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Abstract 

 

The encapsulation of bacteria in emulsion droplet has gained significant interest due to its 

various applications such as in the study of complex bacterial interactions and as a mean of 

protection for bacteria against harsh conditions. The application of droplet microfluidics allows 

for the encapsulation of bacteria in a highly controlled manner. Nevertheless, relevant studies 

of the effect of bacteria on emulsion stability remain scarce. Therefore, this thesis is focused on 

determining the effect of microfluidic-encapsulated bacteria on droplet stability and bacterial 

viability during ambient and cold temperature storage.  

The study began by encapsulating bacteria in single water-in-oil (W/O) droplet. The 

inclusion of the Gram-negative E. coli with green fluorescent protein (E. coli-GFP) in W/O 

showed better droplet stability as compared to the Gram-positive L. paracasei as the droplet 

size distribution was maintained during storage at 25°C. Dead E. coli-GFP cells showed better 

stabilization effect as compared to live cells indicating the ability of dead cells to act as 

Pickering’s particles in stabilizing the interface of the droplet. Encapsulation in W/O caused a 

reduction in bacterial viability while promoting the formation of bacterial clustering.  

The study is then followed by the encapsulation of bacteria in double water-in-oil-in-

water (W1/O/W2) droplet. The ability of W1/O/W2 droplet in supporting bacterial growth was 

observed due to the presence of an outer W2 phase. In addition, the controlled release of 

bacterial cells induced by osmotic alterations was also determined with a high bacterial release 

observed at high sodium chloride concentration and low Tween 80 concentration.  

Finally, the stability of W/O and W1/O/W2 droplet during cold temperature storage were 

also investigated whereby storage in freezing temperature caused an extensive droplet 

destabilization. This lead to complete bacterial release into the W2 phase upon thawing. The 
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results obtained from these studies provide a better understanding of the feasibility of using 

emulsion droplet for bacterial encapsulation and controlled release that are beneficial for 

laboratory and industrial applications. 
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Chapter 1  

Introduction 

1.1 Context of the study 

Bacterial encapsulation in emulsion droplet is not only beneficial for complex bacterial 

studies such as quorum sensing where droplet served as microreactors, but also for industrial 

applications in order to protect bacteria against adverse conditions during processing up to the 

point of consumption  (Pimentel-González et al., 2009; Zhang et al., 2013; Barlow et al., 2017; 

Devanthi et al., 2018). The application of droplet microfluidics for encapsulating bacteria in 

emulsion droplet is more favourable as compared to other encapsulation methods such as 

homogenization technique due to its ability to control droplet size and maintain bacterial 

viability as the sample is not subjected to high mixing force (Zhang et al., 2013; Chang et al., 

2015; Barlow et al., 2017). Furthermore, the application of microfluidics for small scale 

emulsions study is also favourable as it helps in reducing the amount of substance used while 

the production of monodisperse droplet allows for a detailed study of emulsion stability without 

taking into account the effect of polydispersity (Teh et al., 2008; Tadros, 2013).  

The encapsulation of bacteria in emulsion droplet is highly depended on the stability of 

the emulsion system. Therefore, further studies are required in order to understand the effects 

of bacteria on emulsion stability, especially during storage as it is not only the key to successful 

bacterial assay but also important in ensuring the shelf life of industrial products such as food 

emulsions. Bacterial responses such as growth, death and production of by-products during 

storage may affect the stability of the emulsion system. It has been reported that bacterial 
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surface properties play a key role in droplet stabilization, forming particle-stabilized emulsions 

known as Pickering emulsions (Dorobantu et al., 2004; Firoozmand and Rousseau 2016; 

Wongkongkatep et al., 2012). However, the mechanism of droplet stability by bacterial cells is 

highly complex and therefore requires extensive study in order to clearly understand the factors 

related to this process. 

Although the instability of emulsions is unfavourable especially for maintaining product 

quality during long-term storage, the destabilization of water-in-oil-in-water (W1/O/W2) 

emulsion is beneficial for the controlled release of bacteria and other materials such as flavours 

and drugs in food and pharmaceuticals products (Jaimes-Lizcano, Lawson and Papadopoulos, 

2011; Dluska et al.,  2017; Devanthi et al., 2018).  It has been reported that the controlled 

release of hydrophilic materials/cargo from the W1/O/W2 droplet can be induced by several 

factors such as osmotic imbalances (El Kadri et al., 2015; Hou et al., 2017; Zhang et al., 2017), 

change in pH (Ngai, Behrens and Auweter, 2005; Park et al., 2015), and change in temperature 

(Ngai, Behrens and Auweter, 2005; Rojas et al., 2008). Nevertheless, valuable studies on the 

mechanisms behind bacterial release and the destabilization of W1/O/W2 emulsions in the 

presence of bacteria remain scarce. 

Cold temperature storage of emulsion-based products is commonly practiced especially 

for storing emulsions containing temperature-sensitive materials such as bacteria and drugs 

(Damin et al., 2008; Choi, Zhang and Xia, 2010). The long-term storage of bacteria in freezing 

temperature is beneficial in order to maintain its viability and functionality (Fonseca, Béal and 

Corrieu, 2000). However, the detrimental effects of freezing on bacteria are still causing major 

concerns. Other than the use of cryoprotectants, the beneficial effect of bacterial encapsulation 

in maintaining bacterial viability during cold temperature storage has also been reported 

previously (Goderska and Czarnecki, 2008; Priya, Vijayalakshmi and Raichur, 2011; 
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Dianawati, Mishra and Shah, 2013). When using emulsions for bacterial encapsulation, another 

important aspect that needs to be addressed is the stability of the emulsion droplet as they tends 

to destabilize when stored in freezing temperatures. The freezing process of an emulsion caused 

droplet destabilization such as droplet coalescence and rupture that eventually lead to complete 

phase separation (Rojas et al., 2008; Ghosh and Rousseau, 2009) while the presence of bacteria 

in emulsion droplet during cold temperature storage may affect droplet stability and bacterial 

viability. Therefore, it is crucial to understand the stability of emulsion droplet in the presence 

of bacteria not only during ambient temperature storage but also in cold temperature storage in 

order to assess the flexibility of this system for bacterial encapsulation. 

This thesis aimed to investigate the interaction between bacteria and emulsion stability 

in order to ensure the effectiveness of emulsions to be used for encapsulation. The stability of 

emulsion droplet in the presence of bacteria is discussed in detail for single W/O emulsion and 

double W1/O/W2 emulsion in chapter three and 4 of this thesis. The study is then followed by 

the determination of droplet stability in cold temperature storage (chapter five). In addition, the 

application of double W1/O/W2 droplet for the controlled release of bacteria, induced by the 

changes in osmotic balance and the freeze-thawing process will also be described in chapter 

four and five, respectively. The application of microfluidics in this study helps in developing a  

model emulsion system in a controlled manner with monodisperse and tuneable droplet size. 

The results obtained from the designed experiments may give more insights on the stability of 

such systems and its flexibility to be used for various applications, not only for laboratory-based 

bacterial studies but also for the industrial development of functional emulsions for food, 

pharmaceutical and cosmetic applications.  

 



 
 

4 
 

1.2 Public presentations 
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Chapter 2  

Literature Review 

2.1 Types of emulsions and emulsion stability 

An emulsion system is a dispersion of one liquid into another as droplet whereby both liquids 

are immiscible in nature. It has various applications such as in food, pharmaceutical and 

cosmetic industries whereby emulsion plays a major role in formulating products beneficial for 

consumers (Chappat, 1994).  

An emulsion can be characterised into single and duplex emulsions with single 

emulsions being the most common and comprised of water-in-oil (W/O), oil-in-water (O/W), 

oil-in-oil (O/O) and aqueous type of water-in-water (W/W) emulsions. Duplex emulsions 

consist of single emulsions further emulsified into another continuous phase forming multiple 

emulsions of double (eg. Water-in-oil-in-water [W1/O/W2] emulsions and vice versa), triple 

(eg. Water-in-oil-in-water-in-oil [W1/O1/W2/O2] emulsions and vice versa) and quadruple 

emulsions (McClements, 2004). Single emulsions are the simplest form of emulsion system and 

are commonly being used industrially while the more complex form of duplex emulsions has 

recently been applied extensively in modern biological and chemical research including 

industrial applications.  

There are several aspects that need to be considered in order to ensure the stability of 

emulsions such as choice of surfactants, methods used for emulsification, size of droplet formed 

and storage conditions (Binks et al., 1998). The most crucial aspect is the choice of surfactants 

that can be classified into ionic and non-ionic surfactants. Anionic surfactant can be used for 

stabilizing emulsions by absorbing on the droplet and creating a charge that provides an 
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electrostatic repulsion between the droplet. However, the use of ionic surfactants is usually 

limited by its sensitivity towards the presence of electrolytes (Tadros, 2013). When used with 

bacteria, the charged head groups of ionic surfactants may interact with the charged molecules 

of the bacterial cells resulting in denaturation, making it less biocompatible as compared to non-

ionic surfactants (Marcoux et al., 2011). The use of cationic surfactant, for example, 

cetyltrimethylammonium bromide (CTAB) has been reported to induce a lethal effect on 

bacteria such as Bacillus subtilis and Pseudomonas aeruginosa (Zeng et al., 2007) and 

eukaryotic cells, for example, Saccharomyces cerevisiae (Fadnavis et al., 1990). Moreover, 

anionic surfactants such as sodium dodecyl sulfate (SDS) have also been reported to exhibit 

antibacterial effects (Mariani et al., 2006). Therefore, the use of non-ionic surfactants such as 

polyglycerol polyricinoleate (PGPR) and polysorbate 80 (Tween 80) is deemed suitable for 

making emulsions containing bacteria as it is less likely to interact with bacterial cells (Marcoux 

et al., 2011). It has also been shown previously that the use of both PGPR and Tween 80 

surfactants in the production of emulsions containing bacteria does not affect the viability of 

Escherichia coli and Lactobacillus paracasei (El Kadri et al., 2015, 2018).  

Emulsion stability is associated with its capability to resist changes with time that can 

be divided into physical and chemical changes (McClements, 2004). Emulsion breakdown may 

be due to physical changes such as creaming and sedimentation, flocculation, Ostwald ripening, 

coalescence and phase inversion as summarized in Figure 2.1 (Mao and Miao, 2015) while 

chemical changes are due to processes such as oxidation and hydrolysis (Coupland and 

McClements, 1996; Morales Chabrand et al., 2008). The rate of emulsion destabilization and 

the mechanism involved in this process depended on several factors such as the microstructure 

and composition of the specific emulsions and the environmental conditions by which the 

emulsion was exposed to for example storage conditions, changes in temperatures and 



 
 

7 
 

mechanical agitation (McClements, 2004). The quality of emulsion based products can be 

achieved by controlling the stability and physicochemical properties of the emulsions. 

Therefore, it is important to understand the importance of the mechanisms involved in emulsion 

destabilization, the relationship between these mechanisms and factors that lead to the 

destabilization process (McClements, 2004).  

 Creaming and sedimentation usually resulted from external forces such as gravitational 

and centrifugal (Binks et al., 1998). Generally, the dispersed emulsion droplet exhibited a 

different density than the continuous phase which leads to net gravitational force to act on this 

droplet (Walstra, 2002; McClements, 2004; Muschiolik and Dickinson, 2017). Depending on 

its density, these forces cause the droplet to move towards the top (for droplet with lower 

density than the continuous phase) known as creaming or downwards (for droplet that has a 

higher density than the continuous phase) which is known as sedimentation. Creaming or 

sedimentation is usually unfavourable for emulsion based products especially food emulsions 

as it may affect consumer acceptance. A visually separated emulsion with an opaque layer 

containing high droplet concentration and a less opaque layer with fewer droplet is undesirable 

as consumer expectation is towards homogenous emulsion products. In addition, this 

mechanism may bring the droplet to be in close proximity to each other, therefore enhancing 

the possibility of droplet flocculation and coalescence that eventually resulted in the formation 

of a pure oil or water layer (McClements, 2004). The separation rate of an emulsion can be 

predicted by Stokes law given by: 

𝑉0 =
2𝑅2∆𝑝𝑔

9ŋ
                                  (2.1) 
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Whereby 𝑉0 refers to as the rate of separation, 𝑅 the radius of the droplet, ∆𝑝 is the difference 

in density between the oil and water phases, g indicates the gravitational or centrifugal force 

involved while ŋ is the viscosity of the system (Hunter and White, 1987). From the equation, it 

is shown that reducing the size of the droplet during emulsion production or increasing the 

system’s viscosity may help to slow down the process (Tadros, 2013; Mao and Miao, 2015). 

This can be achieved by inducing high mechanical force and the addition of thickeners during 

emulsion production (Mao and Miao, 2015). However, it should be noted that the Stokes law is 

not applicable to droplet that is smaller than 0.1 µm due to the fact that droplet with smaller 

size experiences stronger Brownian motion which enables it to resist the separation. Further 

decrease in droplet size to less than 10 nm leads to complete inhibition of emulsion separation 

making it thermodynamically stable (Russel, 1981). 

In addition, flocculation may also cause emulsion destabilization as the droplet 

aggregates due to Van der Waals attraction. The associated droplet does not merge with each 

other and was individually separated by their own interfacial films and therefore, the process is 

reversible by mixing or by diluting the emulsions with more continuous phase (Mao and Miao, 

2015).  Droplet aggregation occurred due to insufficient repulsion force to push the droplet 

apart from each other to the point where the Van der Waals attraction became weak. Therefore, 

flocculation in emulsions can be overcome by increasing the repulsion forces between the 

droplet either through electrostatic or steric hindrance repulsion (Mao and Miao, 2015).  

Coalescence refers to a process in which two or more droplet diffuse and form into 

larger droplet due to thinning of the interface (Tadros, 2013). Both flocculation and coalescence 

may result in an increase in average droplet size but different from that of flocculation where 

the individual identity of the droplet remains, the coalescence process resulted in the loss of 
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individual interfacial films as the droplet fused together forming larger droplet where the 

content of both droplets is combined (Mao and Miao, 2015). Coalescence may lead to a 

complete separation between the two immiscible phases due to strong Var der Waals forces 

between the droplet that are keeping them close together and fuse (Tadros, 2013). Active droplet 

coalescence also resulted in the acceleration of the creaming process as larger droplet tends to 

move quickly to the top of the emulsion. As coalescence is mainly due to the rupture of 

interfacial films, any means that may help in strengthening the interfacial films, for example, 

the adsorption of polymers such as proteins onto the interface can minimize the occurrence of 

droplet coalescence (Mao and Miao, 2015).  

Other than that, Ostwald ripening may also occur as a result of mutual solubility 

between immiscible liquids. Ostwald ripening is driven by the difference in Laplace pressure 

between the small and the large droplet whereby in a polydisperse emulsion system, the smaller 

droplet have larger solubility compared to larger droplet thus, causing the smaller droplet to 

disappear as they solubilise into the larger droplet (Leal-Calderon, Bibette and Schmitt, 2007). 

It is a thermodynamically spontaneous process as larger particles tend to be more energetically 

stable as compared to smaller ones (Mao and Miao, 2015). It may occur due to the formation 

of a large droplet at the expense of smaller droplet as the disperse phase diffuses through the 

continuous phase or by the increase in solubility of the entrapped materials within the spherical 

droplet as it decreases in radius (McClements, 2009). Longer storage time will cause the droplet 

size distribution to shift to a larger value and eventually lead to phase separation (Tadros, 2013). 

The rate of droplet coarsening is determined by the rate of molecule diffusion through the 

continuous phase and its movements across the surfactant films (Leal-Calderon, Bibette and 

Schmitt, 2007).  
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 In addition, the emulsion may also go through phase inversion whereby the process 

involves an exchange between the continuous and disperse phase. With an increase in storage 

time or changes in storage conditions, an oil-in-water (O/W) emulsion may change into water-

in-oil (W/O) and vice versa (Tadros, 2013). For example, the increase in temperature of O/W 

emulsion prepared with polyoxyethylene nonionic surfactants such as Tween 20 and 80, will 

cause the surfactants to become more hydrophobic and thus change the emulsion into W/O as 

the dispersed oil phase became the continuous phase (Sherman and Parkinson, 1978). Besides 

that, this process may also lead to the formation of multiple emulsions as it passes through the 

state of transition (Tadros, 2013).  

 

 

Figure 2.1 Emulsion breakdown processes. Adapted from Mao and Miao (2015) 
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The multiple water-in-oil-in-water emulsions (W1/O/W2) exhibit a different 

destabilization mechanism as compared to single emulsions due to their complex structure 

(Ficheux et al., 2002). Some of the mechanisms involved in the destabilization of multiple 

emulsions during processing or storage are the coalescence of the inner W1 droplet or the oil 

globule. The coalescence between the inner W1 phase is termed as internal coalescence whereas 

the coalescence between the inner W1 phase and the outer W2 phase is termed as external 

coalescence (Villa et al., 2003). In addition, the fusion between oil globule may also occur 

resulting in samples with larger oil globule size that eventually leads to phase separation 

(Schuch, Köhler and Schuchmann, 2013).  

In order to maintain the stability of the multiple emulsions, it is crucial to balance the 

osmotic pressure between the aqueous phases. The osmotic balance does not have to be absolute 

zero in order to maintain its stability but it has to be low enough to prevent droplet coalescence 

and rupture due to swelling of the W1 phase (Muschiolik and Dickinson, 2017). One of the most 

commonly used methods in order to control droplet destabilization due to osmotic imbalances 

is by separating the W1 phase and the W2 phase with a soft-solid like membrane such as starch 

or globular proteins (Oppermann et al., 2015). Nevertheless, the stability of droplet with the 

absence of solid-like membrane can also be achieved by careful development of a formulation 

that can tailor the osmotic imbalances. The addition of salt, sugar or a combination of both in 

formulating multiple emulsions helps in regulating the osmotic imbalances (Muschiolik and 

Dickinson, 2017). Moreover, droplet stability also depended on the Laplace and osmotic 

pressure balance. In W1/O/W2 emulsion, the presence of NaCl for example in the W1 phase 

resulted in droplet swelling that helps to minimize the shrinkage of droplet due to Laplace 

pressure. The balance between the Laplace and osmotic pressure is given by the Walstra 

equation (Walstra, 1993): 
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2𝛾 = 3𝑚𝑅𝑇                                                      (2.2) 

Where 𝛾 is the interfacial tension, m is the molar concentration of NaCl, R is the 

universal gas constant and T is temperature. 

Furthermore, the stability of the multiple emulsion can also be achieved by protein-

polysaccharide interactions on the interface (Dickinson, 1993). This result in surface elasticity 

and also provide a steric barrier that prevents droplet coalescence and aggregation. It is also 

beneficial in inhibiting water migration between the inner W1 phase and the outer W2 phase 

while minimizing the release of the encapsulated materials (Muschiolik and Dickinson, 2017). 

Other than that, emulsion stabilization can also be improved by increasing the emulsion 

viscosity or gelation, for example, the addition of sodium alginate in the production of multiple 

emulsion (Gaonkar, 1994). The inclusion of gelatine or whey protein as a gelling agent in the 

W1 phase has also been reported to enhance the stability of the multiple W1/O/W2 emulsions 

during storage while maintaining the sensory quality of the emulsions (Oppermann et al., 2016).  

Other than maintaining the stability of the multiple emulsions, the percentage of 

encapsulated materials in the W1 phase also indicates the overall quality of the produced 

multiple emulsions. The encapsulation efficiency is often determined when the multiple 

emulsions are being used as a means of encapsulation by measuring the free compound 

available in the outer W2 phase immediately after emulsion production and subtracting the 

measured amount from the original concentration of the compound prior to encapsulation.  
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2.2 Methods to produce an emulsion 

Two immiscible liquids such as water and oil tend to be in their thermodynamically 

stable state that separates them into two layers, one on top of the other depending on its density 

when placed in a container as this minimizes its contact area. With a sufficient amount of energy 

such as from mechanical agitation, one of these phases may break and disperse in the other 

phase depending on its concentration (McClements, 2004). The mixing of these immiscible 

liquids into, for example, O/W emulsions resulted in high interfacial free energy for the oil due 

to the high surface area of the small oil globule which is unstable and will tend to revert back 

into its bulk original state with lower interfacial energy (Grumezescu, 2019). In addition, the 

high cohesive forces between the molecules in oil or water as compared to the adhesive force 

between them leads to phase separation as the liquids try to keep a low interfacial area 

(Grumezescu, 2019). The amount of free energy change involved in the formation of an 

emulsion is represented as follows: 

∆𝐺 = 𝛾∆𝐴                     (2.3) 

Where 𝐺 is the interfacial energy, 𝛾 the interfacial tension and 𝐴 represents the interfacial area 

(McClements, 2004).  Therefore, in order to ensure the long-term stability of emulsions, it is 

crucial to add in a sufficient amount of emulsifier that will bridge the immiscible liquids 

together thus, reducing the interfacial tension and prevent the droplet from fusing together 

(Walstra and Smulders, 1998). During the emulsion preparation process, the surfactants will 

adsorb onto the interface and improve the miscibility of the water and oil leading to the 

formation of emulsions (Grumezescu, 2019).  

Homogenization is one of the processes involved in the production of emulsions 

whereby it can be divided into primary and secondary homogenization. The primary 
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homogenization is responsible for mixing two completely separated liquids into coarse 

emulsions while the secondary homogenization helps in reducing the size of the droplet into 

the smallest possible size to maintain their stability (Figure 2.2). Several processes occur during 

homogenization such as mixing, droplet breaks up and coalescence. Although secondary 

homogenization is conducted in order to produce emulsions with small droplet size, this is not 

usually the case.  Emulsions with distinctively small droplet can also be produced directly by 

using homogenizers such as microfluidizers, membrane homogenizers and ultrasound 

(McClements, 2004).   

 

Figure 2.2 Primary and secondary homogenization process in emulsion preparation. Adapted from 
McClements (2004) 

 

Direct homogenization of the oil and aqueous phases can be done by using high-speed 

mixers (Figure 2.3). These consist of a vessel that can accommodate from as small as few cm3 

of mixtures for lab-scale applications and up to few m3 for industrial applications. The 

emulsions are produced by agitation which is induced by the rotation of the mixing head at high 

speed. This creates a combination of forces such as rotational and radial velocity that breaks 

the interface between oil and water producing smaller droplet that is dispersed in one of the 

phases. The droplet size of the produced emulsions depends on the rotation speed and 
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homogenization time as an increase in rotation speed and homogenization time resulted in a 

decrease in droplet size (McClements, 2004).  

 

Figure 2.3 High-speed mixer used in the industry. Adapted from McClements (2004) 

 

The high-pressure homogeniser is also one of the pieces of equipment commonly used 

in the industry to produce emulsions (Aguilera and Lillford, 2007). This method is mostly used 

to produce emulsions with a smaller droplet from coarse emulsions that were produced by a 

high-speed mixer (McClements, 2004). These coarse emulsions were fed into the high-pressure 

homogenisers and were then pumped through a small valve or gap. As the emulsion pass 

through the valve, disruptive forces were exerted onto the emulsions that further breaks the 

droplet into smaller sizes creating finer emulsions (Phipps, 1985).  The mechanisms involved 

for droplet disruption in the high-pressure homogenizers are shear forces within the fluids as a 

result of velocity gradients, the collision between the droplet and hard surfaces within the valve 

and cavitation (Berk, 2013). Cavitation takes place as the liquids passed through the narrow gap 

causing a decrease in pressure as it accelerates to a very high velocity. The pressure was reduced 
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locally to be lower than the water vapour pressure thus resulting in evaporation. This process 

leads to the formation of vapour bubbles that expands and collapsed resulting in shock waves 

that break the droplet into smaller sizes (Berk, 2013). Industrial lab-scale homogeniser 

functions in turbulent flow regime while small lab-scale homogeniser works under laminar flow 

regime (Aguilera and Lillford, 2007). On top of the standard nozzle used in a typical high-

pressure homogenizer, other types of nozzles were used for various applications such as 

microfluidizer, jet and orifice valve. Some of the industrial homogenizers were also equipped 

with an adjustable valve in order to adjust the gap size. This way, smaller droplet size can be 

produced as a greater degree of droplet disruption can be achieved by decreasing the gap size 

(McClements, 2004).  

 

Figure 2.4 High-pressure homogenizer for producing small droplet. Adapted from Mc Clements 
(2004) 
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  Furthermore, turbulent flow and cavitation effect can also be achieved by using the 

ultrasound method. Sounds involve propagating pressure oscillation whereby large oscillation 

created by high-intensity sound creates a pressure that is lower than the vapour pressure of 

water. This leads to the formation of small imploding bubbles that eventually creates turbulence 

and cavitation effect similar to high-pressure homogenisation that aid in droplet breakup. A 

frequency of higher than 20 kHz (ultrasound) is normally being used in this process to create 

emulsions with very fine droplet size. This method, however, is not suitable for large-scale 

production of emulsions as small chambers are usually required for high efficiency. Large 

chambers will lead to less droplet breakup efficiency as the ultrasound generated by the actuator 

declines with increased chamber size.  

 

Figure 2.5 Schematic picture of an ultrasound homogenizer. Adapted from Aguilera and Lillford 
(2007) 

Besides that, the production of highly monodisperse emulsion droplet could be achieved 

by using micro-channel emulsification. By using this technique, an emulsion is produced by 

permeating the dispersed phase into the continuous phase through microchannels with 

predefined geometries. The size of the droplet produced depends on the velocity of the phases 

and the dimension of the microchannels (Kawakatsu et al., 2000; McClements, 2004). This 

method was described in studies by Kawakatsu et al. (2000). Monodispersed W/O and O/W 
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droplet were produced by using a cross-flow microchannel plate. With this method, the 

dispersed phase was pushed through the microchannel and approximately 10 µm size droplet 

was produced by squeezing the dispersed phase through the continuous phase. O/W droplet 

were produced by using hydrophilic channels with a glass plate while W/O droplet was made 

by using hydrophobic channels and a silane coupler treated glass plate. Membrane 

homogenizers also work in a similar way as the microchannel homogenizer except that the 

dispersed phase was introduced through a solid membrane with well-defined pore sizes. Several 

factors affecting the size of the droplet produced are the size of the pores, the continuous phase 

flow rate, the interfacial tension between the phases and the membrane pressure (Suzuki, Shuto 

and Hagura, 1996). The production of a highly monodispersed droplet can be achieved by 

manufacturing membrane with uniform pores size. However, this is not always the case as the 

manufactured membrane may have different pore sizes that lead to the production of a fairly 

polydisperse emulsion. The strength of the membrane along with its polarity is important in 

order for it to withstand strong pressure and also for producing different types of emulsions 

(Suzuki, Shuto and Hagura, 1996; McClements, 2004).  
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Figure 2.6 Schematic diagram of microchannel emulsification. Adapted from Kawakatsu et al. 

(2000) 

In order to produce W/O emulsion, a hydrophobic membrane was used while to produce O/W 

emulsion, a hydrophilic membrane is used. Both microchannel and membrane homogenizers 

can be used to produce a variety of emulsions from single W/O or O/W emulsions to multiple 

emulsions such as W1/O/W2 depending on the wettability of the materials in which they are 

made of (Suzuki, Shuto and Hagura, 1996; Kawakatsu, Kikuchi and Nakajima, 1997; 

Vladisavljevic, 2014). By using these homogenizers, monodispersed emulsion droplet may be 

produced and the size of the droplet produced can be adjusted by choosing the right 

microchannel or pore sizes.  
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Figure 2.7 Schematic diagram of a batch membrane homogenizer. Adapted from Mc Clements (2004) 

 

2.3 Droplet microfluidics 

2.3.1 Droplet microfluidics for producing emulsion 

Droplet microfluidics involves the production of the discrete droplet by using 

immiscible phases such as oil and water and its manipulation within the microchannel (Shang, 

Cheng and Zhao, 2017). The production of discrete droplet inside the microchannel enables 

independent control over these droplets, producing microreactors that can be individually 

transported, merged and analysed (Link et al., 2006; Fair, 2007). This helps in acquiring large 

data sets for a particular experiment as multiple microreactors can be produced within a short 

period of time. Moreover, the usage of a droplet with high surface area to volume ratio resulted 

in shorter distances and time for diffusion, heat and mass transfer thus improving reaction time 

(Shang, Cheng and Zhao, 2017). To date, droplet microfluidics has been used in numerous 

studies whereby irregular particles, microbubbles, multiple emulsions and microcapsules were 

formed for its applications in biomolecules synthesis, diagnostic testing and as a drug carrier 

(Teh et al. 2008).  
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Depending on the design of the microfluidic chip, it can be used to produce 

monodispersed single droplet or multiple droplet whereby the size and format of the droplet 

can be controlled by changing the dimensions of the microchannels and also by tuning the flow 

rates of the different phases (Ward et al., 2005). Some of the materials used for microfluidic 

device fabrication were Polydimethylsiloxane (PDMS) which is hydrophobic in nature, Poly 

(methyl methacrylate) (PMMA) that has a partially hydrophilic nature, glass (hydrophilic in 

nature), silicone and thiolene (Teh et al., 2008). PDMS is widely chosen in the production of 

microfluidic chips as it is cheaper and can be mould easily.  However, surface modification of 

the PDMS microfluidic device may be required in order to make it hydrophilic for the 

production of O/W and W1/O/W2 emulsion droplet to ensure effective wetting of the aqueous 

continuous phase while preventing the oil droplet from adhering onto the channel  (Bauer et al., 

2010). 

Figure 2.8 shows several designs of the microfluidic chips used for droplet generation 

such as the T-junction, flow-focusing and co-flow (Vladisavljević, Al Nuumani and Nabavi, 

2017; Loizou, Wong and Hewakandamby, 2018). The flow-focusing device is commonly used 

for monodispersed droplet generation as it allows for better control and stable production of the 

droplet. This is attributed to the fact that the flow-focusing geometry produces a symmetrical 

flow that eases droplet formation at the junction as compared to the asymmetric T-junction (Tan 

et al., 2008; Elveflow, 2019). Droplet breaks up at the wall as observed in the T-junction was 

replaced with the water or oil interface in the flow-focusing whereby, the wall effect is 

minimized while the shear force effect of the continuous phase is maximized (Elveflow,2019).  

