# Modelling the earliest events of t(8;21) acute myeloid leukaemia in human embryonic stem cell-derived definitive haematopoietic progenitor cells

# Monica Nafria i Fedi

ORCID Identifier: 0000-0002-5329-7966

A thesis submitted to the University of Birmingham and the University of Melbourne for the degree of DOCTOR OF PHILOSOPHY

## Joint PhD student, Universitas 21 Studentship

Institute for Cancer and Genomic Sciences
College of Medicine and Dentistry, University of Birmingham (United Kingdom)

Murdoch Children's Research Institute

Faculty of Medicine and Dentistry, University of Melbourne (Australia)

September 2019

# UNIVERSITY<sup>OF</sup> BIRMINGHAM

# **University of Birmingham Research Archive**

## e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder.

# **ABSTRACT**

The t(8;21) translocation generates the aberrant transcription factor RUNX1-ETO and occurs in approximately 10% of all acute myeloid leukaemias. RUNX1-ETO transcripts can be detected in utero and in cells of patients in remission, but its sole expression is insufficient to cause overt leukaemia. Given that t(8;21) patient cells present additional mutations, the epigenetic reprogramming directly mediated by RUNX1-ETO remains unclear. To address this question, we generated human Embryonic Stem Cell lines carrying an inducible RUNX1-ETO transgene, which we subsequently differentiated into definitive haematopoietic progenitors. We show that induction of RUNX1-ETO in already formed progenitors (i) blocks differentiation at an immature stage, (ii) induces a cell-type specific and reversible cell cycle arrest, (iii) abrogates the RUNX1-mediated gene expression program by interfering with RUNX1 binding, resulting in downregulation of haematopoietic, cell cycle as well as DNA repair genes, (iv) closes down a large part of the chromatin accessibility pattern present in adult haematopoietic multipotent progenitors and (v) alters the differentiation of a defined sub-population of progenitors. Our data are consistent with the idea that RUNX1-ETO establishes a precondition for leukaemic transformation by maintaining a reservoir of quiescent pre-leukaemic multipotent progenitors with susceptibility to expand upon acquisition of additional oncogenic events.



# **DECLARATION**

This declaration certifies that:

- this thesis comprises only my original work towards the degree of Doctor of Philosophy;
- ii) due acknowledgement has been made in the text to all other material used; and
- this thesis is fewer than the maximum word limit in length, exclusive of tables, figures, bibliographies and appendices.

Monica Nafria i Fedi

September 2019

# **PREFACE**

I have been responsible for the generation and interpretation of the data presented in this thesis, with exception of:

- i) The dual reporter SOX17<sup>mCHERRY/w</sup> RUNX1C<sup>GFP/w</sup> H9 human Embryonic Stem Cell line, which was previously generated in the laboratory of Andrew Elefanty (University of Melbourne, AUS) by Elizabeth NG (Ng et al., 2016).
- ii) The bioinformatic analyses, which were performed by Dr Peter Keane in the laboratory of Prof Constanze Bonifer (University of Birmingham, UK).

A summary of the chapters 'Results' and 'Discussion' have been submitted for publication to Cell Reports on 24<sup>th</sup> of September 2019. A preprint (non-peer reviewed) of the article submitted for publication (Nafria et al., 2019) has been made accessible by submission to BioRxiv (doi: https://doi.org/10.1101/748921).

I would like to acknowledge all the funding bodies that have made this PhD research project possible, including Universitas 21, Cancer Research UK and Children's Cancer Foundation (Australia). I would like to express my gratitude to the Murdoch Children's Research Institute (MCRI, AUS) for the award of a PhD top-up scholarship. I would also like to thank the generous travelling scholarships awarded by The Henry and Rachael Ackman trust (Department of Paediatrics, The University of Melbourne) and International Society for Experimental Haematology (ISEH), which allowed me to attend an overseas conference.

# **ACKNOWLEDGEMENTS**

Foremost, I would like to express my most sincere gratitude to both my supervisors, Prof Constanze Bonifer and Prof Andrew Elefanty, for their astronomical support, unmeasurable wisdom and outstanding supervision. I want to acknowledge the enormous commitment they have had to my project even on their busiest schedules and the trust they have placed in me from the very first day.

This work could have not been possible without the guidance and expertise of Dr Elizabeth Ng. She has been the best teacher in regard to the haematopoietic differentiation protocol and all the 'secret' tips for the best cell culture (and flamenco dancing!). I want to deeply thank Elizabeth and Andrew for all the emotional support and the invaluable experiences that they have provided me during my stay in Melbourne. I will be forever grateful for their boundless care and for making me feel at home.

I want to express my gratitude to all the past and present members of the Bonifer-Cockerill (UK) and the Elefanty (AUS) laboratories. I am deeply indebted to Dr Peter Keane for his tremendous work and expertise on performing the bioinformatic analyses and for his commitment to my project. I want to thank Prof Peter Cockerill for his input and stimulating scientific discussion and Prof Edouard Stanley for all the troubleshooting on my endless cloning experiments.

I also want to extend my gratitude to Dr Paloma Garcia and to Yvonne Barnett, who have been helpful, friendly and extremely supportive during the last year of my PhD. I also want to thank Freya Bruveris, not only for her expertise and knowledge but for all the fun times we shared together. In particular, there are two people who have

made my stay in Australia memorable and that, without them, nothing would have been the same: Ana Rita Leitoguinho and Jasna Kusur. They made me laugh on a daily basis – even on 14-hour long days in cell culture – and they lifted me up every time I felt frustrated due to unsuccessful experiments. I will always be grateful for the unconditional love, support and the best friendship, which I will keep forever, they have given to me.

My deepest appreciation goes to all my family, chiefly to my parents, who have always believed in me and encouraged me to embark on any adventure, specially this one. Above all, I would like to thank my grandma, my role model and an example of hard work and success, for supporting everything I do and loving me without conditions.

I would also like to thank all my true friends, mainly Carla, Victor and Marta, who kept by my side, even though being miles apart, and supported me during all this journey. Also, I would like to extend my thanks to the numerous international flatmates I have had along this journey, specially to Iraia, Sean, Cameron and Amanda, who had the most enormous patience and with whom I lived unforgettable moments.

Last but not least, I would like to thank my partner Duval. He has been here for me at all times, made smooth all the ups and downs experienced during the last year of my PhD, cared about my happiness and well-being and, importantly, celebrated all my little victories. I thank him for constantly reminding me that I could do anything.

# **TABLE OF CONTENTS**

| 1   | INT  | ROI    | DUCTION                                                                  | 1      |
|-----|------|--------|--------------------------------------------------------------------------|--------|
| 1.1 | C    | hron   | natin structure                                                          | 1      |
| 1.2 | Т    | rans   | criptional regulation in eukaryotes                                      | 4      |
| 1   | .2.1 | Tra    | nscription factors                                                       | 4      |
| 1   | .2.2 | Tra    | nscriptional regulatory elements                                         | 6      |
|     | 1.2. | 2.1    | Promoters                                                                | 7      |
|     | 1.2. | 2.2    | Enhancers                                                                | 8      |
|     | 1.2. | 2.3    | Silencers and Insulators                                                 | 8      |
| 1   | .2.3 | Reg    | gulation and maintenance of the chromatin state                          | 9      |
|     | 1.2. | 3.1    | Nucleosome remodelling and histone variants                              | S      |
|     | 1.2. | 3.2    | Histone modifications                                                    | 10     |
|     | 1.2. | 3.3    | DNA methylation                                                          | 12     |
| 1   | .2.4 | Biva   | alent domains and reversible chromatin marks                             | 14     |
|     | 1.2. | 4.1    | Chromatin regulation in pluripotent stem cells and differentiated cells  | 15     |
| 1.3 | Т    | he b   | asal transcriptional machinery                                           | 17     |
| 1.4 | Н    | laem   | atopoiesis                                                               | 21     |
| 1   | .4.1 | Нає    | ematopoietic development in the embryo                                   | 21     |
| 1   | .4.2 | In v   | ritro modelling of human haematopoietic development and signalling pathv | vays . |
|     |      |        |                                                                          | 25     |
|     | 1.4. | 2.1    | Generation of definitive progenitors from human pluripotent stem cells   | 29     |
| 1   | .4.3 | Blo    | od cell formation in the adult                                           | 32     |
| 1   | .4.4 | Key    | rtranscription factors regulating haematopoietic specification           | 37     |
| 1.5 | R    | lunt-r | related transcription factor 1 (RUNX1)                                   | 41     |
| 1   | .5.1 | RU     | NX1 structure                                                            | 41     |
| 1   | .5.2 | The    | RUNX1 and CBFβ complex                                                   | 42     |
| 1   | .5.3 | RU     | NX1 promoters and isoforms                                               | 43     |
| 1   | .5.4 | RU     | NX1 post-translational modifications                                     | 45     |
| 1   | .5.5 | The    | e role of RUNX1 during development                                       | 46     |
| 1.6 | Α    | cute   | myeloid leukaemia (AML)                                                  | 49     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Development and associated mutagenesis                                             |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|
| 1.6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AML with CBF chromosomal rearrangements                                            | 53                   |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Γhe t(8;21) fusion protein: RUNX1-ETO                                              | 54                   |
| 1.7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pathogenesis of t(8;21) leukaemia                                                  | 54                   |
| 1.7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Structure of RUNX1-ETO                                                             | 55                   |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .2.1 Isoforms                                                                      | 58                   |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .2.2 Post-translational modifications                                              | 59                   |
| 1.7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The RUNX1-ETO co-factor complex and interacting proteins                           | 59                   |
| 1.7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Molecular pathogenesis of RUNX1-ETO                                                | 62                   |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .4.1 Deregulation of gene expression by RUNX1-ETO                                  | 62                   |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .4.2 Disruption of the chromatin structure by RUNX1-ETO                            | 65                   |
| 1.7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dysregulated genes and pathways in RUNX1-ETO leukaemia                             | 65                   |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5.1 Myeloid transcription factor, tumour suppressor and other target genes        | 65                   |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5.2 MicroRNAs                                                                     | 68                   |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5.3 Signalling pathways                                                           | 69                   |
| 1.7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RUNX1-ETO and DNA damage                                                           | 70                   |
| 1.7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collaborative genetic aberrations in t(8;21) AML                                   | 71                   |
| 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aims and objectives                                                                | 74                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                      |
| 2 MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATERIALS AND METHODS                                                               | 76                   |
| 2.1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                      |
| Z. I (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Generation of RUNX1-ETO, RUNX1-ETO K-RAS(G12D) and RUNX1-ETO                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Generation of RUNX1-ETO, RUNX1-ETO K-RAS(G12D) and RUNX1-ETO (2K) knock-in vectors | 76                   |
| KIT(N82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                                                                  |                      |
| KIT(N82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22K) knock-in vectors                                                              | 82                   |
| KIT(N82<br>2.2 (<br>2.3 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22K) knock-in vectors                                                              | 82                   |
| KIT(N82<br>2.2 (<br>2.3 (<br>2.4 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22K) knock-in vectors                                                              | 82<br>83             |
| 2.2 (2.3 (2.4 I)  RUNX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P2K) knock-in vectors                                                              | 82                   |
| 2.2 (2.3 (2.4 I) RUNX1-2.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page 22K) knock-in vectors                                                         | 82<br>83<br>83       |
| 2.2 (2.3 (2.4 I)  RUNX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P2K) knock-in vectors                                                              | 82<br>83<br>83       |
| 2.2 (2.3 (2.4 I) RUNX1 2.4.1 2.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page 22K) knock-in vectors                                                         | 83<br>83<br>84<br>85 |
| 2.2 (2.3 (2.4 IF) 2.4.1 (2.4.2) 2.5 IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page 22K) knock-in vectors                                                         | 83<br>83<br>84<br>85 |
| 2.2 (2.3 (2.4 IF RUNX1 2.4.1 2.4.2 2.5 IF 2.6 IF RUNX 1 2.4.2 2.5 IF 2.6 IF RUNX 1 2.4.2 IF RU | C2K) knock-in vectors                                                              | 8384858689           |

