves representing the

tokens in the range rdsi.2
m�si, pdsi � 1q.2m�si � 1sttypepd

that have been taken away. p

verifies the list by computing the Merkle’s root using the leaves’ details and checking that

the result is the same as tks.root.

Finally, pd returns a list of sale offers for item d, together with the receipts generated

when the offers were published. p can verify the completeness of such the list, because

the offers are tied to the missing tokens. The list contains the same number of sale offers

for d, and therefore is smaller than the what returned in DTR1, namely W pd, which also

contains offers of other items. In other words, TTM helps reduce the cost of verification.

Post-transaction. Once the buyer accepts an offer for the item d, it pays the listed

price to the seller p. But before the transaction is considered as completed, p returns the

token it acquired when publishing the sale offer to pd. The publishing peer then adds the

returned token back to its state so that the token can be reused later. This mechanism

increases the publishing peer’s capacity as more sale offers can be stored over time.

116

5.7 Discussion

This chapter introduces a general-purpose secure hardware, called TTM, that can ini-

tialize, store and transfer tokens. TTMs can be used in P2P systems to improve the

mechanisms for detecting misbehavior. Levin et al. [61] proposed another secure hard-

ware abstraction, called TrInc, that proves to be useful for large distributed system. TrInc

is basically a stripped down version of TPM, and its main operations are related to trusted

monotonic counters. It is designed to combat equivocation problems in distributed sys-

tems. Such problems can be reduced to ones that ensure freshness of the information used

in the systems. However, in the context of misbehavior detection mechanisms discussed

in this thesis, TrInc does not offer any new feature beside what can already be found in

TPM.

In this chapter, TTMs have been used to improve upon DTR1 and DTA1. In partic-

ular, DTR2 requires no centralized party, and DTA2 is more efficient than DTA1. What

have not been improved are the churn models. More specifically, DTR2 still assumes nodes

leave the network gracefully, and DTA2 presumes that the network is static. It would be

interesting to investigate the extensions to DTR2 and DTA2 that allow for more realistic

churn models. In case of DTR2, for example, when a node leaves permanently without

giving its tokens to another node, those tokens will disappear forever. Therefore, a mech-

anism is needed to re-issue such tokens, which could be done either by a trusted party or

by the network switching to a new type of tokens.

In TTM, computing the root of a Merkle tree is a frequent operation involving a

number of SHA1 operations, and therefore it could be a potential bottleneck. Particularly,

TTM may be asked to perform up to 160 SHA1 operations in one command. Anecdotal

evidence suggests the latency of a SHA1 operation in smartcards is around 10 – 15ms.

Thus, it would take 2 – 2.4s for computing a Merkle root in the worst case, which is a

reasonable delay. Speedup could be achieved using caching techniques.

For computing the Merkle’s root, giveRTokens, takeRTokens and TTM LoadRKey com-

mand take as a parameter an array consisting of up to 160 elements of 20 bytes each. This

117

requires TTM to reserve at least 3.2KB in input memory for each of these commands. In

TPM, the size of the input buffer is up to 4KB, which is large enough to accommodate

these commands. In a smartcard implementation of TTM, the input buffer is usually

much smaller. One could overcome this by implementing a computeRoot operation that

computes the Merkle’s root by taking one element of the input array at a time. Conse-

quently, the commands needs to be modified to include multiple calls to the computeRoot

operation.

In the current design, TTM supports only a limited number of monotonic counters

and states. A direct extension would be to add support for more counters and states

without requiring linear extension of memory. Such an extension could be based on the

work by Sarmenta et al. [84] in which the authors’ proposal allows TPM to support up

to 2160 monotonic counters. The basic idea is to maintain virtual states and counters

in the leaves of a Merkle tree. The tree is stored outside of the device, but its root is

maintained inside the TTM. When a state or a counter is updated, the corresponding leaf

and verification path are provided to the TTM which then uses them to compute the root

and check the result against the current root stored in the memory. If the two roots are

the same, the update is accepted and a new root is evaluated and replaces the one in the

TTM’s memory. Having almost unlimited number of counters help lift the assumption

made in Section 5.6 that the reserved counters at all peers must have the same initial

values. More precisely, different applications, equipped with 2160 counters, can now be

linked with unique counters that are very likely to never be used again. This allows for a

node to participate in many different applications at the same time.

A number of properties of TTM have been put forward in this chapter. They look

intuitive, but more formal analysis is still needed to ascertain that they are indeed true

statements. For now, TTM is still at the design stage and has not yet been implemented.

The next step is to implement it on smartcards. Only by doing so can its real performance

be assessed and improvements to the current design be identified. Finally, since TTM aims

to be a general-purposed device, it would be interesting to find other security applications

118

where it can be useful.

119

120

CHAPTER 6

FORMAL ANALYSIS

The previous chapters have presented two mechanisms for detecting misbehavior at the

P2P routing layer: DTR1 and DTR2. Both DTR1 and DTR2 are designed to meet the

root authenticity (or RA) property, which allows an honest peer to detect if others are

misbehaving with regards to routing operations. This chapter uses formal methods based

on Communicating Sequential Processes (CSP) to model these mechanisms and verify

that the RA property is indeed met. Section 6.1 discusses the verification of RA property

in general, and it explains the choice of CSP and the methodology adopted in verifying

the property. Section 6.2 introduces CSP and the model abstraction technique called

data independence which proves to be a useful tool for verification. Section 6.4 and 6.5

detail the CSP models and formal analysis showing that DTR1 and DTR2 satisfy the RA

property. The analysis of DTR1 is a joint work with Mark Ryan. Finally, the related

work and discussions are presented in Section 6.6.

6.1 Overview

6.1.1 Formal Verification of RA Property

In Section 4.3.1, the RA property is defined together with another property called the

Neighbor Authenticity (or NA) property that concerns with the correctness of the verifica-

121

Verification

join/leave join/leave join/leave join/leave. . .

.

P0 � B P t P t�1

Figure 6.1.1: The P2P system evolves from time t to time t� 1 (for t ¥ 0) as peers join
and leave the network

tion that one node is the immediate neighbor of another (Definition 4.3.2). The NA prop-

erty specifically states that for any peer pl and pr, if the verification neighborVerificationppl , prq
protocol returns true then pl is the immediate left neighbor of pr in the current network.

Theorem 4.3.1 indicates that to prove that a system meets the RA property, it is sufficient

to show that the system meets the NA property.

In the definition of RA and NA property, the system’s state at time t (for t ¥ 0) is

represented by P t (the set of nodes currently in the network). The system evolves to a

new state at time pt � 1q (represented as P t�1) when a peer joins or leaves the network.

Figure 6.1.1 illustrates the evolution of the system, starting with the set of bootstrapping

nodes B. The system satisfies the NA property only if the verification outcome is correct

given any state reached by system. The joining and leaving protocols are considered as

atomic operations that move the system from one state to another. Verification is not

performed when joining or leaving is in progress, and vice versa.

For any state P t, the NA property imposes that if the verification terminates success-

fully, what returned is correct with regards to nodes being immediate neighbors of each

other. More specifically, if neighborVerificationppl , pdq returns true for some values of pl

and pr, then pl and pd are members of P t and within this set pd is the immediate right

neighbor of pl. More precisely:�p1d P P t, p1d � pl . cdppd, plq ¡ cdpp1d, plq
122

6.1.2 Why CSP?

Process calculi are formal languages often used in studying properties of security systems.

They offer the rigor of mathematical approaches and some degree of automation. A system

is modeled as consisting of processes interacting with each other in a common environment.

Difference calculi have different ways of specifying the processes and reasoning about their

interactions and equivalence relations. Many calculi are constructed based on the Calculus

for Communicating System (CCS) by Milner [68]. This thesis uses the Communicating

Sequential Process (CSP) process algebra by Hoare [47]. The decision to select CSP over

CCS as the formal language for modeling and reasoning about P2P protocols, beside

the more numerous resources and references available for CSP, is based on the following

arguments by Hoare [48].

While CCS is designed with the goal of providing a minimal set of basic agents and

operators capable of modeling and reasoning about concurrent systems, CSP provides a

broader range of useful operators so that one has more flexibility in studying the system.

The primary semantics supported by CSP is the denotational semantics, whereas CCS

mainly supports the operational semantics. This implies that definitions of the opera-

tors in CSP are more complex than those in CCS. Nevertheless, the complexity in the

definitions is compensated by the improved algebraic properties of the operators in CSP.

Properties of a system modeled in a calculus are often expressed by specification pro-

cesses using notations of the calculus. The system model, called the implementation

process, is then checked against the specification for an equivalence relation. In CCS, the

main relation is bisimulation equivalence which requires that the specification and the

implementation are indistinguishable within the calculus. This relation is very strict, but

a proof for it can be automated quite efficiently. CSP supports a more general relation

known as refinement . The implementation is said to refine the specification if the set of

observable behavior of the former is a subset of the behavior permitted by the latter. In

CSP, one can define a very abstract specification at the beginning. Such the specification

can be refined by different implementations whose details can be left until the later stages

123

of the system design. The refinement relation is less efficient to check automatically,

but the Failure Divergence Refinement (FDR) model checker for CSP [37] overcomes this

by reducing the specification to normal forms before checking for the correctness of an

implementation. Expressing properties in CSP is not constrained by using specification

processes, which means any mathematically sound description is possible, thus allowing

for flexible and elegant definitions and proofs of the system’s properties.

A well-known denotational semantics of CSP is based on traces. The trace set of a

process consists of all the possible sequences of events produced by the process. This is

strongly related to the safety properties — ones concerning with the absence of certain

undesirable events or sequences of events. The definition of NA property (Definition 4.3.2)

suggests that the property can be readily translated into a trace property and therefore

fits naturally into CSP.

Finally, proofs in CSP involve concepts and operators mainly from discrete mathe-

matics such as sets, sequences and functions. In contrast, proofs in CCS are usually more

complex and innovative because they mainly involve more advanced techniques such as

recursion and induction. With regards to this criterion, CSP is chosen, as a matter

of personal preference, for the seemingly more straightforward approach in deriving the

proofs.

6.1.3 Methodology

The CSP model for DTR1 (and similarly for DTR2) consists of a set of processes rep-

resenting the peers, a process representing the CA, an adversary process whose aims is

to break the NA property, and a process representing the honest peer that implements

the neighborVerification protocol. These processes are combined using parallel operators.

Verifying that the model meets the NA property is done by checking that it refines a

specification process that trivially satisfies the NA property.

As it turns out, the CSP model for DTR1 is large and could lead to a lengthy proof.

The first step in forming the proof is to derive models with smaller state spaces, called

124

abstractions, that the original model refines. Since refinement is a transitive relation, if

the abstractions refine the specification process, then so does the original model. In this

thesis, two techniques are used for deriving the abstractions.

1. Weakening the adversary. The adversary in the original model is very powerful, but

it is shown that the set observable behavior of the systems does not become smaller

when the adversary is weakened in particular ways.

2. Data independence technique. The original model contains data types of unlimited

sizes. The data independence technique helps reduce the sizes of the data types

while preserving the system’s set of observable behavior.

Next, an instance of an abstraction of the original model, which consists of three peers,

is implemented in FDR and checked against the specification. FDR confirmation that the

instance of the model does indeed meet the NA property serves as a concrete evidence

that the DTR1 (and DTR2) model of at least 3 peers satisfies the NA property. This

result is generalized for any number of peers by a hand-written formal proof.

6.2 Introduction to CSP

6.2.1 Syntax

The building blocks of CSP are events that are communicated by processes.

Events.

a, b : DT events belonging to the data type DT which are

communicated by CSP processes

Σ universal set of events

αP set of all events communicated by the process P

ch.v communication of event v on channel ch|ch| set of all events communicated on channel ch

125

Processes.

P, Q CSP process

STOP do nothing

a Ñ P event prefix: communicate event a then behave as P

ch?v : T Ñ P input prefix choice: communicate any event ch.v where

v P T , then behave as P

P l Q,
Ü

PiPPs

Pi external choice

if b then P else Q conditional

P }
X

Q P and Q executed concurrently, but synchronize on

events in X

P ||| Q, |||
PiPPs

Pi interleaving

P vRenw renaming operator by which the events are renamed using Ren

P zX hiding operator, by which events in X are hidden

6.2.2 Trace semantics

The behavior of a process can be defined by it traces, each of which is a sequence of events

communicated by the process. The trace semantics of some basic processes and operators

are given below as examples. The trace semantics of the other operators can be found in

Appendix C.

• tracespSTOPq � txyu. This process does nothing.

• tracespa Ñ Pq � txyu Y txay^s | s P tracespPqu. This process either does nothing or

communicate a and then follows a trace of P .

• tracesp Ü
PiPPs

Piq � �ttracespPiq |Pi P Psu. This process can perform traces of any

process in Ps.

• tracespPvRenwq � ttr | Dtr 1 P tracespPq . tr Ren� tr 1u where tr Ren� tr1 is the relation

satisfied when events in tr is mapped to events in tr1 by Ren.

126

• For a recursive process P defined by P � F pP q,
tracespPq �¤ttracespF npSTOPqq | n P Nu

In trace semantics, tracespP q is in fact the least fixed point of function F . When P

is guarded (occurrence of P in F pP q appears within the scope of an event prefix),

tracespP q is the unique fixed point of F .

Refinement. A process Q is said to refine process another process P , written as P � Q,

if:

tracespQq � tracespPq
In practice, P represents the system’s specification that defines the set of acceptable

behavior, and Q represents a particular implementation of the system satisfying the spec-

ifications. The refinement relation has two useful properties. First, it is transitive:

P � Q, Q � S |ù P � S

Second, it is monotone, meaning that for any process context Cr.s:
P � Q |ù CrP s � CrQs

When designing a complex system consisting of many components, the second property

allows one to use the specification of a component directly at the beginning and postpone

the detailed implementation until later. This technique, in software engineering, is called

compositional development.

127

Trace properties. The notation P sat Prop is often used to denote that all the traces

of P satisfies the property Prop. More precisely:�tr P tracespPq . Propptrq
Fixed point induction. When proving trace properties for a recursive process P (de-

fined by P � F pP q), the following rule can be used:�P 1 . P 1 sat Prop ñ F pP 1q sat Prop

P sat Prop
rProppxyqs (6.2.1)

6.3 Data Independence Technique

The data independence techniques are first developed by Lazic [56] and followed by Roscoe

and Broadfoot [13]. A process P is data-independent of type DT (DT � Σ) if it places

no constraints on what DT is [80, 13]. More specifically, P can perform equality checks,

polymorphic operations (tupling, listing) on members of DT , but it cannot depend on

the size of DT or have operations that involve values of its members, such as ¡, ,�{�.

Lazic [56] introduced a condition necessary to reduce a large (potentially infinite) data

independent type DT to a finite one.

Definition 6.3.1 (PosConjEqDT). A process P pDT q, which is independent of the data

type DT , satisfies PosConjEqDT condition precisely when the failure of any equality check

involving DT values results in STOP .

The subsequent work from Roscoe and Broadfoot [80] applied transformation in the

middle of the execution of a data independent process satisfying PosConjEqDT condition.

Given a process P satisfying PosConjEqDT, any state P 1 reached in the operational

semantic of P will also meet PosConjEqDT. Applying a function φ to the data independent

128

type in P 1 yields: tφptrq | tr P tracespP 1qu � tracespφpP 1qq (6.3.1)

where φ is applied to the values of the data type when they appear in traces or in

parameters included in the definition of a process. This result can be useful when φ is a

collapsing function that reduces size of the type. The inequality may be strict because

P 1 may carry distinct data values that get mapped to the same value by φ, resulting in

equality checks returning true in φpP 1q where it returns false in P 1. Examples can be

found in [13] and [30].

Extending PosConjEqDT Condition. The equality in Equation 6.3.1 is restored

when another (stricter) is met.

Definition 6.3.2 (PosConjEqDTStrict(ET)). A process P pDT q, which is indepen-

dent of the data type DT , satisfies PosConjEqDTStrict(ET) condition, where ET is a set

of events containing values in DT , precisely when:

1. P pDT q satisfies PosConjEqDT condition.

2. There is no constant of type DT in P pDT q
3. Let sq be a sequence of events. Let e P ET and let P 1psq, e, DT q be a state reached

by the process P pDT q after the sequence sq^xey. Let πsq,DT be the set of DT values

appeared in sq. Then, P 1psq, e, DT q does not use values in πsq,DT .

Essentially, the third condition in the definition requires that no previously used DT

value will appear in the future events. This allows one to safely reuse the previous values,

subsequently reducing the size of DT . Consider the following processes:

P1pDT q � ch1?x : DT Ñ ch2?x1 : DT Ñ ch3.x Ñ STOP

P2pDT q � ch1?x : DT Ñ ch2?x1 : DT Ñ STOP

129

in which DT � t1, 2u. P2pDT q satisfies PosConjEqDTStrict(t|ch2|u) condition. Let

P 1
1pxch1.1y, ch2.2, DT q be the process reached by P1pDT q after the sequence xch1.1, ch2.2y.

The event ch3.1 in P 1
1pxch1.1y, ch2.2, DT q uses the value 1, which appears in xch1.1, ch2.2y.

Therefore it violates the third condition in the definition of PosConjEqDTStrict(t|ch2|u).
In other words, P1pDT q does not satisfy PosConjEqDTStrict(t|ch2|u) condition.

For any ET and a process P pDT q satisfying PosConjEqDTStrict(ET), let P 1psq, e, DT q
where e P ET be a state reached by P pDT q after the sequence sq^xey. Let DT 1 be the

set of all DT values used in P 1ps, e, DT q. For any set Re,DT satisfying the following:

1. Re,DT � DT 1
2. |Re,DT | � |πsq,DT |
3. Re,DT X πsq,DT � H

a transformation φ is defined as follows:

• φ maps each value in Re,DT to a distinct one in πsq,DT .

• �v P DT 1zRe,DT . φpvq � v. In other words, DT values that are not in Re,DT are

mapped to themselves.

φ essentially reuses the old DT values in the future events. Because the third condition

in the definition of PosConjEqDTStrict(ET) states that values in πsq,DT are not checked

for equality in φpP 1psq, e, DT qq, the transformation φ ensures that there does not exists

equality checks in φpP 1psq, e, DT qq returning true where they return false in P 1psq, e, DT q.
I conjecture that the following equation is true:

tracespφpP 1psq, e, DT qqq � tφptrq | tr P tracespP 1psq, e, DT qqu (6.3.2)

130

6.4 Verifying RA Property for DTR1

6.4.1 The DTR1 Model in CSP

6.4.1.1 Data types.

The following data types are used:

• Nonces � tNonce.id | id P Iu represents nonces.

• P8 represents all peers that could take part in the system.

• Counts represents the counter values. For simplicity, assume Counts � N.

• Agents � P8 Y tNM ,CA,VF u represents all agents in the network except for the

adversary. This includes peers, the agent that manages nonces, the CA and the

honest peer that carries out the neighborVerification protocol.

6.4.1.2 Events.

The events used in the model come from the following sets:

1. ChurnEvents � tChurn.x | x P tjoin, leaveu � P8u. This represents churn events.

2. SigMessages � tSqR.x , SqI .x | x P Nonces � P8 � Countsu. This represents TPM-

signed messages containing counter values after being read or incremented.

3. NonceMessages � tSqN .xny | n P Noncesu.
4. CertMessages � tCert .x | x P P8 � P8 � P8 � Countsu. This represents neighbor

certificates issued by the CA to peers during churn events. The event Cert.xp, l, r, cy,
for example, is the neighbor certificate issued for p, and it asserts that p’s immediate

neighbors when its counter value is c is l and r.

5. Messages � ChurnMessages Y SigMessages Y NonceMessages Y CertMessages

131

6.4.1.3 Channels.

The following channels are used in the model:

• send , receive, take, fake : Agents.Agents.Messages

• learn, say : Messages

• output : P8.P8
• completeChurn : ChurnMessages

• unlock : Agents.P8
6.4.1.4 Nonce Manager process.

This process supplies fresh and unique nonces to other agents via the send channel. The

nonces are used during churn and verification.

NonceSender(n) =
ü

jPAgents

send.NM.j.SqN.xny Ñ STOP

NonceManager = |||
nPNonces

NonceSender(n)

Compared with other CSP implementation of the nonce manager, the process NonceManager

is more efficient to compile and run in FDR (see [30] for more details).

6.4.1.5 Peer processes.

Each peer is modeled by a process representing a TPM.