For producing single emulsions droplet, a single junction device may be used while a device 

with double or multiple junctions may be used for producing multiple emulsions.  
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Figure 2.8 Different formats of microfluidic chips. Adapted from Casadevall I Solvas and deMello 
(2011) 

 

2.3.2 The biological applications of droplet microfluidics 

The increasing interest in microfluidics had led to various applications of this technology in 

ranges of research fields, not only in the field of engineering but also in biology (Gravesen, 

Branebjerg and Jensen, 1993). The compatibility of microdroplet with various chemical and 

biological reagents makes them suitable for encapsulation. This allows for successful 

application of droplet microfluidics in the field of biology for example, in polymerase chain 

reaction (PCR) amplification whereby the reaction efficiency is significantly improved. The 

compartmentalization of the reactants significantly improves amplification efficiency by 

inhibiting reagent dispersion and adsorption on the channel surfaces. It has been shown that the 

application of droplet microfluidics in PCR allows for single-copy DNA amplification in a short 

period of time (Schaerli et al. 2009). In addition, biochemical assays such as DNA, protein and 

enzyme expression have also benefited from the encapsulation of reagents and bacteria through 
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droplet microfluidic for example, the in-vitro synthesis of proteins by bacteria as it allows for 

the on-chip manipulation of these droplets thus, creating a suitable condition that is important 

for inducing the production of proteins (Wu et al., 2009). 

The application of droplet microfluidics also provides the possibility for capturing 

individual cells in microdroplet and allows for the production of a droplet containing a 

predetermined number of cells. These microfluidic-generated microenvironments can be 

manipulated to assist in cellular studies such as quorum sensing, biofilm formation, detection 

and identification of pathogens and antibiotics assay (Boedicker, Vincent and Ismagilov, 2009; 

Neethirajan et al., 2011; Chang et al., 2015; Barlow et al., 2017). Selective diffusion across the 

oil phases allows for complete control of the microenvironment (Zhang et al., 2013). In the 

study done by Boedicker et al. (2009), the encapsulation single P. aeroginosa cells in small 

volume was conducted in order to challenge the hypothesis that a high population of cells is 

needed for quorum sensing initiation. That study successfully demonstrated that quorum 

sensing initiation is affected by biomass per unit volume whereby confinement itself without 

host interaction may promote quorum sensing in a single cell. It showed that when a single cell 

is entrapped in a small volume, it will have enough biomass to activate quorum sensing.  

 Microfluidic-generated double and triple emulsion droplet also served as 

microenvironments to investigate biofilm formation of Bacillus subtilis in which direct 

observations of cell differentiation and biofilm microstructure were visualized microscopically 

within each droplet. The rapid production of thousands of these microenvironments 

demonstrated its potential to be applied in high-throughput screening of bacterial biofilms 

(Chang et al., 2015). Recent work has also been done on the development of functional droplet 

containing Bacillus subtilis for selenium remediation. The microencapsulation of Bacillus 

subtilis aids in the entrapment of sodium selenite and converting it into selenium nanoparticles 
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that were kept inside the droplet. In addition to developing a method of bacterial manipulation 

for water treatment application, that study also demonstrated the rapid formation of bacterial 

biofilms in the droplet by ensuring a continuous supply of nutrients across the interface (Barlow 

et al., 2017).  

2.4 Bacteria encapsulation in an emulsion droplet 

Probiotic bacteria play an important role in human health and are often used in the development 

of functional foods and pharmaceutical products (Chavarri, Maranon and Carmen, 2012). In 

order to effectively provide health benefits to humans, the strains should be kept viable 

throughout processing, shelf life and during consumption to ensure maximum delivery to the 

targeted area (Rokka and Rantamäki, 2010; Chavarri, Maranon and Carmen, 2012). Previous 

reports indicated the poor viability of free probiotics cells in food products and also a decrease 

in their viability during consumption due to the adverse gastrointestinal conditions, making 

them less effective in promoting health benefits at targeted areas such as in the gut environment 

(Rokka and Rantamäki, 2010; Rodríguez-Huezo et al., 2014; Mao and Miao, 2015).  

Microencapsulation has been shown to enhance bacterial viability especially of the 

beneficial probiotics in the intestinal tract and in food products (Pimentel-Gonzalez et al., 2009; 

Chavarri, Maranon and Carmen, 2012; Lalou, Kadri and Gkatzionis, 2017). Successful bacterial 

encapsulation has been reported in several studies using various methods and materials for 

encapsulation such as spray drying, freeze and vacuum drying, emulsion-based technique and 

the use of food-based materials such as hydrocolloids (Jankowzki et al., 1997;  Kebary et al., 

1998;  Khalil and Mansour, 1998;  Lee and Heo, 2000;  Rodriguez-Huezo et al., 2007; Annan 

et al., 2008; Rokka and Rantamäki, 2010; Chavarri, Maranon and Carmen, 2012; Larsen et al., 

2018). The microencapsulation process involves the entrapment of cells and/or reagents in a 

membrane or membrane-like materials. The materials used for encapsulation consist of thin, 



 
 

25 
 

strong, spherical, semipermeable or non-permeable microcapsules with liquid or solid core and 

varies in diameter (few microns to 1mm). Increasing demands of encapsulation for food 

applications give way to the development of food-grade polymers as encapsulation materials 

with hydrocolloids being the most common for example, alginate, carrageenan, pectin and 

gelatine (Anal and Singh 2007).  

However, there are several important challenges that need to be considered for cell 

encapsulation. One of the main challenges is the large bacterial size that limit their inclusion 

into small-sized capsules or the production of relatively large-sized capsules that is 

unfavourable to the texture and sensorial quality of the food products (Pimentel-Gonzalez et 

al., 2009). Moreover, the encapsulation process itself may also affect the viability of the 

probiotics, for example, the use of high temperature during spray drying may lower the viability 

of bacteria in the produced food products, making them less stable during storage (Chavarri, 

Maranon and Carmen, 2012). Thus, it is important to select an encapsulation method that is 

suitable for sensitive probiotic organisms. Encapsulation of bacteria into emulsion droplet 

especially in double W1/O/W2 may serve as an alternative method (Shima et al., 2006). Studies 

done on the encapsulation Lactobacillus acidophilus in W1/O/W2 droplet show that the viability 

of the encapsulated Lactobacillus acidophilus was higher compared to the unencapsulated 

bacteria. Bacterial viability was affected by the overall size of the produced droplet and the 

volume of the inner aqueous phase whereby droplet produced with larger oil droplet and inner 

phase volume show higher viability (Shima et al., 2006). Moreover, the encapsulation of 

Lactobacillus rhamnosus in W1/O/W2 emulsions also improve the survival of cells against low 

pH and bile salts condition with similar results observed from in vitro studies (Pimentel-

Gonzalez et al., 2009). Further studies conducted in real food environments such as yoghurt 

and cheese also show the ability of emulsions especially double emulsions in improving the 
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survival of bacterial cells during processing and storage (Rodríguez-Huezo et al., 2014; Lalou, 

Kadri and Gkatzionis, 2017). Although these studies reveal the potential use of emulsions for 

bacterial encapsulation, further studies are still required in order to assess the stability of such 

system under different storage conditions.  

2.5 Pickering emulsions and the importance of bacteria in emulsion stability  

Recently, there has been an increasing interest in the study of bacteria that act as particles for 

emulsion stability forming a system known as Pickering emulsion. Pickering emulsion is an 

emulsion system that forms as a result of solid particle absorption onto interfaces. It has been 

of interest for decades especially in the development of consumer products where the addition 

of surfactants is not favourable and may cause adverse effects especially in health-related and 

cosmetic products (Kalashnikova et al., 2011). The use of solid particles for stabilization in 

Pickering emulsions not only improves the stability of the emulsion but also helps in reducing 

the use of surfactants which are known to cause adverse effects on the environment 

(Wongkongkatep et al., 2012).  

In Pickering emulsion, droplet stability was improved due to the accumulation of 

colloidal particles onto interfaces that creates a layer with a steric barrier that prevents 

coalescence (Binks et al., 2006; Dickinson, 2010). The limit to the steric barrier depended on 

how strong the particles attached to the interface. The contact angle of the particles at the 

interface determines the adherence properties and its suitability to be used in the emulsion 

system. For example, hydrophilic colloidal particles have less than 90° of contact angle and are 

suitable to be used for O/W emulsions while hydrophobic particles with more than 90° contact 

angle contribute to the formation of W/O emulsions. Various types of inorganic particles have 

been studied for their use in the formation of Pickering emulsion such as nanocrystals, silica 
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and graphene oxide sheet (Binks et al., 2005; Colard et al., 2010;  Kim et al., 2010;  

Kalashnikova et al., 2011; Tzoumaki et al., 2011).  

The non-biodegradable and compatible characteristics of inorganic solid particles limit 

its application as Pickering particles for consumer-based products such as foods. Therefore, 

studies have focused on food-grade particles for Pickering emulsions such as hydrophobic 

cellulose, soy protein, quinoa starch, β-lactoglobulin and whey protein (Wege et al., 2008; Liu 

and Tang 2013; Rayner et al., 2012; Nguyen et al., 2013; Destribats et al., 2014).  However, 

limitations in the use of food-grade particles, for example, the high tendency to aggregate, has 

opened up recent researches on the ability of bacterial cells as particles in Pickering emulsions. 

Microbial cells have shown to be able to adhere to hydrocarbons (Rosenberg, Gutnick and 

Rosenberg, 1980). A recent study on microbial cells as Pickering particles involves bacteria 

and yeast with a fine micron-size that was proven suitable for stabilization of O/W emulsions 

and may be used as an alternative to synthetic surfactants (Firoozmand and Rousseau, 2016). 

Furthermore, it has also been reported that bacteria with the aid of a self-assembled chitosan 

network were able to provide stability for O/W emulsions (Wongkongkatep et al., 2012).  In 

addition, stabilization of O/W emulsions by several bacteria with hydrophobic properties has 

also been reported in which the adherence of such bacteria onto oil droplet prevents coalescence 

without significant change in interfacial tension (Dorobantu et al., 2004).  

The mechanism of bacteria as Pickering emulsion is mostly attributed to their surface 

properties which vary between strains and conditions in which the bacteria were suspended. 

Most studies reported that the wettability of bacteria (hydrophobicity or hydrophilicity) play an 

important role in emulsion stabilization although this characteristic may change with bacterial 

conditions (Dorobantu et al., 2004; Wongkongkatep et al., 2012). Despite many studies that 
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have been done on the ability of bacteria for emulsion stabilization (Dorobantu et al., 2004; 

Wongkongkatep et al., 2012; Firoozmand and Rousseau, 2016), it has also been reported that 

the presence of bacteria in an emulsion system with ionic surfactants may cause instability 

(droplet flocculation and aggregation) due to interactions of bacteria with charged droplet (Li 

et al., 2001). In addition, changes in emulsion properties during storage may also affect the 

ability of bacteria as a stabilizer. Therefore, further studies are still required in order to gain a 

better understanding on the complexity of bacterial interactions with emulsion especially in the 

water-in-oil droplet (W/O) whereby studies related to the effects of encapsulated bacteria on 

W/O emulsion stability is still scarce.  

2.6 The application of emulsion for the controlled release of bacteria 

Emulsions are suitable for the controlled release and targeted delivery of nutrients or bacteria. 

For example, bioactive peptides and lactic acid bacteria were delivered in the small intestine 

following protection against the gastrointestinal conditions (Mao and Miao, 2015; Larsen et al., 

2018; Giroux et al., 2019). Studies conducted on the emulsion-based delivery of various 

functional ingredients such as vitamins and flavour compounds reveals that the controlled 

release of these materials at a specific stage during digestion could be achieved by formulating 

emulsions that exhibit reversible or irreversible destabilization when induced by changes in pH, 

temperature and osmotic balance  (Mao and Miao, 2015).  

The production of emulsion with pH-responsive switchable behaviour has attracted a 

lot of interest as it allows for the controlled release of nutrients and bioactive (Patel et al., 2013). 

Examples of the pH-responsive materials that were used are pH-responsive latexes, pH-

sensitive microgel particles and natural materials such as xanthan gum with shellac and chitosan 

nanoparticles (Amalvy et al., 2003; Wei et al., 2012; Patel et al., 2013).  The use of pH-

responsive latex in O/W emulsions creates a reversible destabilization of emulsions in which 
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by lowering the pH, the structure of the emulsion was destabilized due to the desorption of 

particles from the interface while increasing the pH back to approximately 8.4 with 

homogenization caused the emulsion to be re-emulsified (Amalvy et al., 2003).  

Other than that, the controlled release of materials from emulsions can also be induced 

by the change in temperature.  A study on the development of emulsions stabilized with pH and 

temperature-sensitive poly(N-isoproylacrylamide) (PNIPAM)  microgels reveals its potential 

use for the controlled release of materials from O/W emulsions (Ngai, Behrens and Auweter, 

2005). By raising the temperature from 25 °C to 60 °C, the prepared emulsions become unstable 

due to an increase in the hydrophobicity of the gels causing it to be completely immersed in the 

oil phase. This eventually leads to complete phase separation and release of the encapsulated 

compounds. Another example of temperature-induced release is by freezing the oil phase of 

W1/O/W2 double emulsions while the aqueous phases of inner and outer phase remain liquid 

(Rojas et al., 2008; Jaimes-Lizcano, Lawson and Papadopoulos, 2011). Reducing the 

temperature to approximately 4°C ensures a complete crystallization of the oil phase (n-

hexadecane) and maintained the stability of the emulsions. In order to trigger the release of 

compounds from the emulsion, the sample is then thawed at 25°C that caused the oil phase to 

become liquid. This leads to external coalescence that releases the compound from the inner 

W1 phase to the outer W2 phase. A similar result was also reported by Jaimes-Lizcano, Lawson 

and Papadopoulos (2011) in which double emulsions containing protein in the inner W1 phase 

and ethanol in the W2 phase were initially stored at 5°C to crystallize the oil phase leaving the 

aqueous phase in liquid form. Subsequent thawing at 35°C completely released the protein from 

the W1 phase to the W2 phase. The formulation was also tested in vitro on porcine skin that 

reveals its potential to be applied for macromolecular delivery as 86µm penetration into the 
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skin was achieved by using the developed formulation. The presence of ethanol in the W2 phase 

aid in enhancing the penetration rate. 

The controlled release of bacteria can be achieved by altering the osmotic balance of 

the double W1/O/W2 emulsions. This can be done for example, by changing the sodium chloride 

concentration that leads to the controlled release of E. coli-GFP from the inner W1 phase into 

the outer W2 phase as reported by Kadri et al. (2016). This process is dependent on the solute 

concentration in both of the aqueous phases and also the concentration of the hydrophilic and 

lipophilic surfactants. According to that study, the bursting of the oil globule leads to the 

complete and immediate release of bacteria into the outer aqueous phase which could 

potentially be applied in food emulsions to control the release of bacteria at a desirable time 

during the fermentation process. However, the study of the release mechanism in a more 

homogenous system with highly monodispersed droplet size may provide a better 

understanding of this process.  

2.7 Emulsions in cold storage 

2.7.1 The freezing mechanism of emulsions 

Freezing involves phase transition of a solution from liquid to solid state which is divided into 

several stages namely supercooling, crystallization and recrystallization. The crystallization 

stage is further divided into the nucleation stage followed by crystals formation and growth 

(Sun, 2005). The freezing of emulsions involves the freezing of the aqueous and the oil phase 

and depending on the freezing point of these phases, the crystallization sequence between the 

two phases may affect the stability of the emulsion during storage (Cramp et al., 2004; Ghosh 

and Rousseau, 2009; Degner et al., 2014). Although the freezing of both phases is important in 

determining emulsion stability, the phase transition of the aqueous phase plays a major role in 
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the freezing process and therefore, the phase behaviour of water will be explained in detail 

followed by the critical role of oil phase crystallization on emulsions stability.  

The freezing process of the aqueous phase begins with the supercooling or the 

supersaturation stage whereby these conditions resulted in the formation of ice crystals as the 

emulsion is cooled below its freezing point or with an increase in solute concentration that 

exceeds its saturation point (Degner et al., 2014). The change in temperature during this stage 

is fairly constant due to the phase transition of a liquid to ice crystals that releases heat (the 

latent heat of crystallization). The freezing of the aqueous phase in O/W emulsions usually 

occurs heterogeneously as compared to homogeneous crystallization due to the presence of dust 

or impurities in the continuous aqueous phase that catalyses the formation of ice crystals 

(Schuch, Köhler and Schuchmann, 2013; Degner et al., 2014). In contrast, the crystallization 

of the dispersed aqueous phase in W/O emulsions usually occurred homogeneously (self-

induced) as the small size of water droplet caused it to be less likely to contain any ice nuclei 

or impurities (Koop, 2004). In a case where ice nuclei are present in one of the droplet, the 

crystallization will only occur in this droplet while the other droplet remains liquid and 

crystallizes homogeneously (Figure 2.9). This lowers the crystallization temperature and leads 

to broader crystallization curve as the freezing process occurred in a much broader temperature 

range as compared to bulk aqueous phase that exhibits sharp crystallization temperature 

(Schuch, Köhler and Schuchmann, 2013). Both of these freezing mechanisms were observed 

during the freezing process of the double W1/O/W2 whereby the outer W2 aqueous phase shows 

heterogeneous crystallization while the inner W1 phase exhibits homogeneous crystallization 

(Schuch, Köhler and Schuchmann, 2013). This is beneficial in distinguishing the thermal 

properties between both of the phases as it resulted in two distinguish cooling curves in the 

DSC (differential scanning calorimetry) (Schuch, Köhler and Schuchmann, 2013). 
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Nevertheless, the presence of solute for example bacteria encapsulated in the inner W1 phase 

may result in heterogeneous crystallization of the droplet and therefore leads to the formation 

of only one cooling curve in the DSC. However, further studies are required in order to confirm 

this hypothesis.  

 

Figure 2.9 The difference in the crystallization process between the bulk aqueous phase and dispersed 
aqueous phase in emulsions. Adapted from Schuch, Köhler and Schuchmann (2013) 

 

In addition, the presence of encapsulated materials such as bacteria in the dispersed 

aqueous phase for W/O emulsions or in the continuous aqueous phase of the O/W emulsions 

may cause a further reduction in the freezing temperature of the emulsions due to freezing point 

depression. This is due to the presence of non-volatile solute that caused a reduction in the 

vapour pressure of the solvent. According to the example three-phase diagram (Figure 2.10), 

the triple point of a solution depends on its vapour pressure and as the vapour pressure decreased 

with an increase in solute concentration, the triple point of a solution is shifted towards a lower 

temperature. This reduces the freezing point of a solution as a reduction in temperature is 

required for the solid-liquid system to reach equilibrium (Reger, Goode and Ball, 2009).  
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Figure 2.10 An example of freezing point depression of a solution shown in a triple-phase diagram. 
The behaviour of a solution is shown by the dotted line as opposed to pure solvent that is represented 

by the solid line. The presence of solute reduces the vapour pressure and the triple point of the solution 
resulting in a lower freezing point than that of a pure solvent. Adapted from Reger, Goode and Ball 

(2009) 

 

The formation of ice nuclei within the solution leads to the growth of ice crystals that spreads 

throughout the solution and will continue to grow until an equilibrium state is achieved within 

the system (Sun, 2005; Degner et al., 2014). As the water phase crystallizes, the solute will be 

forced into the still-liquid region of the aqueous phase and away from the solid-liquid border. 

This leads to frozen-concentration whereby the accumulation of solute in the still-liquid region 

increases the solute concentration of this region. As the presence of solutes causes a decrease 

in the freezing point of the solution, a gradual decrease in melting point occurred in this region 

as water crystallizes resulting in a region with crystallizing water and another region containing 

highly concentrated non-frozen solutes. This process may cause changes in the original 

physicochemical characteristics of the solution such as changes in pH value, ionic strength, 

osmotic pressure as well as viscosity which will later affect the stability and quality of the 

product after the thawing process (Degner et al., 2014).  

Another important factor that may affect emulsion stability is the freezing rate of the 

samples as this determines the number and size of the ice crystals. At a high cooling rate, the 
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formation of ice nuclei is much faster compared to crystal growth leading to the formation of 

smaller ice crystals as opposed to lower cooling rate as the slow formation of ice nuclei resulted 

in the formation of a few but large ice crystals. This process also depended on the presence of 

additives as it promotes the formation of ice nuclei. The freezing process will then continue 

until the crystallization of the freeze-able water is completed (Sun, 2005). However, 

temperature fluctuations that occur during storage may cause recrystallization process that 

affects stability (Walstra, 2002; Degner et al., 2014). This process resulted in the formation of 

larger ice crystals that will be detrimental to the quality of the encapsulated material especially 

bacteria as the large ice crystals puncture the cell membrane leading to cell damage (Gao, Smith 

and Li, 2007). Therefore, it is recommended to keep the product such as food emulsions 

at/below -18°C to prevent the occurrence of recrystallization (Erickson and Hung, 1997).  

2.7.2 Emulsion destabilization in cold storage and its applications 

The storage of emulsions under cold temperature caused changes in the phase behaviour 

of the oil and aqueous phase which affects the overall stability of the emulsions as the oil and 

aqueous phase gradually crystallizes depending on their freezing point (Vanapalli, Palanuwech 

and Coupland, 2002; Cramp et al., 2004; Ghosh and Rousseau, 2009; Tippetts and Martini, 

2009). According to Degner et al. (2013), several destabilization conditions were observed after 

the freeze-thawing of O/W emulsions such as oiling off or phase separation due to the presence 

of a free oil layer and the creaming process as the oil droplet was concentrated at the top layer 

of the emulsion. In addition, the presence of oil droplet with a larger size as compared to before 

the freeze-thawing process was also observed due to coalescence along with partial coalescence 

due to partial crystallization process that links neighbouring droplet. Droplet flocculation also 

occurs as the droplet were closely associated forming clusters while the aggregation of droplet 

leads to gelation or thickening as the freezing process caused an increase in viscosity.  
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 It has been reported that the stability of water-in-oil emulsions (W/O) during freezing 

is based on the freezing sequence of the oil and the aqueous phase (Ghosh and Rousseau, 2009). 

The crystallization of the continuous oil phase prior to the dispersed aqueous phase caused an 

extensive emulsion destabilization as compared to continuous phase that crystallizes at a much 

lower temperature than the dispersed phase. This is due to the freeze-concentration process as 

the liquid droplet was forced into the still-liquid region of the continuous oil phase as it 

crystallizes. This leads to droplet clustering that accelerates emulsion destabilization. Similar 

effects have also been reported by Cramp et al. (2004) in samples of O/W emulsions whereby 

the crystallization of the continuous aqueous phase freeze-concentrated the oil-droplet into the 

still-liquid region of the continuous phase causing the water layer that separates neighbouring 

droplet to be withdrawn from the region as it crystallizes leading to droplet ruptures and 

eventually emulsion destabilization.  

The freeze-concentration process is then followed by partial coalescence that occurs as 

the freezing process continues with the crystallization of the dispersed droplet. Partial 

coalescence takes place due to gradual crystallization of the droplet whereby crystallized 

droplet with protruding crystals puncture the membrane of the neighbouring still-liquid droplet 

causing the liquid to flow out forming a linkage between the two droplet as it freezes. This 

resulted in droplet flocculation that eventually leads to complete coalescence and phase 

separation upon thawing (Vanapalli, Palanuwech and Coupland, 2002; Lin et al., 2007; Ghosh 

and Rousseau, 2009). A similar effect was also observed in a loosely packed emulsion sample 

in which the collision between the still-liquid oil droplet and crystallized oil droplet with 

protruding crystals may cause membrane rupture that resulted in the droplet with still-liquid oil 

to flow out and linked the two droplets as they freeze. This mechanism also leads to droplet 
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flocculation that eventually leads to complete coalescence during the thawing process (Lin et 

al., 2007).  

Several factors that affect the stability of emulsions against partial coalescence are size, 

droplet concentration and the nature of the fat components in the oil phase during 

crystallization. In addition, the type and concentration of the surfactants that determine the 

nature of the interfacial layer and the application of mechanical forces also affect the rate of 

partial coalescence (Walstra, 2002). Emulsions containing large-sized and high concentration 

of dispersed droplet are more prone to destabilization while the application of mechanical force 

accelerates the rate of partial coalescence as it increases the rate of droplet collision. Increasing 

the thickness of the interfacial layer or by using solid-state surfactants such as glycerol 

monostearate (GMS) that crystallizes at 25°C may help in improving emulsion stability. Ghosh 

and Rousseau (2009) reported that the use of liquid-state surfactant such as PGPR accelerates 

droplet destabilization as it can be easily drawn out from the emulsion especially during freeze-

concentration and weakens the droplet barrier against coalescence. The use of crystallized 

surfactants such as glycerol monostearate (GMS) that crystallizes at 25°C help in minimizing 

emulsion destabilization as it creates a barrier against droplet coalescence during the thawing 

process (Ghosh and Rousseau, 2009).  Zhu et al. (2017) also reported that the Pickering stearic 

stabilization along with the formation of a gel-like network due to the presence of soy and whey 

protein particles helps in preventing coalescence and creaming during the freeze-thaw process. 

Moreover, freezing the emulsion at a high cooling rate also helps in preventing partial 

coalescence as the rapid cooling minimizes the time of contact between crystallized and liquid 

droplet (Walstra, 2002; Degner et al., 2014).  

The freezing of multiple emulsion such as W1/O/W2 from ambient temperature to 

freezing temperature begins heterogeneously with the crystallization of the outer aqueous phase 
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whereby the presence of impurities for example surfactants trigger the formation of ice crystals. 

The formation of an ice germ on these impurities leads to the crystallization of the whole 

aqueous phase while the crystallization of the inner W1 droplet occurred homogeneously as the 

possibility of these small droplets to contain impurities are small (Schuch, Köhler and 

Schuchmann, 2013). However, by using the W1/O/W2 as a means for encapsulation, the 

presence of materials such as bacteria in the W1 inner phase may induce heterogeneous 

nucleation. During the freezing process, the inner W1 aqueous phase remains intact as reported 

previously by Rojas and Papadopoulos (2007). The destabilization mechanism for multiple 

emulsions namely water-in-oil-in-water (W1/O/W2) emulsions in low-temperature storage 

mainly occurred during the thawing process due to the external coalescence of the inner W1 

phase with the outer W1 phase. Several factors that affect the susceptibility of multiple 

emulsions towards external coalescence are the size of the inner W1 phase and the thickness of 

the surfactant layer that helps in creating a boundary between the W1 inner phase and the outer 

W2 phase (Rojas and Papadopoulos, 2007; Rojas et al., 2008). The intact W1 phase during the 

freezing phase and the immediate droplet destabilization during the thawing process makes it 

suitable for the encapsulation and controlled release of material from the W1/O/W2 droplet. 

The destabilization of food emulsions is undesirable as it can negatively affect product 

quality. Nevertheless, emulsion destabilization is highly beneficial for other applications such 

as during the Emulsion Liquid Membrane processing (ELM) and also for the processing of 

unwanted emulsions such as oil sludge (He and Chen, 2002; Lin et al., 2007, 2008). These 

processes require an effective technique of emulsion destabilization in order to obtain a high 

percentage of demulsification. Some of the conventional techniques used for emulsion 

demulsification are chemical treatment, thermal, electrical and mechanical techniques. There 

were several setbacks encountered when using these conventional methods such as the need for 
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using high voltage electricity for electrical treatment (Lin et al., 2007). The freeze-thaw process 

has been reported as an alternative method to oil refinery whereby 90% of emulsion 

demulsification was achieved by using freeze-thaw treatment to demulsify used lubricating oil 

which consists of complex emulsions that were hard to break under conventional 

demulsification processes (He and Chen, 2002). Other than for oil processing applications, the 

freeze-thaw induced destabilization of W1/O/W2 emulsions has also been applied for the 

controlled and immediate release of materials from double emulsion droplet (Rojas and 

Papadopoulos, 2007; Rojas et al., 2008; Jaimes-Lizcano, Lawson and Papadopoulos, 2011). 

Rojas et al. (2008)  reported on the application of freeze-thaw induced controlled release of 

protein from emulsions.  FITC-BSA was used as a model protein and was encapsulated in 

W1/O/W2 and the droplet was kept in cold temperature that freezes the oil phase while the 

aqueous phase remains liquid. While the inner W1 phase remains intact during storage under 

freezing temperatures, the thawing process of the emulsions leads to the complete and 

immediate release of the encapsulated proteins as the oil melted (Rojas et al., 2008). Further 

studies on the application of this system for the development of dermal macromolecular 

delivery formulations revealed its potential to be used in cutaneous vaccine delivery system 

whereby the in vitro study conducted on porcine skins shows up to 86 µm penetration when 

using the emulsions for encapsulation (Jaimes-Lizcano, Lawson and Papadopoulos, 2011). 

Those studies show an interesting application of the freeze-thaw process for the controlled 

release of materials in which will be further explored in chapter five of this thesis by using live 

bacterial cells as the encapsulated material.  
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2.8 Bacteria in cold storage 
 

2.8.1 Bacteria viability and survival in cold temperature 

Bacterial survival in cold temperature storage especially during freezing varies between species 

and depends on the conditions during storage. Different strains exhibited different resistance 

against freezing, for example, Streptococci showed better resistance compared to Lactobacilli 

(Tsvetkov and Shishkova, 1982; Fonseca, Béal and Corrieu, 2000) and mainly due to cell size 

and structure as larger cells with more complex structure survived less than smaller cells 

(Bozoǧlu, Özilgen and Bakir, 1987). In general, Gram-positive bacteria are more susceptible to 

freezing conditions as compared to Gram-negative bacteria (Georgala and Hunt, 1963). In a 

previous study by Lowry and Gill (1985), the enrichment of the Gram-positive spoilage strains 

such as lactobacilli and Brochothrix thermosphacta were observed during the slow-freezing 

process of meat at the expense of the Gram-negative bacteria that were usually predominant in 

the air-stored meat. Besides that, the medium used during storage may also affect bacterial 

survival against freezing. For lactic acid bacteria, it has been reported that the addition of Tween 

80 allows for better survival. The addition of Tween 80 increases the ratio of unsaturated fatty 

acids in the cell’s membrane that changes the permeability of the membrane. Other than that, 

the addition of calcium in the growth medium also maintains the stability of Lactobacillus 

delbrueckii subsp. bulgaricus during freezing  (Wright and Klaenhammer, 1981, 1983).  

 The freezing of microorganisms also leads to water removal from cells (intracellular 

freezing) or its surrounding (extracellular freezing) as the formation of ice crystals reduces the 

percentage of free water. The cell’s resistance to freezing damage depends on the membrane 

ability to withstand freezing stress as it has been identified as the primary site of ice crystals 

formation (Souzu, 1989). The membrane layer of a Gram-negative bacteria consists of the 

cytoplasmic membrane, peptidoglycan layer and the outer membrane. The outer membrane is 
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known to be water permeable which allows for the transport of nutrients across the membrane 

while the cytoplasmic membrane is known to be less permeable to water (Osborn et al., 1972; 

Nakae, 1976). The freeze-induced structural change in the cell membrane is mainly attributed 

to the change in phospholipid conformation of the outer membrane. During the freezing process 

of Escherichia coli B cells, significant alterations in the membrane caused a significant change 

in the membrane permeability that eventually leads to cell damage. This process is dependent 

on the freezing rate whereby slow freezing leads to extensive cell damage that lowers the 

bacterial viability as compared to rapid freezing in which the cells suffers a much smaller 

amount of cells impairment and is able to maintain high cells viability (Souzu, 1989).  