| 2.8  | Mag            | gnetic-activated cell sorting of haematopoietic progenitors | 90  |
|------|----------------|-------------------------------------------------------------|-----|
| 2.9  | Flow cytometry |                                                             | 91  |
| 2.10 | Intra          | acellular immunostaining                                    | 92  |
| 2.11 | lma            | ging                                                        | 92  |
| 2.12 | Col            | ony-forming-unit assays                                     | 93  |
| 2.13 | Rep            | olating assays                                              | 94  |
| 2.14 | Apo            | ptosis cell staining                                        | 94  |
| 2.15 | Cel            | cycle analysis                                              | 94  |
| 2.16 | RN             | A isolation                                                 | 96  |
| 2.16 | 3.1            | Chaotropic salt RNA Lysis buffer-based protocol             | 96  |
| 2.16 | 5.2            | TRIzol-based protocol                                       | 96  |
| 2.17 | RN             | A library preparation and sequencing                        | 97  |
| 2.18 | cD1            | IA synthesis from total RNA                                 | 100 |
| 2.18 | 3.1            | Oligo (dT) <sub>18</sub> priming protocol                   | 100 |
| 2.18 | 3.2            | Random hexamer priming protocol                             | 100 |
| 2.19 | Rea            | al-Time Quantitative PCR                                    | 100 |
| 2.19 | 9.1            | DNA binding dye-based methods                               | 100 |
| 2.19 | 9.2            | Hydrolysis probe-based method                               | 101 |
| 2.20 | Ass            | ay for Transposase-Accessible Chromatin using sequencing    | 102 |
| 2.21 | Chr            | omatin Immunoprecipitation                                  | 104 |
| 2.22 | Chl            | P-sequencing (CHIP-seq) library preparation and sequencing  | 109 |
| 2.23 | Sin            | gle Cell RNA-Seq (scRNA-Seq)                                | 110 |
| 2.24 | lmn            | nunoblotting                                                | 111 |
| 2.25 | Sta            | tistical analysis                                           | 112 |
| 2.26 |                | nformatic data processing and analysis                      |     |
| 2.26 | 3.1            | Bulk RNA-Seq data analysis                                  |     |
| 2.26 | 5.2            | ATAC-Seq data analysis                                      | 114 |

| 2.26           | 3.3   | ChIP-Seq data analysis                                                                                                                                  | 116 |
|----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.26           | 6.4   | Construction of average profiles                                                                                                                        | 116 |
| 2.26           | 6.5   | Single cell RNA-Seq data analysis                                                                                                                       | 117 |
| 2.27           | Tabl  | les of primers and antibodies                                                                                                                           | 119 |
| 3 R            | ESU   | JLTS                                                                                                                                                    | 122 |
| 3.1            | Gen   | neration of inducible RUNX1-ETO human ES cell lines                                                                                                     | 122 |
| 3.2            |       | NX1C+ blood progenitors are generated from SOX17+ haemogenic endotheliu                                                                                 |     |
| 3.3<br>depend  | _     | n dosage of RUNX1-ETO reorganizes the vascular structures in a dose-<br>manner and blocks blood formation                                               | 133 |
| 3.4<br>and pr  | •     | ression of RUNX1-ETO at balanced levels before the EHT disrupts vasculature ts blood formation                                                          |     |
| 3.5<br>emerg   |       | anced <i>RUNX1-ETO</i> expression after the EHT allows vasculogenesis and of blood progenitors                                                          | 141 |
| 3.6            | Cell  | s expressing RUNX1-ETO retain markers of immature progenitors                                                                                           | 143 |
| 3.7            |       | NX1-ETO expression results in a reversible decrease in colony forming capacit                                                                           | •   |
| 3.8<br>blood p |       | NX1-ETO expressed at low levels confers survival but not proliferation to definienitors in vitro                                                        |     |
| 3.9            | RUN   | NX1-ETO reduces cell proliferation through a G1-block                                                                                                   | 149 |
| 3.10           | RUN   | NX1-ETO does not cause cell death via apoptosis                                                                                                         | 151 |
| 3.11           |       | ression of RUNX1C marks distinct haematopoietic lineages in uninduced cultu                                                                             |     |
| 3.12<br>expres |       | NX1-ETO induction leads to cell-type and dose-dependent changes in gene                                                                                 | 159 |
| •              | ns of | NX1-ETO induction in RUNX1C- and RUNX1C+ populations results in distinct accessible chromatin that are enriched in similar transcription factor binding | 167 |
|                |       | NX1-ETO dysregulates a similar subset of RUNX1-ETO target genes in both <i>in</i> 1C+ and <i>RUNX1-ETO</i> -transduced CD34+ cord blood progenitors     |     |

|                 | RUNX1-ETO induction in RUNX1C+ cells results in dose-dependent heterogeneou es in gene expression1                                                               |     |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                 | RUNX1-ETO induction abrogates the RUNX1-mediated gene expression programmerfering with RUNX1 binding                                                             |     |
| acces           | RUNX1-ETO induction extinguishes many of the adult HSC/myeloid chromatin sibility pattern and accounts for a large part of the altered network in t(8;21) AML ts | 191 |
| 3.18<br>that pr | Induction of RUNX1-ETO results in the emergence of a new subpopulation of cells esent a block at the G1 phase1                                                   |     |
| 3.19<br>but no  | RUNX1-ETO induction disturbs the development of stem/progenitor and myeloid cet the erythroid differentiation trajectory                                         |     |
| 3.20            | Introduction of mutated KIT (N822K) and K-RAS (G12D)2                                                                                                            | 207 |
| 4 D             | DISCUSSION 2                                                                                                                                                     | 10  |
| 4.1<br>to reca  | A novel inducible RUNX1-ETO system representing an advantageous human mode apitulate early oncogenic events2                                                     |     |
| 4.2             | The transcriptional response to RUNX1-ETO induction is dose- and cell type-specification.                                                                        |     |
| 4.3<br>of hum   | Balanced levels of RUNX1-ETO result in a reversible differentiation and growth arronan in vitro haematopoietic progenitors                                       |     |
| 4.4<br>distinc  | RUNX1-ETO induction leads to dose-dependent deregulation of genes associated t pathways                                                                          |     |
| 4.5<br>with R   | RUNX1-ETO abrogates the RUNX1-mediated transcriptional program by interfering                                                                                    | -   |
| 4.6             | RUNX1-ETO expression blocks the differentiation of a specific cell population2                                                                                   | 235 |
| 4.7             | Summary                                                                                                                                                          | 40  |
| 4.8             | Future plans and directions                                                                                                                                      | 42  |
| 5 S             | UPLEMENTARY FIGURES2                                                                                                                                             | 246 |
| 6 S             | UPLEMENTARY TABLES AND DATASETS2                                                                                                                                 | 62  |
| 7 R             | REFERENCES                                                                                                                                                       | 94  |

# **FIGURES**

| Figure 1.1: Chromatin structure and degrees of compaction                                | 3             |
|------------------------------------------------------------------------------------------|---------------|
| Figure 1.2: Chromatin modifications in pluripotent and differentiated cells              | 16            |
| Figure 1.3: RNA polymerase II recruitment, pausing and release                           | 20            |
| Figure 1.4: Chronology of human embryonic haematopoietic development                     | 22            |
| Figure 1.5: HOXA expression signature during in vitro haematopoietic differentiation     | 28            |
| Figure 1.6: Adult haematopoietic differentiation in the mouse and human                  | 33            |
| Figure 1.7: Revised models of human haematopoiesis                                       | 36            |
| Figure 1.8: Haematopoietic specification is regulated via the interplay of key TFs       | 37            |
| Figure 1.9: Structural domains and interaction partners of the CBF-family proteins RUNX  | <b>&lt;</b> 1 |
| and CBFβ                                                                                 | 42            |
| Figure 1.10: Structure of the RUNX1 genomic locus and protein isoforms                   | 44            |
| Figure 1.11: Two-hit model of leukaemogenesis                                            | 51            |
| Figure 1.12: Frequently mutated genes in AML                                             | 53            |
| Figure 1.13: Structure and interacting proteins of RUNX1-ETO fusion protein              | 57            |
| Figure 1.14: Structure of full-length RUNX1-ETO and two shorter isoforms                 | 58            |
| Figure 1.15: The RUNX1-ETO-containing transcription factor complex                       | 60            |
| Figure 1.16: RUNX1 and RUNX1-ETO gene regulation by co-factor recruitment                | 61            |
| Figure 2.1: Map of the inducible RUNX1-ETO plasmid for knock-in to the AAVS1 locus       | 78            |
| Figure 2.2: Maps of the K-RAS(G12D) and KIT(N822K) GAPTrap plasmids                      | 81            |
| Figure 2.3: Enrichment of RUNX1 and RUNX1-ETO (0 and 5 Dox) ChIP at known binding        | ıg            |
| regions                                                                                  | 109           |
| Figure 3.1: Schematic representation of the targeted alleles in the human H9 ES cell dua | al            |
| reporter line                                                                            | 123           |
| Figure 3.2: Schematic representation of the gene targeting approach                      | 125           |
| Figure 3.3: Efficient targeting RUNX1-FTO into the AAVS1 human locus                     | 126           |

| Figure 3.4: Targeted clones showed Dox-inducible RUNX1-ETO expression from the AAV       | /S1  |
|------------------------------------------------------------------------------------------|------|
| locus                                                                                    | .127 |
| Figure 3.5: Time course of the in vitro human definitive haematopoietic differentiation  | .129 |
| Figure 3.6: RUNX1C+ haematopoietic progenitors emerge from cell clusters located within  | n    |
| vascular structures of SOX17+ hemogenic endothelium after the EHT                        | .131 |
| Figure 3.7: RUNX1C+ haematopoietic progenitors detach from the hemogenic endotheliu      | m    |
| and populate the culture                                                                 | .132 |
| Figure 3.8: High dosage of RUNX1-ETO reorganizes the vascular structures in a dose-      |      |
| dependent manner and blocks blood formation                                              | .134 |
| Figure 3.9: Balanced RUNX1-ETO levels are achieved using a low Dox concentration         | .137 |
| Figure 3.10: Diagram of the experimental strategy of RUNX1-ETO induction for 7 days      | .138 |
| Figure 3.11: RUNX1-ETO induction at balanced levels before the EHT transition disrupts   | the  |
| vascular organization and blocks blood formation                                         | .140 |
| Figure 3.12: Balanced RUNX1-ETO expression (5 ng/ml Dox) after the EHT allows            |      |
| phenotypically normal vasculogenesis and generation of blood progenitors                 | .142 |
| Figure 3.13: RUNX1-ETO-expressing cultures retain markers of immature myeloid            |      |
| progenitors                                                                              | .144 |
| Figure 3.14: RUNX1-ETO expression results in a reversible decrease of colony forming     |      |
| capacity                                                                                 | .146 |
| Figure 3.15: RUNX1-ETO expressed at low levels confers survival but not proliferation to | а    |
| subset of in vitro definitive blood progenitors                                          | .148 |
| Figure 3.16: RUNX1-ETO induction produces a cell cycle arrest in the G1 phase            | .150 |
| Figure 3.17: RUNX1-ETO does not cause cell death via apoptosis                           | .151 |
| Figure 3.18: The wild-type CD45+CD34+RUNX1C+ cell population presents upregulation       | of   |
| genes active in multipotent progenitors and signalling pathways                          | .154 |

| Figure 3.19: Open chromatin sites specific for the RUNX1C+ cell population are enriched in |
|--------------------------------------------------------------------------------------------|
| GATA and AP-1 motifs and correlate with upregulated gene expression158                     |
| Figure 3.20: Experimental strategy for the comparison of the RUNX1-ETO-driven effect in    |
| RUNX1C- and RUNX1C+ progenitor populations                                                 |
| Figure 3.21: RUNX1-ETO induction leads to dose-dependent quantitative changes in gene      |
| expression                                                                                 |
| Figure 3.22: Distinct subsets of genes show different response to RUNX1-ETO induction .163 |
| Figure 3.23: Induction of RUNX1-ETO affects distinct pathways and associated cellular      |
| functions in each population                                                               |
| Figure 3.24: RUNX1-ETO-expressing RUNX1C- and RUNX1C+ cells present a different            |
| pattern of accessible chromatin sites that are enriched in similar motifs169               |
| Figure 3.25: RUNX1-ETO dysregulates a similar subset of RUNX1-ETO target genes in both     |
| in vitro RUNX1C+ and CD34+ cord blood progenitors172                                       |
| Figure 3.26: RUNX1-ETO induces highly heterogeneous changes in gene expression in a        |
| dose-dependent manner                                                                      |
| Figure 3.27: Individual genes show distinct responses to RUNX1-ETO dosage176               |
| Figure 3.28: Genes responding to RUNX1-ETO in the same fashion are involved in similar     |
| cellular activities                                                                        |
| Figure 3.29: RUNX1-ETO induction downregulates myelopoiesis, cell cycle, DNA replication / |
| repair genes and upregulates genes from multiple signalling pathways180                    |
| Figure 3.30: RUNX1-ETO induction causes extensive global chromatin reorganisation and      |
| blocks the binding of RUNX1185                                                             |
| Figure 3.31: Individual examples at the RASSF5 locus showing RUNX1-ETO-dependent           |
| displacement of RUNX1 and reduced chromatin accessibility                                  |
| Figure 3.32: Loss of RUNX1 binding and active histone marks upon RUNX1-ETO induction is    |
| more pronounced at distal elements than at promoters                                       |