TPMs =
������

iPP8 TPM(i,0)

TPM(i,c) =ü
nPNonces
jPAgents

�������� receive.j.i.SqN.xnyÑ ���� ü
d¥c

send.i.j.SqR.xn, i, dy Ñ unlock.V F.i Ñ TPM(i,d)l ü
d¡c

send.i.j.SqI.xn, i, dy Ñ unlock.CA.i Ñ TPM(i,d)

�ÆÆ
 �ÆÆÆÆÆÆ

Each TPM process receives nonces on the receive channel, then sends back SigMessages

events on the send channel. The TPM is locked when verification or churn is in progress,

132

which is to ensure the atomicity of these protocols (discussed early in Section 6.1). The

events on the unlock channel signal that the churn or verification protocol has finished.

6.4.1.6 CA Process.

This process models the CA that issues neighbor certificates when a peer joins or leaves

the network. The high-level protocol is described in Section 4.3.2. In CAProcesspps, pnq,
ps is the set of nodes that are currently in the network, pn is the set comprising nodes

that have left or are about to join the network.

First, the process receives a churn request from a peer, either for joining or leav-

ing the network. The request is in the form of the event receive.i .CA.Churn.xjoin, iy or

receive.i .CA.Churn.xleave, iy for some i. It checks that i P ps if i is joining the network,

and that i P pn if i is leaving the network. Next, it gets fresh nonces from the Nonce Man-

ager process, in the form of the event receive.NM .CA.SqN .xny for some value of n. The

nonces are forwarded to the relevant nodes (the joining/leaving node and its immediate

neighbors) in the form of the event send .CA.i .SqN .xny for some values of i and n. The

processes representing these nodes are then locked, meaning that they cannot communi-

cate events that are not related to the churn process, until the churn process completes.

Once received the signed messages from those nodes containing their newly incremented

counter values, which are in the form of the event receive.i .CA.SqI .xn, i , cy for some values

of n, i and c, the CA issues new neighbor certificates for these nodes, then sends them to

the nodes in the form of the event send .CA.i .Cert .xi , l , r , cy for some values of i, l, r and c.

Next, it outputs on channel completeChurn, for example completeChurn.Churn.xjoin, iy,
to signal that the churn event for some node i has completed, or in other words, that the

network has moved to a new state (Figure 6.1.1). Finally, the nodes involved during the

churn process are unlocked by the events of the form unlock .CA.i , so that they can start

communicating other events that are not churn-related.

CAProcess(ps,pn) = |ps| �� 0 & Join0(ps,pn)l |ps| �� 1 & Join1(ps,pn)l |ps| ¡ 1 & JoinAndLeaveN(ps,pn)

133

JoinAndLeaveN(ps,pn) =
ü
iPpn

receive.i.CA.Churn.xjoin, iy Ñ JoinN(i,ps,pn)lü
iPps

������ receive.i.CA.Churn.xleave, iyÑ if |ps| ¡ 2 then LeaveN(i,ps,pn)

else Leave2(i,ps,pn)

�ÆÆÆÆ

JoinN(i,ps,pn) =

ü
n1,n2,n3PNonces

���

receive.NM.CA.SqN.xn1y Ñ send.CA.i.SqN.xn1y

Ñ Ü
c1,c2,c3PCounts

��

receive.i.CA.SqI.xn1, i, c1y Ñ
let S � psY tiupl, rq � neighbor pi,Sqpl1, r1q � neighbor pl,Sqpl2, r2q � neighbor pr,S q within

send.CA.i.Cert.xi, l, r, c1yÑ receive.NM.CA.SqN.xn2yÑ send.CA.l.SqN.xn2yÑ receive.l.CA.SqI.xn2, l, c2yÑ send.CA.l.Cert.xl, l1, i, c2yÑ receive.NM.CA.SqN.xn3yÑ send.CA.r.SqN.xn3yÑ receive.r.CA.SqI.xn3, r, c3yÑ send.CA.r.Cert.xr, i, r2, c3yÑ completeChurn.Churn.xjoin, iyÑ unlock.CA.i Ñ unlock.CA.lÑ unlock.CA.r Ñ CAProcess(S,pnztiu)

�ÆÆ

�ÆÆÆ

The function neighborpp, psq returns the left and right neighbor of p in the set ps.

More precisely,

neighborpp, psq � pleftpp, psq, rightpp, psqq
leftpp, psq � l if l P ps ^ �p1 P psztlu . cdpp, lq ¤ cdpp1, lq
rightpp, psq � r if r P ps ^ �p1 P psztru . cdpr, pq ¤ cdpr, p1q

The details of other sub-processes, namely Join0(ps,pn), Join1(ps,pn), Leave2(ps,pn)

and LeaveN(ps,pn), can be found in Appendix D.

134

6.4.1.7 Adversary Process.

This process models the adversary whose aim is to break the NA property. In particular, it

attempts to make the Verifier accept incorrectly that two nodes are immediate neighbors

of each other in the current network. The adversary is modeled as having control of all

peers, which means that it could ask TPMs to increment their counters and generate

signed messages on their values. However, it cannot fake the signatures coming from

TPMs, which reflects the property that TPM operations are trusted.

MemoryNonce(n) = learn.SqN.xny Ñ ReplayNonce(n)

ReplayNonce(n) = say.SqN.xny Ñ ReplayNonce(n)

MemorySigR(n,i,c) = learn.SqR.xn, i, cy Ñ ReplaySigR(n,i,c)

MemorySigI(n,i,c) = learn.SqI.xn, i, cy Ñ ReplaySigI(n,i,c)

ReplaySigR(n,i,c) = say.SqR.xn, i, cy Ñ ReplaySigR(n,i,c)

ReplaySigI(n,i,c) = say.SqI.xn, i, cy Ñ ReplaySigI(n,i,c)

MemoryCert(i,l,r,c) = learn.Cert.xi, l, r, cy Ñ ReplayCert(i,l,r,c)

ReplayCert(i,l,r,c) = say.Cert.xi, l, r, cy Ñ ReplayCert(i,l,r,c)

Memory =
������

nPNonces

MemoryNonce(n)||| ������
nPNonces,iPP,cPCounts

�� MemorySigR(n,i,c)||| MemorySigI(n,i,c)

�
||| ������
i,l,rPP,cPCounts

MemoryCert(i,l,r,c)

ChurnInitiator =
ü
iPP �� say.Churn.xjoin, iy Ñ ChurnInitiatorl say.Churn.xleave, iy Ñ ChurnInitiator

�

Adversary = Memory ||| ChurnInitiator

The adversary can start a churn event for any node in the network, modeled by the

ChurnInitiator sub-process. It can eavesdrop (on the learn channel), remember, and

replay (on the say channel) all messages sent between peers and the other agents in the

network. Its infinite memory for remembering messages is modeled by the Memory sub-

process. In the literature, modeling such the powerful adversary has been used when

analyzing security protocols in CSP [83].

135

6.4.1.8 Verifier Process.

This process models the neighborVerification protocol described in Section 4.3.2, i.e. it

models the honest peer that verifies if two other nodes are immediate neighbors of each

other. The process sends and receives messages using the send and receive channel re-

spectively. The output .l .r event, for example, indicates that the verifying peer accepts

that l is the immediate left neighbor of r in the current state of the system.

VerifierProcess =

ü
nPNonces

����������������������
receive.NM.V F.SqN.xny
Ñ ü

i,l,rPP8
�������������������

send.V F.i.SqN.xny
Ñ ü

cPCounts

����������������
receive.i.V F.SqR.xn, i, cyÑ receive.i.V F.Cert.xi, l, r, cyÑ if l � r and l � i then

output.i.i Ñ unlock.V F.iÑ STOP

else VerifierProcessN(l,i)

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

VerifierProcessN(l,i) =ü
nPNonces

������������
receive.NM.V F.SqN.xny Ñ send.V F.r.SqN.xnyÑ ü

clPCounts

��������� receive.l.V F.SqR.xn, l, clyÑ ü
llPP8������ receive.l.V F.Cert.xl, ll, i, clyÑ output.l.i Ñ unlock.V F.lÑ unlock.V F.i Ñ STOP

�ÆÆÆÆ

�ÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆ

Notice that VerifierProcess models the verification that happens only once, unlike

CAProcess which allows for the many churn events to happen. There are two reasons for

it:

• VerifierProcess is combined with the other processes by a parallel operator, which

means that the verification can occur at any state of the system. If on all the traces

of the system model, verification returns the correct result, then it can be concluded

that the neighborVerification protocol returns the correct result for any state of the

system (or the NA property is satisfied).

• Form the adversary’s perspective, no more benefit is gained by having the veri-

136

completeChurn

take

fake

saylearn

Adversary

TPMs

receive

send

receive

receive

send

send

Nonce
Verifier

send

Manager

CA

unlock
unlock

output

Figure 6.4.1: Channels and processes in the model of DTR1

fication executed more than once. If VerifierProcess were defined recursively, so

that the verification protocol would occurs more than once in a trace, the results of

these verification protocols would be completely independent of each other. In other

words, the adversary cannot rely on running more verifications to help it succeed in

making another verification return the wrong result.

6.4.1.9 Putting it together.

Figure 6.4.1 illustrates how the processes are joined together to create the complete model

for DTR1. To model the adversary eavesdropping on the communication between peers

and the other agents, the send channel, which is used by the CA, TPM and Verifier to

send messages, are mapped to the take channel to which the adversary process listens (by

renaming its learn channel to take). To model the adversary replaying messages, its say

channel is mapped to the fake channel on which messages are received by the CA, TPM

and Verifier process. Notice that the send channel used by the Nonce Manager process

is mapped to the fake channel, so that the communication between Nonce Manager and

the other agents is not accessible by the adversary.

Table 6.4.1 details the renaming relations used by the processes. RA1 and RA2, used

137

Name Details Applied to
RAd1 learn � take.i.j | i, j P Agents, ti, ju Y P � H Adversary

RAd2 say � fake.i.j | i, j P Agents, ti, ju Y P � H Adversary

RCom1 send � take TPMs, CAProcess

and V erifierProcess

RCom2 receive � fake TPMs, CAProcess

and V erifierProcess

RNonce1 send.NM.i � take.NM.i | i P P NonceManager

RNonce2 send.NM.j � fake.NM.j | j R P NonceManager

χi t|take.i.a, fake.a.i | i P P, a P Agents|u
χe t|take.a.i, fake.i.a | i P P, a P Agents|u

Table 6.4.1: Renaming relations and synchronization sets

by the adversary process to map learn and say channels to take and fake, are many-to-one

mappings. They introduce nondeterminism, which increases the adversary’s power. In

particular, the mapping allows the adversary to send a message originally intended for

one process to another different process.

Network =
�

Adversary
���
χi

TPMs
	 zχi

CAandVFProcess = CAProcessptu,Pq ||| VerifierProcess

OtherAgents =
�

NonceManager
���t|fake.NM |u CAandVFProcess

	
Impl =

�
OtherAgents

���
χe

Network
	 z t|take, fake, unlock|u

6.4.2 Specification

The NA property is formalized by a specification process, against which the DTR1 model

is checked for trace refinement. Such the process specifies the system’s evolution and the

correct outcomes of the neighborVerification.

Specpps, pnq =
ü
iPpn

completeChurn.Churn.xjoin, iy Ñ Specpps Y tiu, pnztiuqlü
iPps

completeChurn.Churn.xleave, iy Ñ Specppsztiu, pn Y tiuql ü
iPps

output.i.right(i,ps) Ñ Specpps, pnq
138

6.4.3 Verification

To check that the DTR1 model satisfies the NA (and subsequently RA) property, one can

show the following:

Specptu,P8q � Impl (6.4.1)

It can be seen that Impl is large and complex. Even for a system with a small number

of peers, Impl has too many states and transitions for it to be checked automatically

by FDR. In this thesis, the approach for verifying Equation 6.4.1 involves first finding

an abstraction for Impl that has a smaller state space. Next, a small instance of the

abstraction is implemented in FDR, which confirms that the refinement relation is true.

The final step is to derive a general proof for the abstraction model of any size. In the

following, the main steps in arriving at the final the proof are presented informally in

order. The general proof is shown in Appendix F. More details can be found in [30].

6.4.3.1 Weakening the adversary.

The adversary modeled in Impl is given infinite memory which allows it to remember

and replaying messages. Consider the weakened adversary that has no memory and

therefore is restricted to only relay messages. More specifically, the weakened adversary

is constructed by replacing MemoryNoncepnq, MemorySigI pn, i, cq, MemorySigRpn, i, cq
and MemoryCertpi, l, r, cq with the following processes:

RelayNonce(n) � learn.SqN.xny Ñ say.SqN.xny Ñ STOP

RelaySigR(n,i,c) � learn.SqR.xn, i, cy Ñ say.SqR.xn, i, cy Ñ STOP

RelaySigI(n,i,c) � learn.SqI.xn, i, cy Ñ say.SqI.xn, i, cy Ñ STOP

RelayCert(i,l,r,c) � learn.Cert.xi, l, r, cy Ñ say.Cert.xi, l, r, cy Ñ STOP

Let Impl1 be the new model constructed by replacing the old adversary with the

weakened one, then it can be shown that:

tracespImplq � tracespImpl1 q (6.4.2)

139

6.4.3.2 Reducing Nonces using the data independence technique.

In Impl1 , the Nonce Manager supplies fresh nonces to the other agents from the poten-

tially infinite set Nonces. The model is therefore dependent of type Nonces, because the

adversary and Nonce Manager process are constructed using parallel operators indexed

over Nonces. To apply the data independence technique for Nonces, another abstraction

to Impl1 that is independent of Nonces must be found. First, notice that Nonces can be

divided into three distinct sets: Noncesad, Noncesca and Noncesvf that contain nonces

supplied to the adversary, CA and Verifier process respectively. Let Impl2 be the model

derived from Impl1 as follows:

• Noncesad is removed, meaning that the data type for nonces used in Impl2 is

Noncesvf Y Noncesca. It is shown in [30] that removing these nonces does not

change the trace set of Impl1 .

• The Nonce Manager and adversary process are rewritten in recursive form so that

they no longer consist of parallel sub-processes indexed over the set Noncesvf and

Noncesca. For example, the adversary sub-process that relay TPM signatures can

be rewritten as:

RelaySigR(i) = learn?SqR.xn, i, cyÑ �� RelaySigR(i)l say.SqR.xn, i, cy Ñ RelaySigR(i)

�

RelaySigI(i) = learn?SqI.xn, i, cyÑ �� RelaySigI(i)l say.SqI.xn, i, cy Ñ RelaySigI(i)

�

It is shown in the technical report [30] that:

tracespImpl1 q � tracespImpl2 q (6.4.3)

All the sub-processes of Impl2 , except for the Nonce Manager process, are inde-

pendent of Noncesvf and Noncesca. They satisfy the PosConjEqDTStrict(ETvf) and

140

PosConjEqDTStrict(ETca) condition where:

ETvf � tfake.NM .VF .SqN .xny | n P Noncesvf u
ETca � tfake.NM .CA.SqN .xny | n P Noncescau

Let Impl3 be derived from Impl2 by removing the Nonce Manager process and replacing

Noncesvf and Noncesca with tnvfu and tncau respectively. Using the collapsing functions

that map Noncesvf and Nonceca to tnvf u and tncau respectively, Equation 6.3.2 and the

fact that events containing nonces are hidden in the model, it is shown in [30] that:

tracespImpl2 q � tracespImpl3 q (6.4.4)

6.4.3.3 Reducing Counts using the data independence technique.

Impl3 is dependent of type Counts, because the operator ’¡’ and parallel operator indexed

over Counts are used in the TPMs and adversary process. Before reducing Counts to a

smaller size, a new abstraction to Impl3 that is independent of Counts needs to be found.

Let Impl4 be the model derived from Impl3 as follows:

• The TPMs process is rewritten so that new counter values are selected from the set

of values that have not been used, instead of restricting them to be greater than

the current value. This replacement is sound, because in the original model, the ’¡’

operator is used only to guarantee the freshness of the new value.

• The adversary process is rewritten in recursive form so that it no longer comprises

parallel sub-processes indexed over Counts .

The following holds:

tracespImpl3 q � tracespImpl4 q (6.4.5)

Impl4 is independent of type Counts and in fact satisfies the PosConjEqDT condition.

Let Abstraction be the model derived from Impl4 in which the only counter value used is

141

cd. By applying a collapsing function that maps Counts to tcdu, it is shown in [30] that:

tracespImpl4 q � tracespAbstractionq (6.4.6)

This abstraction does not allow replay attacks (even though only two nonces and one

counter value are ever used in Abstraction), because the adversary’s memory has been

removed.

6.4.3.4 Automated verification.

The state space of Abstraction is smaller than that of Impl . Because Abstraction � Impl ,

to prove that Equation 6.4.1 holds, it is sufficient to show:

Specptu,P8q � Abstraction (6.4.7)

To provide preliminary evidence that Equation 6.4.7 holds, the refinement is checked

for a small model in which |P8| � 3. Specptu,P8q and Abstraction are implemented

in FDR. The detailed implementation can be found in Appendix E. The refinement

check returns true after evaluating 13,501,797 states and 73,831,002 transitions. This

automated proof confirms that Equation 6.4.7 is true for the DTR1 model of at least 3

peers.

6.4.3.5 Generalizing the automated proof.

To prove that Equation 6.4.7 holds for P8 of any size, it is necessary to show that

tracespAbstractionq � tracespSpecptu,P8qq. The proof is constructed by induction as

follows (for more details, see Appendix F):

1. (Base case). Let tr be a trace of Abstraction such that træt|completeChurn|u � xy
(æ is the restriction operator, for example sqæX removes non-X elements from sq).

Then tr P tracespSpecptu,P8qq.
142

2. (Inductive case). For any θ � xy, let tr be a trace of Abstraction such that:

træt|completeChurn|u � θ ^ tr P tracespSpecptu,P8qq
Let tr1 be another trace of Abstraction, then:�e . tr 1æt|completeChurn|u � θ^xey ñ tr 1 P tracespSpecptuq,P8q

6.5 Verifying RA Property for DTR2

This section presents a CSP model for DTR2, and verifies that the NA property is met

by the model. Unlike the initial DTR1 model described in Section 6.4, the DTR2 model

uses only 2 nonces, and its adversary is restricted to only relaying messages. The model

is not as realistic as the one in which the infinite number of nonces are allowed and the

adversary has infinite memory for remembering and replaying messages. However, the

model abstraction techniques (weakening the adversary and data independence) used in

Section 6.4 suggest that such the complex model would be likely to refine the simpler

model presented in this section.

6.5.1 The Model in CSP

All the notations, data types, channels and renaming relations used in the DTR2 model

are similar to those used in the DTR1 model. The signed messages generated by TTMs

are represented by events in the following set:

1. RangeMessages � tRan.xxy | x P P8 � P8 � P8u. This represents the transfer blobs

exchanged among peers. For example, Ran.xi , l , ry models the transfer blob created

by i and containing the range rl, rsttype where ttype is the default token type known

to all peers.

143

2. CertMessages � tCert .xxy | x P Nonces Y pNonces � P8 � P8qu. This represents

the signed messages from TTM certifying the ranges that it has. For example,

Cert .xi , l , ry models the signed message from i asserting that it has the rangerl, rsttype. This type of message is used for verification, whereas RangeMessages

are used during churn events when peers transfer their ranges to each other.

An event on channel join, leave : P8.P8 signals that a churn event has completed and

the system has moved to a new state. This is similar to the completeChurn channel in

the DTR1 model.

6.5.1.1 Peer Processes.

Each peer is modeled by a process representing a TTM. Peer i is considered as having

joined the network (an event on the join.i channel is performed) once it has received a

range rl, isttype. The peer can transfer tokens belonging to its range (or a sub-range) to

other peers. It is considered as having left the network once its entire range has been

transferred to its neighbor, and the neighbor has added the range to its own range. At

the beginning, there exists a bootstrapping node b that has the entire range of tokens.

TTMN(i) � receive.VF.i.SqN.xnvf y Ñ send.i.VF.Cert.xnvf yÑ unlock.VF.i Ñ TTMN(i)lü
l,r

receive.r.i.Ran.xr, l, iy Ñ join.i.r Ñ TTM(i,l)

TTM(i,l) � receive.VF.i.SqN.xnvf y Ñ send.i.VF.Cert.xnvf , l, iyÑ unlock.VF.i Ñ TTM(i,l)lü
j,ll

receive.j.i.Ran.xl, ll, ly Ñ leave.l.i Ñ TTM(i,ll)lü
j

if mid(j,l,i) then send.i.j.Ran.xi, l, jy Ñ TTM(i,j)

else send.i.j.Ran.xi, l, iy Ñ TTMN(i)

TTMs � ü
bPP8 �TTM(b,b) ||| |||

i�b

TTMNpiq �
144

6.5.1.2 Verifier Process.

VerifierProcess � ü
r

send.VF.r.SqN.xnvf y Ñ receive.r?VF.Cert.xnvf , l, ryÑ if l � r then output.l.r Ñ unlock.VF.r Ñ STOP

else send.VF.l.SqN.xnvf y Ñ receive.l.VF?Cert.xnvf , ll, lyÑ output.l.r Ñ unlock.VF.l Ñ unlock.VF.r Ñ STOP

6.5.1.3 Adversary Process.

Notice that the verification process checks only two certificates, therefore the adversary

could do no better than relaying only two messages of type CertMessages.