Moreover, the freezing process of Escherichia coli cells also caused the cell membrane 

component to be liberated such as phospholipids and proteins. Lower cell viability was 

observed with the higher release of membrane component which can be observed at a slow 

freezing rate. During a slow freezing process, the component released from the cell is mainly 

from the outer cell membrane whereas rapid freezing leads to the release of both cytoplasmic 

and outer cell membrane constituents. The released fragments exhibit different chemical 

composition as compared to its original state (Souzu, 1980). In slow freezing, the phase 

separation of the lipid bilayer leads to increased fragmentation of the outer membrane whereas, 

with rapid freezing, the phase separation effect was minimized as the cells were only exposed 

to the transition temperature in a short period of time (Souzu, 1980). The short exposure time 

to transition temperature with rapid freezing resulted in lipid freezing without allowing much 

time for the rearrangement of the intramembrane protein leading to less damaging effect in the 

cell membrane. Moreover, rapid freezing also decreases the rate of cell shrinkage resulting in 

less separation of the membrane (Souzu, 1980).  
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Other than the structural change of the cell membrane, the effect of water crystallization 

is also one of the most common factors responsible in cell damage (Mazur, 2017; Powell-Palm 

et al., 2018).  As opposed to changes in the membrane structure that was minimized at the high 

freezing rate, the detrimental effect of water-crystallization on bacterial viability is minimized 

at the low-freezing rate as compared to high-freezing rate. This is due to the cryoconcentration 

effect that helps in preventing the lethal intracellular water crystallization as the intracellular 

water was drawn out of the cells during the freezing process. During slow-freezing, the water 

crystallization process will most likely begin with extracellular crystallization of the 

surrounding liquid. The gradual crystallization of the extracellular water forces the cells to be 

concentrated in the unfrozen region of the medium whereby a continuous decrease in 

temperature caused the region to be increasingly concentrated. This leads to cell dehydration as 

the cells were exposed to high concentrated solution creating a concentration gradient that 

draws water out from the cell during the freezing process thus preventing the formation of 

intracellular ice crystals. Meanwhile, the rapid freezing of bacterial suspension resulted in 

extensive supercooling that caused the crystallization of the intracellular water as it is not able 

to flow out of the cells fast enough resulting in extensive cell damage (Simonin et al., 2015). 

These indicate that the degree of cell damage during the freezing process also depended on the 

availability of intra- and extracellular water in which it can be controlled by changing the 

freezing rate of the samples. 

In conclusion, the storage of bacteria in freezing temperatures can lead to irreversible 

cell damage. Therefore, the development of cryoprotectant formulations such as the 

combination of glycerol as a cryoprotectant together with cell encapsulation may help in 

protecting the cells against freeze-damage. This will be discussed in detail in the next section 
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along with an experiment designed in order to determine the effect of cell encapsulation in 

emulsion droplet on the viability of bacteria (chapter five).  

2.8.2 The effect of encapsulation on bacterial survival in freezing temperature 
 

Several cryoprotective formulations have been developed that can best protect bacteria against 

freeze-damage (Chen et al., 2015; Wang et al., 2019). One of the most commonly used 

cryoprotectants is glycerol in which it helps in promoting supercooling by depressing the 

freezing point of bacterial cells. Glycerol forms strong hydrogen bonds with water molecules, 

thus reducing hydrogen bonding between water molecules leading to the disruption of the ice 

crystal lattice formation (Pegg, 2007). Besides that, it has been reported that the mixture of 

trehalose, sucrose, glycerol and skimmed milk significantly improves the viability of 

lactobacilli during the freezing process (Wang et al., 2019). Moreover, the mixture of skim 

milk, lactose and sodium ascorbate was shown to significantly improve the number of viable 

cells after the freeze-thaw process (Chen et al., 2015). Other than the development of suitable 

formulations of cryoprotectants, the pre-freezing treatment of bacterial cells may also aid in 

improving their viability. In a study by Simonin et al. (2015), osmotic treatments on E. coli 

cells during freezing at -20 °C that mimics the cryoconcentration effect helps in minimizing 

cell damage. Moreover, cells that were exposed to cold stress also shows an increased resistance 

towards freeze-damage.  

In addition, the effect of encapsulation in improving bacterial viability during the freeze-

thaw process has been reported extensively in previous studies (Goderska and Czarnecki, 2008; 

Priya, Vijayalakshmi and Raichur, 2011; Dianawati, Mishra and Shah, 2013). Some examples 

of the application of microencapsulation for protecting bacteria against freeze-damage include 

the encapsulation of Lactobacillus acidophilus in the self-assembled polyelectrolyte layers of 
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chitosan and carboxymethyl cellulose that not only provide a protection barrier for bacteria 

against the adverse effect of simulated GI tract but also against cell-damage during the freeze 

and freeze-drying processes (Priya, Vijayalakshmi and Raichur, 2011). Similar protective 

effects were also observed from the microencapsulation of Bifidobacterium longum in milk 

proteins and sugar alcohols whereby it works in enhancing the protective effect of 

cryoprotectants such as glycerol, resulting in better bacterial viability and function after the 

freeze and freeze-drying processes (Dianawati, Mishra and Shah, 2013). The freezing of an 

emulsion-based product such as milk has also been reported to cause small changes in the 

viability of bacteria, indicating the ability of the emulsion structure in protecting bacteria 

against extensive cell damage. A study by Sánchez et al.  (2003) shows that the freezing of goat 

milk at -20°C or even after extended storage at -80°C does not significantly affect the viability 

of E. coli as opposed to cow milk due to differences in milk composition. A similar result was 

also reported by Nurliyani, Suranindyah and Pretiwi (2015) whereby the frozen storage of 

Ettawah Crossed bred goats milk sample for 60 days does not cause changes in the total bacteria 

while changes in emulsion stability were only observed after 30 days of storage.  
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2.9 Aim and objectives 

The research conducted in this thesis is focused on determining the interaction between 

encapsulated bacteria and emulsion droplet of W/O and W1/O/W2 in ambient and cold 

temperature storage with the application of droplet microfluidics. The objectives of this work 

are listed as follows: 

i. To determine the effect of different bacterial responses (growth and death) on the 

stability of W/O droplet. 

ii. To investigate the effect of bacterial encapsulation in W/O and W1/O/W2 droplet on 

bacterial viability in ambient and cold temperature storage. 

iii. To study the stability of single W/O and double W1/O/W2 droplet in the presence of 

bacteria during cold temperature storage. 

iv. To study the effect of osmotic balance alterations and cold temperature storage on the 

release of bacteria from the W1/O/W2 droplet.  
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Chapter 3  

The effect of bacteria on the stability of 

microfluidic-generated water-in-oil droplet 

 

3.1 Introduction 
 

Microencapsulation of emulsion droplet, as discussed in section 2.4, has been extensively used 

in the encapsulation of bacteria for various applications such as to increase their viability in 

food products, to protect bacteria against the harsh conditions in gastrointestinal tract and for 

high-throughput bacterial studies (Lalou et al. 2017; Klojdová et al. 2019; Shima et al. 2006; 

Pimentel-Gonzalez et al. 2009; Marcoux et al. 2011). Nevertheless, the successful applications 

of emulsions droplet for bacterial encapsulation is highly depended on their stability during 

processing, storage and during consumption. Understanding the effects of the encapsulated 

bacteria on emulsion stability is still limited and therefore requires further studies on bacterial 

response such as growth, death and production of by-products and their effect on stability.  

Previous studies revealed the potential use of bacteria for emulsion stabilization as 

discussed in section 2.5 where bacterial surface properties played a key role in stabilization 

(Dorobantu et al., 2004; Wongkongkatep et al., 2012; Firoozmand and Rousseau, 2016). 

However, the mechanism of droplet stability with the aid of bacterial cells is highly complex 

thus, further studies may provide beneficial information in order to clearly understand the 

factors involved in this process. 
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Therefore, this chapter aimed to investigate the interrelationship between bacterial 

response and emulsion stability with microfluidics application. The stability of model emulsion 

systems in the presence of Escherichia coli (E. coli-GFP), the most common Gram-negative 

bacteria used in biotechnology applications such as in vitro synthesis of biomolecules (Idalia 

and Bernardo, 2017) and Lactobacillus paracasei (L. paracasei) which is one of the most 

common Gram-positive bacteria used in the food industry for making dairy products such as 

yoghurt, were investigated during storage. The viability of the bacteria and its effect on droplet 

stability was investigated by measuring changes in droplet distribution during storage and by 

characterising factors that affect stability through bacterial hydrophobicity and zeta potential 

test. The developed model emulsion system and the study of bacterial interactions may help to 

give more insights on the stability of such systems that can later be applied in the industrial 

production of emulsion-based products. 
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3.2 Materials and methods 

3.2.1 Materials and bacterial cultures 

Microfluidic device fabrication was done by using a Polydimethylsiloxane (PDMS) preparation 

set (Sylgard 184, Dow-corning, United States) which includes the curing agent and pre-

polymer. Oil-soluble surfactant, polyglycerol polyricinoleate (PGPR) was obtained from 

Danisco (Denmark) while mineral oil and acridine orange stain (AO) were purchased from 

Sigma Aldrich (United Kingdom). For bacterial culture preparation, the materials used were 

nutrient agar, De Man, Rogosa and Sharpe (MRS) agar and broth, Luria Bertani broth (LB 

broth) and phosphate buffer saline (PBS) all by Oxoid Ltd. (United Kingdom).  Propidium 

iodide stain (PI) was purchased from Invitrogen (United Kingdom).  Escherichia coli strain 

SCC1 (MG1655-GFP mutation) expressing green fluorescent protein (E. coli-GFP) and 

Lactobacillus paracasei subsp. paracasei DC412 (L. paracasei) stock cultures were obtained 

from Biochemical Engineering Laboratory, University of Birmingham, United Kingdom. 

3.2.2 Microfluidic device fabrication 

The microfluidic device was produced using a standard soft lithography technique (Kim et al., 

2008). The device was designed according to Bauer et al. (2010) using AutoCAD 2016 

(Autodesk) software. A device with 100 µm width at the junction, 200 µm width at the exit 

channel and 50 µm (depth) dimension was used for producing water-in-oil (W/O) droplet with 

diameters between 40-50 µm (Figure 3.1a). The design was then printed onto high-resolution 

photo-masks. A patterned mould was produced by exposing a silicon wafer (Si-Mat, Germany) 

that was spin-coated with SU-8 photoresist (SU-8, Microchem) to UV light through the 

photomasks (Figure 3.1b). The device was then prepared by mixing the PDMS and curing agent 

at the recommended mixing ratio of 1:10. The prepared PDMS was then poured onto the mould, 

degassed and baked in the oven at 70°C for 1 hour. The device was then cut out of the mould 
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and the inlet and outlet holes were punched followed by corona discharge treatment for 

approximately 30s that bonds the device onto a glass slide to close the channels. The prepared 

device was then left on the hot plate for approximately 15 mins at 100°C. A new device was 

prepared for every experiment in order to minimize contamination.  
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a 

b 

Figure 3.1 Flow-focusing microfluidic device fabrication for W/O droplet generation with (a) the 
dimension of the device whereby, width at the junction (a): 100 µm, width at the exit channel (b): 200 µm 

and depth (c): 50 µm. The design of the device was printed on a high resolution mask and a patterned 
mould was produced by spin-coating SU-8 photoresist on a silicon wafer and exposing it to UV light 

through the photomask (b). The  patterned mould was then used to prepare microfluidic devices by using 
PDMS.  
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3.2.3 Optical microscopy for determining the effect of flow rates on droplet size and 

stability changes during storage 

The effect of different dispersed to continuous phase flow rate ratios (Qd:Qc) on the production 

of monodispersed W/O droplet was determined by measuring the size of the droplet 

immediately after formation. In addition, droplet size was also measured daily for all W/O 

emulsion samples during the five days of storage at 25°C. Droplets were formed by pumping 

the continuous oil phase (mineral oil with 1.5% PGPR) through inlet a and the dispersed 

aqueous phase (sterilised deionised water [DIW]) through inlet b of the flow-focusing 

microfluidic device (Figure 3.2). The W/O droplets were produced at the flow-focusing junction 

and collected in an Eppendorf tube at outlet c (Figure 3.2). The solutions were pumped into the 

microfluidic device by using syringe pumps (AL-1000, World Precision Instruments, United 

States) at varying flow rate ratios (Qd:Qc) of 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10.  

Droplet formation in the microfluidic device was observed at 10x magnification by 

using a Nikon Eclipse Ti-U microscope equipped with Photron FASTCAM SA3 high-speed 

camera software. In order to measure the size of the droplet, optical microscopy was done by 

placing the W/O sample on a glass slide and observed at 10× magnification by using the same 

microscope. Images of the droplet were taken and analysed by using MATLAB software for 

size measurement using the circular Hough transform. For characterisation of droplet size 

distribution, changes in the coefficient of variation (CV) was determined by dividing the 

standard deviation with the mean droplet size (Romoscanu et al., 2010; Maan, Schroën and 

Boom, 2013; Muijlwijk, Berton-Carabin and Schroën, 2016). 
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a c b 

Figure 3.2 The formation of W/O droplet by using a flow-focusing microfluidic device. The continuous oil 
phase was pumped through inlet a while the dispersed aqueous phase was pumped through inlet b by using 

syringe pumps at varying flow rate ratios. The W/O droplet were formed at the flow-focusing junction and the 
sample was then collected in an Eppendorf tube at outlet c. Droplet formation was observed by using Nikon 

Eclipse Ti-U microscope equipped with Fastcam SA3 camera. Images of the droplet were taken and analysed 
for size measurement by using MATLAB software. 
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3.2.4 Bacterial cells preparation  

Bacterial cultures for encapsulation in W/O emulsion were prepared by culturing E. coli-GFP 

on nutrient agar at 37 °C for 24 hours. The cultured bacteria were kept at 4°C prior to the 

experiment. The bacterial cells were then inoculated into 50 mL of Luria Bertani broth (LB 

Broth) in a shaking incubator at 37°C, 150 rpm for 24 hours and sub-cultured into LB broth 

(1:50) and incubated for another 2 hours. The bacterial culture was then centrifuged (10000 × 

g, 10 mins) and washed two times with 50 mL of PBS. After centrifugation, the supernatant 

was discarded and was replaced with 50 mL of fresh LB broth or DIW to re-suspend bacterial 

cells for encapsulation. The bacterial cell concentration was prepared to 108 CFU/mL. L. 

paracasei bacteria culture was maintained on MRS agar at 4°C. The bacterial cells were 

inoculated into 50 mL of MRS broth and incubated for 48 hours at 25°C, sub-cultured into 50 

mL of fresh MRS broth and incubated for another 12 hours. Approximately 108 CFU/mL of L. 

paracasei cells were obtained by centrifuging 50 mL of cell suspension at 10000 × g for 10 

minutes. The cells were washed twice with PBS and re-suspended into 50 mL of MRS broth or 

sterilised deionized water for encapsulation into W/O droplet. 

Samples of dead cells were prepared for determining the characteristics of both live and 

dead cells by suspending bacterial cultures of 108 CFU/mL in DIW and heat-treated at 80°C for 

30 minutes using an Eppendorf thermomixer. 80°C is the temperature used in pasteurization 

that resulted in the total reduction of viability for many bacterial strains including E. coli and 

Lactobacillus strains (Petruzzi et al. 2017). The heat-treatment of cells may result in dead cells 

and viable-but-not-culturable (VBNC) cells that were extensively injured to the point where 

they were unable to grow on nutrient agar (for E. coli-GFP) and MRS agar (for L. paracasei). 

In this study, the viability of bacteria was determined based on membrane integrity thus, a 
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bacterial cell with the inability to grow on agar plates together with positive staining of PI was 

termed as dead or thermally-inactivated. 

3.2.5 Bacteria encapsulation in single Water-in-oil emulsion 

E. coli-GFP in LB broth and L. paracasei in MRS broth were then used as the aqueous phase 

of the W/O droplet with 108 CFU/mL of cell concentration. The continuous oil phase consisted 

of mineral oil with 1.5% w/v PGPR surfactant. The bacterial encapsulation was conducted by 

using a flow-focusing microfluidic device as described in section 3.2.3. The suitable flow rates 

used for droplet production were determined from the experiment described in section 3.2.3 

whereby the chosen flow rates were, 3 µl/min for the dispersed aqueous phase containing 

bacteria and 30 µl/min for the continuous oil phase, forming a droplet of approximately 40-50 

µm in diameter. The average cell number per droplet was not determined in this study due to 

the high density of cell used (108 CFU/mL). According to Lu et al. (2017), the high density of 

cells leads to a lack of precision in cell counting per droplet due to high droplet occupancy. This 

is due to the high possibility of cells overlapping that affected the accuracy of the cell count. 

W/O droplet with E. coli-GFP or L. paracasei in DIW as the inner aqueous phase were used as 

non-nutrient controls. In addition, the empty droplet of LB broth, MRS broth and DIW were 

also produced as controls to determine the effects of bacteria on droplet stability. All samples 

were kept statically in Eppendorf tubes at 25 °C for five days.  

3.2.6 Determination of bacterial viability 

Viability was determined for bacteria encapsulated in W/O droplet with or without nutrient. 

Unencapsulated bacteria dispersed in sterilised DIW or LB broth (for E. coli-GFP) and MRS 

broth (for L. paracasei) were prepared as controls. Encapsulated samples were centrifuged at 

15 800 × g for 10 min in order to break the emulsion and release the entrapped cells. Viable 

cells were counted daily for both encapsulated and unencapsulated samples during the five days 
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of storage using the Miles and Misra method (Miles and Misra, 1931). Serial dilutions were 

done on the sample with PBS. For E. coli-GFP 10 µL of diluted sample was pipetted onto 

nutrient agar and incubated at 37°C for 24 hours while for L. paracasei, samples were pipetted 

onto MRS agar and incubated at 25°C for 48 hours. The detection limit for both E. coli-GFP 

and L. paracasei was 103 CFU/mL.  

3.2.7 Fluorescence microscopy for bacterial response observation  

Fluorescence microscopy was conducted in order to distinguish the viability of the encapsulated 

bacteria in W/O emulsion droplet. Dead cell observation was done by staining E. coli-GFP and 

L. paracasei with PI. Additionally, L. paracasei was stained with AO for viable cell 

observation. It has been reported that the use of PI stain with GFP provides a better distinction 

of E. coli viability as compared to SYTO9-PI dual staining (Lehtinen, Nuutila and Lilius, 2004). 

GFP produces a green signal indicating viable E. coli cell whereas PI produces a red signal that 

indicates dead cell as the stain is only able to bind with the DNA of the damaged cell. As the 

viability of bacteria in this study were classified based on membrane integrity, the use of GFP 

with PI stain is suitable for the determination of E. coli cell viability. Besides that, the use of 

AO with PI for determining the viability of L. paracasei is suitable for this study as they possess 

different exciting and emission wavelengths that aid in distinguishing between live and dead 

cells. The AO can easily traverse the cell membrane of a viable cell to bind with the DNA 

producing green signal whereas PI can only bind with the DNA of damaged cells producing a 

red signal. However, in order to distinguish between the live E. coli-GFP cell from the live AO 

stained L. paracasei cell, the AO stained cell was coloured as yellow in this study. The AO/PI 

stain has been used effectively for determining cell viability in a study done by Hussein et al. 

(2019). 
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 The samples were prepared for microscopy by placing 1 drop of sample onto a glass 

slide and covering it with a coverslip. The samples were then observed at 100× magnification 

with immersion oil and micrographs of the samples were acquired using the Axiocam ICm1 

digital camera system of 1.4-megapixel camera and Axiovision software (Zeiss). The emission 

was observed at 509 nm (GFP), 502 nm (AO) and 645nm (PI) using a mercury arc lamp. The 

micrographs obtained was overlaid and image analysis was done using ImageJ to determine the 

size of bacterial clustering with respect to droplet size. 

3.2.8 Observation of bacterial clustering with confocal microscopy 

In order to clearly observe the clustering of bacteria in the W/O droplet, images of E. coli-GFP 

clustering in the droplet containing LB Broth were taken using Leica TCS SPE confocal 

scanning microscope at 100× oil magnification. GFP excitation was observed at 509 nm. 

Images were taken at 3 µm intervals over a 30-60 µm of sample depth. The images were 

reconstructed to produce z-projections and 3D images of the samples to provide clear 

observation of the overall structure of bacterial clustering in the W/O droplet. 

3.2.9 Bacterial hydrophobicity test 

Bacterial hydrophobicity was tested in order to determine the difference in hydrophobicity 

between live and dead cells of E. coli-GFP and L. paracasei. The assay was conducted 

according to Rosenberg et al. (1980). Washed bacterial cells (1.2 mL of live or dead) in 

sterilised DIW were added into four round bottom test tubes and the initial absorbance (before 

treatment with oil phase) was measured at 600 nm. Different volumes of mineral oil (0.2, 0.15, 

0.1, 0.05 mL) were then added into the test tubes. After 10 minutes of incubation at room 

temperature, the samples were mixed by vortexing the test tubes for 2 minutes. After mixing, 

the samples were left upright at room temperature to allow the separation of the oil and bacterial 

suspension. The aqueous phase was then carefully drawn out of the test tubes by using a pipette 
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and the absorbance of the aqueous phase was measured at 600 nm for the samples after being 

mixed with mineral oil. The percentage of absorbance was calculated for samples after 

treatment relative to samples before treatment with different volumes of mineral oil.  

3.2.10 Interfacial tension determination between bacteria and mineral oil 

The test was done in order to determine the affinity of E. coli-GFP and L. paracasei towards 

the mineral oil and to compare the difference between live and dead bacterial cells. The 

interfacial tension between bacterial suspension and mineral oil was measured by the pendant 

drop method using Attension Theta optical tensiometer and comparisons were made between 

live and dead bacterial cells suspended in sterilised deionised water (DIW) against mineral oil 

(with or without 1.5% PGPR). Different cell concentrations were prepared for both live and 

dead cells (OD600 values of 0.07, 0.4, 0.7, 2.3) with samples without bacteria as control. The 

samples were prepared by serial dilutions and the OD600 were measured by using a 

spectrophotometer (Jenway 6305, Bibby Scientific Ltd., United Kingdom) to determine the 

effect of different bacterial concentrations on interfacial tension. Samples containing a mixture 

of live and dead cells at different ratios (Live: Dead, 30:70, 50:50, 70:30) were also tested. A 

drop of the sample (11 µL) was introduced into the mineral oil and was left to stabilise for 3 

minutes. Interfacial tension readings (mN/m) were then measured and the process was repeated 

for 3 droplet replicates. 

3.2.11 Bacterial surface zeta potential determination 

The zeta potential of bacterial suspension was measured for both live and dead cells of E. coli-

GFP and L. paracasei in different suspension solutions in order to determine colloidal stability. 

Samples were prepared by suspending live or dead cells in different suspensions (LB broth for 

E. coli-GFP, MRS for L. paracasei or DIW). In addition, mixed samples containing both live 

and dead cells suspended in DIW with different ratios (L:D, 70:30, 50:50, 30:70) were also 
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prepared. Approximately 1 mL of diluted sample (OD600= 0.34) was carefully loaded into 

folded capillary zeta cell (Figure 3.3) and the zeta potential was measured using dynamic light 

scattering zeta sizer nano by Malvern Instruments. 

 

 

 

  

 

3.2.12 Statistical analysis 

The experiments were conducted with three replicates. For the experiment that determines the 

effect of variables on droplet diameter, a total of 900 droplets were measured for diameter 

(N=900). The generated data were analysed with Excel (Microsoft Corp.) in order to calculate 

the mean, standard deviation (SD), standard error of mean (SEM) and coefficient of variation 

(CV) values. Data on droplet size was presented with SD as it described the variability in the 

diameter of the droplet produced with the microfluidic method and also during storage. SD also 

gives an indication of the monodispersity of the droplet produced and changes during storage 

through the measurement of CV (standard deviation divided by mean). Other data such as 

bacterial viability were presented with SEM as it indicates the precision of the sample mean 

and the level of uncertainty around the sample mean by taking into account the sample size 

(Altman and Bland, 2005). Student’s T-test was conducted in order to compare two means while 

one-way ANOVA with Tukey’s HSD was conducted to compare several means by using IBM 

Figure 3.3 Folded capillary zeta cell used for zeta potential 
measurements. Adapted from Malvern Instruments Ltd. (2013). 
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SPSS statistical software version 21. The difference between the means was considered 

significant at P < 0.05.  

3.3 Results and discussion 

3.3.1 Generation of monodispersed water-in-oil droplet incorporated with bacteria 
 

Droplet generation experiments were done in order to determine the ability of the flow-focusing 

microfluidic device to generate monodispersed droplet and their compatibility with bacteria.  

The effects of different flow rate ratios on droplet size were studied to determine the stable 

dripping regime in which droplet can be formed (Figure 3.4). The dimensions of the flow-

focusing microfluidic device used for droplet generation was 100 µm (width at the junction), 

200 µm (width at exit channel) 50 µm (height) as shown in Figure 3.5. 
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Figure 3.4 The average diameter of droplet generated with a flow-focusing microfluidic device with 
respect to (a) flow rate ratio, whereby an increase in the ratio of dispersed aqueous phase (Qd) with 

respect to the continuous oil phase (Qc) resulted in an increase in average droplet diameter. No droplet 
was formed at the backflow and jetting regime. The effect of bacteria on droplet formation (b) shows 
no significant difference in droplet diameter between the samples (P = 1.00). Bars represent mean ± 

SD taken from 3 independent experiments with N= 900. The data were analysed with one-way 
ANOVA at a significant level of P < 0.05. 

a 

b 

Without bacteria 

With E. coli-GFP 

With L. paracasei 
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Figure 3.5 Monodispersed W/O droplet formation with a flow-focusing microfluidic device. W/O 
droplet was formed at the flow-focusing junction (in the circle). The widths of the channel were (a) 

100 µm and (b) 200 µm. Scale bar represents 200 µm. 
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Figure 3.4 (a) shows the average diameter of W/O droplet generated with a flow-

focusing device at different flow rate ratios of dispersed phase to the continuous phase (Qd/Qc). 

From the graph, it was determined that the size of the droplet formed depended on the flow rate 

ratio whereby droplet generated at a lower flow rate ratio had a smaller droplet diameter 

compared to droplet generated with a higher flow rate ratio. This is because, at a lower flow 

rate ratio, the difference in flow rate between the continuous phase and the dispersed phase was 

larger and therefore, the droplet broke easily at the junction producing smaller droplet. 

However, no droplet were formed at a continuous flow rate of 10 µL/min or 20 µL/min with 

flow rate ratios of 1:10 and 1:8 as the dispersed phase were not able to enter the junction 

(backflow) due to the large difference in flow rate between the dispersed and continuous phase 

(Christopher and Anna, 2007). 

Increasing the flow rate ratio to 1:1 at a continuous flow rate of 10 µL/min or 20 µL/min 

caused the formation of droplet with larger diameter as the droplet was not able to break easily 

at the junction due to lower shear stress, causing the dispersed phase to be elongated at the 

junction before breaking. However, further increasing the continuous flow rate to 50 µL/min, 

60 µL/min or 70 µL/min at a high flow rate ratio of 1:2 or 1:1 had caused zero formation of 

droplet as the system reached the unstable jetting regime. Monodispersed W/O droplet was 

formed at the stable dripping regime by tuning the continuous phase flow rate to 30 µL/min or 

40 µL/min where droplet was generated at every flow rate ratios (Figure 3.4 b). Therefore, these 

flow rates were chosen in order to produce droplet incorporated with bacteria. The flow rate 

ratio of 1:10 with a continuous flow rate of 30 µl/min was chosen as it is able to produce droplets 

with 40-50 µm in diameter. In addition, the effects of bacteria on droplet generation was also 

determined as in Figure 3.4 (b). The droplet was formed at a flow rate ratio of 1:0 with different 
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continuous phase flow rate. From the graph, it was observed that no significant (P = 1.00) 

difference in droplet size was observed with the addition of bacteria. 

3.3.2 The effect of bacteria on droplet stability 

In order to understand the effects of bacteria on the stability of W/O emulsion, changes in 

droplet size were observed daily by optical microscopy and droplet diameter was measured by 

analysing photomicrographs using MATLAB software during five days of storage. The data 

obtained were plotted as in Figure 3.6 to determine changes in droplet size distribution during 

storage for samples of bacteria (E. coli-GFP or L. paracasei) encapsulated with nutrient (LB 

broth for E. coli-GFP and MRS for L. paracasei) or sterilised DIW to investigate the effect of 

bacterial growth on stability. In addition, the control samples of empty droplet with only 

nutrient (LB or MRS broth) or sterilised deionised water was also measured for changes in 

droplet size. The droplet size distribution was characterized by measuring the CV whereby a 

CV below 25% indicates monodispersed droplet while emulsions with CV above 25% are 

regarded as polydispersed (Romoscanu et al., 2010).
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Figure 3.6 Droplet size distribution at Day 0 (····), Day 1 (----), Day 2 (- ··), Day 3 (- · -), Day 4 (- - -), Day 5 (     ). Frequency (%) 
refers to the percentage of droplet. Data was analysed with N=900 droplet. 
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Table 3.1 Summary of changes in droplet stability during five days of storage at 25°C. Data represent 
the mean ± standard deviation from 3 independent experiments with N=900 droplet. The average 
diameters were measured daily during five days of storage and the overall change in diameter (%) was 
measured based on the diameter at day 0 with respect to day 5. The CV values were measured by 
dividing the standard deviation with the average droplet diameter for each storage days. The average 
diameters at different storage day were compared within each sample while the overall diameter changes 
were compared between samples. 