# **TABLES**

| Table 2.1: Primers used for cloning                                                   | 119 |
|---------------------------------------------------------------------------------------|-----|
| Table 2.2: Primers for genomic DNA used in transgene screening assays                 | 119 |
| Table 2.3: Conjugated antibodies used for single cell sorting                         | 120 |
| Table 2.4: Conjugated antibodies used for flow cytometry                              | 120 |
| Table 2.5: Primers used for RT-pPCR gene expression analysis from total RNA           | 120 |
| Table 2.6: Taqman probes used for gene expression analysis from total RNA             | 121 |
| Table 2.7: Primers for validating ATAC                                                | 121 |
| Table 2.8: Primers for human genomic DNA used for ChIP-qPCR enrichment                | 121 |
| Table 2.9: Primary antibodies used for Immunoblotting                                 | 121 |
| Table 2.10: Secondary antibodies used for Immunoblotting                              | 121 |
| Table 3.1: Read alignment statistics of RNA-Seq libraries                             | 155 |
| Table 3.2: Read alignment statistics of ATAC-Seq libraries from RUNX1C+ cells upon    |     |
| RUNX1-ETO induction                                                                   | 182 |
| Table 3.3: Read alignment statistics of ChIP-Seq libraries in RUNX1C+ cells upon RUNX | X1- |
| ETO induction                                                                         | 182 |
| Table 3.4: Read alignment statistics of scRNA-Seq datasets (0 and 5 Dox) in           |     |
| CD45+CD34+RUNX1C+ purified cell populations                                           | 193 |

# **SUPPLEMENTARY FIGURES**

| Supplementary Figure 1: Time course of in vitro human definitive haematopoietic       |            |
|---------------------------------------------------------------------------------------|------------|
| differentiation as spin EBs                                                           | .246       |
| Supplementary Figure 2: RUNX1-ETO expression levels are strictly dependent on Dox     |            |
| dosage regardless of the induction time point during differentiation                  | .247       |
| Supplementary Figure 3: RUNX1-ETO induction at balanced levels before the EHT trans   | ition      |
| disrupts the vascular organization and blocks blood formation                         | .248       |
| Supplementary Figure 4: Low RUNX1-ETO expression before the EHT transition (d10-12    | <u>?</u> ) |
| disrupts the vascular organization and blocks blood formation                         | .249       |
| Supplementary Figure 5: RUNX1-ETO-expressing cultures retain markers of immature      |            |
| myeloid progenitors                                                                   | .250       |
| Supplementary Figure 6: RUNX1-ETO expression maintains clonogenic cells in a quiesc   | ent        |
| stage regardless of the origin of the progenitor cell                                 | .251       |
| Supplementary Figure 7: RUNX1-ETO expressed at low levels increases the survival of a | a          |
| subset of progenitor cells                                                            | .252       |
| Supplementary Figure 8: RUNX1-ETO induction for 24h causes a dose-dependent           |            |
| downregulation of haematopoietic genes                                                | .253       |
| Supplementary Figure 9: Different levels of RUNX1-ETO dysregulates a common subset    | of         |
| genes but this differs depending on the type of progenitor cell                       | .254       |
| Supplementary Figure 10: Up and downregulated pathways upon RUNX1-ETO induction       |            |
| with 10 ng/ml Dox                                                                     | .256       |
| Supplementary Figure 11: Induction of RUNX1-ETO results in loss of RUNX1, GATA, PU    | J.1        |
| and C/EBP accessible sites                                                            | .257       |
| Supplementary Figure 12: Individual gene examples showing RUNX1-ETO-dependent         |            |
| displacement of RUNX1 with associated reduction in chromatin accessibility            | 259        |

| Supplementary Figure 13: The CD45+CD34+RUNX1C+ population contains precurso    | ors from |
|--------------------------------------------------------------------------------|----------|
| distinct blood lineages as well as multipotent cell progenitors                | 260      |
| Supplementary Figure 14: RUNX1-ETO-deregulated pathways in the 5-Dox enriched  | single   |
| cells are representative for those observed within the induced bulk population | 261      |

# **SUPPLEMENTARY TABLES AND DATASETS**

| Supplementary Table 1: Gene expression levels and differential gene expression in the      |     |
|--------------------------------------------------------------------------------------------|-----|
| RUNX1C- and RUNX1C+ cell populations                                                       | 268 |
| Supplementary Table 2: Differentially expressed genes upon RUNX1-ETO induction (3, 5       | or  |
| 10 ng/ml Dox) in RUNX1C+ and RUNX1C- cell populations                                      | 280 |
| Supplementary Table 3: List of genes included within each cluster of differential response | to  |
| RUNX1-ETO induction levels                                                                 | 288 |
| Supplementary Table 4: Up and downregulated RUNX1-ETO and RUNX1 target genes               | 292 |
| Supplementary Table 5: Cell cycle regulated genes used to infer cell cycle state of single |     |
| cells from the scRNA-Seq derived clusters                                                  | 293 |
|                                                                                            |     |
| Supplementary Dataset 1: Nafria et al., 2019                                               | 293 |
|                                                                                            |     |

## **ABBREVIATIONS**

AA2P: Ascorbic acid 2-phosphate

ACT: Activin A

AGM: Aorta-gonad-mesonephros AML: Acute myeloid leukaemia

AP-1: Activator Protein 1

ATAC: Assay for Transposase-Accessible Chromatin

BMP4: Bone morphogenetic protein 4

BSA: Bovine Serum Albumin CDK: Cyclin-dependent kinase

ChIP: Chromatin Immunoprecipitation CLP: Common lymphoid progenitor CMP: Common myeloid progenitor

Ct: Cycle thresholds

CTCF: CCCTC-binding factor

d: day

DD: Destabilization domain

DHS: DNasel hypersensitive site

DMEM: Dulbecco's Modified Eagle Medium

DMSO: Dimethyl sulfoxide

DNMT: DNA (cytosine-5)-methyltransferase

Dox: Doxycycline

dpc: Days post-conception

DTT: Dithiothreitol EB: Embryoid Body

ecDHFR: Escherichia coli dihydrofolate reductase

EHT: Endothelial to haematopoietic transition

ELP: Early lymphoid progenitor EMP: Erythro-myeloid progenitor

EoBP: Eosinophil/basophil progenitor

EPO: Erythropoietin
ES: Embryonic Stem

FACS: Fluorescence-activated cell sorting

FCS: Foetal Calf Serum

FGF2: Fibroblast Growth Factor 2

FLT3: FMS-like tyrosine kinase 3 receptor

FPKM: Fragments per kilobase of transcript per million mapped reads

GM-CSF: Granulocyte-macrophage colony-stimulating factor

GMP: Granulocyte/monocyte progenitor

HAT: Histone acetyltransferase HDAC: Histone deacetylase

hLDL: Human low-density lipoproteins

hr: hour

hPSC: Human pluripotent stem cell

HRP: Horseradish peroxidase
HSC: Haematopoietic stem cell
IGF2: Insulin-like growth factor 2

IL: Interleukin

IMDM: Iscove's Modified Dulbecco's Media

iPSC: induced pluripotent stem cell ITS-E: Insulin-Transferrin-Selenium-E

IVL: Involucrin Kb: Kilobase

KDM: Lysine demethylases

KMT: Lysine methyltransferases KOSR: KnockOut Serum Replacer

LMPP: Lymphoid-primed multipotent progenitor LSD1: Lysine-specific histone demethylase 1

MACS: Magnetic-activated cell sorting
MAPK: Mitogen-Activated Protein Kinase

MDS: Myelodysplastic syndrome

ME: Megakaryocyte/erythrocyte progenitor

MeCP: Methyl-CpG-binding protein MEF: Mouse embryonic fibroblast

miRNA: microRNA

MLP: Multi-lymphoid progenitor

MPL: Myeloproliferative virus oncogene

MPP: Multipotent progenitor

MTG: Monothioglycerol

NEAA: Non-essential amino acids PBS: Phosphate buffered saline PCR: Polymerase Chain Reaction Pen/Strep: Penicillin/Streptomycin

PFHMII: Protein-Free Hybridoma Medium II

PI: Propidium iodide

PIC: Proteinase inhibitor cocktail

Pol II: RNA polymerase II PVA: Polyvinyl alcohol

RE: Restriction endonuclease

Rh: Recombinant human

RT-qPCR: Reverse Transcription quantitative PCR rtTA: reverse tetracycline-controlled transactivator

s: second

SCF: Stem cell factor

SDS-PAGE: Sodium dodecyl sulphate polyacrylamide gel

Seq: Sequencing

TAE: Tris-acetate-EDTA

TALENS: Transcription activator-like effector nucleases

TBE: Tris/Borate/EDTA
TF: Transcription factor
TPO: Thrombopoietin

TRE: Tetracycline Responsive Element

TSS: Transcription Start Site

VEGF: Vascular Endothelial Growth Factor

# 1 INTRODUCTION

#### 1.1 Chromatin structure

Each single cell carries all the information necessary for the development and function of all the distinct cell types that constitute a living organism. This information is coded into 3 billion DNA bases spanning approximately 2 metres of DNA (Bloom and Joglekar, 2010), which is compacted into the cell nucleus. Packaging of the DNA is a tightly regulated and dynamic process, since access to distinct DNA sequences is required during gene transcription and DNA replication. To achieve this, the genome is organized into chromatin, which can be opened up to allow access to the transcription and replication machinery.

The first stage of compaction begins with the assembly of the DNA in a structure termed the 'nucleosome', which consists of ~146 bp of DNA wrapped around a symmetrical protein core complex formed by four pairs of histones: H2A, H2B, H3 and H4 (Figure 1.1) (Kornberg and Lorch, 1999; Luger et al., 1997; Oudet et al., 1975). Nucleosomes are formed every 160-240 bp (Kornberg, 1974), generating a ~10 nm chromatin thread that resembles 'beads on a string'. Nucleosome complexes are compacted to a higher-degree thanks to the linker histone H1, which protects the linker DNA from nucleases and stabilizes a 'zig-zag' nucleosome structure that is the basis of a ~30 nm chromatin fibre (Figure 1.1) (Allan et al., 1980; Oudet et al., 1975). The packaging of the nucleosomes is dynamic and can be modulated resulting into two chromatin states: inactive condensed (heterochromatin), which includes H1, or active (euchromatin), which harbours mobilized nucleosomes facilitating access to transcription factors and co-factors.

The highest order of chromatin structure involves the folding of the chromatin fibre into large genomic regions separated by conserved boundary regions within the three-dimensional nuclear space (Figure 1.1). These organized territories are known as topologically associated domains (TADs) and promote regulatory long-range interactions within the domain (Bickmore and van Steensel, 2013; Dekker and Misteli, 2015; Tang et al., 2015). In other words, TADs bring DNA sequences from distinct genomic sites in close physical proximity, and hence allow the simultaneous coordination of their chromatin status and transcriptional regulation (Dixon et al., 2012). TAD boundaries are mediated and stabilized by structural proteins, such as CCCTC-binding factor (CTCF) and cohesin (Faure et al., 2012; Handoko et al., 2011). Other factors, such as mediator, co-operate with structural proteins to divide TADs into smaller sub-domains that facilitate shorter range interactions between transcriptional regulatory elements (Bonora et al., 2014).