RelayNonce � learn.SqN.xnvf y Ñ say.SqN.xnvf y Ñ RelayNonce

RelayCert � learn?Cert.xnvf , l, ry Ñ say.Cert.xnvf , l, ry Ñ STOP

RelayRange(i,l,r) � learn.Ran.xi, l, ry Ñ say.Ran.xi, l, ry Ñ RelayRange(i,l,r)

RelayRanges � |||
i,l,r

RelayRange(i,l,r)

Adversary � RelayNonce ||| RelayCert ||| RelayCert ||| RelayRanges

6.5.1.4 Putting it together.

The DTR2 model is constructed from the processes above by first renaming their channels

in the same way as in the DTR1 model, and then joining them together with parallel

operators. More specifically,

Impl � Verifier }
Ω1

�
Adversary }

Ω2

TTMs
	

where Ω2 � αAdversary X αTTMs and Ω1 � αV erifier X Ω2.

6.5.2 Specification

The specification process models an ideal system that starts with a bootstrapping node

and satisfies the NA property.

145

SpecProcess(ps,pn) � ü
i,jPP8 �� join.i.j Ñ SpecProcess(psY tiu, pnztiu)l leave.i.j Ñ SpecProcess(psztiu, pnY tiu) �
Ü

iPps

output.i.right(i,ps) Ñ SpecProcess(ps,pn)

Spec � ü
bPP8 SpecProcess(tbu,P8ztbu)

6.5.3 Verification

To prove that the DTR2 model satisfies the NA property, it is sufficient to show that:

Spec � Implzt|take, fake, unlock |u (6.5.1)

6.5.3.1 Automated Verification

An instance of Impl and Spec where |P8| � 3 is implemented in FDR, the detailed

implementation can be found in Appendix G. FDR returns true for the refinement check

in Equation 6.5.1 after evaluating 85,477 states and 245,394 transitions. This automated

proof confirms that the NA property is met by the DTR2 model of at least 3 peers.

6.5.3.2 Generalizing the Result

To prove that Equation 6.5.1 holds for P8 of any size, it is necessary to show that

tracespImplzt|take, fake, unlock |uq � tracespSpecq. The proof is derived from the follow-

ing theorem [31]:

Theorem 6.5.1. Let X, sq be a set and a sequence of events respectively. Let γpX, sqq
be the function defined as follows:

γpX, sqq � $'''''''&'''''''%
X if sq � xy
γpX Y tiu, tq if sq � xjoin.i.jy^t for some i, j, t

γpXztiu, tq if sq � xleave.i.jy^t for some i, j, t

γpX, tq if sq � xxy^t for some x R t|join, leave|u
146

Then for any trace tr of Implzt|take, fake, unlock |u, the following holds:�s , t , l , r . tr � s^xoutput .l .ry^t ñ tl , ru � γptu, sq ^ l � leftpr , γptu, sqq
The function γ returns the set of peers in the network after a given trace is executed.

In other words, γ returns the state of the system after the evolution represented by the

given trace. The theorem states that if output .l .r occurs at a given state, then l is in

fact the immediate left neighbor of r in that state. The detailed proof of this theorem is

included in Appendix H.

6.6 Related Work and Discussion

This chapter formalizes DTR1 and DTR2 in CSP, and verifies that they satisfy the RA

property. The main implication for trust systems implementing DTR1 and DTR2 is that

an honest peer can check if other peers have misbehaved in routing transactions, and

can accordingly leave feedback for those peers. The work on formalizing and verifying

properties of P2P systems in the literature is limited in number. Borgstrom et al. [11]

modeled a structured overlay called Distributed K-ary Search (DKS) in CCS. They showed

that the routing protocol in DKS, when there is no churn, is correct. Bakhshi et al. [7]

modeled Chord in π-calculus and verified that the stabilization protocol is correct.

So far, the definitions of NA and RA property assume that verification and churn are

atomic operations occurring one after another. The DTR1 model, for example, represents

this by locking the TPM during verification and churn so that one cannot start while

another is in progress. It would be interesting to investigate the implication of lifting

this assumption. In particular, the verification protocols would be allowed to start while

the churn protocols are being executed, which might present new opportunities for the

adversary to break the NA property.

In the DTR2 model, only 2 nonces are used and the adversary is restricted to only

147

relaying messages. It was suggested that the model could be refined by the more compli-

cated model that uses infinite number of nonces and whose adversary has infinite memory

for remembering and replaying messages. This hypothesis needs to be verified in future

work. One may start with the more complex model and use model abstraction techniques

such as weakening the adversary and data independence to demonstrate that the model

does indeed refine the one presented in this thesis.

Finally, NA and RA are considered as safety properties, because they concern with

the attacker not being able to fool the honest peer. While safety properties require that

undesirable behavior will not happen, liveness properties require that good behavior will

eventually happen. In case of DTR1 and DTR2, the liveness property means that peers

will eventually be able to engage in successful and correct routing transactions. In CSP,

liveness properties are supported by the stable failure semantics model, as opposed to the

trace semantics model that supports safety properties. Examining the liveness property

of DTR1, DTR2 in CSP would be an interesting avenue for future work.

148

CHAPTER 7

EXPERIMENTAL ANALYSIS

This chapter provides further assessments of the proposed mechanisms for detecting mis-

behavior at the routing layer (DTR1 and DTR2) presented in Chapter 4 and Chapter 6.

More specifically, the high-level performance of DTR1 and DTR2 are evaluated by sim-

ulation. A distributed simulation platform, which is called dPeerSim, is used for the

large-scale simulation of DTR1 and DTR2 in dynamic network conditions. dPeerSim is

a collaborative work involving Michael Lees, Georgios Theodoropoulos and Rob Minson.

The simulation results suggest that DTR1 and DTR2 are comparable with respect to their

performance, and that the latter is more scalable but is less robust under frequent churn.

In both systems, under churn a high number of queries are found to be forwarded to the

wrong destination nodes. Section 7.1 explains why simulation, particularly distributed

large-scale simulation, is a useful method for evaluating P2P systems. Section 7.2 fol-

lows with the design and analysis of the scalability of dPeerSim. Section 7.3 describes

the simulation of DTR1 and DTR2 using dPeerSim, and discusses the simulation results.

Finally, the related works and discussions are presented in Section 7.4.

149

7.1 Why Large-Scale Distributed Simulation of P2P?

7.1.1 Why Simulation of P2P?

Current research on P2P can be categorized into two groups: studying and improving

properties of current systems, and designing new applications on top of the existing over-

lays. There exists a number of techniques available for studying P2P systems, including

mathematical and analytical modeling, real-time monitoring and simulation.

The traditional techniques - mathematical and analytical modeling - involve devising

and analyzing formal models of P2P systems, which is similar to the approach adopted

in Chapter 6. In the P2P context, formal models have been used in studying the search

mechanisms, the impact of churn on the system’s robustness, and other properties like

the RA property presented in Chapter 6. But those models are complex, in which many

system variables are often ignored in order to reduce the models to manageable sizes.

Therefore, they do not approximate real systems very closely, and they are not ideal

for studying the real performance of the systems. The real-time monitoring technique is

mainly used in evaluating the peers behavior and traffic patterns in file-sharing applica-

tions. It makes use of data coming from a real P2P system. But it is expensive, because

in order to monitor real-time traffic, it requires the control of a large number of peers, or

access to top-tier Internet Service Providers (ISPs) or to testbeds such as PlanetLab [2].

Simulation is an appealing alternative when it comes to the verification and testing of

both new and existing P2P systems. It is simpler than mathematical modeling and less

expensive than real-time monitoring. It has proved to be an effective tool for studying

large and complex systems. In particular, a survey covering 76 research papers on P2P

was carried out to map the current landscape of P2P evaluation methods 1. The results,

summarized in Figure 7.1.1 and 7.1.2, illustrate the popularity of simulation, especially

in structured P2P research.

1The list of surveyed papers can be found at http://www.cs.bham.ac.uk/~ttd/survey.xls

150

Figure 7.1.1: Evaluation methods used in unstructured P2Pstudies

Figure 7.1.2: Evaluation methods used in structured P2Pstudies

151

7.1.2 Why Large-Scale Distributed Simulation?

Existing simulators fall short as most are only able to simulate relatively small numbers

of nodes. Since the size of a typical real-world P2Psystem is in the order of millions of

nodes and growing, the demand for a large-scale simulator becomes even more apparent.

Such the simulator would enable testing systems of real world size or even larger, and in a

reasonable time scale. It could help reveal interesting properties that are not observable

when studying the systems of smaller sizes. For instance, the property that connectivity

and sharing patterns in P2P file-sharing networks follow a heavy tailed distribution only

unfolded when studying the networks in large scale.

There are two main challenges needed to be addressed when implementing a large-scale

simulation:

1. Memory constraint: the simulation model is too big to fit into the memory of a

single machine.

2. CPU constraint: the computational complexity of the simulation model is too high

for it to be executed in a reasonable time scale.

These challenges can be overcome by either using super computers or distributing the

model over many commodity machines. The latter, i.e. distributed simulation, is adopted

in this thesis because it is less expensive and more scalable.

7.2 Distributed Simulation Platform (dPeerSim) for

P2P Systems

This section presents the new distributed simulation platform called dPeerSim. It first

introduces the design of dPeerSim, followed by the results from experimenting with dPeer-

Sim. The results indicate that dPeerSim is capable of simulating large P2P systems in

reasonable time scales.

152

7.2.1 Overview

7.2.1.1 Level of abstraction.

Simulation of P2P systems is typically performed at two levels of abstraction:

1. Application level: the system is modeled as consisting of a set of nodes and a set of

edges. This level is suitable for evaluating high-level properties of the network such

as the hop counts or the number of exchanged messages.

2. Packet level: the underlying communication network (the Internet, for example) is

also modeled. This level is suitable for studying the system’s efficiency (its latency,

for instance) and its impact on the underlying network.

As suggested in the survey described in the previous section, the split in the demand

for application-level and for packet-level simulation is more or less even. The distributed

simulation platform described in this chapter supports application-level simulation.

7.2.1.2 Level of parallelism.

In distributing the sequential simulation model of the system over multiple machines, there

are more than one levels of parallelism that can be exploited within the simulation [36].

1. Application level: uses the same simulation with different input parameters, requires

no coordination. Limited when using large simulations as each node requires enough

memory to run whole simulation. This is the most basic form of distribution and is

only applicable if more than one run of a simulation is needed.

2. Subroutine level: distributes iterations of a loop, the number of processors that can

be employed is limited and so is speedup.

3. Component level: is based on the natural parallelism inherent in the physical system.

Each processor corresponds to a component of the physical system.

153

4. Event level (centralized event list): is based on a centralized master processor dis-

tributing small numbers of events onto slave processors. This is appropriate for

shared memory multiprocessors.

5. Event level (distributed event list): is the most effective way of performing a simu-

lation in parallel. Schemes exploiting this type of parallelism require local synchro-

nization mechanisms.

Recall that the main objective of distributing a simulation is to make it run faster (CPU

distribution), and to run larger simulations (memory distribution). All the levels above

support CPU distribution, since the distributed models are smaller than the original

model. Level 5 achieves very high level of CPU distribution, because the inter-dependency

among the distributed models is very small. For memory distribution, it is necessary to

distribute the simulation states across multiple machines without a centralized coordi-

nator. This implies that either level 3 or level 5 is needed. The distributed simulation

platform described in this chapter implements the level 5 of parallelism.

7.2.2 Design of dPeerSim

7.2.2.1 Main components of dPeerSim.

The distributed simulation platform, called dPeerSim [29], is based on PeerSim [78], an

open source P2P simulator written in Java. The source code and documentation can be

found at: http://www.cs.bham.ac.uk/~ttd/dPeerSim.tar.gz.

PeerSim is an application-level simulation tool for P2P systems. It provides two modes

of operation: cycle driven and and event driven. dPeerSim extends the event-driven

simulation engine of PeerSim. The distribution of the simulation model is implemented

using the Parallel Discrete Event Simulation (or PDES) paradigm. In particular, the

system being modeled is decomposed into a number of Logical Processes (LPs), each of

which is executed on a different machine. An LP is responsible for modeling a portion of

the simulation states. The state changes and other information are communicated between

154

Discrete event

simulator (peerSim)

Synchronisation

module

Partitioned

network module

Distributed transport

layer other LP

Logical Process (LP)

Figure 7.2.1: Components of a Logical Process in dPeerSim

LPs by exchanging messages. Every event and message in the simulation is associated

with a timestamp. Each LP contains a local clock and an event list. The simulation

proceeds with the LP processing the event with the lowest timestamp and increasing its

local clock.

In PDES, a synchronization mechanism between LPs is needed to ensure that events

are processed in the correct global order, so that results of the distributed simulation are

the same as those of the equivalent sequential simulation. Synchronization mechanisms are

broadly classified into two groups: conservative [18] and optimistic [51]. The conservative

synchronization restricts the execution of the simulation so that an event is processed

only if there guarantees to be no other events having lower timestamps. The optimistic

synchronization does not restrict the execution of the simulation, instead it comes with

techniques to undo (or to rollback) processed events that violate the causality constraint.

Figure 7.2.1 shows the main components of dPeerSim that together represent a LP. The

discrete event simulator maintains an event queue and executes events in order, which

is largely the same as the event-driven simulation engine of PeerSim. The partitioned

network module manages a portion of the network assigned to the LP. The distributed

transport layer provides a medium with which the LP can communicate with the other

155

LPs. The synchronization module ensures that simulation events are processed in correct

global order.

dPeerSim implements a conservative synchronization mechanism, called Null-Message

Algorithm (NMA) [18], a simple algorithm which is often used as a benchmark. NMA pro-

vides methods of describing safe and unsafe events through lookahead and special events

called Null messages. Lookahead is defined as the minimum time increment between

the current event and any future generated event. The details of the synchronization

mechanism is as follows:

While(simulation running) {

wait until all input queues contain at least one message

remove the earliest time stamped event from any input queue

execute that event (timestamp t)

send null messages to all other LPs with time stamp (t+lookahead),

indicating lower bound on future messages sent from this LP

}

To reduce the overall number of Null messages, an optimization was added to the

standard algorithm. In particular, for each incoming communication channel of an LP,

only one Null message exists at any given time [70]. Therefore, when a Null message is

received on an incoming channel, all the existing Null messages on the same channel are

removed.

7.2.2.2 Distributing the P2P model into multiple LPs.

Once a network of LPs has been implemented, the P2P model is distributed into multiple

LPs, as illustrated in Figure 7.2.2. The upper part of Figure 7.2.2 shows the connectivity

of the network, in which the arrows represent links from one node to another. When

distributed, each LP has a portion of the network (not necessarily with an equal number

of nodes). Some links would stay in the local LP, others would point to other nodes in

the remote LPs. The nodes and their links are maintained in the partitioned network

156

LP1 LP2

LP3LP4

External references

(ProxyNode)

Local references

Figure 7.2.2: Distribution of P2P nodes with multiple LPs

module. A node uses the distributed transport layer module to exchange messages with

its remote neighbors. An event can both be generated locally or received from a remote

LP. The LP executes the synchronization algorithm (implemented in the synchronization

module) to choose a safe event to process.

7.2.3 Scalability of dPeerSim

To evaluate the scalability of dPeerSim, experiments with different P2P systems, under

static network condition and under frequent churn, are carried out. More specifically, the

following protocols are implemented in dPeerSim:

• Routing protocols of Chord and Pastry. Every node initiates a lookup query ac-

cording to a Poisson process.

• Churn and a simple maintenance protocol for Pastry. The node’s session time follows

an exponential distribution. Every node periodically sends keep-alive messages to

its neighbors to check if they are still active. In addition, the nodes send their

157

1 2 4 8 16
0

5

10

15

20

25

30

LP(s)

M
ax

im
um

 n
od

es
 (

m
ill

io
ns

)

Maximum number of nodes simulated for Chord

Actual
Linear

Figure 7.2.3: Maximum number of nodes that can be simulated for Chord. In a single LP,
up to 2 millions nodes can be simulated. If the simulation scaled linearly, one would be
able to simulate 32 millions nodes using 16 LPs (linear scalability). In practice, however,
the overhead introducing by distributing the simulation model restricts the scalability:
using 16 LPs, around 18 millions nodes can be simulated (actual scalability).

routing tables to each other in order to be informed of the system’s latest states.

In the following, a brief analysis of dPeerSim’s scalability is presented. For more

details, see [32].

7.2.3.1 Memory scalability.

Figure 7.2.3 and 7.2.4 show the memory scalability of the simulation for Chord and Pastry

under static network condition. They demonstrate that the topology of the simulated P2P

system has direct influence on the scalability of the simulation.

For the non-distributed simulation, it is possible to simulate approximately 2 million

nodes for Chord and 1 million nodes for Pastry. For more than one LPs, Pastry achieves

linear scaling. For Chord, the distribution overhead in terms of memory, which is pro-

portional to the amount of information that must be replicated in different LPs, becomes

apparent as the number of LPs increases. On the one hand, Pastry nodes keep far more

158

1 2 4 8 16
0

2

4

6

8

10

12

14

16

LP(s)

M
ax

im
um

 n
od

es
 (

m
ill

io
ns

)

Maximum number of nodes simulated for Pastry

Actual
Linear

Figure 7.2.4: Maximum number of nodes that can be simulated for Pastry. In a single
LP, around 1 millions nodes can be simulated. However, the simulation scales linearly,
meaning that one can simulate 16 millions nodes using 16 LPs.

routing information than Chord nodes do, which explains why double numbers of Chord

nodes can be simulated in a single LP. On the other hand, because of the bit-wise routing

mechanism in Pastry, most neighbors of a Pastry nodes are in the local LP. This implies

smaller numbers of references to remote LPs are needed. Therefore, less information needs

to be replicated when distributing a Pastry model than when distributing a Chord model.

7.2.3.2 Execution speedup.

Figure 7.2.5 shows the execution time when simulating Pastry protocols under dynamic

network condition. The speedup is clear in the graph, as shown by the rapid decreases

in execution time when more LPs are added. By distributing the simulation model to

multiple machines, super linear speedup in execution time can be achieved. For example,

with 16K nodes and kal � 100 (simulation time-steps), the simulation is executed over

100 times quicker with 32 LPs than with 1 LP.

It can be seen from Figure 7.2.5 that when the number of LPs goes beyond a certain

point, the simulation starts to slow down. This phenomenon occurs at smaller numbers

159

1 2 4 8 16 32 64
10

2

10
3

10
4

10
5

10
6

LP(s)

P
ro

to
co

l e
xe

cu
tio

n
tim

e
(s

ec
)

Protocol execution time for P2P protocols under churn

4K nodes, kal=100
4K nodes, kal=20
16K nodes, kal=100
16K nodes, kal=20

Figure 7.2.5: Execution time of Pastry under churn. The variable kal represents the
interval after which a Pastry node sends keep-alive messages to its neighbors.

of LPs for smaller simulations. It can be attributed to the growth of communication

overhead as the simulation is distributed over more LPs. To understand the effect of the

communication overhead, the average numbers of Null and P2P messages handled by each

LP are recorded and the results are shown in Figure 7.2.6. The number of Null messages,

generated by the conservative synchronization mechanism, grows almost linearly with

the number of LPs. On the contrary, the number of P2P messages, including routing,

churn and maintenance messages, diminishes rapidly. This decrease in the numbers of

P2P messages reflects the distribution of computational load onto LPs, and it explains

the speedup in execution time. However, the gap between the numbers of Null and P2P

messages becomes wider with more LPs added. Clearly, the simulation reaches a point

after which the increase in the number of Null messages imposes more overhead than

the speedup gained by the reduction of P2P messages. Such a threshold always exists,

because the number of P2P messages is a constant for a given simulation model, whereas

the number of Null messages always increases with more LPs added.

160

1 2 4 8 16 32 64

10
5

10
6

10
7

10
8

LP(s)

m

es
sa

ge
s

Null and P2P messages per federate, 4K nodes

NULL msgs − kal=100
other msgs − kal=100
NULL msgs − kal=20
other msgs − kal=20

Figure 7.2.6: Average number of messages handled at each LP during simulation of Pastry
under churn

7.3 Simulation-Based Analysis of DTR1 and DTR2

The main objective of simulating DTR1 and DTR2 using dPeerSim is to evaluate their

high-level performance, namely their scalability and their robustness under churn. In

particular, DTR1 and DTR2 are added on top of an existing implementation of Pastry in

dPeerSim. As seen in Figure 7.2.3 and 7.2.4, dPeerSim allows scalable simulations for both

Pastry and Chord under static network condition. But Pastry is chosen to be extended

with DTR1 and DTR2, mainly because its implementation in dPeerSim supports churn

and maintenance protocols.