Samples Days Average diameter 
(µm) 

Overall diameter 
changes (%) 

Coefficient of 
variance (%) 

Empty DIW 0 42.0 ± 3.9a  
 
 

21.2 ± 10.7a 

9.3 

1 46.3 ± 4.0b 8.6 

2 48.0 ± 5.5bc 11.5 

3 49.0 ± 6.7cd 13.6 

4 50.4 ± 7.9d 15.7 

5 51.2 ± 9.2d 18.0 

Empty LB broth 0 46.5 ± 4.4a  
 
 

21.3 ± 6.2a 

9.5 

1 50.4 ± 4.6b 9.1 

2 52.1 ± 5.5c 10.6 

3 53.4 ± 6.0cd 11.2 

4 55.6 ± 6.8de 12.2 

5 56.6 ± 8.2e 14.5 

E. coli-GFP in DIW 0 43.8 ± 4.3a  
 
 

20.6 ± 3.9a 

9.8 

1 44.3 ± 4.7a 10.6 

2 48.5 ± 5.4b 11.1 

3 48.1 ± 6.0b 12.5 

4 51.9 ± 6.2c 11.9 

5 53.0 ± 6.9c 13.0 

E. coli-GFP in LB broth 0 48.3 ± 3.7a  
 
 

14.8 ± 1.4b 

7.7 

1 50.6 ± 3.7ab 7.3 

2 52.0 ± 3.7bc 7.1 

3 53.9 ± 3.6cd 6.7 

4 54.7 ± 3.6d 6.6 

5 55.4 ± 3.6d 6.4 

Empty MRS broth 0 43.3 ± 4.4a  
 
 

21.6 ± 8.7a 

10.2 

1 44.6 ± 5.3b 11.5 

2 47.4 ± 6.1b 12.7  

3 49.7 ± 7.2c 14.5 

4 50.9 ± 8.5c 16.7 

5 52.9 ± 9.1d 17.3 

L. paracasei in DIW 0 43.7 ± 4.7a   
 
 

20.6 ± 6.8ac 

10.8 

1 44.8 ± 4.8ab 10.7 

2 46.0 ± 5.4b 11.7 

3 48.1 ± 6.8c 14.1 

4 49.2 ± 7.9c 16.1 

5 52.9 ± 8.6d 16.3 

L. paracasei  in MRS 
broth 

0 42.9 ± 4.8a  
 
 

19.1 ± 6.1c 

11.2 

1 45.8 ± 4.9a 11.0 

2 48.8 ± 5.8b 11.9 

3 49.5 ± 6.6b 13.3 

4 50.3 ± 6.7bd 13.3 

5 51.3 ± 8.3d 16.1 

The data were analysed with one-way ANOVA. 
abcdemean ± standard deviation with different letters are significantly different at P < 0.05 
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From the results obtained, it was observed that at day 0, the measured diameter of the 

droplet generated by the microfluidic device for all samples was approximately 40-50 µm and 

monodispersed droplet was produced for all samples indicating the ability of the designed flow-

focusing microfluidic device to produce monodispersed droplet (Figure 3.6). Due to the 

monodispersity of the droplet formed at day 0 for all samples, the polydispersity effects were 

excluded in determining the stability of the droplet and thus, variations in droplet size observed 

during static storage at 25°C was solely attributed to droplet composition.  

The change in droplet stability was observed for five days of storage as a significant 

difference in droplet diameter (P < 0.001) and the effect of bacteria addition on droplet stability 

was clearly observed after five days storage. In general, the average droplet size for all the 

samples tested increased after five days of static storage at 25°C as shown in Table 3.1. 

Referring to the average diameter of the droplet in Table 3.1, a significant increase (P < 0.001) 

in droplet diameter was observed after one day of storage for all the control samples of empty 

droplet (empty DIW, LB broth and MRS broth). However, for samples containing bacteria 

(E.coli-GFP in DIW, E.coli-GFP in LB broth, L.paracasei in DIW and L.paracasei in MRS 

broth), a significant increase (P < 0.001) in droplet diameter was only observed after two days 

of storage. Comparing the overall diameter changes (%) between the empty droplet of DIW, 

LB and MRS broth shows that the addition of nutrient of both LB and MRS does not 

significantly affect the changes in droplet size as no significant difference (P = 1.00) was 

observed between the samples. Moreover, the addition of bacteria (both E.coli-GFP and 

L.paracasei) in DIW does not significantly affect (P =  0.997) the overall changes in droplet 

diameter as compared to the empty sample of DIW whereas the addition of E.coli-GFP in LB 

broth and L.paracasei in MRS broth resulted in a significant change (P < 0.001) of the overall 

droplet diameter when compared with the empty samples of LB and MRS broth. 
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As expected, the results obtained show that all samples remained monodispersed during 

five days of storage due to the presence of PGPR as surfactants in the continuous oil phase 

(refer to section 3.2.4 of bacteria encapsulation method). Although the monodispersity of 

samples was maintained during storage, an increase in CV value was observed during five days 

of storage for all the control samples of empty droplet with or without nutrients. Incorporating 

bacteria into the emulsion droplet helped in maintaining the CV value for example, with the 

presence of E.coli-GFP in LB broth, only 1.3% changes in CV value was observed after five 

days of storage with respect to day 0 while the control sample of empty LB broth show an 

increase in CV value (5.5%). The same result was also observed for E.coli-GFP in DIW 

whereby only a 3.2% increase in CV value was observed as compared to empty DIW droplet 

with an 8.7% increase in CV value.  Comparing between E.coli-GFP and L.paracasei, samples 

containing E.coli-GFP shows a smaller change in CV value as compared to L.paracasei 

whereby sample containing L.paracasei in DIW shows a 5.5% increase in CV value as 

compared to E.coli-GFP with only 3.2% increase. This strongly suggests the role of bacteria in 

droplet stabilization in which the addition of E. coli-GFP showing better stability as compared 

to samples containing L. paracasei. Comparing droplet of bacteria with and without nutrient, it 

shows that droplet of bacteria encapsulated with nutrient had better stability compared to the 

droplet of bacteria encapsulated without nutrient for both E. coli-GFP and L. paracasei. The 

increase in average droplet size and CV value for control samples of empty droplet after five 

days of storage indicates instability due to the occurrence of emulsion breakage and coalescence 

during storage which was minimized in samples containing bacterial cells.   

It has been reported previously that bacterial cells may act as particles that help in the 

stabilization of O/W emulsions (Dorobantu et al., 2004; Wongkongkatep et al., 2012; 

Firoozmand and Rousseau, 2016) which explains the stability of the droplet incorporated with 
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bacteria. The encapsulated bacteria in W/O droplet may act as particles that aid in maintaining 

the stability of the droplet in a similar way as it was observed in the stabilization of O/W 

emulsions droplet incorporated with bacteria. The stabilization effect of bacteria particles in the 

emulsion is probably due to the formation of an emulsion system known as Pickering emulsions 

whereby the adherence of bacterial cells onto the interface helps in reducing the interfacial 

tension. Furthermore, the addition of nutrients that promotes the growth of bacterial cells also 

plays an important role in droplet stabilization as the encapsulation of bacteria with nutrients 

increases the number of cells in the droplet that act as particles that improve bacterial coverage 

on the interface of the droplet. In addition, the presence of proteins such as tryptone (in LB 

broth) and peptone (in MRS broth) may also act as a stabilizer in maintaining the stability of 

droplet (Damodaran 2005). 

Although the results strongly suggest the role of bacterial cells in stabilizing the droplet, 

it only showed its ability to minimize the change in droplet stability and does not offer total 

stabilization effects as droplet size was still increased after five days of storage. This may be 

attributed to the active coarsening that occurs between droplet containing bacteria and empty 

droplet within the same system. This has been observed in the previous studies done on the 

encapsulation of bacteria in single W/O emulsion droplet (Boitard et al., 2012; Chang et al., 

2015). In a single emulsion system containing bacteria as the aqueous phase, active coarsening 

of the droplet is driven by the osmotic imbalances between droplet containing bacteria and 

empty droplet within the same emulsion system. Nutrient depletion due to bacterial bioactivity 

reduces the overall solute concentration within the droplet causing osmotically driven water 

flux from droplet containing bacteria to neighbouring empty droplet. This causes the droplet 

containing bacteria to shrink while the empty droplet swell (Boitard et al., 2012; Chang et al., 

2015). Although the microfluidic encapsulation of bacteria enables the control of the size of the 
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droplet during droplet formation, it is impossible to precisely control the number of bacterial 

cells encapsulated within each droplet especially when encapsulating a large number of bacteria 

in a fairly large-sized droplet. This may cause the production of empty droplets containing only 

DIW or LB broth within the same system that creates an osmotically imbalanced environment 

between droplet. Therefore, these effects may cause a shift in droplet distribution towards the 

larger-sized droplet (Figure 3.6). In conclusion, although the results clearly show the ability of 

bacteria in emulsion stabilization, further investigations are needed in order to fully understand 

the mechanism of W/O droplet stability by bacterial cells.  

3.3.3 The viability of encapsulated bacteria during storage 

The viability of bacterial cells was determined in order to study the effect of encapsulation on 

bacterial growth as presented in Figure 3.7. Samples of encapsulated bacteria with nutrient (LB 

broth for E. coli-GFP and MRS for L. paracasei) or DIW were prepared together with control 

samples of free bacterial cells suspended in nutrient (LB or MRS broth) or DIW.  
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Figure 3.7 Bacterial growth during five days of storage for free bacterial cells and encapsulated 
bacterial cells in W/O droplet with or without nutrients. Bars represent mean ± SEM taken from 3 

independent experiments (N=3) with 30 µl of sample tested with Miles and Misra technique for each 
experiment. 
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Figure 3.7 shows a comparison in the viability of bacteria for encapsulated and 

unencapsulated samples. As expected, a decrease in viable cells was observed for all samples 

suspended in DIW for both E. coli-GFP and L. paracasei. Encapsulation in W/O droplet with 

DIW did not improve the viability of bacterial cells as a decrease in viable cells was also 

observed for samples of encapsulated bacterial cells whereby the lack of nutrient had caused 

the cells to enter death phase. Referring to samples of E. coli-GFP suspended in LB broth, an 

increase in the growth of bacterial cells was observed for free E. coli-GFP cells during storage 

while an increase in the growth of E. coli-GFP cells encapsulated in W/O droplet was only 

observed on the first day of storage before decreasing. This shows that the growth of E. coli-

GFP in W/O droplet was suspended and that encapsulation inhibited the growth of E. coli-GFP 

cells.  Nevertheless, samples of L. paracasei suspended in MRS broth shows contradictory 

results whereby a slow but ongoing increase in viable cells was observed for both free and 

encapsulated samples. 

The difference in viability between E. coli-GFP and L. paracasei may be attributed to 

the difference in growth rate as E. coli-GFP has a higher growth rate as compared to L. 

paracasei. The generation time in which the amount of time required by a bacteria cells to 

double in number during a designated time is reported to be around 20 minutes for free E. coli-

GFP cells in LB broth under optimum conditions (Sezonov, Joseleau-Petit and D’Ari, 2007) 

and one hour for lactobacilli (Brizuela, Serrano and Ferez, 2001; de Mesquita et al., 2017; 

Rezvani, Ardestani and Najafpour, 2017). The rapid growth of E. coli-GFP cells during the first 

day of storage speeds up nutrient depletion in each W/O droplet resulting in a decrease in 

bacterial viability after one day due to its inability to support the growth of bacteria in the 

droplet. This is in contrast with samples containing L. paracasei whereby slower growth rate 

had caused slower depletion in nutrients and therefore helps in maintaining the growth of L. 
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paracasei during five days of storage. Encapsulation limits the availability of nutrients and 

space for bacterial growth that lowers the bacterial growth rate and yield. Similar behaviour has 

been previously reported in the study of bacterial growth in O/W emulsion whereby inclusion 

of bacteria in the crowded environment of oil droplet reduced the growth rate and yield of 

bacterial cells (Parker et al., 1995). In that study, the growth of bacteria was inhibited from 

planktonic to clustering that resulted in a reduced growth rate. In addition, the accumulation of 

bacterial metabolic end product may also inhibit the growth of encapsulated bacteria. Moreover, 

mineral oil has lower oxygen permeability as compared to water which limits the diffusivity of 

oxygen for maximum bacterial growth.   

Nevertheless, referring to droplet size distribution results in section 3.3.2, the stability 

of the droplet was highly maintained for droplet containing bacteria even though the bacterial 

viability test showed a decrease in bacterial viability during storage. This was also true for 

bacteria encapsulated in DIW whereby inclusion of bacteria in DIW improved the stability of 

droplet although a decrease in cell viability was observed. The decrease in bacterial viability 

indicates the presence of dead cells within the droplet. Therefore, the stability of droplet with 

reduced cell viability indicates the role of dead cells in droplet stabilization. Dead cells may act 

as particles that adhere to the interface of W/O droplet and aid in droplet stability.  

3.3.4 Microscopic observation of bacteria response in water-in-oil droplet 

Following the results obtained from droplet stability and bacterial viability tests, it was 

hypothesized that the inclusion of bacterial cells in the W/O droplet promotes droplet stability 

during storage. In addition, droplet stability was also attributed to the presence of dead cells 

within the droplet during five days of storage. In order to provide a clear explanation of the 

mechanism of droplet stability due to bacteria, a microscopic observation was done daily during 
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storage to distinguish the growth of bacteria and the presence of dead cells within the droplet. 

However, photomicrographs of the samples presented in Figure 3.8 and Figure 3.9 only includes 

samples before storage (day zero), after one day and five days of storage as changes in bacterial 

growth were clearly observed during these periods. In addition, photomicrographs of the control 

sample of free (unencapsulated) bacteria with or without nutrient were also presented in figure 

3.9. 
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Figure 3.8 Photomicrographs of bacterial cells encapsulated in W/O droplets during storage 
showing (a) live cells and (b) dead cells. Bacterial clusters were observed during storage for 

samples encapsulated with nutrient. Presence of dead cells  were also observed after one day of 
storage for all samples of bacteria encapsulated with or without nutrient. Colour codes were 

described as, Green: Live E. coli-GFP cells, yellow: Live L. paracasei cells and red: Dead cells. 
Scale bar: 10 µm 
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Figure 3.9 Photomicrographs of free (unencapsulated) bacterial cells suspended in LB broth (for E. 
coli- GFP, shown by green coloured cells) and MRS broth (for L. paracasei, shown by yellow 

coloured cells). No bacterial clusters were observed during five days of storage. Scale bar: 10 µm. 
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From the photomicrographs of fluorescence microscopy for encapsulated E. coli-GFP 

samples (Figure 3.8a), ropey-like structures were observed after two hours (at day 0) of bacterial 

encapsulation in LB broth that leads to the formation of bacterial clustering after one day of 

storage. The formation of bacterial clustering was only observed for bacteria encapsulated with 

LB broth while droplet containing bacteria in DIW and unencapsulated samples in DIW or LB 

broth (Figure 3.9) remained planktonic. For L. paracasei samples, the presence of bacterial 

clusters was only observed after five days of storage for samples encapsulated with nutrient and 

no bacterial clusters were observed for samples encapsulated with DIW or unencapsulated 

samples in DIW or MRS broth (Figure 3.9).  This is in agreement with studies done by Chang 

et al. (2015) and Barlow et al. (2017) whereby clusters of bacteria was observed when biofilm-

forming bacteria Bacillus subtilis was encapsulated in single W/O emulsion and in the inner 

phase of double W1/O/W2 emulsion.  As expected, the presence of dead cells was observed after 

one day of storage which can be seen mostly on the interface (Figure 3.8b).  

In the study done by Chang et al. (2015) on the growth of biofilm in a microfluidic-

generated droplet, clumps of bacteria were observed in W/O droplet containing Bacillus 

subtilis. However, due to the absence of surface-like surfactants, the bacterial biofilm was not 

formed on the interface of the droplet but was seen floating in the aqueous phase similar to the 

results obtained by Barlow et al. (2017). It was reported that with a continuous supply of 

nutrients from the outer aqueous phase of double W1/O/W2 emulsion, rapid formation of biofilm 

was observed as early as four hours of Bacillus subtilis encapsulation with the formation of 

ropey like structures (Barlow et al., 2017). In this study, the onset of biofilm formation by E. 

coli-GFP in W/O droplet was demonstrated with the formation of ropey-like structures after 

two hours of encapsulation that grew into distinct bacterial clusters after one day of storage. 

This is mainly due to the high growth rate of E. coli-GFP. Environmental stress such as nutrient 
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depletion, lack of oxygen and space for growth leads to several morphological and 

physiological changes in microorganisms. In such conditions, E. coli responded by ceasing all 

metabolic activity and growth in order to prolong their survival (Chung, Bang and Drake, 2006). 

Stress-induced enzymes were produced along with the accumulation of several storage 

compounds such as glycogen and polyphosphate. In addition, changes in cell size and shape 

were also observed which may lead to the formation of bacterial biofilms (Chung, Bang and 

Drake, 2006; Rowlett et al., 2017). However, as observed in this study and reported previously, 

the formation of bacterial clusters and biofilms for lactobacilli strains is less distinct as the 

limitation in growth due to environmental stress such as lack of nutrients was not sufficient to 

induce the formation of biofilm (Lebeer et al., 2007). 

In order to get a clear view of the formation of bacterial clusters, the percentage and size 

of bacterial clustering with respect to the area of the droplet was quantified by analysing 

fluorescence photomicrographs with ImageJ (Figure 3.10). In addition, confocal microscopy of 

the encapsulated E. coli-GFP was also done after one day of storage as presented in Figure 3.11. 
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Figure 3.10 Cluster size with respect to storage days. Bars represent mean ± SEM taken from 3 
independent experiments. A total of 10 droplets were measured for each experiment (N=10) 

 

 

 

Figure 3.11 Cross-sectional images of E. coli-GFP clustering cells taken using a confocal microscope 
at day one of storage. Scale bar: 25 µm. 
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For E. coli- GFP, a large percentage of the bacterial cluster was observed on day one 

which started to decrease after one day of storage as opposed to L. paracasei whereby smaller 

cluster size was formed throughout the storage period. Day 0 shows a relatively small 

percentage of bacterial clustering for E. coli-GFP due to the formation of ropey-like structures 

at the beginning of the storage period. The decrease in size after 1 day of storage is attributed 

to the decrease in nutrients that caused a reduction in bacterial clusters as bacterial cells were 

detached from the clusters (Stoodley et al., 2001). In addition, the lack of surface for attachment 

eases the process of cell detachment. The presence of planktonic dead cells was observed after 

1 day of storage with the majority seen on the interface indicating the ability of dead bacterial 

cells as Pickering particles for droplet stabilization (Figure 3.6b). Due to distinct bacterial 

clusters formed after one day of storage, confocal microscopy was done on samples containing 

E. coli-GFP that produces a 3D image of the droplet (Figure 3.8). Cross-sectional images of 

bacterial clustering show the formation of bacterial clustering that extends from the top to the 

bottom of the droplet.  

3.3.5 Characterisation of bacterial hydrophobicity and affinity towards the oil phase 

The determination of bacterial hydrophobicity and affinity towards the oil phase was done in 

order to determine the surface-active characteristics of bacterial cells that aid in maintaining the 

stability of W/O droplet during storage. This involves the determination of bacterial 

hydrophobicity through the bacterial adherence to hydrocarbons assay (BATH) as presented in 

Figure 3.12 and the interfacial tension test of bacterial suspension against the oil phase as 

presented in Figure 3.13.   
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3.3.5.1 Bacterial hydrophobicity 

 

Figure 3.12 Bacterial adherence to mineral oil for live and dead cells at different mineral oil volume. 
The absorbance of bacterial suspension taken from each sample was measured against mineral oil 

volume. Bar represents mean ± SEM for 3 independent experiments (N=3). 
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The BATH assay was conducted according to Rosenberg et al. (1980). The test was 

done on both live and dead cells to determine the adherence ability of bacterial cells onto 

mineral oil. Figure 3.12 shows a decrease in absorbance with an increase in mineral oil volume 

for dead cells while no changes in absorbance were observed with the presence of live cells. 

The decrease in absorbance with an increase in mineral oil volume indicates an increase in the 

overall hydrophobicity as more dead bacterial cells adhere to the mineral oil. Transition in the 

wettability of bacterial cells was observed when the bacteria undergo death phase. This explains 

the observed affinity towards the interface for dead cells under the fluorescence microscope. 

Comparing between E. coli-GFP and L. paracasei, it was observed that dead E. coli-GFP cells 

exhibited better affinity towards mineral oil compared to dead L. paracasei. This is due to the 

difference in lipid and lipoprotein content of the bacteria whereby the Gram-negative E. coli 

has higher lipid content as compared to the Gram-positive L. paracasei due to the presence of 

the outer membrane in the Gram-negative bacteria (Seltmann and Holst, 2013).  

The results obtained provide an idea on the stabilization mechanism of bacterial cells 

incorporated in W/O emulsion droplet. At the beginning of the storage time, an increase in 

bacterial cells occurred that leads to the formation of bacterial clustering. During this time, 

droplet stability was mainly maintained by the presence of surfactants on the interface as live 

cells with weak hydrophobicity prefer to stay in the aqueous phase rather than at the interface. 

After one day of storage, the presence of dead cells with high affinity towards the oil phase was 

observed that aided in maintaining droplet stability. It has been reported previously that 

thermally-inactivated microbial cells may act as particles in stabilizing Pickering oil-in-water 

emulsions via hydrophobic interactions whereby the denaturation of proteins in the bacterial 

cell wall caused the exposure of hydrophobic groups (Firoozmand and Rousseau, 2016). The 

ability of bacteria to adsorb onto the water-oil interface depends on several factors such as cell 
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surface characteristics, size and bacterial concentration. Nevertheless, changes in bacterial 

characteristics such as cell size and shape as it becomes smaller and rounder along with changes 

in the fatty acid and protein composition of the bacterial membrane due to other environmental 

stress such as starvation (Chung, Bang and Drake, 2006) may contribute to the increase in 

bacterial affinity towards the interface. As the cell becomes smaller and rounder, the cells can 

be easily embedded within the interface. In addition, the existence of pili on the bacteria which 

is known to assist its attachment onto surfaces and formation of biofilm may also play a role in 

the adsorption of bacteria onto the interface (Firoozmand and Rousseau, 2016).    

3.3.5.2 Interfacial tension 

In order to further understand the surface-active characteristics of bacterial cells, the interfacial 

tension test was done by adding bacterial suspension into mineral oil with or without 1.5% w/v 

PGPR surfactant using the pendant drop method. The results were as presented in Figure 3.13. 
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Figure 3.13 Interfacial tension of bacterial suspension at different concentration against mineral oil 

with (a) samples without PGPR in the oil phase (b) samples with PGPR in the oil phase. Bar 
represents mean ± SEM from 3 independent experiments (N=3). 
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The interfacial tension of bacterial cells suspended in DIW at different concentration 

against mineral oil was measured in mN/m by the attension software. From Figure 3.13, it was 

determined that the interfacial tension was reduced with the addition of bacteria even at low 

concentration for both samples with or without PGPR whereby greater reduction interfacial 

tension was observed in the absence of PGPR (Figure 3.13 a) as compared to samples with 

PGPR (Figure 3.13 b). In addition, it was also shown that the interfacial tension was affected 

by the bacterial concentration for both E. coli-GFP and L. paracasei samples whereby a 

reduction in interfacial tension was observed with an increase in bacterial concentration. The 

interfacial tension was better reduced in the presence of E. coli-GFP cells as compared to L. 

paracasei cells for both samples of live and dead cells with or without PGPR surfactant. As an 

example, referring to Figure 3.13 a for samples without PGPR surfactant, a reduction in 

interfacial tension was observed from 44.5 mN/m to 39.5 mN/m (5 mN/m reduction) as the OD 

reading for live E. coli-GFP cells increased from 0 to 0.4 whereas the interfacial tension was 

only reduced from 50.3 Mn/m to 48.2 Mn/m (2.1 mN/m reduction)  with the same increase in 

bacterial concentration for live L. paracasei cells. When comparing between live and dead cells, 

it was determined that the addition of dead cells showed a better reduction in interfacial tension 

as compared to live cells for both samples of E. coli-GFP and L. paracasei which may be 

attributed to the hydrophobic characteristic of the dead cells.  The addition of dead E. coli-GFP 

cells resulted in a better reduction of the interfacial tension as compared to dead L. paracasei 

cells which may be attributed to the difference in lipid content between the two bacterial strains.  
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Figure 3.14 Changes in interfacial tension with the addition of samples containing live and dead cells 
at a different ratio with (a) without PGPR in the oil phase (b) with PGPR in the oil phase. Bars 

represent mean ± SEM taken from 3 independent experiments (N=3). 
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The surface-active effect of samples containing a mixture of both live and dead cells at 

different ratios (L:D, 30:70, 50:50, and 70:30) was also determined as shown in Figure 3.14 

which clearly shows the effect of dead cells in reducing interfacial tension. From the results 

obtained, reduction in interfacial tension was affected by the ratio of dead and live cells in the 

sample with samples containing a higher ratio of dead cells shows better surface-active 

characteristics as it resulted in better interfacial tension reduction as compared to samples 

containing lower dead cells concentration. A similar trend was observed in both systems with 

or without PGPR surfactant. This shows that dead cells play a major role in reducing the 

interfacial tension compared to live cells.  

The effect of bacteria in reducing interfacial tension between water and oil phase has 

been reported previously by Chen and Wang (2016) whereby E. coli cells were shown to have 

a better effect on interfacial tension reduction as compared to Chlorella Vulgaris (C. vulgaris) 

cells and polystyrene microparticles due to their higher affinity towards the hydrophobic 

interface. The ability of bacteria in improving emulsion stability is mostly attributed to bacterial 

surface properties whereby the wettability, bacterial size, shape and concentration play a major 

role in ensuring the effectiveness of the bacteria (Dorobantu et al., 2004; Firoozmand and 

Rousseau, 2016).  As discussed before in section 3.3.5.1, changes in bacterial affinity towards 

the oil phase were observed when bacteria were in the dead phase due to rheological and 

physiological changes that occur in the cell membrane (Chung, Bang and Drake, 2006). 

Changes in bacterial wettability, when bacteria were in the death phase as reported in section 

3.3.5.1, caused the bacteria to become more adherent towards the oil-water interface due to 

changes in bacterial membrane conformation causing the hydrophobic groups to become more 

exposed. Moreover, environmental stress due to starvation caused the bacteria to become 

smaller and rounder that further improves its adherent ability towards the water-oil interface. 
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This explains the role of dead cells in reducing the interfacial tension. In addition, bacterial 

concentration is also important in ensuring effective coverage of the bacteria on the interface 

for stabilization. However, highly concentrated bacterial suspensions may cause the bacteria to 

cluster and diminish their ability to adhere to the interface. Therefore, further investigation into 

this matter may provide a better understanding on the mechanism of bacterial attachment onto 

the interface. 

3.3.6 Changes in the zeta potential of bacteria  

The zeta potential determination was done in order to determine the colloidal stability of 

samples containing bacterial cells in DIW or nutrient (LB or MRS broth) and the difference 

between live and dead cells. In addition, the interactions between live and dead cells were also 

determined by testing mixed samples containing different ratios of live and dead cells.  
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Figure 3.15 The zeta potential values of bacterial cells for (a) live or dead cells suspended in DIW or 
with nutrient, (b) mixed samples with Live:Dead cell ratio (L:D) of 30:70, 50:50 and 70:30. Bars 

represent mean ± SEM taken from 3 independent experiments (N=3). 
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The colloidal stability was determined by measuring the zeta potential of the bacterial 

suspension whereby values of more than +30 mV or less than -30 mV indicate an electrically 

stable colloid. Colloidal instability is perceived at values between -30mV to +30mV as solute 

particles tend to flocculate. From the results obtained, it was determined that bacterial samples 

suspended LB or MRS broth had better colloidal stability compared to samples in DIW. E. coli-

GFP shows a reduction in zeta potential value from -19.8mV to -34.6mV for live cells and -

26.48 to -36.36mV for dead cells when suspended in LB broth. In addition, dead E. coli-GFP 

cells show lower zeta potential values as compared to live cells and an increase in the number 

of dead cells in mixed samples also cause a reduction in the zeta potential value (Figure 3.12). 

This is in agreement with a study done by Beskok and Pillai (2008) whereby a reduction in zeta 

potential value was observed for E. coli-GFP samples grown in the rich medium as compared 

to starved cells. Changes in zeta potential were also observed when cells enter the death phase. 

This suggests that bacterial surface charge is affected by nutrient state and their viability. The 

suspension of bacteria in the LB or MRS broth along with changes in bacterial surface 

conformation as they enter the death phase also improve colloidal stability. For L. paracasei, 

the zeta potential value changed towards a positive value close to zero in MRS broth compared 

to in DIW. This is probably due to the interactions between L. paracasei cells and the 

environmental particles in the MRS broth whereby the presence of lactic acid due to 

fermentation of glucose in MRS broth lowered the pH and caused the carboxyl and phosphate 

group on the cell’s surface to be protonated (Larsen et al., 2018) and therefore improved 

colloidal stability. However, there is no difference observed in the zeta potential between live 

and dead L. paracasei samples and therefore indicates that change in bacterial cell surface as it 

enters the death phase does not affect the surface charge and colloidal stability. This is also 
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shown in samples containing mixed cells whereby an increase in dead cells amount does not 

affect changes in zeta potential (Figure 3.12b). 

The results obtained provide an overview of the stability of bacterial suspensions before 

droplet formation. The colloidal stability of bacterial suspensions is mainly due to the 

availability of nutrient in the suspension in which the interaction of bacteria with particulate 

solutes in nutrient (LB or MRS broth) improves colloidal stability. Other than that, it also shows 

that for samples suspended in nutrient (LB or MRS broth), the colloidal stability of the samples 

indicates that the bacteria are more likely in the planktonic state rather than clustering. 

Therefore, this indicates that the clustering of cells observed under fluorescence microscopy 

was solely caused by the entrapment of bacteria in W/O droplet. 
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3.4 Conclusion 
 

In conclusion, the inclusion of bacterial cells in W/O droplet affected the stability of droplet 

with the Gram-negative E. coli-GFP showed better stabilization effects compared to the Gram-

positive L. paracasei due to the difference in lipid content. Further investigations revealed the 

ability of bacteria to act as particles in stabilizing the W/O droplet whereby better surface-active 

effects were shown by dead cells as compared to live cells. The inability of bacteria to survive 

in W/O droplet during storage indicated the presence of dead cells with high affinity towards 

the interface (due to hydrophobic nature) which aids in maintaining the stability of the droplet 

during storage. The effects of bacteria on droplet stability depended on several factors such as 

the type of bacteria, bacterial viability and bacterial concentration whereby these factors play a 

major role in ensuring the effectiveness of bacteria as particles in promoting droplet stability 

Furthermore, the results obtained from this chapter provide an indication of the 

interrelationship between bacterial cells and W/O droplet microstructure that will be beneficial 

in understanding the stability of emulsion systems incorporated with bacteria. The proposed 

mechanism of bacterial stabilization effects in W/O droplet may be beneficial for the industrial 

application of emulsion systems with bacteria. In addition, it demonstrated the ability of droplet 

microfluidics in the development of model emulsion systems with controlled and 

monodispersed droplet size.  
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Chapter 4  

Emulsion stability and release of bacteria from 

microfluidic-generated water-in-oil-in-water 

droplet 
 

4.1 Introduction 

Double emulsions are emulsions within an emulsion which can be divided into two types such 

as water-in-oil-in-water (W1/O/W2) and oil-in-water-in-oil (O1/W/O2). Some of the applications 

of such emulsions are in food where they are used in producing reduced-fat products and for 

the encapsulation of highly sensitive product such as flavours and bacteria (Muschiolik and 

Dickinson, 2017). Double emulsions have also been extensively used in pharmaceuticals for 

drug delivery (Dluska et al., 2017) and cosmetics (Miyazawa and Yajima, 2000).  W1/O/W2 

emulsions are composed of two aqueous phases namely the inner and outer phases separated 

by a layer of oil in between. Depending on their application, they can be produced in a 

controlled manner with single inner core (Yan et al., 2013) or with multiple inner cores for 

compartmentalization (Hou et al., 2017) which can be produced through the microfluidics 

method.  