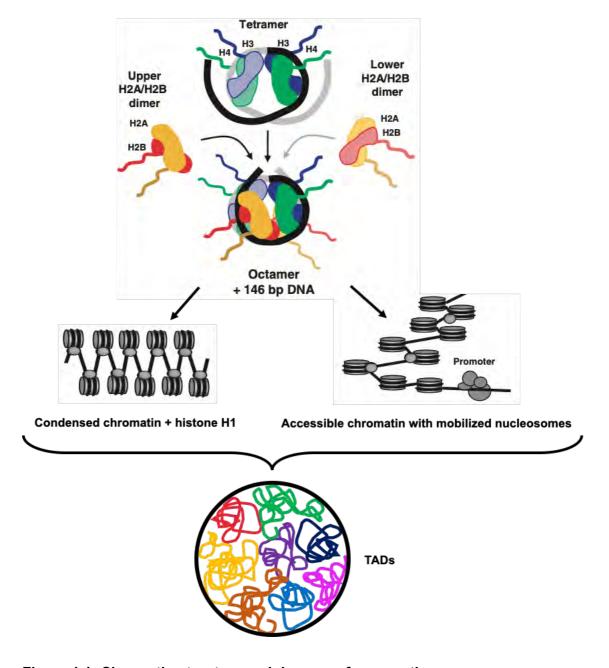



Figure 1.1: Chromatin structure and degrees of compaction

The histone octamer is assembled to DNA to form the first degree of compaction: the nucleosome. Two pairs of H3 and H4 are loaded onto DNA before the incorporation of two H2A/H2B dimers above and below the H3/H4 tetramer, resulting in the wrapping of ~146 bp of DNA. Nucleosomes are assembled into a higher order structure by the incorporation of histone H1, which binds on the edge of the nucleosomes and results in the formation of condensed chromatin fibre. Nucleosome positioning is mobile and can be modulated by different transcription factors and chromatin modifiers, resulting in accessible chromatin state. Within the nucleus, chromatin is organized in three-dimensional domains called topologically associated domains (TADs), which bring into proximity genes with their respective regulatory elements and hence include similarly regulated genes. Figure adapted from (Cockerill, 2011).

## 1.2 Transcriptional regulation in eukaryotes

By nature, chromatin consists a repressive state, restricting access to transcription factors (TFs) to regulatory elements and ultimately preventing transcriptional activation. Coordinated gene expression is finely regulated by the binding of sequence-specific TFs bringing in chromatin modifiers, leading to stable phenotypic changes on the chromatin state that allow the recruitment of the basal transcriptional machinery. Binding of TFs to regulatory regions results in the recruitment of chromatin remodellers, which create a permissive chromatin environment by actively modifying the chromatin structure. Simultaneously, the maintenance of an accessible chromatin state is mediated by multiple chromatin modifiers through modulation of the DNA methylation, nucleosome occupancy, and post-translational modifications of histones.

## 1.2.1 Transcription factors

Unique patterns of gene expression in different cell types and during development is dictated by the presence of specific TFs that bind to DNA to open up the chromatin, hence facilitating the recruitment of other transcriptional and chromatin regulators, and to control the rate of transcription of their target genes. TFs are composed of modular structures including DNA binding, transactivation and dimerization/interaction domains. TFs bind to specific DNA sequences, termed 'binding motifs'. Their affinity for a particular motif is determined by the three-dimensional structure of the DNA-binding domain, which can take a number of forms,

such as zinc finger, basic leucine zipper, helix-turn-helix and basic-loop-helix (Lee and Young, 2000).

TFs are able to simultaneously access their target sequences on nucleosomes or in compacted chromatin through cooperative binding with other TFs. However, pioneer TFs are able to actively open and bind chromatin, enabling other TFs to bind, hence being crucial for transcriptional processes requiring sequential TF binding (reviewed in Zaret and Carroll 2011). Some TFs acting downstream to pioneer TFs, such as TAL1/SCL, have a role in 'priming' regulatory sequences through stable binding for their activation at a later time during cell-fate decision (Lichtinger et al., 2012; Org et al., 2015).

TFs can directly recruit and interact with other co-factors to co-operatively bind and enhance their DNA-binding affinity or to act synergistically upon binding in order to activate or repress transcription (Spitz and Furlong, 2012). Recruited co-activators and co-repressors act as 'hub' proteins by integrating TFs and epigenetic modifying enzyme signalling (Watson et al., 2012). Co-factors do not bind DNA directly, but can bind other TFs, and include proteins involved in the initiation of transcription as well as chromatin remodelling and histone modifying enzymes (Fishburn et al., 2005).

TFs activate gene expression mainly by (i) recruiting chromatin remodellers, such as SWI/SNF, to regulatory elements to increase DNA accessibility and allow binding of other co-activators (de la Serna et al., 2005), (ii) facilitating assembly of co-factor complexes at promoters prior to the start of transcription (Heo et al., 2008), (iii) enhancing the activity of the general transcriptional machinery via recruitment of co-activators, chromatin modifiers and factors that mediate post-translational

modifications to Pol II (Jonkers and Lis, 2015), and (iv) mediating physical interactions between regulatory elements such as enhancers and promoters (Chen et al., 2012; Levantini et al., 2011).

TFs can also mediate transcriptional repression, as exemplified by Zinc finger multiprotein TF families harbouring repressive domains, such as the Krüppel-associated box. Upon binding to DNA, these repressive TFs lead to gene silencing through recruitment of co-repressors, such as the heterochromatin protein 1 (HP1) and histone deacetylases and methyltransferases (Sripathy et al., 2006).

## 1.2.2 Transcriptional regulatory elements

Transcription of a protein-coding gene is modulated by different types of regulatory elements including promoters, located at the transcription start site (TSS), and distal elements such as enhancers, silencers and insulators. Regulatory elements are recognized and bound by TFs in a DNA sequence-specific manner. The co-operative assembly of multi-protein complexes, including TFs and co-factors, replace the existing nucleosomes (reviewed in Merika and Thanos, 2001), resulting in the generation of highly accessible regions that are sensitive to DNase I digestion, denominated DNase I hypersensitive sites (DHS) (Stalder et al., 1980). DHS appear free of nucleosomes but can also be alternatively assembled with unstable nucleosomes containing the H2AZ and H3.3 histone variants (reviewed in Cockerill, 2011).

#### 1.2.2.1 Promoters

Promoter regions constitute the proximal promoter and core promoter region. The proximal promoter region contains binding sites for the binding of TF and activator proteins (Maston et al., 2006), whilst the core promoter contains the TSS of the protein-coding gene and several conserved motifs, which are necessary for the assembly of the transcriptional pre-initiation complex and the basic transcription machinery (Smale and Kadonaga, 2003; Zhang, 1998). The core promoter often includes a TATA box motif and other motifs such as the downstream core, downstream promoter and motif ten elements (DCE, DPE and MTE, respectively), which serve as docking site for the general TFs such as the TFIID subunit TBP or TFIIID (Morris et al., 2004).

The combination and frequency of the distinct sequence elements is variable between the different promoters in the genome. For example, only a subset of promoters is thought to contain a canonical TATA box motif (Gershenzon and loshikhes, 2005). Promoters that lack the core promoter motifs, including the TATA box, tend to be enriched with high CG content regions, called CG islands (Blake et al., 1990). Promoters have therefore been classified into three categories based on the presence or absence of TATA box and CG islands within the promoter region (Lenhard et al., 2012): type I promoters have TATA box and low CG content and are associated with inducible and tissue-specific genes, type II promoters lack the TATA motif, have CG sequences over the TSS and are associated with constitutively expressed housekeeping genes, and type III promoters display spread CG rich regions and are associated with developmental genes, which are usually regulated through interactions with distal elements, such as enhancers.

#### 1.2.2.2 Enhancers

The activity of promoters can be temporally and spatially modulated through interactions with multiple distal regulatory elements, denominated enhancers (de Villiers and Schaffner, 1981). Enhancers are constituted by a collection of TF binding motifs and their active state is usually associated with DHS, bound TFs and cofactors as well as H3K4me1 and H3K27ac histone marks (Rada-Iglesias et al., 2011).

A single promoter can be simultaneously regulated by several enhancers, as exemplified by the *Fdf8* promoter (Marinić et al., 2013). Unlike promoters, which are located upstream of the TSS, enhancers may be located either up- or down-stream to the target gene, within introns or even megabases away from the interacting promoter (Mifsud et al., 2015). Therefore, genes regulated by the same subset of enhancers often encode proteins that are tissue and developmental-stage specific (Spitz and Furlong, 2012).

#### 1.2.2.3 Silencers and Insulators

Certain regulatory elements are not involved in transcriptional activation. These negative regulatory elements include silencers and insulators, which interfere with promoter-enhancer interactions.

Silencers are involved in repressing transcription and, similar to enhancers, may be located distal to their target genes. Silencers contain multiple binding sites for TFs, such as CT-rich motifs (Petrykowska et al., 2008), that recruit repressive co-factors (reviewed in Privalsky, 2004). Key examples of corepressors recruited to silencers

include the Silencing Mediator of Retinoic acid and Thyroid hormone receptors (SMRT) and the Nuclear hormone receptor Co-Repressor (N-CoR) (Chen and Evans, 1995; Sande and Privalsky, 1996). TFs and associated co-repressors may exert their functions by directly competing with co-activators for binding DNA (Harris et al., 2005), by recruiting epigenetic modifying enzymes to create a repressive chromatin structure (Srinivasan and Atchison, 2004) or by interfering with the assembly of the basal transcriptional machinery near the TSS, as exemplified by PAX5 (Tagoh et al., 2006).

Insulators, which are located within gene boundaries, create discrete domains of gene regulation by isolating a locus from the regulatory activities occurring in neighbouring domains, such as blocking the spread of repressive DNA methylation or preventing unwanted enhancer-promoter interactions (Recillas-Targa et al., 2002).

#### 1.2.3 Regulation and maintenance of the chromatin state

#### 1.2.3.1 Nucleosome remodelling and histone variants

Nucleosomes prevent transcription by physical obstruction, hence reducing accessibility of TFs to the DNA sequences wrapped around the histone core (Lee et al., 1993; Wasylyk and Chambon, 1979).

Nucleosome occupancy can be altered by ATP-dependent chromatin remodelling complexes, which are able to alter histone-DNA contacts and promote exchange of histone complexes and other factors by using the energy from ATP hydrolysis. The most studied remodelling complexes include SWI/SNF, nucleosome-remodelling

factor (NURF) and BRG1-associated factor (BAF) (reviewed in Chen and Dent 2014; Guan et al. 2013; Skene and Henikoff 2013; Smith and Meissner 2013).

Nucleosome remodelling is further tuned by the exchange of canonical histones for histone variants. Histone variants exhibit minor differences in their amino acid sequences, compared to their canonical counterparts. Incorporation of histone variants alters the interaction strength within the nucleosome core, affecting its stability and hence the degree of compaction of the chromatin fibre (Becker and Workman, 2013). Unlike canonical histones, histone variants are incorporated into chromatin independently of DNA replication, and result in distinct chromatin functions (Albig and Doenecke, 1997). Using H2 variants as examples; H2A.Z is enriched at transcription start sites and correlates with the presence of hypomethylated DNA, whilst phosphorylated H2A.X marks DNA double-strand breaks (reviewed in Henikoff and Smith, 2015).

#### 1.2.3.2 Histone modifications

The nucleosome carries regulatory information, because histones can undergo post-translational modification (PTMs). Such PTMs occur mainly on the amino-terminus (N-terminal) histone tails, which project outside the nucleosome making them accessible to chromatin modifying enzymes (Luger et al., 1997). These modifications primarily include acetylation (ac), methylation (me), phosphorylation, ubiquitylation, sumoylation, ADP ribosylation and deamination (reviewed in Cosgrove et al., 2004; Kouzarides, 2007). PTMs can also occur within the globular domain of the histones (Tropberger and Schneider, 2013). An example is H3K79me (Zhang et al., 2002a),

which correlates with active gene expression and transcript abundance. In active genes, H3K79me3 is found at the transcriptional start site, whilst H3K79me1 extends over the gene body (Steger et al., 2008).

Histone PTMs influence chromatin compaction by affecting interaction between nucleosomes. In addition, combinatorial patterns of histone PTMs indirectly dictate gene transcription and chromatin state by recruiting chromatin regulators, which contain PTM 'reader' domains (Clements et al., 2003; Vettese-Dadey et al., 1996). The first histone-modification-binding module that was identified was the bromodomain from p300/CBP-associated factor (PCAF), which binds to acetylated histones (Dhalluin et al., 1999). Another example, heterochromatin protein 1 (HP1), binds methylated H3K9 (Bannister et al., 2001; Lachner et al., 2001).