For simplicity, adversarial behavior (that aims to break the system’s RA property), is

not taken into account when simulating DTR1 and DTR2.

7.3.1 Methodology

7.3.1.1 Experiment setup

The simulation models contain a number of variables.

161

1. nNodes — number of simulated nodes, varying from 4096 to over 1 million.

2. I — the identifier space from which a peer’s ID is chosen. In the simulation, I � 230.

3. ET — the number of simulation time-steps. In the simulation, ET � 1000.

4. nLPs — the number of LPs over which the simulated nodes are distributed. In

a simulation of DTR1, an extra LP is needed for simulating the CA. nLPs varies

from 1 to 64.

5. qRate — the query rate. Every node initiates queries according to a Poisson process,

with the average of qRate queries per simulation time-step. In the simulation,

qRate � 0.02, meaning that on average, each node starts 2 queries every 100 time-

steps.

6. cRate — the churn rate. When a node joins the system, it is given a session time

which follows the exponential distribution with the average of 1
cRate

time-steps. In

the simulation, cRate varies from 0.005 to 0.01, meaning that the average session

time varies from 20 to 100 time-steps.

7. kal — the keep-alive interval. Each node sends a keep-alive message to its neighbors

every kal time-steps. If a neighbor does not response, it is marked as having left

the system. In the simulation, kal � 20 (time-steps).

8. mPeriod — the maintenance period. Every node sends the maintenance message

containing its latest routing state to its neighbors every mPeriod time-steps. Once

received such the message, the neighbors update their routing states accordingly. In

the simulation, mPeriod varies from 50 to 100 time-steps.

In Pastry, the joining of a node pn is considered successful once it receives the leafset

from a node pd that claims to be the closest neighbor of pn in the current network. The

implementation of DTR1 and DTR2 extend the joining protocol as follows:

162

• In DTR1, after receiving the leafset, pn contacts the CA (in the remote LP) asking

for a neighbor certificate. The joining protocol is considered successful when pn has

received such the certificate.

• In DTR2, after receiving the leafset, pn asks pd for a range of tokens. pn checks

that it gets the correct tokens (as described in Section 5.5). If it is true, the joining

protocol is considered successful.

A leaving operation is considered successful after the leaving node has contacted the

relevant party. In DTR1, the CA is contacted. The CA then issues updated certificates

to the neighbors of the leaving node. In DTR2, the leaving node contacts its immediate

neighbor and transfers its tokens to the neighbor. In both DTR1 and DTR2, the leaving

protocols always complete successfully.

In the original Pastry, a lookup query initiated by a node pi is considered successful

when it arrives at a node pd from which it cannot be forwarded any further. In DTR1

and DTR2, the query is considered as completed. Additionally, pi performs verification

that pd is the correct root node by checking its neighbor certificate (in DTR1) and tokens

(in DTR2). Only if the verification returns true is the query considered successful.

All the experiments were run on the University of Birmingham’s BlueBear cluster 1.

Each cluster node has two 64bit AMD Opteron dual core processors and 8GB of RAM.

Each LP is given one core and 1.5GB of RAM. Experiments were allowed to run for up

to 10 days. The results were averaged over multiple runs.

7.3.1.2 Evaluation metrics.

Various measurements are taken from the experiments to evaluate DTR1’s and DTR2’s

scalability and their robustness churn. More specifically:

• For scalability:

1http://www.bear.bham.ac.uk

163

1. The workload at the CA, measured by the number of certificates it issues during

the simulation.

2. Simulation execution time.

3. Average hop count of the routing operation.

• For robustness:

1. Average ratio of successful joins.

2. Average rate of query failure per completed query.

7.3.2 Results and Analysis

7.3.2.1 Scalability.

Section 4.5 has argued that in DTR1, the CA is unlikely to be a performance bottleneck

in a relatively stable P2P system (with low churn rate). The CA maintains a list of peers

that are currently in the network, which would not scale well. However, such the list could

be removed by using a more complex mechanism for issuing certificates. The main role of

the CA is to issue neighbor certificates to peers during churn events. Figure 7.3.1 shows

the number of certificates produced by the CA in the simulation. As expected, such the

workload grows with the number of nodes and the churn rate.

To see if the workload at the CA could be a performance bottleneck, the simulation

execution time of DTR1 and DTR2 are recorded and the results are shown in Figure 7.3.2.

It can be seen that the simulation of DTR1 takes longer to complete than that of DTR2,

but the differences are small, even with the high the workload incurred at the CA. There-

fore, it can be concluded that the negative impact of the CA on the system’s performance

is visible, but compared to the non-CA system (DTR2) it is not substantial enough for

the CA to be adjudged a bottleneck.

Figure 7.3.3 and 7.3.4 show the average hop count in DTR1 and DTR2. The hop

count is close to log2bpNq - the hop count of Pastry under static network condition. DTR1

164

 100000

 1e+06

 32768 16384 8192 4096

ce

rt
ifi

ca
te

s

nNodes

Number of certificates issued by CA, nLPs = 32

cRate = 0.005, mPeriod = 100
cRate = 0.01, mPeriod = 100

Figure 7.3.1: The workload at the CA during the simulation. nLPs � 32, nNodes varies
from 4096 to 32768, cRate varies from 0.005 to 0.01, and mPeriod � 32

 100

 1000

 10000

 100000

 32768 16384 8192 4096

S
im

ul
at

io
n

tim
e

(s
ec

)

nNodes

Simulation time of DTR1 vs DTR2, nLPs = 32, cRate = 0.01, mPeriod = 100

DTR1
DTR2

Figure 7.3.2: Simulation execution time of DTR1 vs DTR2. nLPs � 32, cRate � 0.01,
mPeriod � 100, nNodes varies from 4096 to 32768

165

 1

 10

 32768 16384 8192 4096

H
op

 c
ou

nt

nNodes

Hop counts in DTR1 (nLPs = 32)

cRate = 0.005, mPeriod = 50
cRate = 0.005, mPeriod = 100

cRate = 0.01, mPeriod = 50
cRate = 0.01, mPeriod = 100

log16(N)

Figure 7.3.3: The average hop-count in DTR1, nLPs � 32 and nNodes varies from 4096
yo 32768

 1

 10

 32768 16384 8192 4096

H
op

 c
ou

nt

nNodes

Hop counts in DTR2 (nLPs = 32)

cRate = 0.005, mPeriod = 50
cRate = 0.005, mPeriod = 100

cRate = 0.01, mPeriod = 50
cRate = 0.01, mPeriod = 100

log16(N)

Figure 7.3.4: The average hop-count in DTR2, nLPs � 32 and nNodes varies from 4096
yo 32768

166

 0.01

 0.1

 1

 32768 16384 8192 4096

ra
tio

 o
f s

uc
ce

ss
fu

l j
oi

ns

nNodes

Average ratio of successful joins in DTR1 vs DTR2 (nLPs = 32)

DTR1
DTR2

Figure 7.3.5: Average rate of successful joins in DTR1 vs DTR2, nLPs � 32 and nNodes
varies from 4096 to 32768

and DTR2 are similar regarding this metric, because the verifications occur only at the

very last steps of the routing. In fact, these figures demonstrate that the hop-count is

mainly influenced by the churn rate. In particular, higher churn rates result in higher hop

count.

7.3.2.2 Robustness.

The rates of successful joins for varying values of cRate and mPeriod are averaged and

the results are then shown in Figure 7.3.5. There are two noticeable observations from

the figure. First, unsuccessful join events always exist, as the rates of successful joins are

always below 1. One explanation is that the churn condition causes the routing towards

the closest neighbors of the joining nodes to fail occasionally. Second, the rate of successful

joins in DTR1 is always larger than that in DTR2, which can be explained as follows.

In DTR1, join events are always considered successful once the joining nodes receive a

leafset from other nodes. In DTR2, a join event can fail when the joining node fails to

get the correct tokens from its neighbor, which could happen under churn because the

routing of the joining query ended up at the wrong neighbor. Therefore, the number of

167

 0.1

 1

 32768 16384 8192 4096

ra
tio

 o
f c

om
pl

et
ed

 q
ue

rie
s

nNodes

Average ratio of failed queries over all completed queries in DTR1 vs DTR2, nLPs=32

DTR1
DTR2

Figure 7.3.6: Average rate of query failure per completed query in DTR1 vs DTR2.
nLPs � 32, nNodes varies from 4096 to 32768

successful joins in DTR2 is smaller than that in DTR1.

Figure 7.3.6 illustrates the rate of query failure per completed query in DTR1 and

DTR2. The results are averaged over those with varying values of cRate and mPeriod.

As stated earlier, a completed query arrives the node that cannot forward the query

further. A successful query requires, in addition, the node to show evidence that it is

indeed the root node of the search key. In other words, a query is deemed unsuccessful or

failed in two cases:

1. The query is dropped because it is forwarded to a node which is no longer in the

network.

2. The query arrives at the node that cannot present the correct certificate (in DTR1)

or tokens (in DTR2).

The first case depends on the churn rate, while the second is attributed to the imple-

mentation of DTR1 and DTR2. Figure 7.3.6 demonstrates that DTR1 and DTR2 incur

high, but comparable rates of query failure per completed query. In both systems, of all

the queries arrived at some destination nodes, less than 50% of those nodes are the cor-

rect root nodes of the search keys. This provides more evidence for the negative effects of

168

churn in DTR1 and DTR2. Interestingly, the failure rate in DTR1 is always lower than in

DTR2. This can be related to the higher level of successful queries in DTR1, as explained

by the following example. Consider a node pn joining the system, and the joining query

arrives at a node pd which is not the closest neighbor of pn in the current network. pn

always gets its certificate in DTR1, but fails to do so in DTR2. In both cases, pn stays in

the network and participates in the routing protocol. When query for a key k whose root

node is pn arrives at pn, the query will succeed in DTR1 but fail in DTR2. Therefore, the

chance of a given query being unsuccessful in DTR2 is higher than that in DTR1.

7.3.2.3 Summary of the results.

The discussion of the simulation results above can be summarized as follows:

1. The CA introduces overheads to DTR1. For a typical P2P system, such overheads

are not substantial enough for the CA to be considered as a performance bottleneck.

However, it is clear that for systems under highly frequent churn, the CA can cause

scalability issues.

2. The negative effects of churn in DTR1 and DTR2 are evident. The rates of suc-

cessful joins and the rates of query failure per completed query indicate that the

performance of DTR1 and DTR2 are comparable, but DTR1 seems more robust

under churn.

7.4 Related Work and Discussion

This chapter presents experimental analysis of DTR1 and DTR2 using a large-scale sim-

ulation tool called dPeerSim. Other simulation tools for studying P2P systems exist.

Generic network simulators such as NS-2 [40] and p2pSim [41] are used occasionally,

while bespoke simulators are found in many other P2P studies. The detailed implementa-

tion and source codes of bespoke simulators are often unavailable, which makes it difficult

169

to reproduce the results or to carry out comparative evaluations. The aim of PeerSim is

to fulfill the need for a generic, easily extendable open-source P2P simulator.

Most existing simulators are limited by the total number of nodes they can simulate.

Bespoke simulators achieve 100, 000 nodes [17] at most, while NS-2 claims the scalability

of 260, 000 nodes. This limit is largely due to resource constraints at the simulation

machine. PDNS is a distributed simulation platform based on NS. It supports packet

level simulation, as opposed to dPeerSim which supports application-level simulation.

There are a number of limitations with the current simulation models of DTR1 and

DTR2 implemented in dPeerSim. First, the detailed protocols involving the security

devices (TPMs in DTR1 and TTMs in DTR2) are not implemented. In the current churn

model in which nodes fail gracefully, and with the assumption that the issuing of certificate

is an atomic operation, the actual number of messages handled by the devices could

be extrapolated from the number of successful joining and leaving events. It would be

interesting to implement these protocols into dPeerSim and to observe the workload at the

devices when more complex churn models (Byzantine failure, for example) are considered.

Second, the maintenance protocol is very simple, in which peers send keep alive messages

and routing tables to each other after fixed intervals. dPeerSim has been used to evaluate

more complex, adaptive maintenance protocols [76]. This current protocol might be

accountable for the high rates of query failure per completed query observed in DTR1

and DTR2. Therefore, it would be interesting to investigate how other maintenance

schemes help improve the performance of DTR1 and DTR2 under churn. Third, the

network adversaries are not included in the simulation models. In practice, the adversary

could perform Denial of Service (DoS) attacks to undermine the system’s performance.

Simulating the network adversary and analyzing its impact on the system is an interesting

and challenging domain of future work.

As discussed in Section 4.5 and 5.7, the current designs of DTR1 and DTR2 present

a number of avenues for future work. For example, the churn model can be made more

realistic by taking fail-stop or Byzantine failures into consideration. In addition, a more

170

complex mechanism for issuing certificate in DTR1 could remove the need for the CA to

maintain the list of peers. Having redesigned DTR1 and DTR2, a necessary step is to

evaluate their performance by experimenting with the new protocols using dPeerSim.

Regarding dPeerSim, an extension that adds support for packet-level simulation would

make the tool more useful for studying P2P. From a distributed simulation perspective,

it would be interesting to study the effect of optimistic synchronizations on the scalabil-

ity of the simulation. Finally, implementing a load balancing technique into dPeerSim

could prove useful when simulating P2P systems under frequent churn, because the more

balanced workload among LPs would result in the shorter simulation execution time.

171

172

CHAPTER 8

CONCLUSION AND FUTURE WORK

This concluding chapter summarizes the results presented in the previous chapters, and

discusses the extent to which the goal of the thesis, which has been to investigate the

reliability of trust systems for structured P2P, has been met. Section 8.1 discusses this

thesis’s contributions to knowledge and highlights its limitations. Section 8.2 presents a

number of research directions that may be taken in the future.

8.1 Contributions and Evaluation

Peer-to-Peer (P2P) infrastructure has received a great amount of research attention.

Thanks to its scalability, structured P2P in particular has been used for designing many

large-scale distributed systems. Security is one of many challenges that must be addressed

before the potential of structured P2P can be fully utilized. Having a trust system for

P2P that allows one node to assess the trustworthiness of another before interacting with

it can help mitigate security as well as some other problems in P2P. A trust system com-

prises a reputation metric and a feedback mechanism, and it should be both reliable and

efficient. This thesis set out to investigate on making the current states of trust systems

for P2P more reliable. Recall that the goal of this thesis is to seek the answers to following

questions:

1. To what extent are existing reputation metrics such as PageRank vulnerable to

173

Sybil manipulations? Can they be improved? Are the feedback models used by

those metrics strong enough? Can they be made more realistic?

2. Regarding the existing feedback mechanisms for structured P2P applications, is it

always possible for peers to leave feedback to each other after their transactions? If

not, can we design mechanisms that overcome such the limitation?

Overall, this thesis has answered both questions. To a large extent, it has demonstrated

that the existing reputation metrics and feedback mechanisms can be improved to make

the trust system more reliable. It has also made other contributions regarding the methods

for evaluating P2P systems.

8.1.1 Summary of Contributions

1. Chapter 3 has presented the limitations of the reputation metric called PageRank.

It studied a new Sybil strategy and compared that against the strategy studied

in [21]. It was shown that the adversary executing the new strategy can increase

its reputation more than when it uses the strategy in [21]. Furthermore, when the

underlying trust graphs are undirected PageRank was demonstrated to be more sen-

sitive to Sybil manipulations. Another limitation of PageRank and of some existing

reputation metrics is the failure to take negative feedback into consideration. The

importance of negative feedback in trust systems has been explained in Chapter 3.

These results have led to two new reputation metrics being proposed. One is called

Cluster-based PageRank (or CPR), and the other is called PRN (PageRank with

Negative feedback). Both metrics are based on the original PageRank. CPR has

proved more resilient to Sybil manipulations under undirected graphs, and also

capable of generating intuitive reputation values. PRN takes negative feedback into

account when computing the reputation scores. Experimenting with PRN has shown

that it generates intuitive reputation values and is resilient to Sybil manipulations.

174

2. Chapter 4 has explained a limitation of existing feedback mechanisms, that is the

difficulty for an honest node in structured P2P environments to securely detect

if another node has misbehaved. Such the problem arises because of the node’s

limited knowledge of the other parts of the network, and the presence of network

adversaries. Two case studies have been presented in Chapter 4 to demonstrate

the problem at two different layers of P2P abstraction: the routing layer and the

application layer.

Using Trusted Computing, particularly the Trusted Platform Modules (TPMs), two

sets of protocols called DTR1 (for detecting misbehavior at the routing layer) and

DTA1 (for detecting misbehavior in the P2P-based marketplace application) have

been proposed.

To improve upon DTR1 and DTA1, a new general-purpose security hardware called

Trusted Token Module (or TTM) has been proposed in Chapter 5. Using TTMs,

the centralized component in DTR1 can be removed, resulting in a new mechanism

called DTR2. In addition, TTMs help improve the efficiency of DTA1 and increase

the range of operations supported by DTA1. The improved mechanism for detecting

misbehavior in the P2P-based marketplace application is called DTA2.

3. Chapter 6 has presented the details of using Communicating Sequential Process

(CSP) as the formal method for modeling DTR1 and DTR2. It has also presented

the verification showing that DTR1 and DTR2 indeed allow for the secure detection

of misbehavior in structured P2P routing. It has contributed to the limited number

of works that use formal methods for modeling and checking properties of P2P

systems. In the process of devising the proofs, model abstraction techniques such

as weakening the adversary and data independence have been used to reduce the

state spaces of the original models. Chapter 6 has included the automated proofs,

generated by the model checker FDR, for the DTR1 and DTR2 models of limited

number of nodes.

175

A new simulation platform has been presented in Chapter 7. Simulation has proved

to be an effective evaluation method when studying P2P systems. The new simu-

lation tool, called dPeerSim, has been shown to be capable of simulating large P2P

systems in reasonable time scales. Such the scalable simulator is useful for studying

systems under dynamic conditions such as churn. In fact, dPeerSim has been used

to evaluate the high-level performance of DTR1 and DTR2.

8.1.2 Implications of This Thesis

First, this thesis has merged a number of research fields together in the journey of finding

the answers to the two research questions described in early in Section 8.1.

1. P2P and particularly structured P2P infrastructure. The thesis is motivated by the

problems faced by existing systems based on structured P2P. Security is one of the

hurdles that need to be overcome before structured P2P can be widely employed.

2. Trust and reputation. These concepts emerge from human interaction and have

attracted great deals of research attention in social sciences. In the context of

structure P2P, it has been argued that having a trust system based on reputation

can help mitigate a number of problems including security.

3. Hardware-based security. The protocols proposed in this thesis: DTR1, DTR2,

DTA1 and DTA2 all assume the presence of a trusted device at each peer. These

protocols aim to facilitate the secure detection of misbehavior in structured P2P

applications. Such detection mechanisms are important parts of the trust systems.

DTR1 and DTA1 leverage TPMs, while DTR2 and DTA2 use the new devices called

TTMs. In both cases, the devices’ trusted operations that cannot be compromised

are utilized.

4. Methods for analysis. There exists at least two types of methods for analyzing a

system: analytical or formal methods and simulation-based methods. In this thesis,

176

methods belonging to both types have been used to analyze DTR1 and DTR2. CSP

has been chosen as the formal method for modeling and proving that DTR1 and

DTR2 satisfy the Root Authenticity property. dPeerSim — a scalable distributed

simulation platform — has been used to evaluate the performance of DTR1 and

DTR2.

Second, the answers provided by this thesis to the two research questions suggest that

the existing trust systems for P2P can be made more reliable.

• Answers to Question 1: reputation metrics with improved resilience against Sybil

manipulations, and with support for more realistic feedback model. It has been

shown that PageRank has limited resilience against Sybil manipulations, especially

when the underlying trust graphs are undirected. Furthermore, most metrics lack

the support for negative feedback. The new metrics, called CPR and PRN, have

been shown to improve upon the original PageRank. For example, CPR has been

demonstrated to be more resilient to Sybil manipulation under undirected graphs.

• Answers to Question 2: mechanisms for enabling the detection of misbehavior in

structured P2P applications. Current feedback mechanisms are not concerned with

the difficulty in detecting misbehavior in structured P2P environments. New proto-

cols have been proposed to overcome the difficulty in routing and in the P2P-based

marketplace application. They rely on trusted hardware such as TPMs and TTMs.

Formal analysis has shown that the new protocols for routing does enable peers to

securely detect the misbehavior of each other.