Apart from being used as a means of encapsulation, there are also other interesting 

applications of double emulsions for example in the controlled release of the encapsulated 

materials/ cargo that benefited from the destabilization process of double emulsions. The 

controlled release of bacteria from double emulsions has been discussed for the first time by El 

Kadri et al. (2015) whereby the osmotic alterations of the outer aqueous phase leads to the 
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controlled release of bacteria into the outer aqueous phase that is dependent on the solute, 

surfactants and the inner phase (W1) concentration. However, in that study, emulsion droplet 

was prepared by using two-stage homogenization process that produced double emulsion 

droplet with uneven numbers of the inner aqueous phase making it difficult to conduct a detailed 

investigation of the release mechanism. 

 Although studies have been done previously on the encapsulation and controlled release 

of bacteria in double emulsion droplet, further studies are still required to closely investigate 

the stability and destabilization process of the W1/O/W2 droplet in the presence of bacteria in 

order to permit their full utilisation in complex bacterial studies and at industrial level. The 

complex bacterial activity within the droplet may cause droplet instability as it changes the 

composition of the droplet. The metabolic activity of bacteria within the droplet may lead to 

continuous change in solute concentration due to nutrient depletion and the production of 

metabolic by-products. Furthermore, changes in bacterial activity may also affect the stability 

of the droplet in a similar or different way as it was discussed in the previous chapter while the 

addition of an outer aqueous phase may help in improving the viability of the bacteria. In 

addition, the application of droplet microfluidics allows for the controlled and monodispersed 

production of double emulsion droplet which is beneficial for close investigation on droplet 

stability and the mechanism behind the controlled release of bacteria. 

Therefore, this chapter aimed to investigate the effect of microfluidic encapsulation in 

double W1/O/W2 emulsions on droplet stability and bacterial viability. The application of 

double W1/O/W2 droplet for the controlled release of bacteria, induced by osmotic alterations 

was also explored in detail by using microfluidic for droplet formation. E. coli-GFP, one of the 

most common bacteria used in various applications was encapsulated by using a two-junction 
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flow-focusing microfluidic device forming monodispersed double W1/O/W2 droplet in a 

controlled manner.  The effect of nutrients and osmotic balance alterations on droplet stability, 

bacterial viability and controlled release was investigated in order to determine the potential 

use of W1/O/W2 for various bacterial study and industrial applications.      

4.2 Materials and methods 

4.2.1 Materials and bacterial cultures  

Materials and bacterial cultures used were as described in section 3.2.1 with the addition of 

sodium chloride, NaCl (Fischer Scientific, United Kingdom), Poly(allylamine hydrochloride) 

(Mw ≈ 17500), Poly(sodium 4-styrenesulfonate) (Mw ≈ 70000) and water-soluble surfactant, 

polysorbate 80 (Tween 80) all purchased from Sigma-Aldrich (United Kingdom). For the 

bacterial study, tryptone and yeast extract were purchased from Oxoid Ltd. (United Kingdom).  

D (+) – glucose was purchased from Acros Organics (United Kingdom) and Nile red stain was 

purchased from Invitrogen™ (United Kingdom). 

4.2.2 Microfluidic device fabrication 

The microfluidic device used for generating double emulsion droplet was produced as described 

in section 3.2.2. A device with two flow-focusing channels with the dimensions of 100 µm 

(width before junction), 25 µm (width at junction) and 50 µm (width of exit channel) for the 

first junction and 50 µm (width before junction), 100 µm (width at junction), 200 µm (width of 

exit channel) at the second junction with 50 µm depth was used for one-step production of 

double W1/O/W2 droplet (Figure 4.1). 
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Figure 4.1 Flow-focusing microfluidic device with two junctions for one-step W1/O/W2 droplets 
generation. W/O droplets were first produced at junction 1 that were then flowed into junction 2 for 

further encapsulation into the second aqueous phase (W2) forming W1/O/W2 droplet. The dimensions 
of the microfluidic device were, a: 100 µm, b: 25 µm, c: 50 µm, d: 50 µm, e: 100 µm, f: 200 µm for 

the widths of the channels while the depth of the channel is g: 50 µm. 
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4.2.3 Hydrophilic surface treatment for microfluidic device 

Surface modification was conducted according to Bauer et al. (2010) whereby the layer-

by-layer (LBL) method was employed to apply hydrophilic coatings of polyelectrolyte 

multilayer (PEM) onto the channel wall. The process was conducted as described in Figure 4.2 

whereby the PEM sequence that was loaded into a polyethylene (PE) tube was flushed through 

the microfluidic device by using a syringe pump. The PEM was composed of poly(allylamine 

hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) solutions in 0.5 M aqueous 

sodium chloride solution (0.1% w/v) with sodium chloride (NaCl) in deionized water (0.1M) 

as washing solution. The PE tube was alternatingly loaded with 5 cm segments of PAH and 

PSS with 2.5 cm long NaCl segments in between each segment by using a 5 mL syringe (BD, 

United Kingdom). All solution segments were separated from each other by 1 cm long air plugs 

(Figure 4.3).  

The production of double W1/O/W2 emulsion droplet requires partial surface 

modification of the microfluidic device. The microfluidic device used for generating double 

emulsion droplet composed of an upper part with a smaller channel dimension of 50 µm wide 

and the lower part with a wider channel dimension of 200 µm (Figure 4.4). The upper and the 

lower part of the device were joined at the second flow-focusing junction whereby the 

wettability of the channel was changed from hydrophobic to hydrophilic in order to assist the 

encapsulation of the single W/O droplet into double W1/O/W2 droplet. Immediately after 

microfluidic device preparation, the prepared polyelectrolyte sequences loaded in the PE tube 

were injected into the lower part of the device (Figure 4.4) while the device was still in a 

hydrophilic state. The whole sequence of PEM was flushed through inlet D at a constant flow 

rate of 50 µl h-1 using syringe pump (AL-1000, World Precision Instruments, United States) 

and exited at outlet A. Inlet B was flushed with deionised water at 100 µl h-1 to block the 
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streaming of polyelectrolytes solution into the upper part of the device while inlet C was closed 

during the process. At the end of the process, the lower part of the microfluidic device was 

coated with a sequence of PAH-PSS-PAH-PSS-PAH-PSS polyelectrolyte multilayer (PEM) 

rendering hydrophilic channel walls. 
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Figure 4.2 The schematic diagram of the hydrophilic treatment of the microfluidic device. The 
polyelectrolyte sequence (PEM) was flushed through the device by using a syringe pump at a constant 
flow rate of 50 µl h-1, in order to apply a hydrophilic coating on the channel wall. Adapted from Bauer 

et al. (2010). 

 

 

 

 

Figure 4.3 Polyelectrolyte multilayer (PEM) sequence in PE tube. The solutions were injected into the PE tube 
by using a syringe. Abbreviations, PAH: Poly(allylamine hydrochloride), NaCl: Sodium chloride, PSS: 

Poly(sodium 4-styrenesulfonate). 

Figure 4.4 Hydrophilic treatment of W1/O/W2 droplet microfluidic device. The device was partially 
treated with PEM solutions that changed the lower part of the device from hydrophobic state to 

hydrophilic in order to ease the formation of W1/O/W2 droplet at the second junction. The partial 
hydrophilic treatment was conducted by flushing the PEM through inlet D and exited at outlet A. Inlet 
B was flushed with DIW to prevent the PEM from flowing through the upper part of the device while 

inlet C was closed.  

Upper part Lower part 
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4.2.4 Bacterial cell preparation  

Bacterial culture was prepared for encapsulation in W1/O/W2 emulsion by culturing 

Escherichia coli strain SCC1 (MG1655-GFP mutation) expressing green fluorescent protein 

(E. coli-GFP) according to section 3.2.4. 

4.2.5 Microfluidic encapsulation of E. coli-GFP in double W1/O/W2 droplet 

Prepared culture of E. coli-GFP in LB broth or DI water was then used as the inner aqueous 

phase of W1/O/W2 droplet. The oil phase consisted of mineral oil with 1.5% w/v PGPR 

surfactant while the outer aqueous phase consisted of either LB broth or DI water with 1% w/v 

Tween 80 surfactant for samples used in the viability study. For the study that determined the 

effect of osmotic balance alterations on bacterial release and droplet stability, sodium chloride 

(NaCl) was added to either the inner W1 phase (Hypo-osmotic) or outer W2 phase (Hyper-

osmotic) at 0.5%, 1.0% or 1.5% w/v with 1% or 5% w/v of Tween 80. 

The bacterial encapsulation was done by using a double junction flow-focusing 

microfluidic device and a pressure controller (Elveflow, France) to produce a uniformed droplet 

of approximately 40-50 µm in diameter for inner aqueous phase (W1) and approximately 100 

µm in diameter for the oil globule (Figure 4.5). Pressure rates used were 300 mbar for the 

internal aqueous phase containing E. coli-GFP, 310 mbar for the middle oil phase and 330 mbar 

for the outer aqueous phase. For determining the effect of different pressure rates on droplet 

formation, the pressure rate for the inner aqueous phase was fixed to 300 mbar while the 

pressure rate for the middle oil phase and the outer aqueous phase was varied from 310 mbar 

to 330 mbar. The empty droplet of W1/O/W2 were also produced as controls to determine the 

effects of bacteria on droplet stability. All samples were kept statically in Eppendorf tubes at 

25 °C. 
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Figure 4.5 The microfluidic encapsulation process whereby (a) a schematic representation of the 
W1/O/W2 droplet containing E. coli-GFP. The diameter of the oil globule is given by a: 100 µm while 
the diameter of the inner aqueous phase is represented by b: 50 µm.  The schematic representation of 
the microfluidic encapsulation was also represented in (b) whereby the different phases were flushed 

through the inlet by using a pressure controller and the produced W1/O/W2 droplet were collected 
continuously at the outlet. Droplet formation was monitored by using a microscope with FASTCAM 

camera. 
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4.2.6 Determining bacterial viability in different formulations of W1/O/W2 

The viability of E. coli-GFP was determined for cells encapsulated in different formulations of 

W1/O/W2 as mentioned in section 4.2.5.  Non-encapsulated bacteria dispersed in DIW or LB 

broth was prepared as controls.  Serial dilutions of the sample were done using phosphate buffer 

saline (PBS) and viable cells were counted overtime for 24 hours using the Miles and Misra 

method (Miles and Misra, 1931) as described in section 3.2.5. In addition, the viability of 

bacteria in different components of LB broth was also determined.  E. coli-GFP was suspended 

in 5g/L sodium chloride (NaCl), 10g/L tryptone and 5g/L yeast extract and the change in viable 

cell count were measured after 24 hours of incubation by using the Miles and Misra method. 

4.2.7 Changes in metabolic activity 

In order to determine the effect of encapsulation on the metabolic activity of bacteria, the 

change in glucose concentration in the presence of encapsulated and free E. coli-GFP cells was 

measured over time for 24 hours.  Samples of encapsulated E. coli-GFP with DIW in both inner 

and aqueous phase was prepared along with samples of free E. coli-GFP suspended in DIW as 

non-encapsulated control. Non-bacterial controls were also prepared that included a sample 

with empty W1/O/W2 droplet. Approximately 2 ml of the prepared samples were transferred 

into LB broth supplemented with 0.6% w/v glucose and the change in glucose concentration 

was measured by using Accu-chek Aviva monitor with Accu-chek Aviva glucose test strips 

from Roche diagnostics (United Kingdom). The test was done according to the manufacturer 

instructions.  

4.2.8 Fluorescence microscopy for bacterial observation 

Fluorescence microscopy was done at room temperature for E. coli-GFP observation in 

W1/O/W2 emulsion droplet and to study the release of bacteria. The sample was prepared for 

microscopy by placing approximately 1 drop of sample onto the glass slide and covered with a 



 
 

102 
 

coverslip. In order to track the middle oil phase, the oil phase was stained with Nile red prior 

to sample preparation. The sample was then observed at 40X magnification and micrographs 

of the samples were acquired by using a Zeiss Axioplan microscope equipped with a 10-

megapixel CMOS Motic Moticam digital colour camera system and Motic images plus 

software. The emission was observed at 509 nm for GFP and 640 nm for Nile red. 

4.2.9 Measuring the encapsulation efficiency and release of bacteria from W1/O/W2 

droplet 

Encapsulation efficiency and the release of bacteria was determined by measuring the number 

of cells in the outer aqueous phase immediately after droplet preparation and over time for 3 

hours for samples described in section 4.2.5. Samples were collected in Eppendorf tubes and 

kept statically upright at 25°C causing creaming or phase separation that divides the samples 

into a cream layer (oil globules) and serum phase (W2) due to the difference in density between 

the two phases. Approximately 1 ml of serum phase was carefully withdrawn from the sample 

by using a pipette and serially diluted with PBS. Cell counts were done by plating on nutrient 

agar through Miles and Misra method (Miles and Misra, 1931).  

As the serum phase does not contain oil globule, unencapsulated and released cells could 

be quantified according to the method described by El Kadri et al. (2015) with the following 

equation: 

𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  ((𝑁0 − 𝑁)/𝑁0)  × 100                 (4.1) 

𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 =  𝑙𝑜𝑔10 𝑁  − 𝑙𝑜𝑔10 𝑁𝑇                                            (4.2) 

Where N is the viable cell count for unencapsulated bacteria in W2 immediately after emulsion 

preparation and N0 is the total number of viable cell count before encapsulation into W1/O/W2. 

NT is the number of viable cells in the W2 phase at incubation time, T.  
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4.2.10 Determination of droplet size and phase separation 

The effect of different pressure ratios on the production of monodispersed W1/O/W2 droplet 

was determined by measuring the size of the droplet immediately after formation. In addition, 

changes in the diameter of the inner aqueous phase (W1) and the oil globule was also measured 

overtime for 3 hours at 25°C. Optical microscopy and image analysis were done according to 

section 3.2.6. 

 Droplet stability was also determined by measuring changes in creaming behaviour of 

the W1/O/W2 with or without the presence of E. coli-GFP.  Creaming behaviour measurement 

was done by collecting 1 ml of sample into graduated syringes immediately after droplet 

preparation. The samples were left upright for 1 hour at 25 °C to allow the formation of a cream 

layer. The cream thickness was then measured immediately after creaming and during 

incubation time at 30, 60 and 180 minutes. The creaming volume was measured as follows: 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑐𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒 (%) =
(𝐶0− 𝐶𝑇)

𝐶0
  × 100                                              (4.3) 

Where C0  is the creaming height at time 0 while CT is the creaming height at incubation time, 

T. 

4.2.11 Statistical analysis 

The data obtained from the experiments were analysed according to section 3.2.12 
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4.3 Results and discussion 

4.3.1 One-step generation of W1/O/W2 droplet incorporated with bacteria 

Water-in-oil-in-water (W1/O/W2) double emulsion droplet were produced by using a single 

PDMS microfluidic chip (Figure 4.6) which consisted of two flow-focusing junctions that 

allowed for continuous one-step generation of double emulsion droplet in a high-throughput 

manner. The parameters used for droplet generation was tested in order to produce highly 

monodispersed droplet for bacterial encapsulation. By tuning the pressure introduced for the oil 

phase (Poil) and the outer aqueous phase (Pw2), the size of the internal aqueous phase and the oil 

globule can be controlled which also allowed the production of droplet with single or multiple 

internal aqueous phase (Okushima et al., 2004). The effect of different pressure rates on the 

formation of W1/O/W2 was presented in Figure 4.7 and Figure 4.8. 
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Figure 4.7 The effect of different pressure rates on the formation of W1/O/W2 emulsion droplet: (a) 

The effect of different oil phase pressure rates (Poil) on the internal aqueous droplet (W1) diameter and 
the number of internal aqueous droplet and (b) the effect of different outer aqueous phase pressure rate 
(PW2) on the size of the oil globule and number of internal aqueous droplet. Bars represent mean ± SD 

from 10 independent experiments (N=10). 

a 

b 

Figure 4.6 Monodispersed W1/O/W2 droplet formation with 2-junctions flow focusing device with (a) 
50 µm (b) 100 µm and (c) 200 µm. Scale bar represents 100 µm. 
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Figure 4.8 W1/O/W2 droplet with different configuration produced at a fixed pressure 
rate of 300 mbar for W1 and 330 mbar for W2. Droplet were produced at different oil 
phase pressure rates of: (a) 310 mbar, (b) 315 mbar, (c) 320 mbar and (d) 325 mbar. 

Scale bar represents 100 µm. 
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Figures 4.7 (a) and 4.8 show the effects of different oil phase pressure rates (Poil) on the 

average diameter of the internal aqueous droplet (W1) and the number of internal aqueous 

droplet enclosed in the oil globule at a fixed pressure rate of 300 mbar for the internal aqueous 

phase and 330 mbar for the outer aqueous phase. From the graph, it was observed that by 

increasing the pressure rate for the oil phase from 310 mbar to 325 mbar, the size of the W1 

droplet formed at the first junction decreased from approximately 50 µm to 25 µm in diameter. 

As the pressure rate for the internal aqueous phase was fixed at 300 mbar, the reduction in 

droplet size is due to the increase in shear rate causing the droplet to break easily at the first 

junction. On the other hand, an increase in the oil phase pressure rate causes a reduction in the 

shear rate at the second junction as it increases the overall pressure of the W/O droplet that 

travels from the first junction to the second junction. The closer the pressure rate value of the 

oil phase to the fixed pressure rate of 330 mbar set for the outer aqueous phase, the harder for 

the droplet to break at the junction due to low shear rate. The oil globule tends to elongate 

before breaking forming W1/O/W2 droplet with multiple internal aqueous phases.   

 Different format of W1/O/W2 droplet can also be produced by tuning the pressure rate 

of the outer aqueous phase (Pw2). From Figure 4.7 (b), it was determined that at a fixed pressure 

of 300 mbar for the internal aqueous phase and 310 mbar for the oil phase, an increase in the 

pressure rate of the outer aqueous phase caused a decrease in the oil globule diameter that 

resulted in a decrease in the number of internal aqueous droplet. An increase in the outer 

aqueous phase pressure rate increases the shear rate that allows the droplet to be able to break 

easily at the junction forming smaller droplet with less number of the internal aqueous phase. 

As the pressure rate increases from 315 mbar to 330 mbar, the oil globule size decreases from 

approximately 200 µm to 100 µm in diameter while the number of the internal aqueous phase 

decreases from 4 to 1 droplet per oil globule.  
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From the results obtained, it was determined that by tuning the pressure rate of the oil 

and outer aqueous phase, W1/O/W2 droplet with different configuration can be produced in a 

controllable manner with high monodispersity (droplet CV value of 4 to 6%).  In order to study 

the emulsion stability and release of bacteria from the double emulsion microstructure, 

W1/O/W2 droplet with single internal core are deemed suitable as it may allow a close 

observation on the emulsion behaviour. Therefore, a set of pressure rate that allows for the 

formation of W1/O/W2 droplet with single-core was chosen for this study which consists of 300 

mbar for the internal aqueous phase, 310 mbar for the oil phase and 330 mbar for the outer 

aqueous phase.  

4.3.2 Encapsulation efficiency  

The determination of encapsulation efficiency was done by measuring the number of viable 

free cells before and after the microfluidic encapsulation process. The results obtained show a 

high encapsulation efficiency indicating successful encapsulation of E. coli-GFP in W1/O/W2 

droplet with approximately 99.9% of encapsulated viable cells as presented in Table A1 

(Appendix 2). 

4.3.3 The viability and metabolic activity of bacteria encapsulated in W1/O/W2 droplet 

To understand the effect of encapsulation on the growth and metabolic activity of E. coli-GFP, 

the viability and rate of glucose consumption of the bacteria were determined by Miles and 

Misra method (Miles and Misra, 1931) and measuring the change in glucose concentration 

respectively. Samples of E. coli-GFP encapsulated in W1/O/W2 droplet with or without the 

presence of LB broth in the internal and outer aqueous phase was prepared and bacterial 

viability was determined as described in section 4.2.6. Samples of non-encapsulated bacteria 

suspended in DIW or LB broth was also prepared as controls. For bacterial metabolic activity 

determination, approximately 2 mL of encapsulated and non-encapsulated E. coli-GFP 
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suspended in DI water was transferred into LB broth supplemented with 0.6% w/v glucose and 

the change in glucose concentration was measured over time for 24 hours by using Accu-chek 

Aviva glucose monitor as described in section 4.2.7. The effect of different W1/O/W2 

formulation on bacterial viability was presented in Figure 4.9 while the changes in the metabolic 

activity of the bacteria are presented in Figure 4.10. 
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Figure 4.9 The effect of different W1/O/W2 formulations on the viability of E. coli-GFP cells. Free 
cells in DIW and LB broth were tested as controls against samples of bacteria encapsulated in 

W1/O/W2. Log CFU/mL of the samples were determined at 0, 12 and 24 hours of incubation. Bars 
represent mean ± SEM taken from 3 independent experiments with 3 replicates for each experiment 

(N=3). Abbreviations, DIW: Deionised water, MO: Mineral oil with 1.5% PGPR, LB: LB broth. 
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Figure 4.10 Changes in glucose concentration in the presence of encapsulated and free E. coli-GFP 
cells. The solid lines represent data for glucose consumption for samples containing free E. coli-GFP 
and encapsulated E. coli-GFP in DE against control samples containing empty DE and pure glucose 
(without the addition of free bacteria, encapsulated bacteria in DE or empty DE). The dotted lines 
represent changes in log CFU/ml for free (unencapsulated) bacterial cells and encapsulated cells in 

DE. All of the prepared samples are transferred into LB broth supplemented with 0.6% w/v glucose. 
Bars represent mean ± SEM taken from 3 independent experiments with 3 replicates for each 

experiment (N=3). Abbreviation, DE: Double emulsion. 
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Figure 4.9 shows the viability of E. coli-GFP encapsulated in the different formulation 

of W1/O/W2 emulsion droplet. As expected, the absence of LB broth caused a reduction in 

bacterial viability for both encapsulated and non-encapsulated samples whereby a greater 

reduction in bacterial viability was observed for free E. coli-GFP cells as compared to 

encapsulated cells. In the absence of nutrient (samples of E. coli-GFP in DIW only), the sample 

of free E. coli-GFP cell in DIW show a reduction in viable cell count from 7.94 log CFU/mL 

at 0 hour to 5.13 log CFU/mL at 24 hour of incubation time (a 2.81 log CFU/mL reduction) 

while for encapsulated sample in W1/O/W2 (DIW-MO-DIW), the viable cell count reduced 

from 7.33 log CFU/mL to 6.97 log CFU/mL (a 0.33 log CFU/ML reduction). In the presence 

of LB broth, the log CFU/mL of E. coli-GFP increased over time (from 0 hours to 24 hours) for 

all formulations. A better increase in log CFU/mL was observed for free E. coli-GFP suspended 

in LB broth and encapsulated with the presence of LB broth in both internal and outer aqueous 

phase compared to cells encapsulated with LB broth in either inner or outer aqueous phase. 

Referring to samples with LB broth in either inner or outer aqueous phase, samples prepared 

with LB broth in outer aqueous phase show better increase in log CFU/mL compared to samples 

with LB broth in inner aqueous phase only.  

In addition, the encapsulation of bacteria also caused changes in the metabolic activity 

of the E. coli-GFP as shown in Figure 4.10.  From the results obtained, it was observed that the 

reduction in glucose concentration was faster for samples containing encapsulated E. coli-GFP 

cells as compared to samples with free cells although free E. coli-GFP cells show a better 

increase in log CFU/mL compared to encapsulated samples in W1/O/W2 droplet. Samples 

containing encapsulated E. coli-GFP resulted in 31.42% of reduction in glucose concentration 

after 24 hours of incubation compared to samples containing free E. coli-GFP cells that show 

26.36% reduction.  These results suggested that encapsulation in W1/O/W2 improve bacterial 
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viability and the presence of LB broth promotes bacterial growth especially in samples with 

nutrients in the outer aqueous phase.  Moreover, the encapsulation of bacteria also caused 

changes in the metabolic activity of the bacteria as the encapsulated bacteria shows higher 

activity in terms of glucose consumption compared to non-encapsulated samples.  

The ability of double emulsion system in improving the viability of bacterial cells during 

storage, processing and against harsh processing conditions has been reported previously in 

various studies (Shima et al., 2006; Pimentel-Gonzalez et al., 2009; Rodríguez-Huezo et al., 

2014; Lalou, Kadri and Gkatzionis, 2017; Devanthi et al., 2018).  The protective effect of the 

double emulsion is mainly attributed to its role as a buffer against harsh environmental 

conditions (Pimentel-Gonzalez et al., 2009). However, in order to maintain the viability of the 

encapsulated bacteria especially during long term storage, the presence of nutrient is equally 

important whereby a continuous supply of nutrient is required in order to support bacterial 

growth in emulsion droplet.  

As discussed previously in section 3.3.3, the growth of E. coli-GFP, encapsulated in 

single W/O droplet was suspended due to an inadequate supply of nutrient to support bacterial 

growth. Therefore, by encapsulating bacteria in double W1/O/W2 emulsion droplet, continuous 

supply of nutrient can be made possible by nutrient replenishment from the outer aqueous 

phase. It has been reported previously that the middle oil phase of the W1/O/W2 acts as a 

selective barrier that modulates the transport of molecules, allowing the diffusion of nutrients 

and small inducer molecules through the interface (Chan et al., 2013, 2017; Zhang et al., 2013). 

This creates a programmable microenvironment whereby W1/O/W2 emulsion droplet serve as 

micro-incubator that helps in sustaining the growth of bacteria. Other than that, the presence of 

the outer aqueous phase also improves oxygen permeability through the interface and prevents 

desiccation caused by the evaporation of the oil phase (Zhang et al., 2013). Furthermore, the 
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immobilization of bacteria in W1/O/W2 droplet may cause morphological and physiological 

changes (Zur, Wojcieszyńska and Guzik, 2016).  

The effect of immobilization on the metabolic activity of E. coli cells have been 

described in previous studies including an increase in the metabolic activity of E. coli cells due 

to their adhesion onto a glass surface (Hong and Brown, 2009), an increase in oxidized glucose 

metabolites (Zur, Wojcieszyńska and Guzik, 2016) and the entrapment of E. coli cells that 

resulted in better enzymatic activity and reduced degradation of RNA  (Lyngberg et al., 1999). 

The effect of encapsulation in W1/O/W2 droplet on the metabolic activity Z. rouxii has also 

been reported previously whereby the entrapment of Z. rouxii resulted in accelerated glucose 

consumption (Devanthi, El Kadri, et al., 2018). The change in metabolic activity may be 

attributed to the change in microenvironment conditions such as a reduction in the water activity 

and oxygen supply which usually occurs in an immobilized microenvironment (Zur, 

Wojcieszyńska and Guzik, 2016). These changes not only affect the metabolic activity of 

microorganism but also make it less susceptible to environmental stresses. Nevertheless, further 

studies are still required in order to understand the effect of W1/O/W2 droplet on the metabolic 

activity of bacteria as well as understanding the mechanism behind the change in metabolic 

activity of the encapsulated bacteria. 

Although the encapsulation of bacteria in W1/O/W2 droplet with the presence of nutrient 

helps in improving the viability and promotes bacterial growth, the effectiveness of the system 

depended on the stability of the droplet. Therefore, further study is required to understand the 

stability of W1/O/W2 droplet in these conditions. 
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4.3.4 The release of bacteria by osmotic balance alterations 

As discussed previously in section 4.3.3, the encapsulation of bacteria in W1/O/W2 droplet 

improves bacterial viability and promotes the growth of bacteria with the presence of nutrient 

in the outer aqueous phase. However, the addition of nutrients in the outer aqueous phase may 

cause osmotic imbalances that lead to the release of the encapsulated bacteria. This may affect 

the long term storage of samples and thus, it is important to understand the effect of osmotic 

imbalances towards droplet stability and the release of bacteria. In addition, other than 

protecting the bacteria against harsh conditions, the controlled release of bacteria is also one of 

the most interesting applications of W1/O/W2. Therefore, the study of the release of bacteria not 

only provides an insight on droplet stability but also provides interesting information on the 

application of W1/O/W2 in controlled release of bacteria that may be beneficial for various 

industrial applications.  

 To study the effect of osmotic alterations on droplet stability and bacterial release, it is 

important to ensure that the solute used is not able to support bacterial growth as it may affect 

the accuracy of the results. LB broth consists of 10 g/L of tryptone, 5 g/L of yeast extract and 

5g/L of sodium chloride. Each of these ingredients was tested for its ability to support bacterial 

growth (Table A2, Appendix 3). The results obtained show that sodium chloride (NaCl) does 

not support the growth of E. coli-GFP as approximately 1.48% of reduction in viable cell counts 

was observed after 24 hours incubation at 37 °C. However, it is crucial to take into account the 

effect of different NaCl concentration on the viability of the bacteria and to determine the 

tolerable level of NaCl for the bacteria as it may affect the accuracy of the results obtained. In 

a study conducted by Roeßler, Sewald and Müller (2003), a significant effect on the growth of 

E. coli was only observed at high NaCl concentration of 1.2 M (7.0 % w/v) while at lower NaCl 

concentration, no significant (P > 0.05) changes in the final OD578 was observed between 
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samples with 0.1 M of NaCl (0.58% w/v) and 0.8 M of NaCl (4.67% w/v). Therefore, only 

NaCl was used in this study at a low concentration concentration of 0.5% w/v (similar to that 

found in LB broth), 1.5% w/v and 2.0% w/v. The effects of NaCl addition in the inner aqueous 

phase and the outer aqueous phase was studied that creates hypo-osmotic and hyper-osmotic 

conditions respectively. 