Histone modifications are added to, or removed from, chromatin by distinct enzymes – commonly known as 'writers' and 'erasers', respectively – including histone acetyltransferases (HAT) and deacetylases (HDAC), lysine methyltransferases (KMT) and demethylases (KDM), arginine methyltransferases, kinases and phosphatases, or ubiquitylation enzymes (E1, E2, E3) and deubiquitylases. The first writers discovered were HATs (Brownell et al., 1996), which act as transcriptional coactivators, and include the TATA-box binding protein associated factor TFIID subunit 1 (TAF1) (Mizzen et al., 1996), CREB-binding protein and p300 (CBP/p300) (Bannister and Kouzarides, 1996; Ogryzko et al., 1996) and PCAF (Yang et al., 1996). Soon after the discovery of HATs, HDACs were identified as transcriptional co-repressors (Taunton et al., 1996). Later on, several KMTs, containing an evolutionary conserved SET domain, were described, including SUV39H1 (Tschiersch et al., 1994), G9a (Tachibana et al., 2001), Trithorax factors (such as

MLL) (Milne et al., 2002) and EZH2 (Czermin et al., 2002). Interestingly, histone lysine methylation can either be repressive, such as SUV39H1-mediated H3K9me3 (Rea et al., 2000), or activating, such as MLL-mediated H3K4me3 (Milne et al., 2002). Moreover, some KMTs lacking the SET domain are able to methylate the globular domain of histones. This includes DOTL1, which mediates H3K79me (van Leeuwen et al., 2002). Histone lysine methylation can me erased by KDMs, such as lysine-specific histone demethylase 1 (LSD1), which acts as a transcriptional corepressor (Shi et al., 2004). Methylation can also occur at histone arginines, mediated by the co-activator-associated arginine methyltransferase 1 (CARM1) (Chen et al., 1999) or the protein arginine N-methyltransferase 1 (PRMT1) (Wang et al., 2001).

The combined modulation of histone variants and histone modifications affects nucleosome occupancy, regulating chromatin mobility within the nucleus, and cooperates with TFs and proteins from the DNA replication and repair machinery.

## 1.2.3.3 DNA methylation

DNA bases can be directly modified by methylation or hydroxymethylation of cytosines, resulting in chromatin condensation (Hotchkiss, 1948). DNA methylation results in gene repression (Razin and Riggs, 1980) and occurs mainly in CG dinucleotides (Bird et al., 1985), with the exception of the CG islands commonly located at promoters, which are generally unmethylated (Larsen et al., 1992). DNA methylation is regulated by DNA (cytosine-5)-methyltransferase (DNMT) enzymes, including DNMT1, DNMT3a and DNMT3b. *De novo* DNA methylation during early

development is established by DNMT3A and (Hsieh, 1999; Okano et al., 1999). DNMT1 prefers to methylate new CG dinucleotides with neighbouring methylated DNA (Pradhan et al., 1999), hence maintaining DNA methylation through cell divisions.

DNA methylation can modulate transcription, mainly via two mechanisms. The first mechanism involves direct interference of the methyl groups with the binding of TFs to their specific motif sequences. This scenario can also lead to transcriptional activation through interference with the binding of transcriptional repressors, as exemplified by the prevention of CTCF binding resulting in activation of Igf2 expression (Bell and Felsenfeld, 2000). The second mechanism involves the binding of methyl-CpG-binding protein (MeCP) complexes to the DNA methyl groups (Meehan et al., 1989).

MeCPs affect chromatin structure and gene expression, as exemplified by MeCP2, which recruits HDACs through binding the transcriptional co-repressor mSIN3A (Nan et al., 1998). Moreover, MeCP2 can also bind hemi-methylated DNA and recruit DNMT1 (Kimura and Shiota, 2003), which maintains DNA methylation upon stabilization by multi-domain factors that form a bridge between H3K9me and hemi-methylated DNA (Liu et al., 2013). In turn, *de novo* DNA methylation can be prevented by KMTs, which are recruited by some TFs that can bind to CG islands with high affinity (Blackledge et al., 2010). Therefore, DNA methylation and histone modifications work in concert to regulate gene expression.

#### 1.2.4 Bivalent domains and reversible chromatin marks

Many chromatin signatures have been described, assigning functional patterns to each histone modification. This is well exemplified by H3K4me3 and H3K27me3, which are associated with active promoter elements and repressed developmentally-controlled gene regions, respectively (Boyer et al., 2006). However, H3K4me3 and H3K27me3 can also co-occur within the same genomic region (Bernstein et al., 2006), and more recent studies suggest that these co-exist asymmetrically on different histone peptides within the same mono-nucleosome (Sen et al., 2016; Voigt et al., 2012). These intermediate signatures harbouring both active and repressive marks have been referred to as bivalent domains.

Unlike genetic alterations, the vast majority of epigenetic modifications have been proved to be reversible. One of the few exceptions is exemplified by *de novo* promoter methylation mediated by Krüppel-associated TFs during early murine embryogenesis, which leads to irreversible gene repression (Wiznerowicz et al., 2007). Reversal of chromatin marks can be mediated by chromatin-modifying enzymes (known as 'erasers') or by chemical inhibition. Erasers of epigenetic marks include HDACs, KDMs and phosphatases, which remove histone modifications, as well as the ten-eleven-translocation-1 (TET1) family of enzymes, which converts 5mC to 5hmC resulting in fully demethylated DNA (He et al., 2011b). The reversal of aberrant chromatin marks by chemical inhibition is important in the context of disease, as dysfunctional chromatin regulators become good drug targets for the development of directed therapies, as has been the case for DNMT and/or HDAC inhibitors (Dawson and Kouzarides, 2012).

### 1.2.4.1 Chromatin regulation in pluripotent stem cells and differentiated cells

Epigenetic control is crucial for cell-type identity and development. Pluripotent cells have extensive regions of transcriptionally accessible chromatin, consisting of hypomethylated DNA marked by histone acetylation and H3K4me (Figure 1.2) (Azuara et al., 2006; Guenther et al., 2007; Lister et al., 2009; Meissner et al., 2008; Meshorer et al., 2006). On one hand, genes involved in pluripotency remain active by retaining H3K27ac at their enhancers (Creyghton et al., 2010). Conversely, lineagespecific genes are kept silent, and a proportion of genes remain in a 'poised' state. Poised genes harbour H3K27me3 and H3K4me3 bivalent domains in both enhancer and promoter regions and present paused RNA polymerase II in the promoterproximal region. Bivalent domains therefore allow for rapid initiation of transcription of a lineage-specific program upon removal of the repressive H3K27me3 modification (Azuara et al., 2006; Bernstein et al., 2006; Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al., 2007). In contrast, genes involved in the regulation of other developmental programs are silenced through repressive H3K27me3 marks at promoter regions (Creyghton et al., 2010; Gifford et al., 2013; Rada-iglesias et al., 2011; Wamstad et al., 2012; Xie et al., 2013). Therefore, differentiated cells are characterized by the presence of large chromatin domains harbouring repressive marks, such as H3K27me3, H3K9me2 and H3K9me3, which prevent expression of non-specific lineage programs (Figure 1.2) (Pauler et al., 2009; Wen et al., 2009; Zhu et al., 2013).

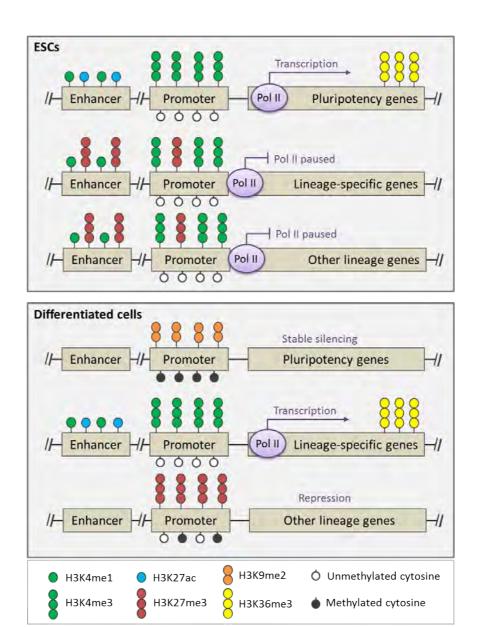



Figure 1.2: Chromatin modifications in pluripotent and differentiated cells

In embryonic stem cells (ESCs), pluripotency genes are kept active by maintaining hypomethylated DNA and active histone modifications at the genomic regulatory regions, including H3K4me1 and H3K27ac at enhancers and H3K4me3 at promoters. Actively transcribed pluripotency genes are enriched with H3K36me3 across their gene body. Conversely, lineage-specific genes contain bivalent domains in both enhancers and promoters, consisting of both repressive H3K27me3 and active H3K4me histone modifications. In differentiated cells, pluripotency genes are stably repressed through DNA methylation, acquisition of and H3K9me2 and loss of H3K4me3 at promoter regions. Lineage-specific genes lose the repressive marks at their bivalent domains and acquire active H3K27ac at enhancers, leading to transcriptional elongation. Genes from other lineages are silenced upon removal of the active marks at the bivalent domains. Pol II: RNA polymerase II. Figure adapted from *Chen and Dent 2014* (Chen and Dent 2014).

# 1.3 The basal transcriptional machinery

Transcription of protein-coding genes begins with the assembly of Pol II and a large set of general TFs (TFIIB, TFIID, TFIIE, TFIIF and TFIIH) at the promoter regions near the TSS to form a conserved pre-initiation complex (PIC). The classical model of stepwise PIC assembly usually commences with the binding of TFIID, which contains the TATA box-binding protein (TBP) and TBP-associated factors (TAFs) with promoter specific function. Binding of TFIID is mediated by other members of the general TFs (TFIIB and TFIIA) and the resulting upstream promoter complex is subsequently joined by Pol II and TFIIF. Binding of TFIIE and TFIIH result in the formation of the complete PIC, which remains in a closed state. Transcriptional elongation is dependent on phosphorylation of the carboxy-terminal (C-ter) domain of Pol II at Serine 5 and the presence of ATP, which allows Pol II to open the DNA within the PIC. This results in the formation of a transcriptional 'bubble' that permits Pol II to initiate transcription of a few nucleotides of RNA. Subsequently, Pol II pauses and accumulates 30-60 nucleotides downstream of the TSS (Figure 1.3) (reviewed in Grünberg and Hahn, 2013; Sainsbury, Bernecky and Cramer, 2015).

Prior to productive elongation, Pol II is held paused in promoter-proximal regions by negative elongation factor (NELF) and DRB-sensitivity-inducing factor (DSIF) (Muse et al., 2007; Wada et al., 1998; Yamaguchi et al., 1999), as well as by the core promoter elements and the +1 nucleosome (Kwak et al., 2013; Li and Gilmour, 2013; Weber et al., 2014) (Figure 1.3). NELF interacts with the RNA sequences that protrude from Pol II and colocalizes with DSIF to stabilize the paused Pol II (Yamaguchi et al., 2002). Pol II pausing is aided by the presence of the +1 nucleosome, which hinders elongation by generating a physical barrier (Li and

Gilmour, 2013; Weber et al., 2014). Pol II pausing is required to keep the promoter free from nucleosomes and accessible to TFs, since knockdown of NELF not only leads to a reduction of Pol II pausing but to an increase of nucleosome occupancy within the promoter region (Core et al., 2012; Gilchrist et al., 2010). In addition, Pol II pausing facilitates the assembly of transcriptional and co-transcriptional complexes, such as the splicing machinery (Barboric et al., 2009).

In order to progress to productive transcriptional elongation, Pol II must be released from the promoter-proximal region (Figure 1.3). This process begins with the recruitment of the positive transcription elongation factor-b (P-TEFb) kinase complex by several TFs and by co-activators, such as bromodomain-containing protein 4 (BRD4) and super elongation complex (SEC), forming the activating complex (Rahl et al., 2010; Smith et al., 2011). The P-TEFb kinase complex contains the cyclin dependent kinase 9 (CDK9) (Lin et al., 2002), which releases paused Pol II by phosphorylating (i) the C-terminal domain of Pol II at Serine 2, (ii) NELF, dissociating it from Pol II, and (iii) DSIF, turning it into a positive elongation factor (reviewed in Adelman and Lis, 2012; Bacon and D'Orso, 2019; Peterlin and Price, 2006; Zhou et al., 2012). Release of Pol II into elongation is also influenced by SEC, which interacts with other co-activators associated with transcriptional elongation, including polymerase-associated factor 1 (PAF1), Mediator complex and Integrator complex (Gardini et al., 2014; He et al., 2011a; Kim et al., 2010; Takahashi et al., 2011; Wier et al., 2013). SEC may indirectly facilitate the recruitment of P-TEFb through recruitment of Mediator complex, which aids in the formation of promoter-enhancer interactions (Takahashi et al. 2011; reviewed in Allen and Taatjes 2015). After release of Pol II from the core promoter, some components of the PIC remain

assembled acting as a scaffold for subsequent recruitment of Pol II and re-initiation of transcriptional elongation (Hahn, 2004). Elongation rates can be modulated by different factors including elongation factors, such as DSFI and PAF1, chromatin modifiers and remodellers, affecting histone marks and nucleosome displacement, specific DNA sequences and presence of introns and exons (Alexander et al., 2010; Fuchs et al., 2014; Jonkers et al., 2014; Veloso et al., 2014).