Third, this thesis has demonstrated that hardware-based security can be useful in

enabling trust for P2P systems. TPMs, which come in the forms of hardware chips being

shipped in high-ends laptops, desktops and servers, have been utilized to improve upon

existing feedback mechanisms. The newly proposed trusted devices, called TTMs, have

the potential to be very useful in future applications, as they are more powerful and

flexible than TPMs.

177

Fourth, to the best of my knowledge, this thesis has presented the first work in which

CSP is used for modeling and checking properties of P2P systems. The refinement relation

supported by CSP allows for more flexibility and elegance in the definitions of the models

and of their properties. The thesis has contributed another case study that proves the

usefulness of the data independence technique as a method for reducing the complexity

of the formal models.

Last but not least, future research on P2P can benefit hugely from dPeerSim. The

simulation platform has proved to be a powerful tool for studying large and complex P2P

systems.

8.2 Limitations and Future Work

This thesis should only be seen as another step towards building a reliable, efficient trust

system for P2P. The future work can seek to address the assumptions made and the

limitations contained in this thesis. It can follow a number of directions, as detailed

below.

1. This thesis did not consider the efficiency property of the trust systems. In other

words, the implementation details of the reputation metrics and feedback mecha-

nisms are outside the scope of this thesis. As noted in Chapter 2, such details must

be considered before the trust systems can be used in practice. In particular, two

research questions exist, which are: how to store and retrieve feedback, and how to

compute the reputation values efficiently. These questions are challenging, especially

when no centralized, trusted party is available. In such an environment, it could

prove extremely hard to implement a symmetric reputation metric like PageRank,

which hints at a simpler option such as the Beta metric [63]. However, the trade-off

of using such simple metrics is that they are more vulnerable to Sybil manipulations.

2. This thesis focuses on symmetric reputation metrics, especially ones based on PageR-

ank. Other metrics, for example the asymmetric ones that are based on network-

178

flow, are worthy of investigation in the context of reliable trust systems. More

specifically, it would be interesting to examine their resilience against Sybil ma-

nipulations under undirected graphs, and how they can be modified to incorporate

negative feedback.

Regarding feedback mechanisms, there exists other problems beside the detection

of misbehavior. For example, the question of how to incentivize nodes to leave

feedback to each other, and the question of how to eliminate dishonest feedback are

difficult to answer. These questions have been investigated in a number of works,

but there is still much room left for future work. The work by Liu et al. [63], for

example, has shown positive results in giving nodes the incentives to leave honest

feedback. However, the results hold only for a simple reputation metric which are

vulnerable to Sybil manipulations.

3. The protocols proposed in Chapter 4 and Chapter 5 leverage the trusted opera-

tions provided by the security hardware. If the assumption that each peer must be

equipped with a security device were to be removed, the protocols could still work

if an online service providing those trusted operations is available. The detailed

architecture of such the trusted service can be explored in future work.

4. In CPR and PRN, the underlying trust graphs contain edges whose weights are given

values in t�1, 1u. For the undirected graphs used in CPR, the edges between any

two nodes have the same value of 1, or W ppi, jqq � W ppj, iqq � 1 for any pi, jq P E.

It could be an interesting to investigate the effect of assigning the weights with real

values in r�1, 1s, and of having W ppi, jqq � W ppj, iqq.
PRN has been evaluated under directed trust graphs. A possible direction of future

work is to study PRN under undirected graphs, which could subsequently lead to

the investigation of how to combine CPR and PRN together.

5. The current churn models considered in DTR1, DTA1, DTR2 and DTR2 are quite

strict. More specifically, in DTR1 and DTR2, nodes are assumed to leave the system

179

gracefully, meaning that they inform the relevant parties before leaving. This can

be made more realistic by incorporating fail-stop and Byzantine failure to the churn

models. However, such change would then necessitate complex mechanisms that

deal with expiring certificates (in DTR1) or the re-issuing of tokens (in DTR2).

Designing and evaluating of these mechanisms are interesting avenues for future

work.

DTA1 and DTA2 currently assume that the network is static. Therefore, more

work is needed to allow them to be useful even when dynamic network conditions

are considered.

6. There exists a number of possible improvements that can be made to the current

design of TTM before it can be implemented efficiently on a smart-card. For in-

stance, caching techniques could help speed up the computation of Merkle roots.

Furthermore, due to the memory constraint in smart-cards, the function that com-

putes the Merkle roots may need to be changed so that it takes a smaller number of

inputs at a time. A TTM can also be extended to support more monotonic counters

by following the technique proposed by Sarmenta et al. [84].

Since TTM aims to be a general-purposed device, it would be interesting to find

other security applications that can benefit from using TTMs. For now, TTM is

still at the design stage, therefore the most needed work might be to implement

the design in smart-cards, and to evaluate the performance when executing real

commands.

7. In the formal analysis of DTR1 and DTR2, the verification and churn operations

are assumed to be atomic. In other words, a churn event cannot start while the

verification is in progress, and similarly the verification cannot start while joining

or leaving protocols are taking place. Future work may examine the implications of

removing this assumption. Allowing the verification to start while churn is still in

progress, for example, might present the adversary with the opportunities to succeed

180

in his attacks.

In this thesis, the RA property has been translated into a safety property in CSP. A

very interesting direction of future work may lie in defining and checking the liveness

property for DTR1 and DTR2. The liveness property states that the honest peer

will eventually succeed in routing its queries to the correct root nodes.

8. The experimental analysis of DTR1 and DTR2 suggests that their performance

under churn leaves much to be desired. In particular, the rates of successful joins

are low, and the rates of query failure per completed query are high. These results

may be attributed to the maintenance protocol being very simple. In future work,

one could explore and compare the effects of different, more complex maintenance

schemes on the performance of DTR1 and DTR2.

The current simulation models of DTR1 and DTR2 do not include the adversary.

Simulating the adversarial behavior and assessing the system’s performance when

the adversary is active can be another direction of future work.

Regarding the distributed simulation platform, future work could focus on adding

the support for packet-level simulation, which would make the tool inevitably more

useful for studying P2P systems. Future work could also investigate if using opti-

mistic synchronization instead of the current conservative synchronization mecha-

nism could improve the scalability of dPeerSim. Finally, future work may follow the

direction of implementing a load balancing for dPeerSim, which could improve the

scalability of dPeerSim even further, since the more balanced workload among LPs

would result in the shorter simulation execution time.

9. This thesis has only analyzed the correctness and performance of DTR1 and DTR2.

Therefore, future work could extend this by performing formal analysis and simulation-

based analysis for DTA1 and DTA2.

181

182

APPENDIX A

PAGERANK’S RESILIENCE AGAINST SYBIL

MANIPULATIONS

Theorem 1. Let R1
n be the reputation value of node n after executing the Sybil strategy

in Figure 3.2.1b. Then:p2� ǫq.Rn � p1� ǫq.k ¤ R1
n ¤ Rn

ǫ
� p1� ǫq.k

Proof. In addition to the original graph G and the one under attack G 1, we consider an

intermediary graph G2, in which the adversary removes its links to other nodes and then

creates a link to itself. Let T , T 1 and T 2 be the transition matrices derived from G, G 1
and G2 respectively.

T � ������ T11 T12 � � � T1N

...
...

. . .
...

Tn1 pn2 � � � pnn

������
T 2 � ������ T11 T12 � � � T1N

...
...

. . .
...

0 0 � � � 1

������ � ��� Tn�1

O1

���
183

T 1 �
����������������

T11 T12 � � � T1N 0 � � � 0

...
...

. . .
...

...
. . .

...

0 0 � � � 1 0 � � � 0

0 0 � � � 1 0 � � � 0

...
...

. . .
...

...
. . .

...

0 0 � � � 1 0 � � � 0

���������������� � ������ Tn�1 O2

O1 O4

O5 O6

������
Replacing T 1 and T 2 into Equation 3.2.1, we have:p1� ǫq. �R2

1..n�1.Tn�1 �R2
n.O1

��ÝÑǫ T � �R2
1..n�1, R

2
n

�
(A.0.1)

p1� ǫq.�R1
1..n�1.Tn�1 �R1

n.O1 � �0..
n�ķ

n�1

R1
i

�
, r0..0s��ÝÑǫ T � rR1

1..n�1, R
1
n, R1

n�1..n�ks
(A.0.2)

Solving equation A.0.1 and A.0.2, we have R1
1..n�1 � R2

1..n�1 and

R1
n � R2

n � p1� ǫq.k (A.0.3)

Lemma 1. For all i ¤ n, Ri ¥ R2
i

Proof. This lemma is proved by induction. The power method used to compute the

stationary vector
ÝÑ
R proceeds as follows:$'&'% Rit

i � p1� ǫq.° Tji|W�
j | .Rit�1

j � ǫ

R0
i � 1

where |W�
j | � ¸

xPW�
j

x. It can be seen that R1
i ¥ R2

i
1 for all i ¤ n, because the adversary

in G does have links that point back to other nodes, unlike in G2 where those links are

184

removed. Assuming Rit
i ¥ R2

i
it for i ¤ n and it ¥ 1. We have:

Rit�1
i � p1� ǫq.° Tji|W�

j | .Rit
j � ǫ¥ p1� ǫq.° Tji|W�

j
| .R2

j
it � ǫ¥ R2

i
it�1

By induction, we have Rit
i ¥ R2

i
it for all value of it. In other words, Ri ¥ R2

i for i ¤ n.

Using the Lemma above, it can be seen that
i̧ n

Ri � p1� ǫq.Rn ¥¸R2
i . Or,

R2
n ¥ p2� ǫq.Rn (A.0.4)

Also, applying Equation 3.2.1 for the adversary we have:

R2
n ¤ Rn

ǫ
(A.0.5)

Combining equation A.0.3, A.0.4 and A.0.5 together, we derive the same formula as

stated in the theorem.

185

186

APPENDIX B

ROOT AUTHENTICITY AND NEIGHBOR

AUTHENTICITY PROPERTY

Theorem 2. NA ñ RA

Proof. The proof can be constructed as follows. First, assume that NA holds. Next

assume that destV erfppv, k, pd, tq holds for any k, pd and t. Then we need to show the

following:

pd P P t (B.0.1)�p1d P P tztpdu. cdpp1d, kq ¡ cdppd, kq (B.0.2)

Because destV erfppv, k, pd, tq and NA hold, there exists pl such that:tpl, pdu P P t (B.0.3)

cdpk, plq � cdppd, kq � cdppd, plq ^ �p2d P P tztpl, pdu. cdpp2d, plq ¡ cdppd, plq (B.0.4)

It can be seen that (B.0.1) can be derived directly from (B.0.3).

(B.0.4) implies (B.0.2) because assuming (B.0.4), for any p1d P P tztpdu:
1. If p1d � pl, using the observation that cdpx, yq � 2m � cdpy, xq and cdpk, plq �

cdppd, kq � cdppd, plq, we can derive that cdpp1d, kq ¡ cdppd, kq
187

2. If p1d � pl. (B.0.2) implies:

cdpp1d, plq ¡ cdppd, plqñ cdpp1d, plq � cdpp1d, pdq � cdppd, plqñ cdpp1d, plq � cdpp1d, kq � cdpk, plqñ cdpp1d, kq � cdpk, plq ¡ cdppd, plq ¡ cdpk, plq � cdppd, kqñ cdpp1d, kq ¡ cdppd, kq

188

APPENDIX C

CSP TRACE SEMANTICS

tracespSTOP q � txyu
tracespa Ñ P q � txyu Y txay^s | s P tracespP qu
tracespP lQq � tracespP q Y tracespQq
tracespP vRwq � t tr | Ds P tracespP q
 s R� tr u

tracespP |||Qq � �ts ||| t | s P tracespP q, t P tracespQqu
tracespP }

X

Qq � �ts }
X

tu | s P tracespP q, t P tracespQq
where R�, ||| and }

X

are defined as follows:xa1, .., any R� xb1, .., bmy Ø n � m ^ �i ¤ n
 ai R bixy ||| s � tsu
s ||| t � t ||| sxay^s ||| xby^t � txay^u } u P s ||| xby^tuY txby^u } u P t ||| xay^su
s }

X

t � t } sxy }
X

xy � txyuxy }
X

xxy � txyu (x P X)xy }
X

xyy � txyyu (y R X)xxy^s }
X

xyy^t � txyy^u | u P xxy^s }
X

tuxxy^s }
X

xxy^t � txxy^u | u P s }
X

tuxxy^s }
X

xx1y^t � txyu (x, x1 P X ^ x � x1)xyy^s }
X

xy1y^t � txyy^u | u P s }
X

xy1y^tuYtxy1y^u | u P t }
X

xyy^uu
189

190

APPENDIX D

CSP MODEL FOR DTR1

D.0.0.1 Nonce Manager process.

NonceSender(n) =
ü

jPAgents

send.NM.j.SqN.xny Ñ STOP

NonceManager = |||
nPNonces

NonceSender(n)

D.0.0.2 Peer processes.

TPMs =
������

iPP8 TPM(i,0)

TPM(i,c) =ü
nPNonces
jPAgents

�������� receive.j.i.SqN.xnyÑ ���� ü
d¥c

send.i.j.SqR.xn, i, dy Ñ unlock.V F.i Ñ TPM(i,d)l ü
d¡c

send.i.j.SqI.xn, i, dy Ñ unlock.CA.i Ñ TPM(i,d)

�ÆÆ
 �ÆÆÆÆÆÆ

D.0.0.3 CA Process.

CAProcess(ps,pn) = |ps| �� 0 & Join0(ps,pn)l |ps| �� 1 & Join1(ps,pn)l |ps| ¡ 1 & JoinAndLeaveN(ps,pn)

191

Join0(ps,pn) =

Ü
iPpn

����������������
receive.i.CA.Churn.xjoin, iyÑ Ü

nPNonces

������������
receive.NM.CA.SqN.xny Ñ send.CA.i.SqN.xnyÑ Ü

cPCounts

��������� receive.i.CA.SqI.xn, i, cyÑ send.CA.i.Cert.xi, i, i, cyÑ completeChurn.Churn.xjoin, iyÑ unlock.CA.i Ñ CAProcessptiu, pnztiuq
�ÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

Join1(i,pn) =

Ü
jPpn

��������������������������������

receive.j.CA.Churn.xjoin, jy
Ñ Ü

n1,n2PNonces

�����������������������������

receive.NM.CA.SqN.xn1y Ñ send.CA.i.SqN.xn1y
Ñ Ü

c1,c2PCounts

�������������������������
receive.i.CA.SqI.xn1, i, c1yÑ send.CA.i.Cert.xi, j, j, c1yÑ receive.NM.CA.SqN.xn2yÑ send.CA.j.SqN.xn2yÑ receive.j.CA.SqI.xn2, j, c2yÑ send.CA.j.Cert.xj, i, i, c2yÑ completeChurn.Churn.xjoin, jyÑ unlock.CA.i Ñ unlock.CA.jÑ CAProcesspti, ju, pnztjuq

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

JoinAndLeaveN(ps,pn) =

ü
iPpn

receive.i.CA.Churn.xjoin, iy Ñ JoinN(i,ps,pn)lü
iPps

������ receive.i.CA.Churn.xleave, iyÑ if |ps| ¡ 2 then LeaveN(i,ps,pn)

else Leave2(i,ps,pn)

�ÆÆÆÆ

Leave2(i,{i,j},pn) =

receive.i.CA.Churn.xleave, iyÑ Ü
nPNonces

������������
receive.NM.CA.SqN.xny Ñ send.CA.j.SqN.xnyÑ Ü

cPCounts

��������� Ñ receive.j.CA.SqI.xn, j, cyÑ send.CA.j.Cert.xj, j, j, cyÑ completeChurn.Churn.xleave, iyÑ unlock.CA.j Ñ CAProcessptju, pnY tiuq
�ÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆ

192

JoinN(i,ps,pn) =

ü
n1,n2,n3PNonces

���

receive.NM.CA.SqN.xn1y Ñ send.CA.i.SqN.xn1y

Ñ Ü
c1,c2,c3PCounts

��

receive.i.CA.SqI.xn1, i, c1y Ñ
let S � psY tiupl, rq � neighbor pi,Sqpl1, r1q � neighbor pl,Sqpl2, r2q � neighbor pr,S q within

send.CA.i.Cert.xi, l, r, c1yÑ receive.NM.CA.SqN.xn2yÑ send.CA.l.SqN.xn2yÑ receive.l.CA.SqI.xn2, l, c2yÑ send.CA.l.Cert.xl, l1, i, c2yÑ receive.NM.CA.SqN.xn3yÑ send.CA.r.SqN.xn3yÑ receive.r.CA.SqI.xn3, r, c3yÑ send.CA.r.Cert.xr, i, r2, c3yÑ completeChurn.Churn.xjoin, iyÑ unlock.CA.i Ñ unlock.CA.lÑ unlock.CA.r Ñ CAProcess(S,pnztiu)

�ÆÆ

�ÆÆÆ

LeaveN(i,ps,pn) =

let pl, rq � neighborpi, psqpl1, r1q � neighbor pl, psztiuqpl2, r2q � neighbor pr, psztiuq within

ü
n1,n2PNonces

�������������������������
receive.NM.CA.SqN.xn1y Ñ send.CA.l.SqN.xn1y
Ñ Ü

c1,c2PCounts

����������������������
receive.l.CA.SqI.xn1, l, c1yÑ send.CA.l.Cert.xl, l1, r, c1yÑ send.CA.r.SqN.xn2yÑ receive.r.CA.SqI.xn2, r, c2yÑ send.CA.r.Cert.xr, l, r2, c2yÑ completeChurn.Churn.xleave, iyÑ unlock.CA.l Ñ unlock.CA.rÑ CAProcessppsztiu, pnY tiuq

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

The function neighborpp, psq basically returns the left and right neighbor of p in ps.

193

More precisely,

neighborpp, psq � pleftpp, psq, rightpp, psqq
leftpp, psq � l if l P ps ^ �p1 P psztlu . |pa l| ¤ |p1 a l|
rightpp, psq � r if r P ps ^ �p1 P psztru . |r a p| ¤ |r a p1|

D.0.0.4 Verifier Process.

VerifierProcess =

ü
nPNonces

����������������������
receive.NM.V F.SqN.xny
Ñ ü

i,l,rPP8
�������������������

send.V F.i.SqN.xny
Ñ ü

cPCounts

����������������
receive.i.V F.SqR.xn, i, cyÑ receive.i.V F.Cert.xi, l, r, cyÑ if l � r and l � i then

output.i.i Ñ unlock.V F.iÑ STOP

else VerifierProcessN(l,i)

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ

VerifierProcessN(l,i) =ü
nPNonces

������������
receive.NM.V F.SqN.xny Ñ send.V F.r.SqN.xnyÑ ü

clPCounts

��������� receive.l.V F.SqR.xn, l, clyÑ ü
llPP8������ receive.l.V F.Cert.xl, ll, i, clyÑ output.l.i Ñ unlock.V F.lÑ unlock.V F.i Ñ STOP

�ÆÆÆÆ

�ÆÆÆÆÆÆÆ

�ÆÆÆÆÆÆÆÆÆÆ

194

D.0.0.5 Adversary Process.

MemoryNonce(n) = learn.SqN.xny Ñ ReplayNonce(n)

ReplayNonce(n) = say.SqN.xny Ñ ReplayNonce(n)

MemorySigR(n,i,c) = learn.SqR.xn, i, cy Ñ ReplaySigR(n,i,c)

MemorySigI(n,i,c) = learn.SqI.xn, i, cy Ñ ReplaySigI(n,i,c)

ReplaySigR(n,i,c) = say.SqR.xn, i, cy Ñ ReplaySigR(n,i,c)

ReplaySigI(n,i,c) = say.SqI.xn, i, cy Ñ ReplaySigI(n,i,c)

MemoryCert(i,l,r,c) = learn.Cert.xi, l, r, cy Ñ ReplayCert(i,l,r,c)

ReplayCert(i,l,r,c) = say.Cert.xi, l, r, cy Ñ ReplayCert(i,l,r,c)

Memory =
������

nPNonces

MemoryNonce(n)||| ������
nPNonces,iPP,cPCounts

�� MemorySigR(n,i,c)||| MemorySigI(n,i,c)

�
||| ������
i,l,rPP,cPCounts

MemoryCert(i,l,r,c)

ChurnInitiator =
ü
iPP �� say.Churn.xjoin, iy Ñ ChurnInitiatorl say.Churn.xleave, iy Ñ ChurnInitiator

�

Adversary = Memory ||| ChurnInitiator

D.0.0.6 Implementation process (DTR1 model).

Network =
�

Adversary
���
χi

TPMs
	 zχi

CAandVFProcess = CAProcessptu,Pq ||| VerifierProcess

OtherAgents =
�

NonceManager
���t|fake.NM |u CAandVFProcess

	
Impl =

�
OtherAgents

���
χe

Network
	 z t|take, fake, unlock|u

195

D.0.0.7 Specification process.