The release of E. coli-GFP into the outer W2 phase of the W1/O/W2 emulsion prepared 

with different formulations are presented in Figures 4.11 and 4.12. From the results obtained, 

it was observed that osmotic balance alterations due to the addition of NaCl in W1 or W2 phases 

resulted in a significant increase (P < 0.001) in viable cell count in the outer aqueous phase 

(W2).  The rate of increase in log CFU/mL dependent on NaCl concentration and the Tween 80 

concentration in W2 whereby a better increase in viable cell count was observed for samples 

with higher NaCl concentration and lower Tween 80 concentration as compared to samples 

containing lower NaCl concentration and higher Tween 80 concentration. Comparing between 

hypo-osmotic (NaCl in W1) and hyper-osmotic condition (NaCl in W2), a higher increase in log 

CFU/ mL was observed for samples in hyper-osmotic condition as compared to samples in the 

hypo-osmotic condition during the three hours of the incubation period. For example, referring 

to Figure 4.11 a for samples with 1% w/v of Tween 80 in the W2 phase, the presence of 2.0% 

w/v NaCl in the W2 phase (hyper-osmotic) resulted in 4.86 log CFU/mL increase of bacterial 

cell count in W2 phase at 180 minute (3 hours) of incubation period as compared to only 3.69 

log CFU/mL increase for sample with 2.0% of NaCl in the W1 phase (hypo-osmotic).  The 

results obtained show that the release of bacteria into the outer W2 phase is dependent on the 

concentration of NaCl added in either inner or outer aqueous phase as it creates osmotic 

pressure imbalances (Figure 4.11). This, in turn, caused emulsion destabilization with changes 

in droplet diameter that leads to the release of bacteria into the outer W2 phase (Figure 4.12). 
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Figure 4.11 The release of E. coli-GFP into the outer aqueous phase (W2) of W1/O/W2 droplet at 15, 
30, 60 and 180 minutes of incubation at 25°C. Samples were prepared with different sodium chloride 
concentration in either inner (W1) or outer aqueous phase (W2). Tween 80 concentration in W2 was 

also differentiated with (a) 1% w/v and (b) 5% w/v. Bars represent mean ± SEM taken from 3 
independent experiments with 3 replicates for each experiment (N=3). 
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Figure 4.12 Increase in viable cell count and changes in droplet diameter with different NaCl 
concentration of 0%, 0.5%, 1.5% and 2.0% w/v in inner W1 phase (a) and outer W2 phase (b) of 

W1/O/W2 emulsion droplet after 3 hours of incubation. Bar chart represents the data for the increase in 
viable cell count while the line graph represents the data for changes in droplet diameter. Bars 

represent mean ± SEM taken from 3 independent experiments with 3 replicates for each experiment 
(N=3). The data for the increase in viable cell count was analysed with one-way ANOVA. abcdefghmean 

± SEM with different letters is significantly different at P < 0.05. 
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  Microscopic observation was done immediately after droplet formation. The oil phase 

was stained with Nile red in order to distinguish between the middle oil phase from the inner 

and outer aqueous phase (Figure 4.13c). Droplet observation reveals the splitting of W1/O/W2 

droplet forming a secondary double emulsion containing bacteria enclosed by a very thin film 

during the first 30 minutes of observation (Figure 4.13a). No bacteria were observed in the outer 

W2 phase during droplet splitting which was confirmed by bacterial cell count whereby no 

increase in log CFU/mL was observed for all samples during the first 15 minutes of incubation 

(detection limit: 103 CFU/mL). An increase in viable cell count was only observed at 30 minutes 

which occurs immediately after droplet separation and continues to increase during 3 hours of 

incubation (Figure 4.11, 4.13b). 
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Figure 4.13 Optical and fluorescence photomicrographs of droplet splitting releasing inner W1 phase 
(a) leading to release of bacteria from the released inner W1 droplet after 3 hours of incubation (b). The 

oil phase was stained with nile red in order to distinguish between the aqueous and the oil phase (c). 
Droplet were prepared with 0.5% NaCl and 1% of Tween 80 in outer W2 phase. Scale bar represents 

100 µm. 
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Overall, the instability of W1/O/W2 induced by osmotic balance alterations leads to the 

release of bacteria. Droplet destabilization begins with the splitting of W1/O/W2 droplet 

producing secondary double emulsions with thin oil layer at the interface followed by changes 

in droplet size as a function of NaCl concentration that causes swelling of droplet with the 

addition of NaCl in the inner W1 phase or shrinking of droplet with NaCl incorporated in the 

outer W2 phase. Bacterial release occurs only after droplet splitting as shown in Figure 4.11 

whereby a significant (P < 0.001) increase in viable cell count was observed after 30 minutes 

of incubation. Furthermore, the bacterial release also occurs for samples containing a similar 

concentration of NaCl in the LB broth (0.5% w/v) thus, increase in bacterial cell count in the 

presence of LB broth as mentioned in section 4.3.3 could be attributed to the release of bacteria 

into the W2 phase. However, this process is highly complex and requires further investigation 

as with the presence of LB broth, the difference in osmotic balance does not only cause the 

migration of water but also nutrients through the interface.  

The double emulsion system of W1/O/W2 is metastable in which the inner aqueous 

phase tends to escape into the continuous outer phase forming into a more stable and direct 

system of O/W. In a W1/O/W2 system, the difference in density between the oil and the aqueous 

phase caused the inner W1 droplet to move towards the bottom of the oil globule and eventually 

escape into the outer W2 phase forming a small oil globule that moves upwards leaving the 

inner W1 water droplet immersed in the outer W2 phase.  The escaped water droplet persisted 

within the outer W2 phase and are held by a thin film that consists of a complex mixture of oil 

and surfactants (González-Ochoa, Ibarra-Bracamontes and Arauz-Lara, 2003). Jiao, Rhodes 

and Burgess (2002) also reported on the formation of a dimpled structure caused by the inner 

droplet that was very close to the interface, separated by only a thin film from the outer aqueous 

phase. The formation of the dimpled structure was related to the strength of the thin film 
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surrounding the water droplet in which a film with high elasticity is required to maintain its 

stability. By increasing the NaCl concentration of the outer W2 phase, the interfacial elasticity 

of the thin film decreases causing droplet instability. Rapid release of bacteria occurred 

immediately after the splitting process as the escaped droplet were only being held by a thin 

film, therefore, accelerating the migration of water between the aqueous phases that eventually 

leads to droplet destabilization. This consequently resulted in bacterial release into the W2 

phase. In a study done by Zhang et al. (2017), the intentional destabilization of the droplet by 

using an ultrathin layer of polymeric shells makes it highly susceptible to osmotic shock due to 

the rapid diffusion of water into the droplet. Therefore, an immediate burst of droplet releasing 

encapsulated cargo can be triggered easily by only adding a large amount of water in the outer 

phase causing the droplet to swell and burst instantly.  

It has been reported previously that osmotic alterations in W1/O/W2  may cause droplet 

instability that leads to bacterial release (El Kadri et al., 2015; 2016; Devanthi, et al., 2018). El 

Kadri et al. (2015; 2016) reported that the released of bacteria from W1/O/W2 under hypo-

osmotic and hyper-osmotic conditions was induced by changes in osmotic balance, the amount 

of W1 phase and surfactant concentrations whereby a better increase in bacterial release was 

observed at high amount of NaCl and W1 phase along with a low concentration of surfactants. 

In these studies, the release of bacteria in both hyper-osmotic and hypo-osmotic conditions is 

triggered by the bursting of W1/O/W2 droplet. Under hypo-osmotic conditions, the swelling of 

droplet caused the thinning of the interface resulted in film rupture that released the bacteria 

into the outer aqueous phase (Kadri et al., 2016). However, the release of bacteria under hyper-

osmotic conditions is not caused by the change in droplet size but due to the migration of 

surfactants desorbing from the interface as water migrates from the inner aqueous phase 

towards the outer aqueous phase of higher solute concentration (Kadri et al., 2015). At higher 
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surfactant concentration, the replacement of surfactants in the gaps created by the swelling of 

the droplet under hypo-osmotic conditions and the loss of surfactants from the interface of the 

droplet under hyper-osmotic conditions is much faster compared to samples with lower 

surfactant concentration making it much more stable and delays bacterial release.  

In addition, higher bacterial release was observed for samples prepared under hyper-

osmotic conditions as compared to samples prepared under hypo-osmotic conditions which are 

attributed to the Laplace and osmotic pressure balance. The Laplace pressure resulted in the 

shrinkage of the droplet and is depended on its radius given by:  

∆𝑃 =
2𝛾

𝑟
                                                  (4.4) 

Where 𝛾 is the interfacial tension and r is the droplet’s radius (Walstra, 1993). As ∆𝑃 is 

inversely associated with the radius, the smaller radius will cause larger inward force that 

resulted in droplet shrinkage. However, with the presence of NaCl in the inner W1 phase (hypo-

osmotic), the osmotic pressure resulted in the swelling of the droplet that counterbalanced the 

Laplace pressure (Jiao, Rhodes and Burgess, 2002). The balance between the osmotic and 

Laplace pressure is given by the Walstra equation (Walstra, 1993): 

2𝛾 = 3𝑚𝑅𝑇                                                      (4.5) 

in which m is the molar concentration of NaCl, R is the universal gas constant and T is 

temperature. From this equation, it is shown that optimal NaCl concentration in the internal W1 

phase is required in order to reach equilibrium. Jiao, Rhodes and Burgess (2002) reported that 

the stability of double W1/O/W2 droplet is improved as the salt concentration is closer to the 

optimal value of 13.4 mol m-3 calculated from equation 4.5. Therefore, emulsions prepared 

under hypo-osmotic conditions are more stable as compared to emulsions under hyper-osmotic 

conditions resulting in a lower bacterial release.  
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The difference in density between the oil and the aqueous phase is mentioned in Table 

A3 (Appendix 4) whereby DIW has a higher density than mineral oil and the density increases 

with increase in NaCl concentration that caused the splitting of the W1/O/W2 droplet. As the 

W1 water droplet escaped into the outer W2 phase, the difference in osmotic pressure between 

the phases caused the diffusion of water through the thin film to be accelerated due to the 

decrease in interfacial strength. This eventually leads to the release of bacteria into the outer 

W2 phase due to the swelling of the droplet (for samples under hypo-osmotic condition) and the 

loss of surfactants from the interface of the droplet, (for samples under hyper-osmotic 

condition) as water migrates through the interface causing film rupture. As the release of 

bacteria highly depended on the stability of the droplet, further study on the stability of droplet 

such as by measuring the change in the size of both W1 phase and oil globule during osmotic 

balance alterations is important in order to further understand its effect on the release of E. coli-

GFP.  

4.3.5 The effect of different osmotic conditions on droplet size change 

In this section, the stability of W1/O/W2 emulsion droplet incorporated with bacteria and the 

effect of osmotic balance alterations on droplet stability was investigated. W1/O/W2 droplet 

samples with or without E. coli-GFP in the internal aqueous phase were prepared with different 

osmotic conditions and Tween 80 concentrations as mentioned in section 4.2.5. Real-time 

observation on droplet behaviour was done microscopically and changes in the size of the 

droplet (for both internal W1 phase and oil globule) was quantified in order to understand the 

effect of different formulation on the stability of the W1/O/W2 emulsions droplet.  

The diameter of the W1 phase and oil globule was measured by analysing the 

photomicrographs of the droplet with MATLAB software. Photomicrographs of the droplet 

were taken at every time interval that includes, immediately after droplet preparation (0 
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minutes), immediately after the release of the W1 inner droplet (30 minutes) and followed by 1 

to 3 hours after the separation process. The oil globule phase was distinguished from the inner 

W1 droplet by staining the oil with Nile red prior to the encapsulation process. In addition, the 

inner W1 phase was also identified with the presence of E. coli- GFP as the hydrophilic nature 

of the cells making it more likely to remain in the aqueous phase rather than the oil phase.  

 Table 4.1 summarizes the change in the diameter of the inner W1 phase and oil globule 

during the 3 hours of the incubation period. From the results obtained, it was determined that 

osmotic alterations (by adding 1.5% w/v of NaCl) in either inner W1 phase or outer W2 phase 

caused significant (P < 0.001) changes in W1 diameter whereby a gain in diameter was observed 

for samples prepared under hypo-osmotic (NaCl in W1 phase) conditions whereas a reduction 

in diameter was observed for samples under hyper-osmotic (NaCl in W2 phase) conditions. 

Change in droplet diameter was minimized at high concentration of Tween 80 (5%) compared 

to low concentration in Tween 80 (1%).  Furthermore, a slight change in the diameter of the W1 

droplet was observed during the first 30 minutes of the incubation period that increased rapidly 

after one hour.  No significant (P = 1.00) change in W1 droplet size was observed for samples 

without NaCl. 

Referring to results obtained from the oil globule measurements shows a significant (P 

< 0.001) reduction in droplet size at 30 minutes of the incubation period (approximately 22 µm 

reduction from time 0) for all samples. Oil globule size remains the same at 1 and 3 hours of 

incubation for samples containing 5% of Tween 80 while an increase in droplet size was 

observed for samples containing 1% of Tween 80 in samples with or without NaCl. As the 

release of bacteria depended on the stability of the inner W1 droplet, the effect of different NaCl 

concentration on the gain and reduction of the inner W1 droplet diameter was determined as 

presented in Figure 4.14. From the results, the gain (NaCl in inner W1 phase) and reduction 
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(NaCl in outer W2 phase) in the diameter of the droplet was significant (P < 0.001) at high NaCl 

concentration (2.0% w/v) and lower Tween 80 concentration (1% w/v). Overall, samples 

prepared under hypo-osmotic conditions were shown to have better stability compared to 

samples prepared under hyper-osmotic conditions as discussed previously in section 4.3.4. The 

presence of sodium chloride in the inner W1 phase act as osmotic regulators that 

counterbalanced the Laplace pressure whereas the presence of NaCl in the W2 phase resulted 

in the lack of osmotic pressure in the W1 phase to withstand against Laplace curvature pressure 

(Jiao, Rhodes and Burgess, 2002). Moreover, the presence of bacteria does not affect droplet 

stability the way it was in single W/O emulsions droplet as discussed in the previous chapter 

(chapter three).  
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 Table 4.1 Change in mean W1 droplet and oil globule diameter (µm) at 30, 60 and 180 minutes with 
respect to 0 minutes of incubation. Samples were prepared in the presence or absence of E. coli-GFP in 
the W1 phase, with or without 1.5% w/v of NaCl in either W1 or W2 phase. Surfactant concentration 
was set at either 1% w/v or 5% w/v for Tween 80 in W2 phase. Data represent mean ± standard deviation 
from 3 independent experiments with N=900 droplet. The mean diameters were compared between 
samples within each incubation time (small letters) and between different incubation time within each 
sample (capital letters).  

Data were analysed with one-way ANOVA.  
abcdemeans ± standard deviation and ABCmeans ± standard deviation with different letters are significantly 
different at P < 0.05. 

 
 
 
 

 
 

W1/O/W2 samples 

30 Minutes 
(µm) 

60 Minutes 
(µm) 

180 Minutes 
(µm) 

W1  Oil 
Globule  

W1 Oil 
globule 

W1 Oil 
Globule 

With  
E. coli-
GFP 

No NaCl, 1% 
Tween 80 

0.015aA 
± 0.001 

-22.25aA ± 
1.10 

0.036 aA  ± 
0.002 

-22.23aA  
± 1.301 

0.051aA  
± 0.002 

-19.99aA  
± 1.241 

No NaCl, 5% 
Tween 80 

0.017aA 
± 0.001 

-22.26aA 
±0.802 

0.027 aA  ± 
0.001 

-22.25aA  
± 0.913 

0.032aA  
± 0.002 

-22.23aA  
± 0.921 

1.5% NaCl in W1, 
1% Tween 80 

0.947bA 
± 0.10 

-22.24aA  
± 1.406 

9.085bB ± 
0.62 

-22.23aA 
± 0.923 

15.304bC 
± 1.08 

-18.04bB  
± 1.01 

1.5%  NaCl in  W1, 
5% Tween 80 

0.317cA 
± 0.03 

-22.256aA  
± 1.302 

5.316cB ± 
0.51 

-22.232aA  
± 1.311 

9.865cC ± 
1.16 

-22.22aA  
± 1.409 

1.5% NaCl in W2, 
1% Tween 80 

-0.813dA 
± 0.06 

-22.23aA  
± 1.105 

-15.388dB 
± 1.02 

-22.16aA  
± 0.805 

-20.758dC 
± 1.04 

-16.12cB 
± 0.903 

1.5% NaCl in W2, 
5% Tween 80 

-0.381eA 
± 0.02 

-22.23aA  
± 1.007 

-6.732eB ± 
0.82 

-22.23aA  
± 1.106 

-10.534eC 
± 1.47 

-22.2aA 
± 1.202 

Without  
E. coli-
GFP 

No NaCl, 1% 
Tween 80 

0.03aA ± 
0.002 

-22.23aA  
± 0.801 

0.038aA  ± 
0.001 

-22.23aA  
± 0.821 

0.065aA  
± 0.002 

-17.76aB 
± 0.701 

No NaCl, 5% 
Tween 80 

0.025aA 
± 0.003 

-22.24aA  
± 0.935 

0.04aA  ± 
0.004 

-22.23aA  
± 0.905 

0.048aA  
± 0.01 

-22.22bA  
± 1.408 

1.5% NaCl in W1, 
1% Tween 80 

1.021bA 
± 0.02 

-22.22aA  
± 1.401 

10.242bB ± 
1.62 

-22.23aA  
± 1.207 

16.527bC 
± 1.62 

-16.98cB 
± 1.301 

1.5%  NaCl in W1, 
5% Tween 80 

0.439cA 
± 0.06 

-22.23aA  
± 1.611 

5.837cB ± 
1.13 

-22.23aA  
± 1.503 

10.104cC 
± 1.16 

-22.22bA 
± 1.371 

1.5% NaCl in W2, 
1% Tween 80 

-0.92dA 
± 0.12 

-22.23aA  
± 0.781 

-13.323dB 
± 0.91 

-22.13aA  
± 0.838 

-18.906dC 
± 1.02 

-15.28dB 
± 0.911 

1.5% NaCl in W2, 
5% Tween 80 

-0.368eA 
± 0.05 

-22.22aA  
± 1.108 

-9.048eB ± 
0.56 

-22.22aA  
± 1.265 

-13.015eC 
± 1.14 

-22.2bA 
± 1.153 
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Figure 4.14 Changes in W1 diameter at 180 minutes of incubation time due to the addition of NaCl at 
0.5, 1.5 and 2% w/v in the inner W1 phase (a) and outer W2 phase (b). The emulsion was prepared 

with E. coli-GFP in the inner W1 phase and stabilized with 1% w/v or 5% w/v of Tween 80 in the W2 
phase and 1.5% w/v PGPR in the oil phase. Bars represent mean ± SEM from 3 independent 

experiments with N=900 droplet.  
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The data from Table 4.1 reveal that no significant (P = 1.00) change in size was 

observed for both inner W1 droplet and oil globule immediately after droplet formation with or 

without osmotic pressure alterations (during the first 30 minutes). A significant change (P < 

0.001) in inner W1 size was only observed immediately after the splitting of the W1/O/W2 

droplet releasing inner W1 droplet into the W2 phase and forming smaller oil globule or O/W 

droplet. The change in the W1 droplet occurs rapidly after droplet splitting as the escaped W1 

droplet was only enclosed by a very thin film. As the splitting caused the formation of smaller 

oil globule or O/W droplet, a significant reduction (P < 0.001) in oil globule size was observed 

immediately after the splitting process (at 30 minutes) that remains stable afterwards. The 

absence of inner W1 phase in the oil globule after the splitting process caused the droplet to be 

relatively unaffected by the change in osmotic pressure. A slight increase in droplet size for oil 

globules in samples containing low Tween 80 concentration mainly due to the undesirable 

interactions between the Tween 80 and the NaCl that weakens the interfacial strength and 

caused coalescence between neighbouring droplet (Burgess and Yoon, 1995; Jiao, Rhodes and 

Burgess, 2002).  

The stability of the W1/O/W2 droplet depended on the osmotic and Laplace pressure 

balance (Klojdová, Štětina and Horáčková, 2019) as discussed in section 4.3.5. Other factors 

that also influence the stability of the W1/O/W2 droplet as a whole are the interactions between 

the surfactants with high and low HLB value and also interactions between the solutes and 

emulsifier in the W2 phase (Kanouni, Rosano and Naouli, 2002). The main cause for droplet 

destabilization is attributed to the diffusion of water between the aqueous phases of the 

W1/O/W2 due to osmotic imbalances as an extensive change in droplet size may cause bursting 

of the droplet releasing encapsulated contents into the outer continuous phase (Muschiolik and 

Dickinson, 2017). The stability of the droplet against bursting depended on the interfacial 

strength and thickness along with the characteristics of the continuous outer phase such as 



 
 

130 
 

viscosity (Schuster, 1996). The thin and complex film that enclosed the W1 droplet as it escaped 

from the W1/O/W2 droplet making it more susceptible to rupture. Moreover, under hypo-

osmotic conditions, the increase in NaCl concentration caused extensive swelling of the W1 

droplet leading to droplet rupture as the film that enclosed the W1 droplet reaches its critical 

thickness (Schuster, 1996; Krebs, Schroen and Boom, 2012).  Reduction in the thickness of the 

interfacial film also lowers the activation energy needed to form a hole that destabilizes the 

droplet (Schuster, 1996).  Surfactant concentration also plays an important role in protecting 

the droplet against rupture and keeping the droplet apart. At high surfactant concentration, a 

multilayer arrangement of hydrophilic surfactants formed on the interface of the droplet that 

cause an increase in interfacial strength as the droplet is completely enclosed in these layers, 

protecting them against hole formation that leads to droplet rupture (Tadros, 2013). In addition, 

the swelling of the droplet also caused rearrangements of surfactants on the interface as the 

surfactant molecules were dragged along the interface during the swelling process leaving areas 

with more surfactant molecules and areas with less surfactant or gaps that are prone to hole 

formation (Kadri et al., 2016). To ensure the stability of the droplet, these gaps had to be 

recovered quickly by the adsorption of excess surfactant molecules onto the interface 

(McClements, 1998).  At high Tween 80 concentration, the adsorption of surfactants molecules 

to fill in the gaps created by the expansion of the droplet interface will occur more rapidly 

whereas, at low Tween 80 concentration, the adsorption of the surfactant on the interface will 

be much slower than the formation of the gaps on the interface causing it to destabilize at a 

much faster rate (El Kadri et al., 2016). 

The shrinkage of W1 droplet suspended in hyper-osmotic conditions is due to the 

migration of water from the inner W1 phase towards the outer W2 phase. As the W1 droplet size 

reduction was accelerated after the splitting of W1/O/W2 droplet, the destabilization effect may 

be attributed to the thin film enclosing the droplet after being released into the W2 phase. 
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During the splitting process, the majority of the oil phase separated from the W1/O/W2 leaving 

the W1 droplet suspended in W2 phase enclosed by a very thin complex layer that may consist 

of a mixture of PGPR and Tween 80 surfactants with less oil phase. Moreover, due to the low 

amount of oil that exists on the interface, the thin film is most likely dominated by the 

hydrophilic surfactant, Tween 80 rather than PGPR. By altering the osmotic balance between 

the inner and outer phase, it triggers the water flux through the thin film that is assisted by the 

surfactant molecule. When the W1 phase is closely in contact with the W2 phase of high solute 

concentration and separated by a very thin film, water transport mainly occurs due to surfactant 

hydration (Wen and Papadopoulos, 2000). During this process, the surfactant molecule 

hydrates at an interface and migrated through the film to dehydrate at the other interface with 

higher solute concentration causing loss of surfactants molecules on the interface. As the thin 

layer of film was most likely consists of Tween 80 surfactant, the loss in Tween 80 creating 

gaps on the interface, may cause the droplet to be highly susceptible to bursting. At high 

concentration of Tween 80, the excess surfactant molecule is sufficient to replace the loss of 

surfactant molecules on the interface whereas, at lower concentration of Tween 80, the 

insufficient amount of surfactant molecule to fill the gaps left by the desorbing surfactants leads 

to droplet instability and bursting (El Kadri et al., 2015). Moreover, during the shrinkage of 

W1 droplet, the hydrophilic E. coli-GFP was retained in the droplet. Therefore, the bacterial 

release is more likely due to droplet bursting caused by the presence of NaCl that destabilizes 

the thin film which is in agreement with the study done by El Kadri et al. (2015).  

Therefore, the stability of W1 droplet and oil globules in both hypo-osmotic and hyper-

osmotic conditions is highly dependent on the NaCl and Tween 80 concentrations as they affect 

the integrity of the interfacial film. The release of bacteria is highly dependent on the stability 

of the inner W1 droplet whereby the presence of very thin film separating the inner W1 phase 

from the W2 phase after the splitting of W1/O/W2 droplet making it more susceptible to droplet 
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destabilization and bursting. Further study is required to confirm the composition of the thin 

film that may provide a further understanding of the behaviour of the escaped W1 droplet in 

the W2 phase. 

4.3.6 The effect of osmotic imbalances on creaming behaviour 
 

The thickness of the cream layer with difference in NaCl and Tween 80 concentration was 

measured for both samples under hypo-osmotic and hyper-osmotic conditions. As the presence 

of bacteria in the W1 phase does not affect the change in droplet size, only samples containing 

bacteria were tested for creaming behaviour as presented in Figure 4.15.  
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Figure 4.15 Change in creaming behaviour for samples under hypo-osmotic conditions (a) and hyper-
osmotic conditions (b). Samples were prepared with E. coli-GFP in inner W1 droplet at different 

Tween 80 concentration of 1% w/v and 5% w/v along with 1.5% w/v PGPR. Bars represent mean ± 
SEM taken from 3 independent experiments. Mean comparison with different small and capital letters 

indicate significant different (P < 0.05) between samples within each incubation time and between 
storage time within each sample respectively. Data were analysed with one-way ANOVA. 

a 
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 From the results obtained (Figure 4.15), it was determined that the change in creaming 

behaviour is dependent on the sodium chloride and Tween 80 concentrations whereby 

significant (P < 0.001) gain and reduction in creaming thickness was observed with samples 

containing a high concentration of NaCl and low concentration of Tween 80. As discussed in 

section 4.3.5, changes in the size of W1 droplet occurred rapidly after the W1/O/W2 droplet 

breakup/split while significant (P < 0.001) change in the oil globule size was only observed 

immediately after the splitting process as the release of W1 droplet from the W1/O/W2 droplet 

caused the formation of smaller oil globule. No significant (P = 1.00) change in oil globule size 

was observed after 1 to 3 hours of the splitting process for samples containing 5% Tween 80 

and lower NaCl concentration while an increase in size was observed for samples with 1% 

Tween 80 and higher NaCl concentrations. According to previous studies (El Kadri et al., 2015; 

2016), under hypo-osmotic conditions, the gain in creaming thickness is attributed to the 

migration of water from W2 to W1 phase whereby for samples under hyper-osmotic conditions, 

the reduction in creaming size is attributed to the loss in oil globule. 

 Referring to the data presented in Figure 4.15 (a) for samples under hypo-osmotic 

conditions, at high NaCl concentration (2%), a significant increase (P < 0.001) in creaming 

size was observed at 30 minutes to 1 hour of incubation. However, a decrease in creaming size 

was observed after 3 hours of the incubation period. Immediately after droplet splitting, the 

migration of water from W2 to W1 phase occurs rapidly that diminishes with a reduction in 

osmotic gradient. Droplet bursting due to extensive swelling especially with samples 

containing a higher concentration of NaCl resulting in loss of oil globule and a decrease in 

creaming size. In addition, the reduction in interfacial strength due to high NaCl concentration 

(Burgess and Yoon, 1995; Jiao, Rhodes and Burgess, 2002) caused coalescence between the 

oil globule that grows into a separated layer of oil on top of the samples and a decrease in the 

creaming volume. Under hyper-osmotic condition (Figure 4.13 b), the loss in the cream layer 
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is mainly attributed to the shrinkage of W1 droplet that diminishes with a reduction in osmotic 

gradient. Further loss in cream layer occurred due to bursting of W1 droplet and coalescence 

between oil globules as undesirable interaction between NaCl and Tween 80 weakens the 

interfacial strength of the droplet.   
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4.4 Conclusion 
 

In conclusion, the results obtained from this study provide important information on 

the applications of W1/O/W2 droplet for bacterial encapsulation that can be beneficial in various 

bacterial studies. Moreover, it also provides a better understanding of the application of 

W1/O/W2 droplet for controlled release of not only bacteria but also drugs, enzymes, flavours 

and other hydrophilic materials. As an example, W1/O/W2 droplet can be applied in the 

controlled release of the sensitive probiotics in food and during the digestion process whereby 

double emulsions serve as a mean of protection for bacteria against harsh conditions and the 

triggered destabilization of droplet may aid in the controlled release of these bacteria at a 

desirable time or region that maximizes their efficiency.  The present study reveals that splitting 

or droplet breakup accelerates the release of bacteria with osmotic balance alterations. 

However, further studies are still required to further understand the controlled release of 

bacteria from W1/O/W2 droplet such as the nature and composition of the thin film that 

surrounds the droplet after the splitting process and the mechanism behind the droplet 

breakup/split in order to control this process. In addition, it is also worth investigating the effect 

of other factors that may induce the release of bacteria from W1/O/W2 droplet such as a change 

in temperature or pH on the droplet breakup/split in order to further improve and widen the 

applications of W1/O/W2 droplet in the encapsulation of bacteria.  
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Chapter 5  

The stability of bacteria incorporated in emulsion 

 droplet in cold temperature storage 

5.1 Introduction 

Emulsion droplet had been studied recently for the encapsulation of materials such as 

bacteria and drugs (Chavarri, Maranon and Carmen, 2012; Dluska et al., 2017; Devanthi et al., 

2018). These materials usually require storage at low temperatures in order to maintain its 

stability, especially for long-term storage. The storage of bacteria in low temperatures is a 

common practice in bacterial preservation in order to maintain its viability, for example, lactic 

acid bacteria in the dairy industry and also for its application in various bacterial study in the 

laboratory. The freezing of cell to temperatures such as -20˚C and -80˚C help in maintaining 

not only its viability but also functionality over a long storage period (Fonseca, Béal and 

Corrieu, 2002; Wang et al., 2019).  