Pol II continues productive elongation until it reaches the end of the gene body, where it pauses at poly(A) sequences. In order to allow Pol II release from its paused state, CDK9 phosphorylates (i) a regulatory subunit of the Protein Phosphatase 1 (PP1), which in turn, prevents dephosphorylation of DSIF and (ii) maintains phosphorylation of Pol II at Serine 2, which, together allow Pol II transcription through the poly(A) site. Reactivation of PP1 results in the dephosphorylation of DSIF and transcription termination through recruitment of termination factors, including cleavage and polyadenylation-specific factor (CPSF) and cleavage-stimulatory factor (CSTF) (reviewed in Bacon and D'Orso, 2019). Termination factors cleave and polyadenylate the nascent RNA, resulting in productive termination (Core et al., 2008).

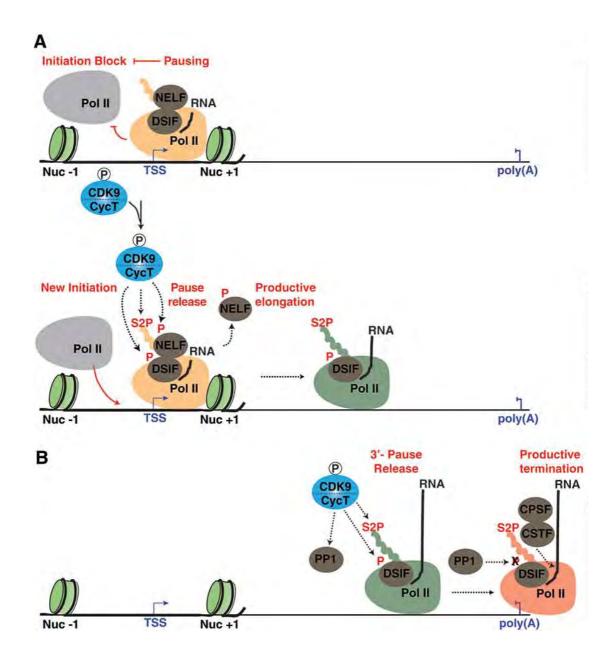



Figure 1.3: RNA polymerase II recruitment, pausing and release

- (A) Pol II is recruited by general TFs and, together, forms the pre-initiation complex, which interacts with the core elements within the promoter region. Following a transcription of a short length of DNA nucleotides, the pausing factors NELF and DSIF retain Pol II paused at the promoter-proximal region. Other factors assisting in Pol II pausing include the core promoter elements and the +1 nucleosome (Nuc +1), which creates a physical barrier for Pol II preventing elongation. Pol II is released into elongation upon recruitment of CDK9, which phosphorylates Pol II at Ser2 (S2P) as well as both NELF and DSIF. Phosphorylation causes eviction of NELF from Pol II and conversion of DSIF into a positive elongation factor.
- (B) Pol II pauses at poly(A) sites, where it is phosphorylated by CDK9 at Ser2. CDK9 also phosphorylates protein phosphatase 1 (PP1, preventing the dephosphorylation of DSIF. Pol II is then released from its paused state and transcribes through the poly(A) site, resulting in the reactivation of PP1, dephosphorylation of DSIF, and transcription termination through recruitment of termination factors (CPSF and CSTF), which cleave and polyadenylate the nascent RNA. Figure modified from Bacon and D'Orso, 2019.

# 1.4 Haematopoiesis

#### 1.4.1 Haematopoietic development in the embryo

Our current understanding of vertebrate haematopoietic development comes largely from studies in non-human model organisms (reviewed in Crisan and Dzierzak, 2016; Kauts et al., 2016; Kim et al., 2014; Medvinsky et al., 2011; Robertson et al., 2016). Due to limited availability of early human embryos, the study of human haematopoietic development has been restricted to morphological studies of small numbers of embryos, *in vitro* assays and, *in vivo* functional evaluation of emerging human HSCs in immunodeficient mouse models (Shultz et al., 2012).

Haematopoiesis in mammalian embryos comprises at least three discrete programs: (i) primitive, (ii) definitive erythroid/myeloid progenitor (EMP) and (iii) intraembryonic definitive progenitors. Each wave of progenitor formation takes place in different tissues and/or spans different temporal windows and generates cells with different potential (Figure 1.4). Despite differences in the duration of the developmental time course, mouse and human embryonic haematopoiesis share many similarities.

In order to ensure embryonic survival prior to the establishment of circulation and HSC formation, haematopoietic progenitors are generated in the yolk sac from an extraembryonic mesodermal progenitor, the haemangioblast. A primitive wave of yolk sac progenitors, at 16-18.5 human days post-conception (dpc), mainly includes nucleated erythrocytes and rare primitive macrophages and megakaryocytes (Bloom and Bartelmez, 1940; Luckett, 1978). The first primitive erythrocytes observed within the intra-embryonic cardiac cavity mark the onset of circulation at 21-22 dpc (Tavian et al., 1999). A second wave of yolk sac progenitors includes EMPs, megakaryocytic

and lymphoid progenitors that migrate to transiently colonise the foetal liver (Chen et al., 2011; McGrath et al., 2015; Palis et al., 1999; Tober et al., 2007). In the human embryo, this may occur around 28-35 dpc (Migliaccio et al., 1986).

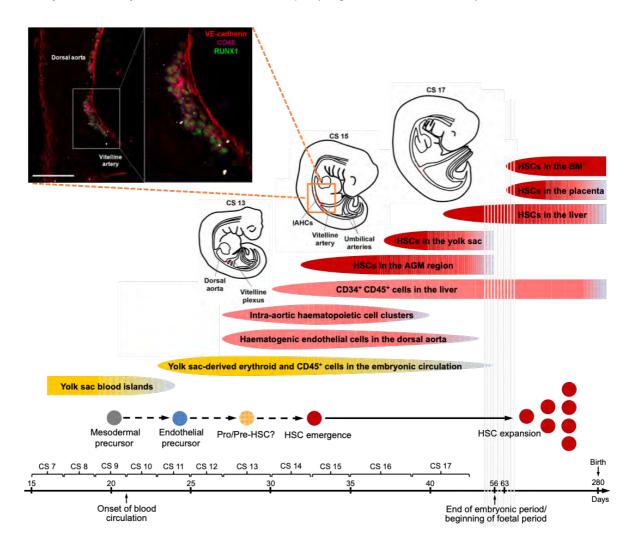



Figure 1.4: Chronology of human embryonic haematopoietic development

The first human haematopoietic cells are generated from an extra-embryonic mesodermal precursor (grey), the haemangioblast, in the blood islands of the extraembryonic yolk sac during 16-18.5 days post-conception (dpc). This primitive wave of progenitors includes nucleated erythrocytes and rare primitive macrophages as well as megakaryocytes, and ensures embryonic survival prior to the establishment of circulation, which occurs at 21-22 dpc. The first CD34+ CD45+ progenitor cells originate from intra-aortic haematopoietic clusters (IAHC) from haemogenic endothelium (HE, blue) located in the ventral side of the dorsal aorta, in a process known as endothelial-haematopoietic transition (EHT) at 27 dpc. Presence of HSCs has been identified from 30-42 dpc in the aorta-gonad-mesonephros (AGM), which is the first region harbouring HSC activity within the embryo. Individual progenitor cells detach from the HE clusters and seed the foetal liver to expand and mature. After 56 dpc, blood progenitors colonize the bone marrow, which will remain the main haematopoietic niche throughout adult life. Carnegie stages (CS) are stages of human development as defined by external morphological features. Yellow: yolk sac haematopoietic differentiation, salmon pink: definitive haematopoietic lineages, red: bona-fide HSCs. White lines within the coloured bubbles represent a

change in time scale (omission of weeks). Immunofluorescence image shows VE-cadherin+CD45+RUNX1+ human embryonic IAHCs at CS 16. Right image corresponds to a sagittal confocal section of the boxed area. Scale bar: 0.05 mm. Modified figure, adapted from *Ivanovs et al.*, 2017 (Ivanovs et al., 2017).

The intraembryonic program generates the first pre haematopoietic stem cells (pre-HSC) and repopulating HSC, with self-renewal and long-term engraftment capacity that give rise to the adult haematopoietic system. The aorta-gonad-mesonephros (AGM) region develops from para-aortic splanchnopleura mesoderm and includes the dorsal aorta, genital ridges and mesonephros. The ventral side of the dorsal aorta contains specialized vascular cells with endothelial potential, known as haemogenic endothelium (HE). The human aortic endothelial lining of the AGM is marked by the expression of CD34 from 19 dpc (Oberlin et al., 2002). The first HSCs originate within the AGM region from HE in a process known as endothelial-haematopoietic transition (EHT). During EHT, intra-aortic clusters of haematopoietic cells emerge from the endothelial cell layer from day 10.5 in the mouse and 27 dpc in the human embryo and will generate the first pre-HSCs, HSCs and progenitor cells (de Bruijn et al., 2000; Chen et al., 2009; Cumano et al., 1996; Eilken et al., 2009; Godin et al., 1995; Lancrin et al., 2009; Medvinsky and Dzierzak, 1996; Medvinsky et al., 2011; Müller et al., 1994; Rybtsov et al., 2014; Taoudi et al., 2008; Zovein et al., 2008). Thereafter, haematopoietic cells detach from the aortic clusters and migrate to the foetal liver where they expand and mature (Bertrand et al., 2010; Boisset et al., 2010; De Bruijn et al., 2002; Jaffredo et al., 1998; Kissa and Herbomel, 2010; Lam et al., 2010; North et al., 2002). This developmental phenomenon has been widely studied in the murine embryo, where the transition from aortic cluster pre-HSCs to foetal liver HSCs occurs within 24 hours (Rybtsov et al., 2016). It is thought that human HSCs undergo a

similar developmental process, however, the seeding of the foetal liver with HSCs takes at least one week after the emergence of aortic pre-HSCs, suggesting that the molecular mechanisms of human pre-HSC emergence and maturation to HSCs may differ (Ivanovs et al., 2011).

The human yolk sac and para-aortic splanchnopleura, two mesodermal-derived structures, exhibit distinct haematopoietic potentials as observed in ex vivo cultures of these embryonic tissues isolated prior to the onset of circulation at 21 dpc. The yolk sac generates myeloid and natural killer cells only, whilst the para-aortic splanchnopleura forms a wider range of haematopoietic progenitors including B- and T- lymphoid cells (Tavian et al., 2001). Moreover, cobblestone area-forming cells, an in vitro assay predictive of multipotent precursors and HSCs, were present in explants from the dorsal aorta but not from the yolk sac (Oberlin et al., 2002). Transplantation studies of human cells into immunodeficient mice indicate that the first long-term multilineage HSCs are generated in the AGM around 30-32 dpc and remain present predominantly within this region up until 42 dpc, when HSCs are found in the foetal liver. A low number of definitive HSCs with regenerative potential is generated in the human AGM (1-2 per embryo), however, the presence of nascent, pre-HSCs could have been underestimated, as they cannot be yet detected by direct transplantation of cells from the human AGM into mice (Ivanovs et al., 2011). Indeed, this conclusion is reached in more detailed studies of mouse AGM by the same investigators (Rybtsov et al., 2016). The first human AGM-derived HSCs are contained within a population of CD34+VE-Cadherin+CD45+KIT+CD90+endoglin+ RUNX1+CD38-/lo CD45RA- cells (Ivanovs et al., 2014). HSC development is also dependent on cell adhesion and migration, which is regulated through surface

molecules expressed in the intra-aortic endothelium and cell clusters, including ALCAM, VE-Cadherin, CD34, CD43, CD44, CD164, VCAM1 (Drew et al., 2005; Ivanovs et al., 2014).

The first blood cells seen in the foetal liver are primitive yolk-sac erythrocytes and CD45+ monocyte/macrophage cells at 22-23 dpc (Tavian et al., 1999). From 27-30 dpc, an increasing number of CD34+CD45+ progenitors – most likely representing yolk-sac EMPs and pre-HSCs generated in the intra-aortic clusters – seed the liver, which remains a crucial site for HSC expansion and haematopoietic differentiation. Bone marrow formation marks the end of the embryonic period at 56 dpc, with formation in the long bones antedating bone marrow formation in the vertebrae (Chen and Weiss, 1975). The bone marrow remains the main haematopoietic niche throughout adult life providing the adequate environment to sustain proper numbers and function of HSCs (Zovein et al., 2008).