Specpps, pnq =
ü
iPpn

completeChurn.Churn. join, i ¡ Ñ SpecppsY tiu, pnztiuqlü
iPps

completeChurn.Churn. leave, i ¡ Ñ Specppsztiu, pn Y tiuql ü
iPps

output.i.right(i,ps) Ñ Specpps, pnq

196

APPENDIX E

FDR IMPLEMENTATION FOR DTR1 CSP MODEL

PeerIDs = {0..2}

datatype AgentType = VF | CA | Peer.PeerIDs

datatype Data = nonceCA | nonceVF | join | leave | countVal | SqN.Seq(Data)

| SqR.Seq(Data) | SqI.Seq(Data) | Cert.Seq(Data) | Churn.Seq(Data)

NonceSet = {nonceCA, nonceVF}

CounterSet = {countVal}

PeerSet = {Peer.id | id <- PeerIDs}

AgentSet = union(PeerSet, {VF, CA})

OtherAgentSet = {VF, CA}

NonceMessages = {SqN.<n> | n <- NonceSet}

SigMessagesR = {SqR.<n,i,c> | n <- NonceSet, i <- PeerSet, c <- CounterSet}

SigMessagesI = {SqI.<n,i,c> | n <- NonceSet, i <- PeerSet, c <- CounterSet}

SigMessages = union(SigMessagesR, SigMessagesI)

CertMessages = {Cert.<i,l,r,c> | i <- PeerSet, l <- PeerSet, r <- PeerSet, c <- CounterSet}

ChurnMessages = {Churn.<c,i> | c <- {join,leave}, i <- PeerSet}

MESSAGES = Union({NonceMessages, SigMessages, CertMessages, ChurnMessages})

channel learn,say: MESSAGES

channel take,fake,send,receive: AgentSet.AgentSet.MESSAGES

channel output: PeerSet.PeerSet

channel completeChurn: ChurnMessages

channel unlock: AgentSet.PeerSet

channel nextVal: PeerSet.CounterSet

--------------------------- TPM AND ADVERSARY PROCESSES ---------------------------------

TPM(i)= []j:OtherAgentSet, n:NonceSet @

receive.j.i.SqN.<n> -> ((send.i.j.SqR.<n,i,countVal> -> unlock.VF.i -> TPM(i))

[](nextVal.i.countVal -> send.i.j.SqI.<n,i,countVal>

-> unlock.CA.i -> TPM(i))

)

TPMs0 = |||i:PeerSet @ TPM(i)

TPMs = TPMs0 [[send.i.j <- take.i.j | i <- PeerSet, j <- OtherAgentSet]]

197

[[receive.j.i <- fake.j.i | j <- OtherAgentSet, i <- PeerSet]]

alpha_TPM = union ({fake.j.i.nonceMes, take.i.j.sigMes | i <- PeerSet, j <- OtherAgentSet,

nonceMes <- NonceMessages, sigMes <- SigMessages},

{nextVal.i.c | i <- PeerSet, c <- CounterSet})

RelayNonce0 = ([]n:NonceSet @

learn.SqN.<n> -> ((say.SqN.<n> -> RelayNonce0)

[]RelayNonce0

)

)

RelayNonce = RelayNonce0 [[learn <- take.j.i | i <- PeerSet, j <- OtherAgentSet]]

[[say <- fake.j.i | i <- PeerSet, j <- OtherAgentSet]]

alpha_RelayNonce = {take.j.i.mesN, fake.j.i.mesN | i <- PeerSet, j <- OtherAgentSet,

mesN <- NonceMessages}

RelaySigR(i) = []n:NonceSet @

learn.SqR.<n,i,countVal> -> ((say.SqR.<n,i,countVal> -> RelaySigR(i))

[]RelaySigR(i)

)

RelaySigI(i) = []n:NonceSet @

learn.SqI.<n,i,countVal> -> ((say.SqI.<n,i,countVal> -> RelaySigI(i))

[]RelaySigI(i)

)

RelaySigs0 = |||i:PeerSet @ (RelaySigR(i) ||| RelaySigI(i))

RelaySigs = RelaySigs0 [[learn <- take.i.j | i <- PeerSet, j <- OtherAgentSet]]

[[say <- fake.i.j | i <- PeerSet, j <- OtherAgentSet]]

alpha_RelaySigs = {take.i.j.mes, fake.i.j.mes | i <- PeerSet, j <- OtherAgentSet,

mes <- SigMessages}

RelayNonceSigs = RelayNonce ||| RelaySigs

alpha_RelayNonceSigs = union (alpha_RelayNonce, alpha_RelaySigs)

RelayCert(i) = []l:PeerSet, r:PeerSet @

nextVal.i.countVal ->((learn.Cert.<i,l,r,countVal> ->

((say.Cert.<i,l,r,countVal>

-> RelayCert(i))

[]RelayCert(i)

)

)

[]RelayCert(i)

)

RelayCerts = |||i:PeerSet @ RelayCert(i)) [[learn <- take.i.j | i <- OtherAgentSet,

j <- PeerSet]]

[[say <- fake.i.j | i <- PeerSet, j <- OtherAgentSet]]

alpha_RelayCerts = union({take.i.j.mes, fake.j.i.mes | i <- OtherAgentSet,

j <- PeerSet, mes <- CertMessages},

{nextVal.i.c | i <- PeerSet, c <- CounterSet})

ChurnInitiator0 = []i:PeerSet @

(say.Churn.<join,i> -> ChurnInitiator0

[] say.Churn.<leave,i> -> ChurnInitiator0

198

)

ChurnInitiator = ChurnInitiator0 [[say <- fake.i.j | i <- PeerSet, j <- OtherAgentSet]]

alpha_ChurnInitiator = {fake.i.j.mes | i <- PeerSet, j <- OtherAgentSet, mes <- ChurnMessages}

Adversary = RelayNonceSigs ||| RelayCerts ||| ChurnInitiator

alpha_Adversary = Union ({alpha_RelayNonceSigs, alpha_RelayCerts, alpha_ChurnInitiator})

Network = (Adversary [| alpha_TPM |] TPMs) \ alpha_TPM

alpha_Network = diff (alpha_Adversary, alpha_TPM)

--

--------------------------- OTHER PROCESSES --

CAProcess(ps,pn) = (card(ps)==0 & Join0(pn))

[] (card(ps) == 1 & (Join1(ps,pn) [] Leave1(ps,pn)))

[] (card(ps) == 2 & (JoinN(ps,pn) [] Leave2(ps,pn)))

[] (card(ps) > 2 & (JoinN(ps,pn) [] LeaveN(ps,pn)))

Join0(pn) = []i:pn @

receive.i.CA.Churn.<join,i> -> send.CA.i.SqN.<nonceCA>

-> receive.i.CA.SqI.<nonceCA, i, countVal> -> send.CA.i.Cert.<i,i,i,countVal>

-> completeChurn.Churn.<join,i> -> unlock.CA.i -> CAProcess({i}, diff(pn, {i}))

Join1(ps,pn) = []i:pn @

receive.i.CA.Churn.<join,i> -> send.CA.i.SqN.<nonceCA>

-> receive.i.CA.SqI.<nonceCA,i,countVal>

-> (let (l,r) = neighbor(i, union(ps,{i})) within

(

send.CA.l.SqN.<nonceCA>

-> receive.l.CA.SqI.<nonceCA, l, countVal>

-> send.CA.i.Cert.<i,l,l,countVal>

-> send.CA.l.Cert.<l,i,i,countVal>

-> completeChurn.Churn.<join,i> -> unlock.CA.i -> unlock.CA.l

-> CAProcess(union({i}, ps), diff(pn, {i}))

)

)

Leave1(ps,pn) = []i:ps @

receive.i.CA.Churn.<leave,i> -> send.CA.i.SqN.<nonceCA>

-> receive.i.CA.SqI.<nonceCA,i,countVal> -> completeChurn.Churn.<leave,i>

-> unlock.CA.i -> CAProcess ({}, union (pn, {i}))

JoinN(ps,pn) = []i:pn @

receive.i.CA.Churn.<join,i> -> send.CA.i.SqN.<nonceCA>

-> receive.i.CA.SqI.<nonceCA,i,countVal>

-> (let (l,r) = neighbor(i, union(ps, {i}))

(ll, lr) = neighbor(l, union(ps, {i}))

(rl, rr) = neighbor(r, union(ps, {i}))

within

(

send.CA.l.SqN.<nonceCA> -> receive.l.CA.SqI.<nonceCA,l,countVal>

-> send.CA.r.SqN.<nonceCA>

-> receive.r.CA.SqI.<nonceCA,r,countVal>

-> send.CA.i.Cert.<i,l,r,countVal>

-> send.CA.l.Cert.<l,ll,i,countVal>

-> send.CA.r.Cert.<r,i,rr,countVal>

199

-> completeChurn.Churn.<join,i>

-> unlock.CA.i -> unlock.CA.l -> unlock.CA.r

-> CAProcess(union({i},ps), diff(pn,{i}))

)

)

Leave2(ps,pn) = []i:ps @

receive.i.CA.Churn.<leave,i>

-> (let (l,r) = neighbor(i, ps) within

(

send.CA.l.SqN.<nonceCA> -> receive.l.CA.SqI.<nonceCA,l,countVal>

-> send.CA.l.Cert.<l, l, l, countVal>

-> completeChurn.Churn.<leave,i> -> unlock.CA.l

-> CAProcess({l}, union(pn,{i}))

)

)

LeaveN(ps,pn) = []i:ps @

receive.i.CA.Churn.<leave,i>

-> (let (l,r) = neighbor(i, ps)

(ll,lr) = neighbor(l, ps)

(rl,rr) = neighbor(r,ps)

within

(

send.CA.l.SqN.<nonceCA> -> receive.l.CA.SqI.<nonceCA,l,countVal>

-> send.CA.r.SqN.<nonceCA> -> receive.r.CA.SqI.<nonceCA,r,countVal>

-> send.CA.l.Cert.<l, ll,r, countVal>

-> send.CA.r.Cert.<r,l,rr,countVal> -> completeChurn.Churn.<leave,i>

-> unlock.CA.l -> unlock.CA.r

-> CAProcess(diff(ps,{i}), union(pn, {i}))

)

)

VerifierProcess = []i:PeerSet @

send.VF.i.SqN.<nonceVF> -> receive.i.VF.SqR.<nonceVF, i, countVal>

-> []l:PeerSet, r:PeerSet @

(

receive.i.VF.Cert.<i,l,r,countVal>

-> (((i==l and i==r) & output.i.i

-> unlock.VF.i -> STOP)

[]((l==r and i!=l) & Verifier1(i,r))

)

)

Verifier1(i,r) = send.VF.r.SqN.<nonceVF> -> receive.r.VF.SqR.<nonceVF, r, countVal>

-> []rr:PeerSet @ (receive.r.VF.Cert.<r,i,rr,countVal> -> output.i.r

-> unlock.VF.i -> unlock.VF.r -> STOP)

OtherAgents = (CAProcess({}, PeerSet) ||| VerifierProcess) [[send.i.j <- take.i.j | i <- OtherAgentSet,

j <- PeerSet]]

[[receive.i.j <- fake.i.j | i <- PeerSet,

j <- OtherAgentSet

]]

alpha_OtherAgents = union ({take.i.j.mes, fake.j.i.mes | i <- OtherAgentSet, j <- PeerSet, mes <- MESSAGES},

{unlock.j.i | j <- OtherAgentSet, i <- PeerSet})

--

200

-------------------------------- IMPLEMENTATION AND SPEC -------------------------------

alpha_Hidden = {|take,fake,unlock|}

alpha_Sync = union (diff(alpha_Adversary, alpha_TPM),

{unlock.j.i | j <- OtherAgentSet, i <- PeerSet})

Impl = (OtherAgents [|alpha_Sync|] Network) \ alpha_Hidden

Spec(ps,pn) = ([]i:pn @ completeChurn.Churn.<join,i> -> Spec(union(ps,{i}),diff(pn,{i})))

[] ([]i:ps @ completeChurn.Churn.<leave,i> -> Spec(diff(ps,{i}),union(pn,{i})))

[] (card(ps)>0 & []i:ps @ (let r=right(i,ps) within

(output.i.r -> Spec(ps,pn))

)

)

assert Spec({}, PeerSet) [T= Impl

--

---------------------------------- AUXILILARY ---

neighbor(Peer.0,S) = if (member(Peer.0,S) and member(Peer.1,S) and card(S)==2) then (Peer.1,Peer.1)

else if (member(Peer.0,S) and member(Peer.2,S) and card(S)==2) then (Peer.2,Peer.2)

else if (card(S)==3) then (Peer.2,Peer.1)

else if (member(Peer.0,S)) then (Peer.0,Peer.0)

else if (member(Peer.1,S)) then (Peer.1,Peer.1)

else (Peer.2,Peer.2)

neighbor(Peer.1,S) = if (member(Peer.0,S) and member(Peer.1,S) and card(S)==2) then (Peer.0,Peer.0)

else if (member(Peer.1,S) and member(Peer.2,S) and card(S)==2) then (Peer.2,Peer.2)

else if (card(S)==3) then (Peer.0,Peer.2)

else let {x}=S within (x,x)

neighbor(Peer.2,S) = if (member(Peer.2,S) and member(Peer.1,S) and card(S)==2) then (Peer.1,Peer.1)

else if (member(Peer.0,S) and member(Peer.2,S) and card(S)==2) then (Peer.0,Peer.0)

else if (card(S)==3) then (Peer.1,Peer.0)

else let {x}=S within (x,x)

left(i,P) = let (x,y)=neighbor(i,P) within x

right(i,P) = let (x,y)=neighbor(i,P) within y

--

201

202

APPENDIX F

THE PROOF FOR DTR1

Preliminaries

precedes(X,Y) � λ tr . �y P Y, s1, s2
 �tr � s1̂ xyy^s2 ñ Dx P X, t1, t2
 s1 � t1̂ xxy^t2
�

strictPrecedes(X,Y) � λ tr . �y P Y, s1, s2
 �tr � s1̂ xyy^s2 ñ Dx P X, t1, t2
 s1 � t1̂ xxy^t2^ t2 æX Y Y � xy�
strictFollowed(X,Y) � λ tr . tr æ pX Y Y q P txy, xay, xa, by | a P X, b P Y u�

s æα P pS zXq� s æβ P pS zY q�
s æ pαY βq P pS z pX X Y qq� (F.0.1)

Lemma 2. Let Abstraction’ be the model consisting of the same processes as Abstraction without hidding

the events in ttake, fake, unlocku. Let tr be any trace of Abstraction’. For any l, r, let o � output.l.r,

Cpl, rq � tfake.r.V F.Cert.xr, l, rr, cdy | rr P P8u and ct P Cpl, rq.
For any s1, s2, s3 such that tr � s1̂ xcty^s2̂ xoy^s3, let X1 � γptu, s1q and X2 � γptu, s1̂ s2q. Then:tl, ru � X1 ^ r � rightpl, X1q ñ tl, ru � X2 ^ r � rightpl, X2q

Proof. The proof is included in the technical report [30]

Lemma 3. Let Abstraction’ be the model consisting of the same processes as Abstraction without hidding

the events in ttake, fake, unlocku. Let tr P tracespAbstraction1q and X � γptu, trq. For any i, denote

ej � completeChurn.Churn.xjoin, iy, el � completeChurn.Churn.xleave, iy. If there exists e P tej , elu,
203

s, t such that:

tr � s^xey^t ^ t æ t|completeChurn|u � xy^ t æ t|fake.p.V F |u � xfake.p.V F.Cert.xp, pl, pr, cdyy
then

1. If e � ej, let l � leftpi, Xq, r � rightpi, Xq:
p P ti, l, ru ñ tp, pl, pru � X ^ p � rightppl, Xq � leftppr, Xq (F.0.2)

2. If e � el, let X 1 � X Y tiu, l � leftpi, X 1q, r � rightpi, X 1q:
p P tl, ru ñ tp, pl, pru � X ^ p � rightppl, Xq � leftppr, Xq

Proof. The proof is included in the technical report [30]

Theorem 3. tracespAbstractionq � tracespSpecptu,P8qq
Proof. The proof is constructed via induction as follows:

1. (Base case). Let tr be a traces of Abstraction such that træt|completeChurn|u � xy where æ
is the restriction operator (for example sqæX removes non-X elements from sq). Then tr P
tracespSpecptu,P8qq.

2. (Inductive case). For any θ � xy, let tr be a trace of Abstraction such that:

træt|completeChurn|u � θ ^ tr P tracespSpecptu,P8qq
Let tr1 be another trace of Abstraction, then:�e . tr1æt|completeChurn|u � θ^xey ñ tr1 P tracespSpecptuq,P8q

The base case is true because

træt|completeChurn|u � xy ñ træt|output|u � xy
since Abstraction sat precedespt|completeChurn|u, t|output|uq.

204

Let Abstraction1 be the model consisting of the same processes as Abstraction does, but without

hiding the events in Ω � t|take, fake, unlock|u.
Let ǫ � t|completeChurn|u, the proof for the inductive case is as follows. For any θ � xy, e P ǫ,

consider tr1 P tracespAbstraction1q such that tr1 æ ǫ � θ^xey. On the assumption:�tr P tracespAbstractionq
 tr æ ǫ � θ ñ tr zΩ P tracespSpecptu,P8qq (F.0.3)

we need to show the following:

tr1 zΩ P tracespSpecptu,P8qq (F.0.4)

For tr1 described above, there exists s, t such that:

tr1 � s^xey^t ^ s æ ǫ � xy ^ t æ ǫ � xy
Consider e � completeChurn.Churn.xjoin, iy for any i P P8 (the proof is similar for the other values

of e P tcompleteChurn.Churn.xleave, iy | i P P8u).
First, it is true that

s^xey zΩ � s^xey æαSpecP tracespSpecptu,P8qq (F.0.5)

because:

1. Let δ � t|output|u. Because s æ ǫ � θ, it follows from the assumption in Eq.F.0.3 that

s^xey æ δ � s æ δ P tracespSpecptu,P8q z pαSpec z δqq
2.

s^xey æ ǫ � s^xey zΩ � θ^xey� s^xey æ pαCAProcessXǫqP tracespCAProcess z pαCAProces z ǫqqP tracespSpecptu,P8qq z pαSpec z ǫq
205

From these results and Eq.F.0.1, we have

s^xey æ pδY ǫq � s^xey æαSpecP tracespCAProcessq
If t æ δ � xy . This means:

tr1 zΩ � s^xey zΩP tracespSpecptu,P8qq (because of Eq.F.0.5)

If tr1 æ δ � xoutput.l.ry for any l, r P P8. This means there exists t1, t2 such that:

tr1 � s^xey^t1̂ xoutput.l.ry^t2

Let Ps � γptu, s^xeyq, Eq.F.0.5 implies that we need to show that:tl, ru � Ps ^ r � rightpl, Psq (F.0.6)

Let Opl, rq � toutput.l.ru, C1pl, rq � tfake.l.V F.Cert.xl, ll, r, cdy | ll P P8u and

C2pl, rq � tfake.r.V F.Cert.xr, l, rr, cdy | rr P P8u. From the structure of the VerifierProcess process, we

have the following:

1. strictFollowed(C1(l,r), O(l,r))(tr1)
2. strictFollowed(C2(l,r), O(l,r))(tr1)
3. l � r ñ strictFollowed(C1(l,r), C2(l,r))

Let ctr � fake.r.V F.xr, l, rr, cdy P C2pl, rq, we therefore need to consider two cases:

Case 1. If there exists s1, s2 such that:

s � s1̂ xctry^s2 ^ s2̂ t1 æC2pl, rq � xy
Notice that events in Opl, rq only occurs in the trace of VerifierProcess. Let s1 � s1̂ xctr, output.l.ry^s2.

We can deduce that:

s1^xey^t P tracespAbstractionq
Because of Eq.F.0.3, s1 zΩ P tracespSpecptu,P8qq. Therefore, tl, ru � γptu, s1q and r � rightpl, γptu, s1qq.