The development of various cryoprotectant formulations helped in minimizing the 

detrimental effects of freezing on bacteria (Wang et al., 2019). Besides that, the encapsulation 

of bacteria in emulsion, especially food-based emulsions such as milk and ice cream has also 

been reported to improve bacterial viability during freezing depending on the nature of the 

emulsion (Goderska and Czarnecki, 2008; Dianawati, Mishra and Shah, 2013; Nurliyani, 

Suranindyah and Pretiwi, 2015; Farias et al., 2019). Nevertheless, further studies are still 

required in order to asses not only the viability of bacteria encapsulated in emulsion droplets 

but also to determine the effect of bacteria on the emulsion stability during storage in cold 

temperatures.  
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The successful application of emulsion droplet for bacterial encapsulation depended on 

their stability. The stability of emulsion during cold temperature storage depended on the 

changes in the phase behaviour of the oil and aqueous phase as reported in many related studies 

(Vanapalli, Palanuwech and Coupland, 2002; Cramp et al., 2004; Ghosh and Rousseau, 2009; 

Tippetts and Martini, 2009). The crystallization of the oil phase followed by the aqueous phase 

in oil-in-water (O/W) emulsions may cause partial coalescence of the oil droplets whereby in 

loosely packed emulsions sample, the collision between the still-liquid oil droplets and 

crystallized oil droplets with protruding crystals may cause membrane rupture that resulted in 

the droplets with still-liquid oil to flow out forming a linkage between the two droplets as it 

freezes. This mechanism will cause droplets flocculation that eventually leads to complete 

coalescence and oiling-off upon thawing (Vanapalli, Palanuwech and Coupland, 2002; Lin et 

al., 2007).  

Another mechanism involved in emulsion destabilization during freezing is the flow-

induced coalescence whereby the crystallization of the continuous phase prior to the dispersed 

phase forces the still-liquid droplets to be concentrated in the still-liquid region of the 

continuous phase as it gradually crystallizes. This resulted in the droplets to be pushed closer 

together thus promoting droplets flocculation, coalescence and eventually phase separation 

(Ghosh and Coupland, 2008; Degner et al., 2013, 2014). A different destabilization mechanism 

for multiple emulsions namely water-in-oil-in-water (W1/O/W2) emulsion has been proposed 

which involves the external coalescence of the inner W1 phase with the outer W2 phase that 

occurred during the thawing process while the W1 inner phase remains intact during the 

freezing process (Rojas and Papadopoulos, 2007; Rojas et al., 2008).  

Although emulsion destabilization is unfavourable for food emulsions as it may affect 

product quality, it is highly beneficial in emulsions extraction and oil recovery process for 

example during the Emulsion Liquid Membrane processing (ELM) and also for the processing 
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of unwanted emulsions such as oil sludge (He and Chen, 2002; Lin et al., 2007, 2008). 

Moreover, the application of the freeze-thaw technique for the controlled and immediate 

release of materials from double emulsion droplets has also been explored previously (Rojas 

and Papadopoulos, 2007; Rojas et al., 2008). That study shows an interesting application of the 

freeze-thaw process for the controlled release in which will be further explored in this chapter 

by using live bacterial cells as the encapsulated material.  

This chapter focused on the application of emulsion droplet for bacterial encapsulation 

under cold temperature storage. It is crucial to understand the flexibility of the emulsion droplet 

to be used as an alternative for bacterial encapsulation and their stability during storage not 

only in ambient temperature as discussed previously in chapter three but also in cold 

temperature. The detrimental effects of cold temperature on bacterial viability and droplet 

destabilization during storage remains a challenge. Therefore, the experiments conducted in 

this chapter were important and may provide valuable information on the effects of 

encapsulation on bacterial viability and droplet stability in cold temperature storage. In this 

study, E. coli-GFP which is one of the most widely studied bacteria and commonly subjected 

to cold temperature storage was used. As cold temperature storage is mostly related to the food-

based emulsion, soybean oil was used as the oil phase of the emulsion prepared in this chapter. 

Moreover, in order to focus on the industrial application of the emulsion as compared to a 

general study on emulsion by using mineral oil as the oil phase in the previous chapters (chapter 

three and four), the soybean oil was chosen to replace mineral oil in this study whereby soybean 

oil is one of the most common types of oil used in the food industry with various nutritional 

benefits such as omega-3 and omega-6 fatty acids (List, 2016). 
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5.2 Materials and methods 
 

5.2.1 Materials and bacterial cultures 

Materials and bacterial cultures used are as described in section 4.2.1. Soybean oil (Alfa Aesar, 

United Kingdom) was used as the oil phase for both single water-in-oil (W/O) and double 

water-in-oil-in-water (W1/O/W2) emulsion droplet.  

5.2.2 Bacterial cells preparation  

Bacterial culture was prepared for encapsulation in water-in-oil (W/O) and water-in-oil-in-

water (W1/O/W2) as described in section 4.2.4 and was re-suspended into sterilised deionised 

water (DIW).  

5.2.3 Microfluidic encapsulation of E. coli-GFP in W/O and W1/O/W2 droplet 

The prepared culture of E. coli-GFP in deionised water (DIW) was then used as the aqueous 

phase of W/O and the inner aqueous phase of W1/O/W2 droplet. The oil phase for both types 

of emulsion consists of soybean oil with 1.5% w/v PGPR surfactant while for W1/O/W2, the 

outer aqueous phase consists of DIW with 1% w/v Tween 80 surfactant. The bacterial 

encapsulation into W/O droplet was conducted according to section 3.2.5 while the 

encapsulation into W1/O/W2 was done according to section 4.2.5. The microfluidic devices 

used for droplet generation were prepared according to section 3.2.2 for single emulsion droplet 

and section 4.2.2 for double emulsion droplet. As part of microfluidic device preparation, 

partial hydrophilic surface treatment was done on double emulsion droplet devices as 

mentioned in section 4.2.3. 

5.2.4 Storage of samples in different temperature 

The prepared samples of emulsion droplet incorporated with or without E. coli-GFP was stored 

in different storage temperature of 25°C (control), 5°C (refrigeration temperature), -20°C 

(freezing temperature) and -80°C (freezing temperature) in laboratory-based refrigerator and 
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freezers whereby the temperature was monitored throughout the storage period. Samples were 

stored for 24 hours and were thawed at 25°C for one hour prior to further tests. Samples of E. 

coli-GFP suspended in sterilised deionised water (DIW) were also prepared and kept at the 

designated temperature as non-encapsulated control.  

5.2.5 Bacterial viability determination 

The viability of E. coli-GFP was determined before and after the thawing process of samples 

stored in different temperatures as mentioned in section 5.2.4. Serial dilutions of the samples 

were done using Phosphate buffer saline (PBS) and viable cells were counted immediately after 

samples preparation and storage by using the Miles and Misra method (Miles and Misra, 1931) 

as described in section 3.2.6.   

5.2.6 Microscopic observation of droplet destabilization. 

Droplet destabilization was observed with respect to changes in temperature as described in 

Figure 5.1. The samples were prepared for microscopy by placing approximately one drop of 

sample onto the glass slide. The prepared glass slide was then placed on a Peltier temperature-

controlled stage (Model PE-120, LINKAM scientific instruments, United Kingdom) where the 

temperature of the stage was controlled by using Link software. Eheim circulation pump (ECP) 

was used for water circulation through the stage in order to keep the temperature-controlled 

stage at the desired temperature. The temperature-controlled stage was fitted on a Nikon 

Eclipse Ti microscope equipped with Pco. Edge 5.5 sCMOS camera where the samples were 

cooled and thawed on the microscope stage while photomicrographs of the samples were 

acquired. The sample was prepared at an initial temperature of 25°C and was cooled down to -

25°C as it was the minimum reachable temperature of the stage (temperature range of the 

Peltier temperature-controlled stage: 120°C to -25°C). The sample was then thawed back to the 

initial temperature of 25°C. For fluorescence microscopy, the encapsulated E. coli-GFP was 

observed at 509 nm emission. 
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Figure 5.1 Microscopic observation of emulsion destabilization with the change in temperature. 
Sample of the emulsion was placed on a glass slide and placed on a temperature-controlled stage at 

25˚C. The temperature of the stage was then reduced to -25°C that freezes the sample and was kept at 
that temperature for 10 minutes. The temperature of the stage was then increased to 25°C in order to 
thaw the sample. Photomicrographs of the sample were taken with every temperature change, from 
25°C (initial) to -25°C (cooling), 5°C (heating) and back to 25°C (thawed). The temperature of the 

stage was maintained with ECP water pump. 
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5.2.7 Determination of droplet size and phase separation 

The effect of different storage temperature on droplet size was determined by measuring the 

diameter of the droplet immediately after sample preparation and after the thawing process at 

25°C. Approximately one mL of double and single emulsion samples with or without E. coli- 

GFP were prepared at 25°C and stored in cold temperatures as described in section 5.2.4. 

Photomicrographs of the droplet were taken before and after the storage period and changes in 

the size of the dispersed aqueous phase for single emulsion droplet and oil globule size for 

double emulsion droplet were measured by using the MATLAB software according to section 

3.2.3. 

 Droplet stability was also determined by measuring the amount of free water (for W/O 

emulsion) and free oil (for W1/O/W2 emulsion) with or without the presence of E. coli-GFP.  

Phase separation measurement was done by collecting 1 mL of sample into graduated syringes 

immediately after droplet preparation. The samples were then stored at different temperatures 

in an upright position for 24 hours. The volume of the free water and oil were measured from 

the graduated syringe immediately after the thawing process and the percentage of free water 

and oil were determined as follows: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑤𝑎𝑡𝑒𝑟/𝑜𝑖𝑙 (%) =  
𝑉𝑤𝑎𝑡𝑒𝑟/𝑜𝑖𝑙

𝑉𝑒𝑚𝑢𝑙𝑠𝑖𝑜𝑛
  × 100                                              (5.1) 

Where Vwater/oil is the volume of separated water or oil at time 0 as measured from the graduated 

syringe while Vemulsion is the total volume of the emulsion sample. 

5.2.8 Measuring the release of bacteria from W1/O/W2 droplet. 

The release of bacteria was determined by measuring the number of cells in the outer aqueous 

phase immediately after droplet preparation and after the thawing process for double emulsion 

samples described in section 5.2.3. The release of bacteria was determined as described in 

section 4.2.9.  
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5.2.9 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) was done in order to determine the thermal properties 

of emulsions samples and bulk aqueous solutions.  The crystallization and melting behaviour 

were characterised by using a differential scanning calorimeter (Mettler Toledo, model 822e, 

Mettler Scientific Instruments, Germany) with liquid nitrogen as the cooling substance. 

Approximately 5 mg of sample was weighted and hermetically sealed in aluminium pans 

together with an empty pan as reference. Samples were then cooled from 25°C to -70°C and 

were held at -70°C for 5 minutes before heated back to 25°C at 1°C/min. The cooling and 

heating curves were obtained from the Star e software (Mettler Toledo, Mettler Scientific 

Instruments, Germany) whereby positive curves resulted from exothermic reaction while the 

endothermic reaction in the sample creates negative curves. The crystallization and melting 

points of the tested samples were determined from the peak onset temperatures of the curves 

by using the same software. 

5.2.10 Statistical analysis 

The data obtained from the experiments conducted in this chapter were analysed according to 

section 3.2.12. 
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5.3 Results and discussion 

5.3.1 The effect of storage on droplet size change 

The stability of the prepared emulsions stored at different temperatures for 24 hours was 

determined by measuring changes in droplet size as described in section 5.2.7. 

Photomicrographs of emulsion destabilization were also acquired in order to obtain a clear 

view of the destabilization process and were done according to section 5.2.6. Changes in the 

dispersed droplet diameter for W/O emulsion were presented in Figure 5.2 A, B, C, D while 

changes in the oil globule diameter of W1/O/W2 emulsion were presented in Figure 5.2 E, F, 

G, H. The results obtained were summarized in Table 5.1 and photomicrographs of droplet 

destabilization with the change in temperature were presented in Figure 5.3. 
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Figure 5.2 Droplet size distribution for single W/O and double W1/O/W2 emulsions stored in 25 °C (     ), 
5°C (····), -20°C (----), -80°C (- · -). Graph A-D represent the data for single W/O emulsion while graph E-
H represent the data for double W1/O/W2 whereby droplet size distribution was compared between sample 

containing E. coli-GFP and without E. coli-GFP, before and after storage for 24 hours. 
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Table 5.1 Summary of droplet size and distribution measured before and after 24 hours of storage. 
Samples were prepared with or without E.coli-GFP for W/O and W1/O/W2 droplets. Data represent 
mean ± standard deviation taken from 3 independent experiments with N=900 droplet. The coefficient 
of variation (%) was measured by dividing standard deviation with mean droplet diameter. Mean 
comparison with small letters and capital letters indicate significant different (P < 0.05) between 
temperatures within each sample and between before and after storage within each temperature 
respectively. Data were analysed with one-way ANOVA and students' T-test.  

Samples Temperature 
(°C) 

Average droplet diameter (µm) Coefficient of variation (%) 

Before After Before After 

W/O without 
E. coli-GFP 

25 50.4aA ± 4.7 55.3aA ± 5.2 9.3 9.4 

5 50.4aA + ± 4.8 57.7 aA ± 5.6 9.5 9.7 

-20 50.3aA ± 4.9 59.6cB ± 6.6 9.7 11.1 

-80 50.7aA ± 4.8 67.2dB ± 19.0 9.6 28.3 

W/O with E. 

coli-GFP 
25 50.8aA ± 4.7 52.1aA ± 4.9 9.3 9.4 

5 50.0aA ± 4.9 53.7aA ± 5.3 9.8 9.9 

-20 50.4aA ± 4.9 55.3bB ± 5.4 9.7 9.8 

-80 50.5aA ± 5.0 62.8cB ± 15.6 9.9 24.8 

W1/O/W2 

without E. 

coli-GFP 

25 100.3aA ± 6.9 79.0aB ±  15.6 6.9 19.7 

5 100.7aA ± 7.3 75.4bB ± 14.9 7.2 19.8 

-20 100.6aA ± 7.1 122.3cB ± 20.2 7.1 16.5 

-80 101.8aA ± 7.4 133.8dB ± 20.9 7.3 15.6 

W1/O/W2 with 
E. coli-GFP 

25 100.9aA ±  7.1 79.4aB ± 15.6 7.0 19.6 

5 100.3aA ± 7.7 76.3bB ± 14.7 7.7 19.3 

-20 100.4aA ± 7.1 116.7cB ± 18.5 7.1 15.9 

-80 100.4aA ± 7.4 126.3dB ± 18.9 7.4 14.9 
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Figure 5.3 Photomicrographs of W/O and W1/O/W2 emulsion droplet with change in temperature. The 
cooling and thawing processes were conducted on the microscope stage. Scale bar represents 100 µm. 
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From Figure 5.2 (A, C, E, G) and Table 5.1, monodispersed droplet for both single and 

double emulsion droplet were observed for all samples with or without E. coli-GFP with a CV 

value of approximately 9% for single emulsion droplet and 7% for double emulsion droplet 

prior to the storage test. These indicate the ability of the flow-focussing microfluidic devices 

in producing highly monodispersed droplet and that the presence of E. coli-GFP does not affect 

droplet formation.  For samples of single emulsion droplet, no significant change in droplet 

size was observed after storage at 25°C (P = 0.24) and 5°C (P = 0.07) (Table 5.1) for both 

samples with and without bacteria. The droplet remains monodispersed with only 0.1-0.2% 

change in the value of the coefficient of variation (CV). However, a significant change (P < 

0.001) in droplet size and distribution were observed after 24 hours of storage for samples 

stored at freezing temperatures of -20°C and -80 °C for both sample with and without bacteria.  

Samples stored at -80°C show the highest increase in CV value whereby the value increases 

from 9.6% to 28.3% for samples without E. coli-GFP indicating a polydispersed distribution 

of droplet (CV values of higher than 25% are regarded as polydispersed). Comparing samples 

with or without E. coli-GFP, change in droplet stability was minimized with the presence of E. 

coli-GFP whereby a smaller change in average droplet size and CV was observed with samples 

containing E. coli-GFP as compared to samples without E. coli-GFP.  

Samples of double W1/O/W2 emulsion droplet show a significant change (P < 0.001) in 

the size of oil globule after storage for 24 hours for all the samples tested. A decrease in average 

oil globule size was observed for samples stored at 25°C and 5°C along with presence of large 

droplet with tails that extend towards 170 µm in droplet size distribution graphs (Figure 5.2 F, 

H) while for samples stored at freezing temperatures of -20°C and -80°C, an increase in droplet 

size was observed (Table 5.1). Samples containing E. coli-GFP show better droplet stability as 

compared to samples without E. coli-GFP indicating the ability of bacterial cells in maintaining 

droplet stability during cold temperature storage. The size of the inner aqueous phase (W1) was 
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not measured in this study due to complete external coalescence between the inner W1 droplet 

with the outer W2 phase after 24 hours of storage forming single oil-in-water (O/W) emulsion. 

The storage of single W/O samples at -20°C caused the solidification of the aqueous 

phase and partial crystallization of the oil phase whereas storing the samples at -80 °C 

completely solidifies the emulsions. With broad crystallization temperature as opposed to pure 

water that exhibits a sharp crystallization curve, it is quite difficult to determine the exact 

crystallization temperature of the soybean oil due to presence lipids and a mixture of molecules. 

It has been reported previously that soybean oil is partially crystallized at a temperature 

between -10°C to approximately -20°C whereby below this temperature, the soybean oil is most 

likely to become solid (Tieko Nassu and Gonçalves, 1999; Harada and Yokomizo, 2000; 

Mezzenga, Folmer and Hughes, 2004; Ishibashi, Hondoh and Ueno, 2016). Several 

destabilization mechanisms of single W/O emulsions during the freeze-thaw process have been 

proposed depending on the droplet arrangements in the emulsion (Aronson and Petko, 1993; 

Aronson et al., 1994; He and Chen, 2002; Chen and He, 2003; Lin et al., 2007). The 

destabilization of loosely packed W/O emulsion droplet is due to the collision-mediated 

coalescence (Lin et al., 2007). This process is triggered by the uneven crystallization of the 

polydispersed water droplet in the emulsion whereby the collision between the smaller still-

liquid water droplet with protruding ice crystals of the larger frozen droplet punctures the 

membrane surrounding the smaller still-liquid water droplet. This leads to the heterogeneous 

nucleation and crystallization of the smaller water droplet that coalesces forming larger droplet 

upon thawing (Lin et al., 2007; Ghosh and Rousseau, 2009b). However, this may not be the 

case for single W/O droplet generated by the microfluidic device as it is highly monodispersed 

and therefore, minimizes the heterogeneous crystallization of the water droplet and the effect 

of collision-mediated coalescence.  
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Although the effect of collision-mediated coalescence was minimized, the 

destabilization of W/O droplet was still observed and is mainly attributed to the static and 

upright storage of the samples during freezing that caused the inevitable sedimentation of the 

water droplet making them closely packed. For densely packed emulsions, the destabilization 

mechanism is induced by the direct breakage of interfacial films and emulsion inversion 

(Aronson and Petko, 1993; Aronson et al., 1994). The direct breakage of the droplet interfacial 

film occurred as neighbouring droplet crystallizes and expands causing destabilization. Droplet 

expansion pressed the droplet closely together while crystallized droplet punctured the 

interfacial film of neighbouring still-liquid droplet leading to droplet rupture (Ghosh and 

Coupland, 2008). This caused the content of the ruptured droplet to flow out and formed a link 

between the two frozen droplets resulting in flocculation as observed in this study in Figure 5.3 

b (van Boekel and Walstra, 1981). During the thawing process, the crystal network collapsed 

and the two partially coalesced droplet merged together forming larger droplet (complete 

coalescence) as observed in Figure 5.3 d (Vanapalli, Palanuwech and Coupland, 2002). Droplet 

crystallization and expansion also resulted in the thinning of the oil and surfactant layer around 

the aqueous phase that accelerates droplet coalescence during the melting process (Ghosh and 

Rousseau, 2009b).  Emulsion inversion, as reported by Aronson and Petko (1993) involves the 

rearrangement of ice crystals and the still-liquid oil that leads to the presence of distinct oil 

droplet within the ice structure. However, this may not be the case for samples tested in this 

study as it occurs mainly in densely packed emulsions containing distinctively high volume 

fraction of the dispersed phase (Vanapalli, Palanuwech and Coupland, 2002) 

It has been reported previously that the stability of water-in-oil droplet during the 

freeze-thaw process depended on the freezing sequence of the oil and aqueous phases and also 

the type of surfactants used (Ghosh and Rousseau, 2009b).  The freezing sequence between the 

oil and aqueous phase may depend on the type of oil used as some oils may have a lower 
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freezing point or higher freezing point than the aqueous phase. Ghosh and Rousseau (2009) 

reported that for single water-in-oil emulsions, instability is mostly evident in samples with the 

oil phase that crystallizes first prior to the aqueous phase and when the emulsifier is in liquid-

state during the freezing process. For emulsion droplet containing soybean oil, the oil phase 

crystallizes at a much lower temperature than the aqueous phase in which droplet 

destabilization should be minimized. However, significant changes (P < 0.001) in droplet size 

distribution were observed for samples stored at -80°C. At -80°C, the gradual crystallization of 

the oil phase due to difference in the melting fraction of fats in soybean oil as the high-melting 

fraction crystallizes first followed by the low-melting fraction (Ishibashi, Hondoh and Ueno, 

2016) resulted in the ice crystals to be forced into the still-liquid oil phase forming a region 

with highly concentrated ice crystals. These occurred in the same way as the solidification of 

the continuous aqueous phase forcing the oil droplet to be concentrated in the region of the 

still-liquid continuous phase during the freezing of O/W emulsions (Ghosh and Coupland, 

2008; Degner et al., 2013). During thawing, as the oil melts, the ice crystals will immediately 

coalesce as a further increase in temperature caused the aqueous droplet to melt and fuse 

together (Degner et al., 2014).  

As mentioned in section 4.3.4, the difference in density between the aqueous and oil 

phases in double emulsions caused the separation of the W1 phase from the double emulsion 

droplet that retained in the W2 phase supported by a very thin and complex layer of oil and 

surfactants. This also caused the reduction in oil globule size as the W1 phase escaped into the 

W2 phase leaving the oil globule with smaller size. Similar behaviour was also seen for samples 

of double emulsion kept in a lower temperature of 5°C. However, for double emulsion samples 

kept in a much lower temperature of -20°C and -80°C, significant (P < 0.001) increase in the 

average oil globule size and change in size distribution was observed. The inner W1 phase 
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remains intact in the W1/O/W2 during the freezing process as shown in Figure 5.3 f and droplet 

separation process was not observed.   

The destabilization mechanism of the double emulsion droplet is mainly attributed to 

the coalescence between the inner W1 phase and the outer W2 phase which is termed as external 

coalescence (Magdassi and Garti, 1987; Rojas and Papadopoulos, 2007). In contrast with single 

emulsions droplet whereby the droplet destabilization process occurred throughout the freeze 

and thawing processes, the external coalescence of double emulsion occurred during the 

thawing process of the emulsions while the inner W1 phase remains intact during the freezing 

process (Rojas and Papadopoulos, 2007). The thawing process caused deformation of the inner 

W1 phase followed by the complete burst of droplet due to external coalescence and is mainly 

affected by the size of the inner W1 phase and surfactant concentration. According to Rojas 

and Papadopoulos (2007), the determined threshold of the W1 inner aqueous phase size to the 

oil globule size ratio is 0.3 in which above, resulting in coalescence upon thawing. In addition, 

emulsion droplet with thick surfactant layers creates a repulsive force between the W1 inner 

phase and the O/W2 interface that improves droplet stability against external coalescence 

(Wangqi Hou and Papadopoulos, 1996). A similar mechanism was observed in this study 

whereby the inner W1 droplet remain intact during the freezing process and rapid freezing 

prevents the droplet from splitting (Figure 5.3 e-f). Emulsions destabilization only occurred 

during the thawing process for both samples kept at -20°C and -80°C.  As the frozen oil melts 

at a lower temperature during the thawing process of samples kept at freezing temperatures, 

the liquid oil flows through the cracks and gaps created by the gradual thawing of the aqueous 

phase (Figure 5.3 g) leading to absence of the oil layer that separates the inner W1 phase from 

the outer W2 phase. This accelerates the external coalescence of the aqueous phase as it melts 

completely with increase in temperature. Moreover, the droplet distribution graph that tails 

towards the larger droplet size with sharp distribution at the smaller droplet size region shows 
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evidence of oil globule coalescence after the thawing process that is in contrast to droplet 

instability that was induced by Ostwald ripening. Ostwald ripening, as mentioned in section 

2.1 is a droplet destabilization process whereby it occurred as a result of mutual solubility 

between immiscible liquids causing droplet with smaller size to solubilise into larger droplet. 

Thus, with Ostwald ripening, it tends to form sharp droplet distribution at the larger size region 

with tailing at smaller droplet size region (Aronson and Petko, 1993). 

The presence of bacteria also affected droplet stability, especially for single emulsion 

droplet. As the PGPR surfactant remained liquid during the freezing process (Ghosh and 

Rousseau, 2009), it is most likely retained in the oil phase and withdrawn from the ice crystals 

as the aqueous phase freezes. These accelerate the coalescence process of the aqueous phase 

as the emulsions warmed up. However, the presence of E. coli-GFP on the interface minimizes 

the droplet coalescence during the thawing process as they are most likely crystallized on the 

interface. The E. coli-GFP was observed to have a high affinity towards the soybean oil as 

determined by the BATH assay (Figure A2, Appendix 5). Changes in bacterial characteristics 

due to storage in freezing temperatures ease the attachment of the bacteria onto the interface 

making the droplet less susceptible to rupture. The stabilization effect of bacteria may be 

similar to emulsion stabilization due to surfactant crystallization and presence of particles on 

the droplet interface forming Pickering emulsion as reported previously by Ghosh and 

Rousseau (2009) and  Zhu et al. (2017). The crystallization of glycerol monostearate (GMS) at 

25°C creates a crystalline shell around the water droplet that helps in preventing crystallization 

damage between the adjacent water droplet and coalescence during the thawing process which 

is in contrast to emulsions containing molten PGPR (Ghosh and Rousseau, 2009). According 

to Zhu et al. (2017), the addition of heated soy and whey protein in emulsions improves droplet 

stability against freeze/thaw cycling due to Pickering stearic stabilization. However, further 

study is still required to confirm the effect of bacteria on droplet stability in freezing conditions.  
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5.3.2 The effect of storage on phase separation of emulsions 

The percentage of free water, separated from W/O samples (Figure 5.4 a) and free oil which is 

separated from the W1/O/W2 samples (Figure 5.4 b) was measured in order to further 

understand the effect of storage conditions and presence of bacteria on emulsion stability. The 

percentage of free water was measured for W/O sample as droplet destabilization resulted in 

the presence of a free water layer due to droplet coalescence while the destabilization of 

W1/O/W2 droplet lead to the presence of a free oil layer due to the external coalescence between 

the inner and outer aqueous phase (forming O/W emulsion) and coalescence between large oil 

droplets that resulted in the presence of an oil layer on top of the sample as discussed in section 

5.3.1.  Samples were prepared as described in section 5.2.7. 
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Figure 5.4 The percentage of (a) free water measured for W/O samples and (b) free oil for W1/O/W2 
samples. The volume of free water and free oil was measured with respect to the total volume of the 
emulsion after 24 hours of storage at different temperature. Bars represent mean ± SEM taken from 3 

independent experiments (N=3). 

 

 

 

 

 

 

 

a 

b 

DIW with E. coli-GFP 

-20 



 
 

156 
 

Figure 5.4 shows the percentage ratio of free water and oil measured after 24 hours of 

storage with respect to the total emulsion. From the results obtained it was determined that 

phase separation occurred for samples of both single and double emulsions kept in -20°C and 

-80°C with the highest amount of free water and free oil observed for samples kept at -80°C. 

Emulsion stability for samples stored at 25°C was maintained during the storage period as there 

were no observable free water or oil after the thawing process. However, a small percentage of 

free water and oil (approximately 2%) were observed for samples without E. coli-GFP at 5°C 

and is mainly attributed to the closely packed water droplet during storage and the absence of 

E. coli-GFP that helps in improving droplet stability. Overall comparison between samples 

with or without the presence of E. coli-GFP shows that phase separation was minimized with 

the presence of E. coli-GFP indicating the role of bacterial cells in preventing phase separation.  

 As discussed previously, droplet destabilization for W/O emulsions kept at -20°C and -

80°C occurred due to partial coalescence of the droplet as the crystallization of the dispersed 

phase resulted in film rupture that connects neighbouring droplet leading to complete 

coalescence upon thawing (Boode, Walstra and de Groot-Mostert, 1993; Vanapalli, 

Palanuwech and Coupland, 2002). This eventually leads to bulk water separation that is 

minimized with the presence of E. coli-GFP in the inner W1 phase. During the crystallization 

process of the oil phase, the dispersed ice crystals were forced to the still-liquid region of the 

oil phase and as the temperature decreases, crystallized oil will be withdrawn from this region. 

Combination of these processes leads to complete aqueous droplet coalescence and extensive 

bulk water separation from the emulsion during the thawing process (Degner et al., 2013, 

2014). The partially crystallized oil phase of samples stored in -20°C prevented the complete 

withdrawal oil phase as some region within the emulsion may contain liquid oil thus minimizes 

extensive droplet coalescence.  Moreover, the direct destabilization process of the double 

emulsion droplet that occurs immediately upon the thawing process also leads to bulk oil 
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separation and the external coalescence of the inner W1 phase and W2 phase. As shown in 

Figure 5.3 g, the movement of liquid oil through the cracks of the outer aqueous phase during 

the thawing process immediately separates the oil and aqueous phase forming bulk oil layer 

due to coalescence of bigger oil droplet and a layer of O/W emulsion. The unfrozen W1 phase 

will remain in the W2 phase and eventually be infused into the W2 phase as it melts (Figure 5.3 

h). This process leads to complete release of the W1 phase into the W2 phase and extensive 

separation of the oil phase from the emulsion. Complete W1/O/W2 emulsion destabilization 

due to external coalescence during the thawing phase of the oil layer was also reported 

previously by Rojas and Papadopoulos (2007) whereby it leads to the complete release of the 

W1 phase into the W2 phase forming O/W emulsions. 

  The presence of crystallized surfactants and Pickering particles has been reported to 

improve droplet stability as it minimizes droplet coalescence during the thawing process by 

creating a protective layer that prevents droplet fusion (Ghosh and Coupland, 2008; Marefati 

et al., 2013; Zhu et al., 2017). A similar stabilization effect may occur with the presence of E. 

coli-GFP on the interfacial layer. Under the freezing condition, E. coli-GFP undergo changes 

in membrane conformation and cell shrinkage (Souzu, 1980) making it easily embedded in the 

interfacial layer.  As discussed previously in section 3.3.2, the presence of E. coli-GFP in single 

W/O emulsions droplet helps in maintaining the stability of the droplet during five days of 

storage at 25°C whereby the presence of E. coli-GFP particularly dead cells helps in reducing 

interfacial tension due to its attachment on the interfacial layer. The bacterial affinity towards 

the interface is due to its hydrophobic nature as the dead E. coli-GFP cells exhibit higher 

affinity towards the oil phase as compared to live cells. BATH assay of E. coli-GFP with 

soybean oil reveals its affinity towards the oil phase (Figure A2, Appendix 5) thus may help in 

reducing the interfacial tension and creates a protective barrier that prevents extensive droplet 

coalescence during the thawing process.  Moreover, the presence of bacteria in the W2 phase 
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due to its release as the W1/O/W2 emulsion destabilizes may help in preventing coalescence 

between the oil droplet as reported previously by Firoozmand and Rousseau (2016) whereby 

the presence of bacterial cells in the aqueous phase of the O/W emulsions improves droplet 

stability due to the attachment of bacterial cells onto the oil droplet that creates a boundary 

layer thus protecting the droplet against coalescence and phase separation.  Although the 

storage of samples under freezing temperature leads to the unfavourable bulk phase separation, 

the immediate destabilization of emulsions especially the W1/O/W2 triggered by the thawing 

process may be beneficial for the controlled release of bacteria in which will be explained in 

detail in section 5.3.5.  