# 1.4.2 *In vitro* modelling of human haematopoietic development and signalling pathways

Many laboratories have attempted to recapitulate early human blood development through the *in vitro* differentiation of human pluripotent stem cells, using a variety of protocols (reviewed in Ditadi et al., 2016; Wahlster and Daley, 2016). The main approaches that have been used are: (i) monolayer culture (D'Amour et al., 2005; Jiang et al., 2007), (ii) co-culture with a layer of stromal cells, such as mouse bone marrow stromal (S17 or OP9) or mouse yolk-sac endothelial (C166) cell lines, to induce lineage differentiation (Kaufman et al., 2001; Vodyanik et al., 2005), and (iii)

embryoid body (EB) culture (Chadwick et al., 2003; Schuldiner et al., 2000). Haematopoietic differentiation of murine and human pluripotent stem cells mimic the molecular and phenotypic events that occur during early embryogenesis (Keller, 1995; Keller et al., 1993; McGrath et al., 2015; Ng et al., 2016). Differentiating cells sequentially pass from stem cell to primitive streak like stages and then to haematopoietically patterned mesoderm, which leads to the generation of primitive and definitive haematopoiesis. However, the majority of protocols for *in vitro* haematopoietic differentiation mimic extra-embryonic yolk sac-like haematopoiesis, rather than generating the intra-embryonic AGM-like blood cell formation.

In order to reproduce intra-embryonic haematopoiesis and HSC development *in vitro*, the signalling landscape underlying progenitor formation within the AGM niche needs to be mimicked through addition of soluble cell-based growth factors at the adequate amount and in the correct temporal window. Haematopoietic development, including mesodermal specification and patterning as well as the formation of the AGM, is regulated by several growth factors involving distinct signalling pathways. Mesodermal patterning is regulated by FGF, BMP4, WNT and ACTIVIN signals (Kimelman, 2006; Nostro et al., 2008; Wang and Nakayama, 2009; Woll et al., 2008; Yu et al., 2011). Primitive streak genes in early mesoderm can be induced by BMP4 alone, which, in combination with vascular endothelial growth factor (VEGF), also supports the initial generation of haematopoietic cells from in vitro cultures (Pick et al., 2007). Recently, it has been demonstrated that addition of growth factors and inhibitors to modulate these signalling pathways allows the mesoderm to be patterned towards intra-embryonic, AGM-like haematopoiesis, inhibiting extra-embryonic yolk sac-like haematopoiesis. The primitive erythroid programme can be

suppressed by concurrent BMP4 activation and activin suppression (Kennedy et al., 2012) and addition of a WNT agonist (Gertow et al., 2013). Induction of the definitive program can similarly be achieved via activin inhibition and WNT stimulation, using the factors individually (Kennedy et al., 2012; Sturgeon et al., 2014) or in combination (Ng et al., 2016), during mesoderm patterning. These signals upregulate expression of *CDX* genes, which in turn activate selective expression of *HOXA* genes, resulting in a *HOXA*-signature similar to that seen in human foetal liver and cord blood-derived haematopoietic progenitors (Dou et al., 2016; Ng et al., 2016). Although we are not able to distinguish AGM-derived progenitors and pre-HSCs from yolk-sac-type progenitors by known cell surface markers (Ditadi and Sturgeon, 2016), they differentially express *HOXA* genes (Dou et al., 2016; Ng et al., 2016) (Figure 1.5).

In the embryo, development of the arterial and venous vasculature is dependent on NOTCH signalling (Lawson et al., 2001). Polarization of the mouse dorsal aorta and the ventral location of the haemogenic endothelium and the intra-aortic clusters results from asymmetric modulation of BMP signalling within the AGM, which displays a ventral to dorsal gradient across the aorta (Marshall et al., 2000; Souilhol et al., 2016; Wilkinson et al., 2009). BMP4 also plays a role in the formation the HSC niche, since BMP4 induces expression of molecules from the extracellular-matrix, such as tenascin C and fibronectin (Molloy et al., 2008), and is expressed in the ventral side of the dorsal aorta at 28 dpc (Ivanovs et al., 2011). BMP4 is able to upregulate KIT expression, which may facilitate initiation of HSC formation (Marshall et al., 2007). Moreover, *KIT* is expressed in the human intra-aortic clusters and the first emerging HSCs (Ivanovs et al., 2014). Mouse studies suggest that sustained BMP4 signalling is detrimental to HSC development (Souilhol et al., 2016). *BMP4* 

expression is therefore downregulated, and *TGFb* expression upregulated, near the intra-aortic clusters. It is hypothesized that TGFβ may reorganize the extracellular matrix within the niche, thus preventing HSC expansion in the AGM (Marshall et al., 2000). FLT3 might also be instrumental in human HSC maturation, since FLT3 and its ligand are expressed in the intra-aortic clusters (Marshall et al., 1999). Recent studies have highlighted the importance of retinoic acid signalling for the formation of embryonic HSCs (Chanda et al., 2013). Therefore, because the presence of these growth factors is crucial for proper embryonic haematopoietic development, it is likely that their inclusion in *in vitro* systems of haematopoietic differentiation is required to simulate the human AGM niche and generation of intra-embryonic haematopoietic progenitors (Ng et al., 2016).

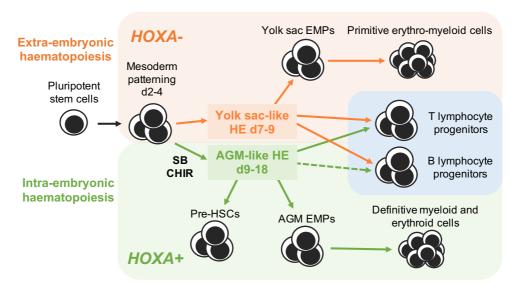



Figure 1.5: HOXA expression signature during in vitro haematopoietic differentiation

During the time of mesoderm patterning (days 2-4 of differentiation), cells are primed towards activation of the extra-embryonic yolk-sac (orange) or intra-embryonic AGM (green) haematopoietic programs. This switch can be modulated *in vitro* by addition of the activin antagonist SB431542 (SB) and the WNT agonist CHIR99021 (CHIR). Extra- and intra- embryonic progenitors differ in their *HOXA* expression signature, which is upregulated in endothelial and definitive immature haematopoietic cells. Both programmes are able to generate erythro-myeloid progenitors (EMPs) and T lymphocytes from haemogenic endothelium (HE). B cells have been generated via the extra-embryonic programme but B-cell derivation from AGM-like progenitor cells has not been proved yet (dashed arrow). The intra-embryonic programme also generates progenitors with pre-HSC features, but more mature adult-type HSC progeny have not been demonstrated yet.

#### 1.4.2.1 Generation of definitive progenitors from human pluripotent stem cells

Most protocols for haematopoietic differentiation in vitro generate progenitors resembling those originating in the embryonic yolk sac during the first two waves of haematopoiesis, comprising mainly primitive erythroid, erythro-myeloid and Tlymphoid progenitors but lacking HSC activity (reviewed in Ackermann et al. 2015). Both pre-HSCs and rare HSCs with long-term haematopoietic repopulation capacity are only generated in the embryonic AGM region (Boisset et al., 2010; Ivanovs et al., 2011; Medvinsky et al., 1993; Rybtsov et al., 2011, 2016; Taoudi et al., 2008; Tavian et al., 1996). Indeed, comparison of transcriptional profiles from human ESC-derived haematopoietic CD34+ cells, generated under a yolk sac-like differentiation protocol, and human CD34+ cord blood repopulating cells, demonstrated a key difference whilst the cord blood cells expressed members of the HOXA cluster of homeobox genes, this gene signature was absent from the ESC-derived CD34+ progenitors (Ng et al., 2016). HOX genes are involved primarily in the specification of the anterior to posterior axis during mesoderm patterning (McGinnis and Krumlauf, 1992). However, several HOXA genes are expressed in HSCs (Lebert-Ghali et al., 2010; Novershtern et al., 2011) and are important for haematopoietic development in both mouse (Argiropoulos and Humphries, 2007; Di-Poï et al., 2010) and human (Dou et al., 2016; Zhou et al., 2016). For this reason, Ng et al. developed a protocol that depends on the generation of HOXA-expressing cultures to reproduce human AGM-like haematopoiesis in a dish (Ng et al., 2016). Furthermore, unlike some previous methods, which involved the purification of endothelial progenitors prior to blood formation (Ditadi and Sturgeon, 2016), this approach utilizes whole EBs in an adherent culture, allowing the formation of a supportive stroma, SOX17-expressing

vascular structures and subsequent formation of *RUNX1C*-expressing haematopoietic progenitors. Although there is yet no evidence of generation of long-term engrafting cells in these cultures, the RUNX1C+ progenitors harbour high clonogenic activity and ability to home in the bone marrow (Ng et al., 2016).

Upregulated HOXA gene expression is mediated through modulation of WNT and ACTIVIN signalling pathways between d2 and d4 of differentiation. In this context it is relevant that (i) commitment to primitive and definitive haematopoiesis occurs during this period (Kennedy et al., 2012; Sturgeon et al., 2014) and (ii) HOXA genes are first expressed in the embryonic primitive streak (Deschamps and van Nes, 2005), which is the site for mesoderm induction and patterning. HOXA cluster induction in vitro is achieved through exposure of cultures to a pulse of a WNT agonist (CHIR99021) and an ACTIVIN receptor-like kinase inhibitor (SB431542) from d2 to d4 of differentiation. the period during which expression of MIXL1 and BRACHYURY primitive streak genes is greatest. This treatment leads to a transient upregulation of CDX genes, which in turn regulate HOX gene expression (Deschamps and van Nes, 2005). These two small molecules were chosen on the basis of previous evidence showing suppression of primitive haematopoiesis through WNT3A supplementation during mesoderm patterning in human ES cells (Gertow et al., 2013), and production of definitive haematopoietic lineages from human pluripotent stem cells by exposure to ACTIVIN antagonists or WNT agonists (Kennedy et al., 2012; Sturgeon et al., 2014). The above described differentiation protocol relies on the use of a serum-free medium base that includes recombinant human (rh) protein components – albumin. transferrin and insulin - and is free of purified animal or human products, hence

reducing variability due to reagent batch effects and increasing reproducibility of the

differentiation. Other key features of this media formulation are: (i) a reduced use of lipid components, restricted to synthetic cholesterol and the essential linoleic and linolenic fatty acids, and (ii) the use of polyvinyl alcohol (PVA), which enhances initial formation of EBs (Ng et al., 2008). EB cultures are set up using a spin-based method, in which undifferentiated human ES cells are aggregated by centrifugation onto round-bottom 96-well plates, resulting in formation of EBs of uniform size in each well, which guarantees synchronized development. During the first four days, EB plates are cultured in media supplemented with growth factors that induce differentiation to haematopoietic mesoderm (Davis et al., 2008; Ng et al., 2005; Pick et al., 2007). Addition of the Activin-inhibitor SB and WNT-agonist CHIR from day 2 to 4 allows the subsequent upregulation of HOXA gene expression and suppression of primitive haematopoiesis (Ng et al., 2016), since during this time frame (i) Activin/Nodal signalling is involved in the formation of the primitive early erythroid progenitors (Kennedy et al., 2012) and (ii) Wnt-signalling is required for the specification of definitive progenitors (Sturgeon et al., 2014). Expression of the arterial vascular SOX17 marker and stem-like CD34 markers arises from d3 and are maximal at d7. Vascular structures are seen to form after d8 of differentiation. The EHT occurs from d10-14 of differentiation, once the vascular structures have developed. From that time on, RUNX1C+ and RUNX1C- progenitors are generated from SOX17+ haemogenic endothelium, and subsequently detach and proliferate. Progenitor formation continues until about day 28-30, and haematopoietic cells in suspension will progress through more mature lineages depending on the cytokines used. The laboratory of Prof Elefanty has been able to generate cells of the myeloid, erythroid and T-cell lineages using this protocol (Ng et al., 2016).