206

Lemma 2 implies that: tl, ru � γptu, s^xeyq ^ r � rightpl, γptu, s^xeyqq
Case 2. If there exists r1, r2 such that:

t1 � r1̂ xctry^r2

Let il � leftpi, Psq, ir � rightpi, Psq. Consider the following two sub-cases:

1. If r P ti, il, iru. Lemma 3 implies that:tr, lu � Ps ^ r � rightpl, Psq
(same as Eq.F.0.6)

2. If r R ti, il, iru ^ l P ti, il, iru. Let ctl � fake.l.CA.Cert.xl, ll, r, cdy for some l. Because of

strictPrecedes({ctl, ctr})ptr1q being true and the structure of the CA process and RelayCerts,

there exists u1, u2 such that:

r1 � u1̂ xctly^u2

Similar to the previous case, Lemma 3 implies Eq.F.0.6

3. If tl, ru X ti, il, iru � H. Let αv � αV erifierProcess. It can be shown that:

s^pt æαvq^xey^pt zαvq P tracespAbstractionq
Let s1 � s^pt æαvq, then according to Eq.F.0.3, we have s1 zΩ P tracespSpecptu,P8qq. As t æαv

contains output.l.r, it follows that tl, ru � γptu, s1q and r � rightpl, γptu, s1qq. Because of tl, ru Xti, il, iru and t æ ǫ � xy, we can deduce that:tl, ru � Ps ^ r � rightpl, Psq

207

208

APPENDIX G

FDR IMPLEMENTATION FOR DTR2 CSP MODEL

PeerIDs = {0..2}

datatype AgentType = VF

datatype Data = nonceVF | Peer.PeerIDs | SqN.Seq(Data)

| Ran.Seq(Data) | Cert.Seq(Data)

NonceSet = {nonceVF}

PeerSet = {Peer.id | id <- PeerIDs}

AgentSet = union(PeerSet, {VF})

OtherAgentSet = {VF}

NonceMessages = {SqN.<n> | n <- NonceSet}

RangesMessages = {Ran.<i,l,r> | i <- PeerSet, l <- PeerSet, r <- PeerSet}

CertMessages = {Cert.<n>, Cert.<n,l,r> | n <- NonceSet, l <- PeerSet, r <- PeerSet}

MESSAGES = Union({NonceMessages, RangesMessages, CertMessages})

channel learn,say: MESSAGES

channel take,fake,send,receive: AgentSet.AgentSet.MESSAGES

channel output: PeerSet.PeerSet

channel join,leave: PeerSet.PeerSet

channel unlock: AgentSet.PeerSet

channel testEvent:PeerSet.PeerSet

--------------------------- DEVICE PROCESS --

DeviceN(i) = (receive.VF.i.SqN.<nonceVF> -> send.i.VF.Cert.<nonceVF>

-> unlock.VF.i -> DeviceN(i)

)

[] ([]j:PeerSet @ ([]l:PeerSet, r:PeerSet @ (

receive.j.i.Ran.<r,l,i>

-> join.i.r -> Device(i,l)

)

)

)

Device(i,l) = (receive.VF.i.SqN.<nonceVF> -> send.i.VF.Cert.<nonceVF,l,i>

-> unlock.VF.i -> Device(i,l)

)

209

[]([]ll:PeerSet @ receive.l.i.Ran.<l,ll,l> -> leave.l.i

-> Device(i,ll)

)

[]([]j:diff(PeerSet,{i}) @ (if (mid(j,l,i)) then (send.i.j.Ran.<i,l,j>

-> Device(i,j))

else (send.i.j.Ran.<i,l,i> -> DeviceN(i))

)

)

newPeerSet = diff(PeerSet, {Peer.0})

Devices0 = []i:PeerSet @ (Device(i,i) ||| (|||j:diff(PeerSet,{i}) @ DeviceN(j)))

Devices = Devices0 [[send.i.j <- take.i.j | i <- PeerSet, j<- AgentSet]]

[[receive.j.i <- fake.j.i | j <- AgentSet, i <- PeerSet]]

joinAndLeaveSet = {join.i.j, leave.i.j | i <- PeerSet, j <- PeerSet}

alpha_Devices = Union ({ {fake.VF.i.nonMesg | i <- PeerSet, nonMesg <- NonceMessages},

{take.i.VF.certMesg | i <- PeerSet, certMesg <- CertMessages},

{fake.j.i.ranMesg | i <- PeerSet, j <- PeerSet,

ranMesg <- RangesMessages},

{take.i.j.ranMesg | i <- PeerSet, j <- PeerSet,

ranMesg <- RangesMessages},

joinAndLeaveSet }

)

--

--------------------------- ADVERSARY PROCESS --

RelayNonce0 = learn.SqN.<nonceVF> -> say.SqN.<nonceVF> -> RelayNonce0

RelayNonce = RelayNonce0 [[learn <- take.VF.i | i <- PeerSet]]

[[say <- fake.VF.i | i <- PeerSet]]

RelayCert0 = []l:PeerSet, r:PeerSet @ (

learn.Cert.<nonceVF, l, r>

-> say.Cert.<nonceVF,l,r> -> STOP

)

RelayCert = RelayCert0 [[learn <- take.i.VF | i <- PeerSet]]

[[say <- fake.i.VF | i <- PeerSet]]

RelayRange(i,l,r) = learn.Ran.<i,l,r> -> say.Ran.<i,l,r> -> RelayRange(i,l,r)

RelayRanges0 = |||i:PeerSet, l:PeerSet, r:PeerSet @ RelayRange(i,l,r)

RelayRanges = RelayRanges0 [[learn <- take.i.j | i <- PeerSet, j <- PeerSet]]

[[say <- fake.i.j | i <- PeerSet, j <- PeerSet]]

Adversary = RelayRanges ||| RelayNonce ||| RelayCert ||| RelayCert

alpha_Adversary = Union({ {take.VF.i.nonMesg, fake.VF.i.nonMesg | i <- PeerSet,

nonMesg <- NonceMessages},

{take.i.VF.certMesg, fake.i.VF.certMesg | i <- PeerSet,

certMesg <- CertMessages},

{take.i.j.ranMesg, fake.i.j.ranMesg | i <- PeerSet, j <- PeerSet,

ranMesg <- RangesMessages} }

)

--

----------------------------- VERIFIER PROCESS --

Verifier0 = []r:PeerSet @ (send.VF.r.SqN.<nonceVF>

-> []l:PeerSet @ (receive.r.VF.Cert.<nonceVF,l,r>

-> if (l==r) then (output.l.r -> unlock.VF.r -> STOP)

else (send.VF.l.SqN.<nonceVF>

-> []ll:PeerSet @ (

210

receive.l.VF.Cert.<nonceVF,ll,l>

-> output.l.r -> unlock.VF.l

-> unlock.VF.r -> STOP

)

)

)

)

Verifier = Verifier0 [[send.VF.i <- take.VF.i | i <- PeerSet]]

[[receive.i.VF <- fake.i.VF | i <- PeerSet]]

alpha_Verifier = Union({ {take.VF.i.nonMesg | i <- PeerSet, nonMesg <- NonceMessages},

{fake.i.VF.certMesg | i <- PeerSet, certMesg <- CertMessages},

{output.i.j | i <- PeerSet, j <- PeerSet} }

)

--

----------------------------- IMPLEMENTAITON AND SPEC PROCESS ----------------------------

networkSyncSet = inter(alpha_Adversary, alpha_Devices)

Network = Devices [|networkSyncSet|] Adversary

implSyncSet = inter(alpha_Adversary, alpha_Verifier)

Impl0 = Verifier [|union(implSyncSet, {|unlock|})|] Network

Impl = Impl0 \ {|take,fake,unlock|}

Spec(ps,pn) = ([]i:union(ps,pn),j:union(ps,pn) @ join.i.j -> Spec(union(ps,{i}),diff(pn,{i})))

[]([]i:union(ps,pn), j:union(ps,pn) @ leave.i.j -> Spec(diff(ps,{i}),union(pn,{i})))

[](card(ps)>0 & []i:ps @ (let r = right(i,ps) within

output.i.r -> Spec(ps,pn)))

Specs = []i:PeerSet @ Spec({i}, diff(PeerSet,{i}))

assert Specs [T= Impl

--

---------------------------------- AUXILILARY --

neighbor(Peer.0,S) = if (member(Peer.0,S) and member(Peer.1,S) and card(S)==2) then (Peer.1,Peer.1)

else if (member(Peer.0,S) and member(Peer.2,S) and card(S)==2)

then (Peer.2,Peer.2)

else if (card(S)==3) then (Peer.2,Peer.1)

else let {x}=S within (x,x)

neighbor(Peer.1,S) = if (member(Peer.0,S) and member(Peer.1,S) and card(S)==2) then (Peer.0,Peer.0)

else if (member(Peer.1,S) and member(Peer.2,S) and card(S)==2)

then (Peer.2,Peer.2)

else if (card(S)==3) then (Peer.0,Peer.2)

else let {x}=S within (x,x)

neighbor(Peer.2,S) = if (member(Peer.2,S) and member(Peer.1,S) and card(S)==2) then (Peer.1,Peer.1)

else if (member(Peer.0,S) and member(Peer.2,S) and card(S)==2)

then (Peer.0,Peer.0)

else if (card(S)==3) then (Peer.1,Peer.0)

else let {x}=S within (x,x)

left(i,P) = let (x,y)=neighbor(i,P) within x

right(i,P) = let(x,y)=neighbor(i,P) within y

mid(i,l,r) = left(i,{i,l,r}) == l and right(i,{i,l,r}) == r

211

212

APPENDIX H

THE PROOF FOR DTR2

Notations For any i, l, r, k, we use the following notations:

ǫ � t|join, leave|u
Ωpi, kq � tfake.x.i.Ran.xx, u, vy |x P P8, k P pu, vsu
Φpi, kq � ttake.i.x.Ran.xi, u, vy |x P P8, k P pu, vsu

Ωpkq � ¤
iPP8 Ωpi, kq

Φpkq � ¤
iPP8 Φpi, kq

Rtpi, j, l, rq � take.i.j.Ran.xi, l, ry
Rfpi, j, l, rq � fake.i.j.Ran.xi, l, ry

∆pi, l, rq � tRtpi, x, l, rq |x P P8upx, ys � ti | inBetweenpi, x, yqu Y tyu
Lemma 4. For any i, l, r, k, let e P Ωpi, kq, e1 P Φpi, kq and δ P ∆pi, l, rq. Let tr P tracespImplq, we then

have: �s, t
 tr � s^xRfpi, j, l, rqy^tñ Ds1, s2
 s � s ^
1 xδy^s2 ^ s2 æ∆pi, l, rq Y tRfpi, j, l, rqu � xy (H.0.1)

�s, t
 tr � s^xe1y^tñ Ds1, s2
 s � s ^
1 xey^s2 ^ s2 æ pΩpi, kq Y Φpi, kq q � xy (H.0.2)

213

Proof. The proof for this Lemma can be easily derived from the structure of the process RelayRangepi, l, rq
and TTMNpiq.
Lemma 5. For any i, l, let tr P tracespTTMpi, lqq. For any k, let e, e1 P Φpi, kq. Then the following

holds:

tr � s^xey^t^xe1y^z ñ t æΩpi, kq � xy
Proof. Again, the proof can be derived directly from the structure of the process TTMpi, lq for any

i, l.

Lemma 6. For any k, l, r such that k P pl, rs and any i, j, let tr P tracespImplq.
1. For any s, t such that:

tr � s^xRtpi, j, l, rqy^t ^ t æ tRfpi, x, l, rq |x P Peersu � xy
Then we have:

t æΦpkq � xy
2. For any s, t such that:

tr � s^xRfpj, i, l, rqy^t ^ t æΦpi, kq � xy
Then we have:

t æΦpkq � xy
Proof. We show the proof for the first result (the proof for the second result is similar). Without loss

of generality, for any xn, yn, ln, rn, in, jn, un, vn P Peers such that k P pu, vs X pl, rs, Rtpim, jm, um, vmq P
Φpkq and im � xn, consider a trace tr P tracespImplq. For any s, t1, t2 satisfying:

tr � s^xRtpxn, yn, ln, rnqy^t1̂ xRtpim, jm, um, vmqy^t2^ t1̂ t2 æ tRfpxn, y, ln, rnq | y P Peersu � xy
We will show that such a trace does not exists.

214

Lemma 4 implies that there exists s0, s1, .., s2n such that:

s � s0̂ xRtpb, y0, l0, r0qy^s1̂ . . .^ s ^
2n�2 xRtpxn�1, yn�1, ln�1, rn�1qy^s ^

2n�1 xRfpyn�1, xn, ln�1, rn�1qy^s2n^ s0 æΩpb, kq � xy ^ k P£
i

pli, ris
Similarly, there exists z0, z1, .., z2m such that:

s^xRtpxn, yn, ln, rnqy^t1� z ^
0 xRtpb, j0, u0, v0qy^z ^

1 . . .^ z ^
2m�2 xRtpim�1, jm�1, um�1, vm�1qy^z ^

2m�1 xRfpjm�1, im, um�1, vm�1qy^z2m^ z0 æΩpb, kq � xy ^ k P£
i

pui, vis
Consider the following cases:

1. If z0 � s0. Lemma 5 and s0 æΩpb, kq, z0 æΩpb, kq result in a contradiction.

2. For any p minpn, mq, assume that zq � sq for all q p and zp � sp. Denote trq as the

sub-sequence of tr that ends with sq. Consider:

(a) tr ^
p�1 xtake.x.y.xx, l, ryy^sp̂ xfake.x.y1.xx, l, ryy and

tr ^
p�1 xtake.x.y.xx, l, ryy^z ^

p xfake.x.y2.xx, l, ryy. These two cannot both happen due to

Eq.H.0.1.

(b) tr ^
p�1 xfake.x.y.xx, l, ryy^sp̂ xtake.y.x1.xy, l1, r1yy and

tr ^
p�1 xfake.x.y.xx, l, ryy^z ^

p xtake.y.x2.xy, u, vyy. First, as k P pl, rs X pu, vs, Eq.H.0.2 im-

plies sp æΩpy, kq � zp æΩpy, kq � xy. The contradiction then arises because of Lemma 5 and

the fact that zp � sp.

Lemma 7. Let tr P tracespImplq, for any i, l, s, t such that:

tr � s^xtake.i.V F.Cert.xnvf , l, iyy^t

Let Ps � γptu, sq, we have the following:

1.

l � leftpi, Ps Y tluq (H.0.3)

215

2. If t æ tunlock.V F.iu � xy, then we have�x P pl, iq
 t æ tjoin.x.r | r P Peersu � xy (H.0.4)

Proof. In the following, we show the proof for Eq.H.0.3 (the proof for Eq.H.0.4 is similar).

When tr æ ǫ � xy, the structure of the process TTMpb, bq implies that Eq.H.0.3 holds true.

Consider tr æ ǫ � xy. Assume that there exists x P pl, iq, xr, s1, s2 such that:

s � s1̂ xjoin.x.xry^s2 ^ s2 æ tleave.xu � xy
To prove that Eq.H.0.3 is true, it is sufficient to show that such a trace above does not exists (because of

the structure of TTMNpiq and the fact that i P Ps).

We show contradictions as follows. First, from the structure of TTMNpiq and RelayRanges, it can

be seen that there exists y, i1, u, v, z0, z1, z2 such that:

s � z ^
0 xRtpy, i1, u, vqy^z ^

1 xRfpy, i, u, vqy^z2 ^ x P pu, vs ^ z2 æΦpi, xq � xy (H.0.5)

Second, the structure of TTMNpxq and RelayRanges imply that there exists a, d, x1, w0, w1, w2

satisfying:

s1 � w ^
0 xRtpa, x1, d, xqy^w ^

1 xRfpa, x, d, xqy^w2 ^ w2 æΦpx, xq � xy (H.0.6)

Since i � x, we consider the following cases:

1. If s1 ¨ z0 (s1 is a prefix of z0)

(a) If s2 æΦpx, xq � xy. Lemma 6-2 implies that s2 æΦpxq � xy, which is not true due to Eq.H.0.5.

(b) If s2 æΦpx, xq � xy. Let Rtpx, p, pl, prq P Φpxq and s2 � w ^
3 xRtpx, p, pl, prqy^w4 for any

p, pl, pr, w3, w4.

i. If Rtpx, p, pl, prq is in z1. This is not true because of Lemma 6-1.

ii. If Rtpx, p, pl, prq is in z2. This is also not true, because of Lemma 6-2 implying that

z2 æΦpxq � xy
iii. If Rtpx, p, pl, prq is in z0. It means there exists w30, w31 such that:

z0 � s1̂ xjoin.xy^w ^
30 xRtpx, p, pl, prqy^w31

216

Because of Lemma 6-1 and Eq.H.0.5, there exists w310, w311, p
1 satisfying:

w31 � w ^
310 xRfpx, p1, pl, prqy^w311

Lemma 6-2 then implies that w311 æΦpx, xq � xy. But it then follows from the structure

of the process TTMNpxq that w311 æ tleave.xu � xy, which is a contradiction.

iv. If Rtpx, p, pl, prq � take.y.i1.xy, u, vy. It means y � x. Similar to the previous case, it

follows that z2 æ tleave.xu � xy, which is a contradiction

2. If z0 s1 (z0 is a strict prefix of s1)

(a) First, Rtpy, i1, u, vq � Rtpa, x1, d, xq as the opposite implies i � x, which is not true.

(b) If Rtpy, i1, u, vq is in w0. Lemma 6-1 implies that

z ^
0 xRtpy, i1, u, vqy^z1 ^xRfpy, i, u, vqy w0

The contradiction arises because of z2 æΦpxq � xy and Eq.H.0.6

(c) If Rtpy, i1, u, vq is in w1 or w2. This is not true due to Lemma 6-1 and w2 æΦpxq � xy.
(d) If Rfpy, i, u, vq is in w0. This is not true due to z2 æΦpxq � xy.
(e) If Rfpy, i, u, vq is in w1 or w2. This case is the same as considering Rtpy, i1, u, vq being in

w0, w1 or w2 above. The result is a contradiction.

Theorem 4. Then for any trace tr of Impl, the following holds:�s, t, l, r . tr � s^xoutput.l.ry^t ñ tl, ru � γptu, sq ^ l � leftpr, γptu, sqq
Proof. Assume

tr � s^xoutput.l.ry^t

for some s, t, l, r. Let Ps � γptu, sq. We need to show that:tl, ru � Ps ^ l � leftpr, Psq (H.0.7)

217

1. If l � r. The structure of VerifierProcess implies that there exists s1, s2 such that:

s � s1̂ xtake.l.V F.Cert.xnvf , l, lyy^s2

Let Ps1
� γptu, s1q, Lemma 7 implies that l � leftpl, Ps1

Y tluq and s2 æ tjoin.x.xr |x P pl, lq, xr P
Peersu � xy. In addition, l P Ps1

. Therefore, Eq.H.0.7 holds.

2. If l � r. There exists s1, s2, s3, ll such that:

s � s1̂ xtake.r.V F.Cert.xnvf , l, ryy^s2̂ xtake.l.V F.Cert.xnvf , ll, lyy^s3

Let Ps � γptu, sq, Ps1
� γptu, s1q and Ps2

� γptu, s1̂ s2q. Lemma 7 implies:

(a) r P Ps1
^ l � leftpr, Ps1

Y tluq ^ s2̂ s3 æ tjoin.x.xr |x P pl, rq, xr P Peersu � xy
(b) l P Ps2

^ ll � leftpl, Pss
Y tlluq ^ s3 æ tjoin.x.xr |x P pll, lq, xr P Peersu � xy

In addition, s2̂ s3 æ tleave.l.l1, leave.r.r1 | l1, r1 P Peersu � xy due to the structure of the process

TTMNplq and TTMNprq. Therefore, tl, ru � Ps and l � leftpr, Psq, or Eq.H.0.7 holds.

218

LIST OF REFERENCES

[1] ISO/IEC PAS DIS 11889: Information technology – Security techniques – Trusted platform module.

[2] Planetlab, an open platform for developing, deploying, and accessing planetary-scale services. http:
//www.planet-lab.org/.

[3] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-peer information system. In 10th
international conference on Information and knowledge management, pages 310–317, 2001.

[4] Karl Aberer and Zoran Despotovic. On reputation in game theory application on online settings.
Working paper, 2004.

[5] Ross Anderson. Trusted computing faq tc/tcg/largrande/ngscb/longhorn/palladium. http://www.
cl.cam.ac.uk/~rja14/tcpa-faq.html.

[6] Christopher Avery, Paul Resnick, and Richard Zeckhauser. The market for evaluations. American
economic review, 89(3):564–584, 1999.

[7] Rana Bakhshi and Dilian Gurov. Verification of peer-to-peer algorithms: A case study. Electronic
Notes in Theoretical Computer Science, 181:35–47, 2007.

[8] Yannis Bakos and Chrysanthos Dellarocas. Cooperation without enforcement? a comparative anal-
ysis of litigation and online reputation as quality assurance mechanism. In International Conference
on Information System, pages 127–42, 2002.

[9] Shane Balfe, Amit D. Lakhani, and Kenneth G. Paterson. Trusted computing: Providing security
for peer-to-peer networks. In International Conference on Peer-to-Peer Computing, pages 117–124.
IEEE Computer Society, 2005.

[10] John Benamati, Mark A. Serva, and mark A. Fuller. Are trust and distrust distinct constructs?
and empirical study of the effects of trust and distrust among online banking users. In 39th Hawaii
international conference on system sciences, page 121b, 2006.