5.3.3 Thermal properties of emulsions by Differential Scanning Calorimetry (DSC). 
 

The thermal properties of the bulk aqueous solution (Figure 5.5) were characterised as opposed 

to emulsified samples of single and double emulsions in soybean oil (Figure 5.6). The freshly 

prepared samples of the bulk aqueous phase with or without E. coli-GFP and the emulsified 

samples in W/O and W1/O/W2 samples were prepared and scanned by using the differential 

scanning calorimeter as detailed in section 5.2.9.  
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Figure 5.5 DSC thermograms showing the cooling curves (a) and heating curves (b) of bulk aqueous 
samples with or without E. coli-GFP. The samples were prepared at 25°C and were then cooled to      

-70°C and were held for 5 minutes at -70°C before being heated back to 25°C at 1°C/min. The 
crystallization and melting temperatures were determined from the onset temperature of the curves. 
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Figure 5.6 DSC thermograms of (a) cooling curves and (b) heating curves of emulsified samples with 
or without E. coli-GFP. The samples were prepared at 25°C and were then cooled to -70°C and were 

held for 5 minutes at -70°C before being heated back to 25°C at 1C/min. The crystallization and 
melting temperatures were determined from the onset temperature of the curves. 
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The cooling and heating curves of bulk aqueous samples are presented in Figure 5.5. In 

this study, the crystallization temperature of the samples was determined from the onset 

temperature of the crystallization peaks in which the temperature was recorded at the beginning 

of the crystallite formation. The onset temperature was determined by using the Star e software 

(Mettler Toledo, Mettler Scientific Instruments, Germany). Referring to the crystallization 

peaks in Figure 5.4 a, it was determined that the crystallization of E. coli-GFP suspension in 

DIW occurred at a lower temperature as compared to pure DIW. The pure DIW crystallizes at 

-12°C and melted at 0°C which is around the same temperature as reported previously in several 

studies (Cramp et al., 2004; Clausse et al., 2005; Ghosh and Rousseau, 2009b). For the E. coli-

GFP suspension, the crystallization temperature was recorded at -17°C while the melting of the 

E. coli-GFP suspension occurred around the same temperature as the pure DIW. The reduction 

in the crystallization temperature with the presence of E. coli-GFP is due to the freezing point 

depression whereby the presence of solute in water or solvent tend to lower the freezing point. 

The decrease in freezing temperature is due to the presence of the non-volatile solute that 

reduces the vapour pressure of the solvent. The freezing point of a solution is referred to as a 

point of equilibrium between the solid and liquid phase as shown in the phase diagram (Figure 

2.9). An increase in the solute concentration resulted in a shift in the equilibrium point towards 

the lower temperature as a reduction in temperature is required for the solid and solution to 

reach equilibrium (Reger, Goode and Ball, 2009).   

Figure 5.6 describes the freezing and cooling curves of the emulsified samples in single 

W/O emulsions and double W1/O/W2 emulsions. From the results obtained, it was determined 

that the emulsified samples freeze at a much lower temperature compared to pure solutions. A 

broader crystallization curve was observed for samples of W/O emulsions as compared to 

W1/O/W2 emulsions. This is mostly attributed to the presence of a large percentage of oil in 

the continuous phase as compared the aqueous phase. The presence of long chains of lipids 
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together with a mixture of other molecules in vegetable oils such as soybean oil resulted in 

broader crystallization temperature as opposed to pure water making it difficult to determine 

the exact freezing point of the soybean oil. It has been reported that pure soybean oil crystallizes 

at approximately -10°C to -20°C whereby it is most likely to solidify below these temperatures 

while soybean oil emulsions solidify at a much lower temperature than the pure oil (Harada 

and Yokomizo, 2000; Ishibashi, Hondoh and Ueno, 2016). In this study, the single W/O 

emulsion crystallizes at -20°C for samples without E. coli-GFP while samples with E. coli-GFP 

crystallize at -28°C. The melting point of both of the emulsions was around 0°C. The difference 

in crystallization temperature is mainly attributed to the loss in emulsion stability for emulsions 

without E. coli-GFP whereby the presence of free water due to phase separation increases the 

crystallization temperature of the samples. In addition, the similar melting point of the 

emulsions with that of bulk solutions also indicates the loss in emulsion stability due to an 

increase in the percentage of free water during the thawing process (Chen and He, 2003; 

Clausse et al., 2005). It has been reported previously that the W/O emulsions solidify at a lower 

temperature than that of bulk water as it overcomes the free energy barrier due to homogeneous 

nucleation (Vanapalli, Palanuwech and Coupland, 2002). Water droplet in emulsions solidifies 

at a lower temperature than the temperature required to solidify bulk water (-20 °C) and are 

much lower than the equilibrium melting point of water of 0 °C (Lin et al., 2007).  

For double W1/O/W2 emulsions, a small difference in crystallization temperature was 

observed between samples with or without E. coli-GFP as samples containing E. coli-GFP 

crystallise at -21°C while samples without E. coli-GFP crystallizes at -23°C. Only one peak 

was observed which gives the crystallization peak of the W2 phase as opposed to 2 peaks 

reported by Kovács et al. (2005). The absence of the second peak indicates the loss of the inner 

W1 phase due to emulsion breakdown (Kovács et al., 2005; Schuch, Köhler and Schuchmann, 



 
 

163 
 

2013). However, this may not be the case in this study as the inner W1 droplet were intact 

during the freezing process as observed in Figure 5.3 f and the loss of inner W1 phase occurred 

during the thawing/melting process which explains the presence of only one peak for the 

melting curve with a melting temperature of approximately 0°C for all samples. Schuch, Köhler 

and Schuchmann (2013) also described that it is possible to distinguish between the inner W1 

phase and the outer W2 phase from the cooling curves due to the presence of two peaks that 

resulted from the difference in crystallization temperature but it is impossible to distinguish 

between these two phases from the melting curves of the W1/O/W2. Another possible 

explanation for the presence of only one cooling curve is due to the highly monodispersed 

distribution of the droplet that was prepared by using the microfluidic method with single and 

large size of the W1 inner core and a thin oil layer separating the W1 phase from the W2 phase. 

A combination of these factors may have caused the outer W2 phase and the inner W1 phase to 

crystallize simultaneously within the same temperature range. Schuch, Köhler and 

Schuchmann (2013) previously reported that the crystallization of emulsion droplet may 

depend on the size of the droplet. However, further studies are still required in order to 

understand the effect of droplet size distribution on the crystallization temperature of the 

multiple emulsion. 

5.3.4 Bacterial viability during storage 

The effect of different storage temperatures and encapsulation in emulsion droplet on the 

viability of E. coli-GFP were determined by measuring the reduction in Log CFU/mL of the 

bacterial cells after the thawing process with respect to initial cell count (Figure 5.7). The 

samples were prepared with cells concentration of approximately 108 CFU/mL. 
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Figure 5.7 Reduction in Log CFU/mL of free E. coli-GFP in sterilised DIW and encapsulated in W/O 
or W1/O/W2 emulsion droplet. Bars represent mean SEM taken from 3 independent experiments with 

3 replicates per experiment (N=3). 

 

 

 

 

 

 

 

 

 

Non-encapsulated E. coli-GFP E. coli-GFP in W/O E. coli-GFP in W1/O/W2 



 
 

165 
 

From the results obtained, a large reduction in E. coli-GFP cell count was observed 

with samples kept at -20°C and -80°C as compared to samples kept in 25°C and 5°C whereby 

comparing between non-encapsulated samples, 1.2 log CFU/mL and 1.3 log CFU/mL 

reduction in viable cell count was observed for samples kept in 25°C and 5°C respectively 

while 2.3 log CFU/mL and 2.7 log CFU/mL of reduction was observed for samples kept in -

20°C and -80°C respectively. E. coli-GFP encapsulated in W/O droplet shows a smaller 

percentage of bacterial reduction as compared to samples encapsulated in W1/O/W2 droplet and 

control samples of free E. coli-GFP cells in sterilised DIW.  

It has been reported previously that freeze-thawing may cause detrimental effects on 

bacterial cells that lead to a reduction in bacterial viability (Souzu, 1980, 1989; Souzu, Sato 

and Kojima, 1989; Strocchi et al., 2006).  Cell damage during the freeze-thaw process occurred 

due to various physico-chemical reactions (Simonin et al., 2015; Wang et al., 2019). Some of 

the factors responsible for cell damage during storage at low temperatures are the nature of the 

cells (O’Brien et al., 2016; Wang et al., 2019), whereby different bacterial species exhibit 

different resistance to cell damage depending on cell conformation. Furthermore, the use of 

cryoprotectant with various formulations (Wang et al., 2019)  and the freeze-thawing 

conditions (Fonseca, Béal and Corrieu, 2002; Powell-Palm et al., 2018) of the samples may 

also affect the degree of cell damage during storage.  

The effect of water crystallization is one of the most common factors responsible for 

cell damage (Souzu, 1980; Mazur, 2017; Powell-Palm et al., 2018).  The detrimental effect of 

water-crystallization on bacterial viability depended on the freezing rate whereby the decrease 

in bacterial viability is minimized at a low-freezing rate as compared to high-freezing rate. This 

is due to the cryoconcentration effect as the crystallization of the external medium resulted in 

cell dehydration thus preventing the lethal intracellular crystallization. The crystallization of 

the extracellular medium forces the cells to be concentrated in the unfrozen region of the 
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medium whereby a continuous decrease in temperature caused the region to be increasingly 

concentrated. This leads to cell dehydration as the cells were exposed to a highly concentrated 

solution during the freezing process. Meanwhile, the rapid freezing of bacterial suspension 

resulted in extensive supercooling that crystallizes intracellular water as it is not able to flow 

out of the cells fast enough causing extensive cell damage (Simonin et al., 2015). These indicate 

that the degree of cell damage during the freezing process depended on the availability of intra- 

and extracellular water. Referring to the DSC thermograms (Figure 5.6), the broader 

crystallization temperature of the aqueous phase of the emulsion as compared to the bulk 

bacterial solution (Figure 5.5) indicates that the encapsulation of bacteria in emulsion droplet 

promotes slow freezing of the samples and thus minimizes cell damage during the freezing 

process. Encapsulation in W/O emulsion droplet shows a smaller reduction in cell count as 

compared to samples encapsulated in W1/O/W2 emulsion droplet and free cells in DIW due to 

the thick oil layer and the low water ratio that minimizes cells damage due to water 

crystallization.  

The effect of encapsulation in improving bacterial viability during the freeze-thaw 

process has also been reported previously (Goderska and Czarnecki, 2008; Priya, 

Vijayalakshmi and Raichur, 2011; Dianawati, Mishra and Shah, 2013). The 

microencapsulation of Lactobacillus acidophilus in the self-assembled polyelectrolyte layers 

of chitosan and carboxymethyl cellulose has been reported to protect bacteria not only from 

the adverse effect of simulated GI tract but also during the freeze and freeze-drying processes 

(Priya, Vijayalakshmi and Raichur, 2011). Furthermore, the microencapsulation of 

Bifidobacterium longum in milk proteins and sugar alcohols aids in improving the protection 

effect of cryoprotectants such as glycerol resulting in better bacterial viability and function 

after the freeze and freeze-drying processes (Dianawati, Mishra and Shah, 2013). Moreover, 

the freezing of emulsion based products such as milk has also been reported to cause small 
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changes in the viability of bacteria indicating the ability of the emulsion structure in protecting 

bacteria against extensive cell damage. A study done by Sánchez et al.  (2003) shows that the 

freezing of goat milk at -20°C or even after extended storage at -80°C does not significantly 

affect the viability of E. coli as opposed to cow milk due to differences in milk composition. A 

similar result was also reported by Nurliyani, Suranindyah and Pretiwi (2015) whereby the 

frozen storage of Ettawah Crossed bred goats milk samples for 60 days does not cause changes 

in the total bacteria while changes in emulsion stability were observed after 30 days of storage. 

Therefore, the encapsulation of bacteria in emulsion droplet especially W/O may help in 

improving bacterial viability during the freezing process due to the protective effect of the 

emulsion structure as it reduces available water ratio and prevents the lethal crystallization 

effect of the water phase.  

5.3.5 The release of bacteria from double emulsions  
 

As discussed in section 5.3.1 and 5.3.2, the storage of emulsions in freezing temperatures 

caused extensive droplet destabilization and complete release of the W1 phase into the W2 

phase.  The instability of double emulsions during cold temperature storage may be beneficial 

for the controlled release of bacteria for various applications. In order to study the effect of 

temperature on the release of bacteria, samples of W1/O/W2 with E. coli-GFP in the W1 inner 

phase were prepared and kept at 25°C, 5°C, -20°C and -80°C. A bacterial cell count of the outer 

W2 phase was done immediately after sample preparation and after the thawing process in order 

to determine the log CFU/mL of bacteria that were released into the W2 phase from the overall 

viable cell in a sample as described in Table 5.2.  
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Table 5.2 The effect of storage temperature on the release of bacteria from W1/O/W2 droplet. Samples 
were prepared with 99.9% encapsulation efficiency and the release of bacteria into the W2 phase was 
determined after 24 hours of storage. Data represent mean ± standard deviation taken from 3 
independent experiments (N=3). 

Temperature (°C) Overall viability (log CFU/mL) Released (log CFU/mL) 

25 6.42 ± 0.03 2.75 ± 0.02 

5 6.18± 0.01 2.77 ± 0.01 

-20 5.19± 0.02 5.10 ± 0.01 

-80 4.93± 0.03 4.90 ± 0.01 
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Figure 5.8 Photomicrographs of double emulsion droplet before (a) and after (b) storage at -80°C for 
24 hours. The bacteria were seen encapsulated in the W1 phase of the W1/O/W2 droplet prior to storage 
at -80°C and were released into the W2 phase after being thawed at 25°C. Scale bar represents 20 µm. 
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As discussed previously in section 4.3.2, high encapsulation efficiency was achieved 

by using microfluidic for bacteria encapsulation in W1/O/W2 indicating successful 

encapsulation of bacteria. The increase in cell count of the W2 phase, therefore, resulted from 

the release of bacteria from the W1 phase due to emulsion destabilization process during storage 

as presented in Table 5.2. From the results obtained, it is determined that the percentage of 

bacteria released into the W2 phase increased with a decrease in storage temperature. Complete 

bacterial release into the W2 phase was observed for samples kept in freezing temperatures of 

-20°C and -80°C with 5.10 log CFU/mL of viable bacteria were observed in the W2 phase from 

the overall viable cell of 5.19 log CFU/mL (for samples kept at -20°C) and 4.90 log CFU/mL 

of viable bacteria were observed in the W2 phase from the overall viable cell of 4.93 log 

CFU/mL (for samples kept at -80°C). Only 2.75 log CFU/mL of cells were released into the 

W2 phase from the overall viable cell of 6.42 log CFU/mL for samples kept in 25°C and 2.77 

log CFU/mL of cells were released from the overall viable cells of 6.18 log CFU/mL at 5°C. 

The release of bacteria for samples kept in 25°C and 5°C was mainly attributed to the rupture 

of the thin film that separates the W1 phase from the W2 phase, induced by the change in the 

osmotic balance of the droplet due to the production of bacterial by-products during the storage 

period. On the other hand, the complete destabilization of the W1/O/W2 emulsion droplet that 

was kept in frozen temperature is due to the freeze-thawing process that leads to phase 

separation forming bulk oil phase and external coalescence of the W1 and W2 phase as reported 

previously in section 5.3.1 and 5.3.2. The thawing process of the samples kept at freezing 

temperatures leads to the melting of the oil phase first followed by the aqueous phase. During 

this process, the liquid oil flows out of the emulsion structure through the cracks and gaps 

created while the aqueous phase melts and therefore caused the immediate destabilization of 

the emulsion structure as the big oil droplet coalesce leading to bulk oil separation while the 

still-frozen W1 oil phase coalesces with the W2 phase as it melts (Figure 5.3 e-h). These 
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processes resulted in the complete release of the encapsulated bacteria as the emulsion 

destabilizes into a layer of the bulk oil phase, O/W emulsion and the aqueous phase containing 

the released bacteria.  

As the inner W1 phase remains intact during the freezing process (Figure 5.3 f), the 

frozen W1/O/W2 may serve as an alternative for bacterial microencapsulation whereby the 

controlled release of the encapsulated bacteria at the desired time can be achieved by simply 

thawing the frozen emulsion samples causing immediate and complete release of the bacteria 

into the W2 phase. Emulsion destabilization induced by the freeze-thawing process has been 

used extensively in various applications such as in emulsion liquid membrane (ELM) 

processing (Hirai, Hodono and Komasawa, 2000; Hirai et al., 2002) and waste emulsion 

treatment such as in oil sludge demulsification (He and Chen, 2002; Chen and He, 2003). 

Moreover, a study by Rojas and Papadopoulos (2007) also revealed the potential application 

of W1/O/W2 emulsion droplet for the controlled release of encapsulated materials that is 

triggered by the thawing of the oil phase. Similar to the results obtained in this study, the 

internal coalescence of the inner W1 phase and the external coalescence of the outer W2 phase 

were not observed during the freezing stage but occurred extensively during the thawing of the 

oil phase which leads to complete release of the encapsulated material. These results are 

followed by a study on its potential application for the controlled release of protein from the 

bulk emulsion systems (Rojas et al., 2008). As expected, similar results were also obtained in 

bulk emulsion systems whereby the stability of the droplet was maintained during the freezing 

process while the thawing of the oil phase leads to an instant release of the encapsulated protein.  

The results obtained in the present study shows the potential use of double emulsions 

for the controlled release of bacteria triggered by the freeze-thaw process. However, further 

studies are still required in order to gain a better understanding of the process especially in 

improving the viability of bacteria during storage.  
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5.4 Conclusion 

This chapter revealed the feasibility of using emulsion droplet for bacterial encapsulation and 

storage not only in ambient but also in cold temperatures. The information gained from this 

chapter provides a better understanding of the stability of emulsions with the presence of 

bacteria in cold temperatures and showed the benefits of encapsulation in maintaining the 

viability of the bacteria by providing protection against the lethal effect of the freezing process. 

These characteristics are beneficial for the production of emulsions containing bacteria for 

laboratory-based and industrial applications. In addition, it also displayed the potential use of 

the freeze-thaw technique for the controlled release of not only bacteria but also applicable to 

other applications that used temperature-sensitive compounds such as in drug delivery.  

Nevertheless, further studies are still required in order to compare the freeze-thaw 

mechanism of highly monodispersed W1/O/W2 droplet containing single W1 inner phase with 

a droplet containing multiple W1 inner phases as it may exhibit different mechanism as 

observed in the absence of a second peak in the cooling curves of the double emulsion droplet. 

In addition, further studies are also required in order to investigate the process behind the ability 

of bacterial cells in maintaining droplet stability during cold temperature storage and also to 

improve bacterial stability during the freezing process especially for samples encapsulated in 

double W1/O/W2 droplet. 
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Chapter 6 
 

Conclusions and future works 
 

The experiments conducted in this study have been focusing on the effects of bacterial 

encapsulation in single and double emulsion droplet on droplet stability together with the effect 

of encapsulation on bacterial growth and viability during storage in ambient and cold 

temperature. The use of microfluidics for emulsion droplet generation and for the encapsulation 

of bacteria in emulsion droplet has been proved beneficial for the production of a highly 

monodispersed droplet with high bacterial encapsulation efficiency. In addition, the interesting 

application of the double emulsion droplet in the controlled release of bacteria was also 

investigated in this study. The research begins by investigating the effects of bacterial 

encapsulation on the stability of single W/O emulsions and the effects of encapsulation on 

bacterial growth and viability during storage (chapter three), followed by the study of bacterial 

encapsulation in double emulsions W1/O/W2 droplet that further explores the effects of 

encapsulation on bacterial viability along with a study on the effects of osmotic balance 

alterations on droplet stability and release of bacteria (chapter four). In addition, a study on the 

effects of cold temperature storage on the stability of both single and double emulsion droplet 

was also conducted in order to further explore the application of bacterial encapsulation in 

emulsion droplet for industrial and lab-based applications (chapter five). A summary of the key 

findings obtained from each chapter presented in this thesis is listed and explained in the 

following paragraphs. 
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The application of droplet microfluidics for single W/O and double W1/O/W2 

emulsions ensures the production of a highly monodispersed droplet with high bacterial 

encapsulation efficiency. The usage of a flow-focusing device with single junction (for 

producing W/O droplet) and double junction (for the production of W1/O/W2) allows for the 

generation of the monodispersed droplet in a highly controlled manner. Various droplet sizes 

and formats can be produced by tuning the flow or pressure rate of the phases. In addition, high 

encapsulation efficiency of 99.9% was also achieved when using microfluidics for the 

encapsulation of bacteria in W1/O/W2.  

The presence of bacteria improves the stability of W/O droplet during storage as 

compared to control samples of emulsions droplet without bacteria. This is mainly 

attributed to the ability of bacteria to act as particles in stabilizing the W/O droplet due to their 

attachment on the interfacial layer that helps in reducing interfacial tension. The stabilization 

effects were apparent with the presence of dead cells whereby the inability of bacteria to 

survive in W/O droplet during storage resulted in the presence of dead cells with high affinity 

towards the interface (due to hydrophobic nature). In addition, encapsulation also promotes the 

formation of bacterial clustering due to stress that may also contribute to the stability of W/O 

droplet. E. coli-GFP shows a better stabilization effect during the storage period as compared 

to L. paracasei due to difference in lipid content between the strains. From the results obtained, 

it can be concluded that the effects of bacteria on droplet stability depend on several factors 

such as the type of bacteria, bacterial viability and bacterial concentration whereby these 

factors play a major role in ensuring the effectiveness of bacteria as particles in promoting 

droplet stability. Further studies are still required in order to fully understand the mechanism 

behind the attachment of bacteria onto the emulsion droplet and droplet stabilization effects of 

the bacterial cells. 
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The encapsulation of bacteria in W1/O/W2 droplet improves bacterial viability as 

compared to encapsulation in single W/O droplet. The presence of an outer W2 phase allows 

for the addition of nutrients to support bacterial growth in the inner W1 phase by nutrient 

replenishment. This allows for the continuous supply of nutrients throughout the storage 

period. The presence of an oil layer that separates the inner W1 phase from the outer W2 phase 

not only acts as a buffer that protects bacteria against harsh environmental conditions but also 

as a semi-permeable membrane which allows for the transport of nutrients from the outer W2 

phase into the inner W1 phase. The addition of LB broth in the outer W2 phase helps in 

improving bacterial viability and metabolic activity thus making it suitable for long term 

storage or study of bacteria. However, the effectiveness of the W1/O/W2 droplet to support 

bacterial growth is highly depended on the stability of the droplet during storage. Therefore, 

future studies are still required to improve the stability of the thermodynamically unstable 

W1/O/W2 emulsions.  

The controlled release of bacteria from W1/O/W2 droplet can be achieved by 

osmotic balance alterations of the inner W1 phase and outer W2 phase. The application of 

droplet microfluidics in this study allows for a detailed study on droplet destabilization that 

leads to the release of bacteria due to the production of a highly monodispersed droplet with a 

single core. Droplet destabilization mechanisms that aid in bacterial release was proposed in 

this study that begins with droplet breakup/split as the difference in density between oil and 

the aqueous phase caused the oil droplet to escape from the W1/O/W2 droplet leaving the inner 

W1 phase that is retained in the W2 phase by a very thin and complex film of oil and surfactants. 

This process does not cause the release of bacteria into the W2 phase as the bacteria were still 

encapsulated in these “secondary double emulsions”. The controlled release of bacteria is, 

therefore, depending on the stability of the thin film whereby changes in osmotic balance leads 

to the release of bacteria into the W2 phase as the droplet destabilizes and ruptures. The 
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controlled release of bacteria depended on several factors such as the NaCl concentration 

balance between the inner and outer aqueous phase as well as the Tween 80 surfactant 

concentration. The present study provides valuable information on the application of W1/O/W2 

droplet for the controlled release of materials that will be beneficial for its industrial 

applications. However, further studies are still required to understand the nature and 

composition of the thin film that surrounds the droplet after the splitting process and the 

mechanism behind the droplet breakup/split in order to control this process. In addition, it is 

also worth to investigate the effect of other factors that may induce the release of bacteria from 

W1/O/W2 droplet such as a change in temperature or pH on the droplet breakup/split in order 

to further improve and widen the applications of W1/O/W2 droplet in the encapsulation of 

bacteria.  

The storage of emulsions in freezing temperatures caused extensive droplet 

destabilization compared to samples stored in an ambient temperature of 25°C and 

refrigeration temperature of 5°C for both single W/O and double W1/O/W2 emulsion 

droplet. The W/O and W1/O/W2 droplet exhibited a different destabilization mechanism due 

to the difference in the continuous phase. The destabilization of W/O emulsion is due to the 

partial coalescence process whereby gradual freezing of the water droplet caused the formation 

of protruding ice crystals that puncture the still-liquid neighbouring droplet and linked the 

droplet together. This resulted in droplet flocculation followed by complete coalescence upon 

thawing that leads to the presence of free bulk water. No significant difference in droplet 

stability was observed for samples stored in 25°C (P = 0.24) or 5°C (P = 0.07) and presence of 

bacteria in the droplet improved droplet stability as it prevents extensive coalescence during 

thawing. For double W1/O/W2 droplet, droplet destabilization occurred due to external 

coalescence of the W1 phase and W2 phase as the structure of the droplet collapsed upon 

thawing. The double emulsion structure remains stable during the freezing process with intact 
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W1 phase. This reveals the potential use of the freeze-thawing technique for controlled release 

of bacteria. Nevertheless, further studies are required in order to confirm the stabilization effect 

of bacterial cells on emulsions droplet during cold temperature storage and also to understand 

the mechanism behind droplet stabilization in the presence of bacteria.  

Bacterial viability during cold temperature storage was improved with 

encapsulation in W/O droplet as compared to free cells and encapsulation in W1/O/W2. 

This is mainly due to the presence of a high oil to water ratio in W/O emulsions that prevents 

the detrimental effect of water crystallization that leads to cell damage. A study on the release 

of bacteria from the double W1/O/W2 droplet reveals the potential use of double W1/O/W2 

droplet for the controlled release of bacteria whereby complete bacterial release was achieved 

upon thawing of samples stored in freezing temperatures. This shows the potential use of 

emulsions for bacterial encapsulation in cold temperatures and the use of double W1/O/W2 

droplet for the controlled release of not only bacteria but also applicable for other applications 

that used temperature-sensitive compounds such as in drug delivery. Further studies are still 

required in order to improve the viability of bacteria encapsulated in double W1/O/W2 droplet 

during freezing temperature storage. An example of future work that can be conducted, is the 

development of suitable cryoprotectant formulation that not only improves bacterial viability 

but also its functions after storage in freezing temperature
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Appendix 1. Microfludic experiment setup 
 

 

 

 

Figure A 1 Microfluidic experiment setup (a) Microfluidic droplet generation and bacterial 
encapsulation setup with pressure controller (b) A microfluidic device used for droplet generation 
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Appendix 2. Encapsulation efficiency for E. coli-GFP 
encapsulated in W1/O/W2 

 

 
Table A 1 The encapsulation efficiency of E. coli -GFP in W1/O/W2 emulsions. Data represent mean ± 
standard deviation taken from 3 independent experiments. 

Samples Encapsulation efficiency (%) 

E. coli/DI water in W1 (1% Tween 80) 99.99 ± 0.01 

E. coli/DI water in W1 (5% Tween 80) 100 ± 0.05 

E. coli/ LB broth in W1 (1% Tween 80) 99.98 ± 0.02 

E. coli/LB broth in W1 (5% Tween 80) 99.99 ± 0.03 

E. coli/ 0.5% NaCl in W1 (1% Tween 80) 99.95 ± 0.02 

E. coli/ 0.5% NaCl in W1 (5% Tween 80) 99.99 ± 0.03 
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Appendix 3. The effect of sodium chloride, tryptone and 
yeast extract on the viability of E. coli-GFP 

 

 

 

 

 

 

Table A 2 The effect of different LB broth ingredients on the viability of E. coli-GFP. Data represent 
mean standard deviation from 3 independent experiments. 

Incubation time (Hour) Sodium Chloride Tryptone Yeast Extract 

0 6.27 ± 0.05 6.40 ± 0.04 7.03 ± 0.09 

24 6.18 ± 0.03 7.98 ± 0.03 8.26 ± 0.03 

Change in Log CFU/mL -1.48 24.72 17.48 
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Appendix 4. Density measurements for the aqueous and 
oil phase of W1/O/W2 emulsions 

 

 

 

 

Table A 3 Average density measurements for the aqueous and oil phase of W1/O/W2 emulsions. Data 
represent mean ± standard deviation taken from 3 independent experiments. 

Solutions Average density (g/ml) 
DIW 0.997 ± 0.001 
DIW with E. coli-GFP 0.973 ± 0.001 
DIW with 1% w/v Tween 80 0.986 ± 0.002 
DIW with 5% w/v Tween 80 0.994 ± 0.001 
Mineral Oil 0.863 ± 0.001 
Mineral Oil with 1.5% w/v PGPR 0.849 ± 0.003 
0.5% w/v NaCl 1.004 ± 0.002 
1.5% w/v NaCl 1.012 ± 0.003 
2.0% w/v NaCl 1.011 ± 0.002 
0.5% w/v NaCl with E. coli-GFP 1.004 ± 0.002 
0.5% w/v NaCl w 1% w/v Tween 80 1.011 ± 0.003 
0.5% w/v NaCl with 5% w/v Tween 80 1.023 ± 0.004 
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Appendix 5. Bacterial Adherence to Hydrocarbons 
(BATH) assay for soybean oil 

 

 

 

 

 

Figure A 2 The bacterial adherence to soybean oil assay for live and dead E. coli-GFP. Bars represent 
mean ± SEM taken from 3 independent experiments (N=3). 
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