[11] Johannes Borgström, Uwe Nestmann, Luc Onana Alima, and Dilian Gurov. Verifying a structured
peer-to-peer overlay network: The static case. In Global Computing, pages 250–265, 2004.

[12] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anynymous attestation. In 11th ACM
Conference on Computer and Communications Security, pages 132–145, 2004.

[13] P. J. Broadfoot. Data Independence in the Model Checking of Security Protocols. PhD thesis,
Oxford University, 2001.

219

[14] David A. Bryan, Bruce B. Lowekamp, and Cullen Jennings. Sosimple: A serverless, standards-
based, p2p sip communication system. In International Workshop on Advanced Archtectures and
Algorithms for Internet Delivery and Applications, pages 42–49, 2005.

[15] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple load balancing for distributed
hash tables. In Internation workshop on Peer-to-Peer systesm (IPTPS), pages 80–87, 2003.

[16] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S. Wallach. Secure
routing for structured peer-to-peer overlay networks. ACM SIGOPS Operating Systems Review,
36(SI):299–314, 2002.

[17] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron. Scribe: A large-
scale and decentralized application-level multicast infrastructure. IEEE journal on selected areas
in communications, 20(8):100–110, 2002.

[18] K.M. Chandy and J. Misra. Distributed simulation: A case study in design and verification of
distributed programs. IEEE Transactions on Software Engineering, 5:440–452, 1979.

[19] Liqun Chen, Hans Löhr, Mark Manulis, and Ahmad-Reza Sadeghi. Property-based attestation
without a trusted third party. In 11th international conference on Information Security, pages
31–46. Springer-Verlag, 2008.

[20] Alice Cheng and Eric Friedman. Sybilproof reputation mechanisms. In ACM SIGCOMM workshop
on Economics of peer-to-peer systems, pages 128–132, 2005.

[21] Alice Cheng and Eric Friedman. Manipulability of pagerank under sybil strategies. In 1st workshop
of network systems, pages 75–82, 2006.

[22] Bram Cohen. Bittorrent protocol specification v1.0. World Wide Web http://wiki.theory.org/

BitTorrentSpecification, July 2007.

[23] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. Towards a common
api for structured peer-to-peer overlays. In 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), pages 33–44, 2003.

[24] George Danezis, Chris Lesniewski-Laas, M. Frans Kaashhoek, and Ross Anderson. Sybil-resistant
dht routing. In 10th European Symposium on Research in Computer Security (ESORICS), pages
305–318, 2005.

[25] Chrysanthos Dellarocas. The digitization of word of mouth: Promise and challenges of online
feedback mechanisms. Management Science, 49(10):1407–1424, 2003.

[26] Chrysanthos Dellarocas. Efficiency and robustness of binary feedback mechanism in trading envi-
ronments with moral hazard. Working paper, Janurary 2003.

[27] Chrysanthos Dellarocas. Reputation mechanism design in online trading environments with pure
moral hazard. Information systems research, 16(2):209–230, 2005.

[28] Chrysanthos Dellarocas, Federico Dini, and Giancarlo Spagnolo. Handbook of procurement. Cam-
bridge University Press, 2006.

220

[29] Tien Tuan Anh Dinh, Michael Lees, Georgios Theodoropoulos, and Rob Minson. Large scale
distributed simulation of p2p networks. In 16th Euromicro Conference on Parallel, Distributed and
Network-based Processing (PDP 2008), pages 499–507, Toulouse - France, Februray 2008. IEEE
Computer Society.

[30] Tien Tuan Anh Dinh and Mark Ryan. Checking security property of p2p systems in csp. Technical
Report CSR-10-07, School of Computer Science, University of Birmingham, 2010.

[31] Tien Tuan Anh Dinh and Mark Ryan. Secure hardware abstraction for distributed systems. Tech-
nical Report CSR-10-08, School of Computer Science, University of Birmingham, 2010.

[32] Tien Tuan Anh Dinh, Georgios Theodoropoulos, and Rob Minson. Evaluating large scale dis-
tributed simulation of P2P network. In 12th IEEE/ACM International Symposium on Distributed
Simulation and Real-time application (DS-RT’08), pages 51–58, 2008.

[33] John R. Douceur. The sybil attack. In 1st International Workshop on Peer-to-Peer Systems
(IPTPS), pages 251–260, 2002.

[34] David Eppstein and Joseph Yannkae Wang. A steady state model for graph power laws. In 2nd
International Workshop on web dynamics, May 2002.

[35] Ronald Fagin, Ravi Kumar, and D. Sivakuma. Comparing top k lists. In 14th annual ACM-SIAM
symposium on discrete algorithms, pages 28–36, 2003.

[36] Alois Ferscha and Satish K. Tripathi. Parallel and distributed simulation of discrete event systems.
Technical Report UMIACS-TR-94-100, University of Maryland at College Park, 1994.

[37] Formal System (Europe) Ltd. Fdr2 model checker tool. World Wide Web http://www.fsel.com/

software.html.

[38] Lakshmi Ganesh and Ben Y. Zhao. Identity theft protection in structured overlays. IEEE Workshop
on Secure Network Protocols, 0:49–54, 2005.

[39] G Gans, M Jarke, S Kethers, and G Lakemeyer. Modeling the impact of trust and distrust in agent
networks. In 3rd International Bi-conference workshop on agent-oriented information systems,
2001.

[40] Georgia Tech. The network simulator - ns2. http://www.isi.edu/nsnam/ns/.

[41] Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy Stribling. p2psim - a
simulator for peer-to-peer protocols. http://pdos.csail.mit.edu/p2psim/.

[42] Gnutella Project. Gnutella specification. World Wide Web http://rfc-gnutella.sourceforge.

net/developer/testing/, July 2007.

[43] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard M. Karp, and Ion Sto-
ica. Load balancing in dynamic structured p2p systems. In International conference on computer
communications (INFOCOM), 2004.

221

[44] Elizabeth Gray, Jean-Marc Seigneur, Yong Chen, and Christian Jensen. Trust propagation in small
worlds. In 1st international conference on trust management, pages 239–254, 2003.

[45] R. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Propagation of trust and
distrust. In 13th international conference on World Wide Web, pages 403–412, 2004.

[46] Russell Hardin. Trust - Key Concepts. Polity Press, 2006.

[47] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–677,
1978.

[48] Tony Hoare. Why ever csp? Electronic notes in Theoretical Computer Science, 162:209–215, 2006.

[49] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix Freiling. Measurements
and mitigation of peer-to-peer-based botnets: a case study on storm worm. In 1st Usenix Workshop
on Large-Scale Exploits and Emergent Threats, pages 1–9, 2008.

[50] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: a review. ACM Computing surveys,
31(3):264–323, 1999.

[51] David R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems,
7(3):404–425, 1985.

[52] M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal distributed hash table.
In 2nd International workshop on Peer-to-Peer systems (IPTPS), pages 98–107, 2003.

[53] Tobias J. Klein, Christian Lambertz, Giancarlo Spagnolo, and Konrad O. Stahl. Last minute
feedback. manuscript, University of Mannheim and Stockholm school of economics, 2005.

[54] David M Kreps and Robert Wilson. Reputation and imperfect information. Journal of Economic
Theory, 27(2):253–279, August 1982.

[55] Yoram Kulbak and Danny Bickson. The emule protocol specification. Technical report, Hebrew
University of Jerusalem, 2005.

[56] Ranko S. Lazic. A Semantic Study of Data-Independence with Applications to the Mechanical
Verification of Concurrent Systems. PhD thesis, Oxford University, 1997.

[57] Arnaud Legout, Guillaume Urvoy, and Pietro Michiardi. Rarest first and choke algorithms are
enough. In 6th ACM SIGCOMM on Internet measurement, pages 203–16, 2006.

[58] Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. Deconstructing the kazaa network. In
Workshop on Internet Application, pages 112–20, 2003.

[59] Raph Levien. Attack resistant trust metric. Draft PhD thesis, www.levien.com/thesis/compact.
pdf, 2004.

[60] Raph Levien and Alexander Aiken. Attack-resistant trust metrics for public key certification. In
7th USENIX Security symposium, pages 229–242, 1998.

222

[61] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. Trinc: small trusted
hardware for large distributed systems. In 6th USENIX symposium on Networked systems design
and implementation (NSDI’09), pages 1–14. USENIX Association, 2009.

[62] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolution of peer-to-
peer systems. In 21st annual symposium on Principles of distributed computing (PODC), pages
233–242, 2002.

[63] Jinshan Liu and Valerie Issarny. An incentive compatible reputation mechanism for ubiquitous
computing environments. International Journal in Information Security, 6(5):297–311, 2007.

[64] Niklas Luhmann. Trust and Power. John Wiley and Sons Inc, 1982.

[65] Ueli Maurer. Modelling a pulbic-key infrastructure. In European Symposium on Research in Com-
puter Security (ESORICS), pages 325–50, 1996.

[66] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system based on
the xor metric. In First International Workshop on Peer-to-Peer Systems, pages 53–65, 2002.

[67] D.Harrison McKnight and Norman Chervany. While trust is cool and collected, distrust is fiery
and frenzied: a model of distrust concept. In Americas conference on information systems, pages
35–59, 2001.

[68] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., 1982.

[69] Mininova. Mininova website. http://www.mininova.org.

[70] Jayadev Misra. Distributed discrete-event simulation. ACM Computing surveys, 18(1):39–66, 1986.

[71] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. In 7th USENIX
Security Symposium, pages 217–28, 1998.

[72] Elinor Ostrom and James Walker. Trust and Reciprocity, interdisciplinary lessons from experimen-
tal research. Russell Sage Foundation, 2003.

[73] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[74] Josiane Xavier Parreira, Debora Donato, Sebastian Michel, and Gerhard Weikum. Efficient and
decentralized pagerank approximation in a peer-to-peer web search network. In 32nd internation
conference on very large databases, pages 415–426, 2006.

[75] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby copies of repli-
cated objects in a distributed environment. In 9th annual ACM symposium on Parallel algorithms
and architectures, pages 311–320, 1997.

[76] Richard Price, Tien Tuan Anh Dinh, and Georgios Theodoropoulos. Analysis of a self-organizing
maintenence protocol under constant churn. In International Symposium on Applications and the
Internet, pages 209–12, Turku, Finland, July 2008.

223

[77] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable
content-addressable network. In 2001 Conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMMS’01), pages 161–172, 2001.

[78] Mark Relasity, Alberto Montersor, Gian Paolo Jesi, and Spyros Voulgaris. Peersim: A peer-to-peer
simulator. http://peersim.sourceforge.net/.

[79] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn in a dht.
Technical Report CSD-03-1299, UC Berkeley, 2003.

[80] A. W. Roscoe and P. J. Broadfoot. Proving security protocols with model checkers by data inde-
pendence techniques. Journal of Computer Security, 7(2-3):147–190, 1999.

[81] Antony Rowstron and Peter Druschel. Storage management and caching in past, a large-scale,
persistent peer-to-peer storage utility. SIGOPS Operating Systems Review, 35(5):188–201, 2001.

[82] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, pages 329–350, 2001.

[83] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill Roscoe. Modelling and
anlysis of security protocols. Addison Wesley, 2000.

[84] Luis F.G. Sarmenta, Marten van Dijk, Charles W. O’Donnell, Jonathan Rhodes, and Srinivas
Devadas. Virtual monotonic counters and count-limied objects using a tpm without a trusted os.
In 1st ACM Workshop on Scalable Trusted Computing, pages 27–42, 2006.

[85] Statistical Cybermetrics Research Group. Academic web link database project. http://

cybermetrics.wlv.ac.uk/database/.

[86] Joe Stewart. Storm worm ddos attack. http://www.secureworks.com/research/threats/

storm-worm/, February 2007.

[87] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Internet indirection
infrastructure. IEEE/ACM Transactions on Networking, 12(2):205–218, 2004.

[88] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In 2001 ACM SIGCOMM Conference
on Applications, technologies, architectures, and protocols for computer communications, pages 149–
160, 2001.

[89] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. Characterizing unstructured overlay topologies
in modern p2p file-sharing systems. In 5th ACM SIGCOMM conference on Internet Measurement,
pages 49–62, 2005.

[90] Daniel Stutzbach, Shanyu Zhao, and Reza Rejaie. Characterizing files in the mordern gnutella
network. Multimedia Systems, pages 35–50, March 2007.

[91] Paul Syverson. Onion routing for resistance to traffic analysis. DARPA Information Survivability
Conference and Exposition, 2:108–110, 2003.

224

[92] Piotr Sztompka. Trust: a sociological theory. Cambridge University Press, 1999.

[93] The Pirate Bay. The pirate bay website. http://thepiratebay.org.

[94] Trust Let. Extended epinions dataset. http://www.trustlet.org/wiki/Extended_Epinions_

dataset.

[95] Trusted Computing Group. TPM Specification version 1.2. Parts 1–3. www.

trustedcomputinggroup.org/specs/TPM/, 2007.

[96] Trusted Computing Group. Press release. www.trustedcomputinggroup.org/news/press/

member_releases/WAVETCGPROMOTI%ONMW5_31_FINAL_.pdf, 2008.

[97] Trusted Computing Group. TCG timeline. www.trustedcomputinggroup.org/about/corporate_
documents/, 2008.

[98] Stijn van Dongen. Mcl - a cluster algorithm for graphs. http://www.micans.org/mcl/.

[99] Stijn Marinus van Dongen. Graph clustering by flow simulation. PhD thesis, University of Utrecht,
2000.

[100] Peng Wang, Nicholas Hopper, Ivan Osipkov, and Yongdae Kim. Myrmic: Secure and robust dht
routing. Technical report, University of Minnesota, 2006.

[101] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of small-world networks. Nature,
393:440–42, 1998.

[102] Scott White and Padhraic Smyth. Algorithms for estimating relative importance in networks. In 9th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 266–275,
2003.

[103] Li Xiong and Ling Liu. Building trust in decentralized peer-to-peer electronic communities. In
International conference on electronic commerce research (ICECR-5), 2002.

[104] R. Yahalom, B. Klein, and Th. Beth. Trust relationships in secure systems-a distributed authenti-
cation perspective. In IEEE Symposium on Security and Privacy, pages 150–164, 1993.

[105] Hui Zhang, Ashish Goel, Ramesh Govindan, Kahn Mason, and Benjamin Van Roy. Making
eigenvector-based reputation systems robust to collusion. In Workshop on Algorithms and models
for the Web graph, pages 92–104, 2004.

[106] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical report, UC Berkeley, 2001.

[107] Runfang Zhou and Kai Hwang. Powertrust: A robust and scalable reputation system for trusted
peer-to-peer computing. IEEE Transactions in Parallel and Distributed Systems, 18(4):460–473,
2007.

[108] Cai Nicolas Ziegler and Georg Lausen. Propagation models for trust and distrust in social networks.
Information system frontiers, pages 337–58, 2005.

225

SUMMARY OF NOTATIONS

• P ,Pt - set of peers that currently in the network and at time t

• B - set of bootstrapping nodes which start the network

• D - set of data objects

• I � r0, 2mq - the identifier space. m is the security parameter whose typical value is 160.

• root : D Ñ P - the function defining the root node of a key, given the set of nodes currently in the

network

• `,a - addition and substraction in modulo 2m

• b - 2b is the base on which IDs in Pastry are represented

• l - size of the leafset

• d - the number of dimension of the CAN space

• F - set of feeback

• Ri - reputation of peer i

• µi - reputation metric or reputation function of i

• T , Tab - set of all transactions and of ones initiated by a

• init, resp - returning initiator and responder of a transaction

• Rt - returns the rating that one peer gives to another, with respect to a transaction

• GpV, E, W q - the trust graph

• Tij � tt P T | initptq � i ^ respptq � ju - the set of transactions between i and j

• E�
i � tpj, iq | pj, iq P Eu - set of edges to i

• E�
i � tpi, jq | pi, jq P Eu - set of edges from i

• W�
i � tW peq | e P E�

i u - set of ratings given to i

226

• W�
i � tW peq | e P E�

i u - set of ratings given by i

• T - transition matrix derived from G

• ǫ - jumping factor, typical value is 0.15

• CA - clustering algorithm returning a set of clusters C

• CL : V Ñ C - maps a node to a cluster

• dens : C Ñ R - density function

• dens2ep : R Ñ p0, 1q - maps density to value of the jumping factor

• rNEdges - ratio of negative edges, used in PNR

• concat - string concatenation operation

• cid - counter ID

• cdpx, yq - the clockwise distance from y to x in the ID ring

• inBetweenpz, x, yq - predicate returning true if going clockwise from x, one gets to z before y.

• routepkq - function returning the node that is the result of the routing protocols for the search key

k. The function is assumed to return a random node.

• getPredecessorppdq - returning a node representing the predecessor of pd.

The function is assumed to return a random node.

• neighborV erificationppl, prq - returns the result from checking whether pl is the immediate left

neighbor of pr.

• destV erificationpk, pdq - returns the result from checking whether pd is the root node for k.

• RootAuthenticitypRAq - property

• NeighborAuthenticitypNAq - property

• cpd
- latest counter value at pd

• Certpd
- neighbor certificate of node pd

• S : D Ñ PpPq - returning the set of sellers

• v : P �D Ñ R
� - price function

• ∆ : D Ñ PpPq - returning the set of listing nodes

• Wp - set of sale offers at peer p

227

• Wp
d - set of sale offers for d stored at p

• f, r - flat and variable rate of payment

• publishpdq, retrievepdq - publish and retrieve offers for item d

• tk P TType� I - token in TTM

• B � T and R� T - bulk and range tokens respectively

• TK - set of tokens of the same type.

• S, s - set of TTM’s states and a specific state.

• ra, bsttype - range of tokens containing tokens whose IDs are from a to b

• nNodes - number of simulated nodes

• ET - number of simulation time-steps

• nLPs - number of LPs used in the simulation

• qRate - the average query rate (query events follows a Poisson distribution)

• cRate - churn rate (values of session time are expotentially distributed)

• kal, mPeriod - time intervals after which keep-alive and maintenance messages are sent.

228

INDEX

Attestation Identity Key, 66

Bittorrent, see P2P

tracker, 13

trackerless, 20

botnets, 21

CA, see certificate authority

CAN, 18

certificate authority, 75

Chord, 15

churn, 14

Byzantine failure, 85

churn rate, 26

fail-stop failure, 85

life time, 26

session time, 26

Cluster-based PageRank (CPR), 45

completed query, 160

CSP, 120

vs CCS, 120

implementation, 120

refinement, 120

specification, 120

CSP

traces, 121

data independence, 125

PosConjEqDT condition, 125

PosConjEqDTStrict(ET) condition, 126

data key, see key

destination node, 14

Direct Anonymous Attestation, 66

distrust, 34

dPeerSim, 151

FDR, 121

finger table, 15

Gnutella, see P2P

graph clustering, 46

iterative method, 40

jumping factor, 40

Kademlia, 18

keep alive messages, 154

keep-alive period, 159

key, 14

leafset, 16

least fixed point, 124

life time, see churn

listing node, 78

Logical Process (LP), 151

lookahead, 152

lookup, 12

maintenance messages, 25

maintenance period, 159

misbehavior detection

229

at application layer, 78

at routing layer, 71

DTA1, 78

DTA2, 112

DTR1, 71

DTR2, 110

model abstraction, 145

monotonic counter, 67

Neighbor Authenticity (NA) property, 73

neighbor certificate, 75

P2P, 11

Bittorrent, 13

definition, 12

Gnutella, 13

structured, 14

unstructured, 12

PageRank, 40

Pastry, 16

PDES, 151

Platform Configuration Registers, 66

predecessor, 15

PRN, 56

query rate, 159

RA, see Root Authenticity property

rating, 37

refinement, see CSP

reputation, 22, 23

computational model, 24

feedback, 24

ranks, 31

scores, 30

reputation function, 24

reputation metric, 24, 38

Root Authenticity (RA) property, 72

root node, 14

routing protocol, 12

scribe, 20

seller, 64

session time, see churn

Storage Root Key, 65

structured P2P, see P2P

succ, 15

successful query, 160

successor, 15

swarms, 13

Sybil-resilient, 39

token, 89

B-T token, 90

R-T token, 91

TPM, see Trusted Computing

tracker, see Bittorrent

transfer blob, 100

transport session, 67

transport session

exclusive, 67

trust, 22

trustworthiness, 22

trustworthy, 22

trust graph, 31, 37

trust system, 30

efficiency, 30

reliability, 30

Trusted Computing, 65

TPMs, 65

Trusted Tokens Module (TTM), 89

230

ranges of tokens, 91

tokens, 89

wrapped keys, 103

unique fixed point, 124

unstructured P2P, see P2P

virtual nodes, 27

XOR distance, 18

231