#### 1.4.3 Blood cell formation in the adult

Blood cell development in the adult originates from long-term self-renewing HSCs, believed to lie at the apex of a differentiation hierarchy (Figure 1.6). HSCs give rise to a family of multipotent progenitors (MPPs), which possess intermediate or short-term self-renewal and transient repopulation potential (Adolfsson et al., 2001; Morrison et al., 1997). The earliest lineage commitment decision occurs downstream of MPPs, in which they lose the self-renewal potential and segregate into myeloid and lymphoid lineages. These two main branches were first inferred from the identification of common myeloid and lymphoid progenitors in the mouse (CMPs and CLPs, respectively) (Akashi et al., 2000; Kondo et al., 1997; Reya et al., 2001). Progenitor intermediates lose their multilineage potential and differentiate into mature cells, by progressively repressing lineage programs until an individual one becomes dominant. For example, MPPs lose their erythroid and megakaryocytic potential to give rise to an intermediate with myelo-lymphoid potential, as demonstrated by the isolation of lymphoid-primed multipotent progenitors (LMPPs) from the mouse (Adolfsson et al., 2005; Kawamoto et al., 1999, 2010). LMPPs gradually become restricted to the lymphoid lineage by losing their myeloid potential and differentiating into early lymphoid progenitors (ELPs), which then become CLPs that finally differentiate to T, B and natural killer lymphocytic cells (Månsson et al., 2007; Welner et al., 2008).

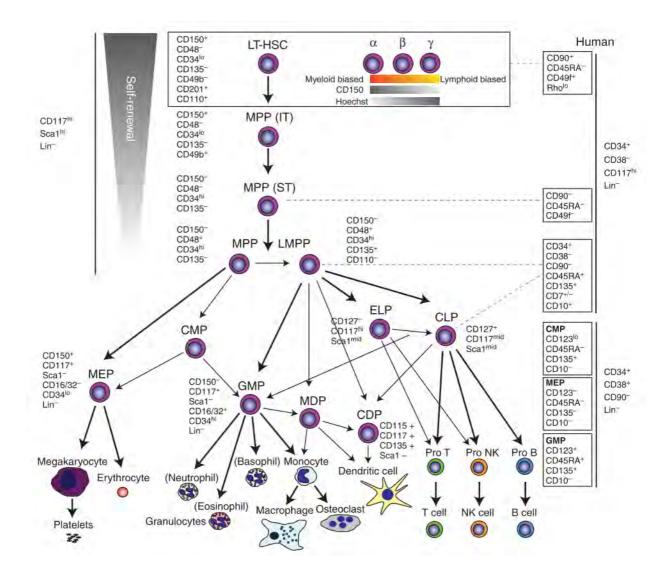



Figure 1.6: Adult haematopoietic differentiation in the mouse and human

Long-term HSCs sit at the apex in this hierarchical model of adult haematopoiesis. They give rise to all mature blood cell lineages through several progenitor cell stages and distinct differentiation routes. The differentiation stages and lineages can be identified by specific surface markers, some of which are distinct in both human and mouse. Mouse surface molecules for the identification of each cell type are indicated and respective human markers are plotted on the right within boxes. HSC: haematopoietic stem cell, MPP: multipotent progenitor, LT: long-term repopulating, IT: intermediate-term repopulating, ST: short-term repopulating, LMPP: lymphoid-primed MPP, ELP: early lymphoid progenitor, CLP: common lymphoid progenitor, CMP: common myeloid precursor, GMP: granulocyte/monocyte progenitor, MEP: megakaryocyte—erythrocyte progenitor, CDP: common dendritic progenitor, MDP: monocyte—dendritic cell progenitor, NK: natural killer cell). Figure reproduced from *Rieger and Schroeder 2012* (Rieger and Schroeder, 2012).

MPPs also give rise to CMPs, which generate granulocyte/monocyte progenitors (GMPs) and to megakaryocyte/erythrocyte progenitors (MEPs). As reported in mouse studies, the majority of MEPs are derived from Flk2+ CMPs and not directly from MPPs (Boyer et al., 2011; Buza-Vidas et al., 2011). MEPs are the precursors of erythrocytes and megakaryocytes, which generate red blood cells and platelets. GMPs differentiate into granulocytes (neutrophils, eosinophils and basophils), monocytes (macrophages and osteoclasts) and monocyte/dendritic progenitors that subsequently become common dendritic progenitors and dendritic cells. Mature myeloid cells harbour innate immune roles: neutrophils and macrophages are important for defence against bacteria, eosinophils and basophils provide immunity against parasites and mast cells located in the gut and skin control allergies (Koenderman et al., 2014). Lymphoid differentiation occurs gradually with multiple intermediates, which could be explained by dependence on progressive silencing of myeloid programs. This idea is supported by the observation of widespread methylated myeloid promoters in mouse lymphoid lineages and by the resulting impairment of B and T cell mouse specification upon loss of the DNA methyltransferase Dnmt1 (Bröske et al., 2009; Ji et al., 2010).

In reference to human haematopoiesis, myeloid development seems to be consistent with the classical model stablished in the mouse. However, different cell surface markers are expressed (Figure 1.6). CMPs and GMPs express CD123 and CD135, and the CMP-GMP transition is marked by acquisition of CD45RA (Doulatov et al., 2010; Manz et al., 2002). Lymphoid development differs in mice and human due to the distinct molecular mechanisms of immune responses (Mestas and Hughes, 2004). For this reason, a broader term to identify the earlier lymphoid progenitors,

named multi-lymphoid progenitors (MLPs), was defined. MLPs expressing CD34 and the earlier B cell marker CD10 were first shown to be largely lymphoid restricted, since cells were able to derive B, T and natural killer cells but not myelo-erythroid lineages (Galy et al., 1995). Such cells retained lymphoid potential in both cord blood and bone marrow and are found in circulation through life (Six et al., 2007). Later studies have identified that MLPs also contain myeloid, but not erythromegakaryocytic, potential. MLPs are restricted to the CD34+CD38-Thyr-CD45RA+ (Thyr-CD45RA+) compartment and are able to generate myeloid, monocytic and B cells upon NSG mice engraftment (Doulatov et al., 2010). These findings have been reproduced using Thyr-CD45RA+ cells from adult bone marrow of AML patients (Goardon et al., 2011). A fraction of cells expressing the above mentioned markers plus the early T cell marker CD7 also harbour multi-lymphoid potential (Hao et al., 2001; Hoebeke et al., 2007), however, they may not sustain lymphopoiesis in the adult since are present in cord blood but decrease after birth (Haddad et al., 2006).

A revised model was proposed in 2013 based on the expression of the primitive surface marker CD133 (Figure 1.7), in which MPPs give rise to CD133+ LMPPs and CD133- EMPs (Görgens et al., 2013a, 2013b). The CD133+ fraction contained all long-term MLPs as well as the GMP progenitors that were restricted to form neutrophils. The model also predicted that the CD133- EMPs were able to form MEPs and eosinophil/basophil progenitors (EoBPs). Subsequently, a human single-cell study suggested that CMPs and MEPs with multilineage potential existed *in utero* but not in adulthood, hence proposing a developmental-stage dependent model of human haematopoiesis in which adult blood development occurs from multipotent cells, such as HSCs and MPPs, that differentiate into committed uni-lineage

progenitors (Notta et al., 2015). A recent study that evaluated the lineage potential of individual human adult bone marrow progenitor cells using single-cell RNA-Seq and functional techniques (Drissen et al., 2019) was in broad agreement with the 2013 revision by *Görgens et al.*, 2013. This latest revision proposes an early bifurcation of multipotent MPPS into cells with either (i) neutrophil/monocyte as well as lymphoid potential or (ii) megakaryocyte, erythroid and eosinophil/basophil/mast cell potential. In contrast to the model proposed in 2013, this study observed strict early segregation of neutrophil/monocyte from the basophil/mast cell and eosinophil progenitors (Figure 1.7).

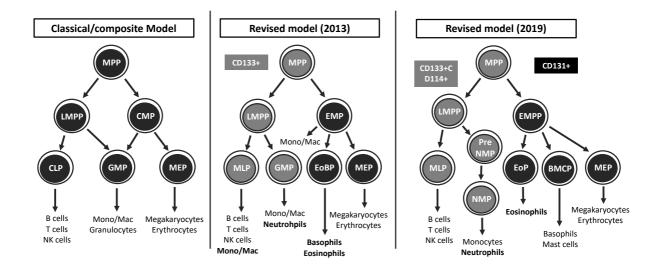



Figure 1.7: Revised models of human haematopoiesis

The composite model (Adolfsson et al. 2005), the 2013 revised model (Görgens, Radtke, Möllmann, et al. 2013) and the 2019 revised model based on single-cell RNAseq and functional data (Drissen et al., 2019). (MPP: multipotent progenitor, LMPP: lymphoid-primed MPP, CLP: common lymphoid progenitor, CMP: common myeloid precursor, GMP: granulocyte/monocyte progenitor, MEP: megakaryocyte—erythrocyte progenitor, MLP: multi-lymphoid progenitor, EMP: erythro-myeloid progenitor, EoBP: eosinophil/basophil progenitor, Mono/Mac: monocytes/macrophages, EMPP: erythroid- megakaryocyte primed multipotent progenitor, BMCP: Basophil-mast cell common progenitor).

### 1.4.4 Key transcription factors regulating haematopoietic specification

Haematopoietic development is tightly regulated by the complex interplay of cell-stage-specific TFs, which must be expressed in a temporal and dynamic fashion to activate lineage-specific genes at the correct developmental stage and appropriate level (Figure 1.8) (Goode et al., 2016). Understanding the temporal expression and function of each TF has been possible thanks to both *in vitro* and *in vivo* studies.

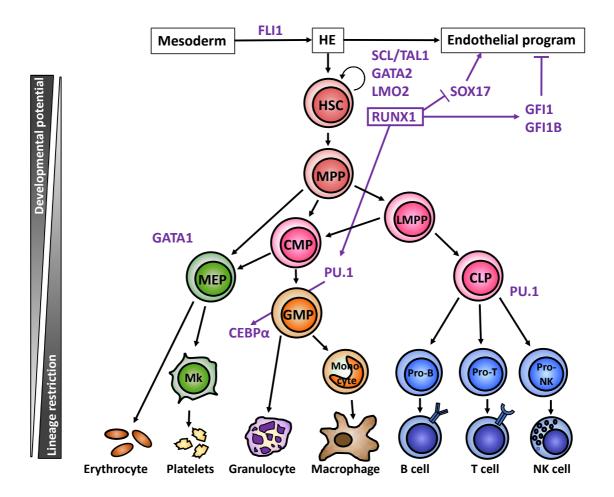



Figure 1.8: Haematopoietic specification is regulated via the interplay of key TFs

Schematic of the embryonic developmental tissues (mesoderm, HE and endothelium) and the haematopoietic progenitors generated after the EHT. Haematopoietic progenitors appear organized from most undifferentiated HSC (at the top of the hierarchy), to lineage restricted cells. Key TFs regulating early haematopoietic specification as well as lineage differentiation are indicated in purple, as well as key interactions. The generation of HSC and haematopoietic progenitors from HE requires not only the activation of the lineage-specific TFs but also the downregulation of the endothelial program, which entails the RUNX1-mediated downregulation of SOX17 and activation of the endothelial repressors GFI1 and GFI1B.

At the top of this hierarchical network, *FLI1* – a member of the E-twenty-six (ETS) TF family – regulates the haematopoietic and endothelial gene expression programs, acting upstream of key haematopoietic genes such as *SCL/TAL1*, *GATA2* and *LMO2* (Liu et al., 2008; Spyropoulos et al., 2000). Mice lacking *Scl/Tal1* present vascular defects and are unable to generate haematopoietic cells (Robb et al., 1995). Later studies confirmed SCL/TAL1 is required for the *in vitro* formation of endothelial and haematopoietic cells (D'Souza et al., 2005) as well as for HE development (Lancrin et al., 2009). Other genes important for proper haematopoietic development at early stages include LMO2 (Jaffredo et al., 2005; Warren et al., 1994; Yamada et al., 1998) and also SP1 (Gilmour et al., 2014; Krüger et al., 2007).

Expression of RUNX1 is required for the generation of intra-aortic clusters, HSCs and for the EHT, but not thereafter (Cai et al., 2000; Chen et al., 2009; Lancrin et al., 2009; North et al., 2002). FLI1 and SCL/TAL1 together with C/EBPβ prime a large number of haematopoietic transcriptional regulator genes, such as *SPI1* (PU.1), and of genes that control the cellular morphological changes required for EHT, such as *GFI1* and its paralog *GFI1B*. In turn, RUNX1 expression mediates the reorganization of these priming factors, which is a critical process during the EHT(Goode et al., 2016; Lichtinger et al., 2012). RUNX1 establishes a haematopoietic transcriptional network through upregulation of haematopoietic TFs, such as *SPI1* (PU.1), as well as downregulation of the endothelial program. The latter is exemplified by the RUNX1-mediated upregulation of the transcriptional repressors *GFI1* and *GFI1B*, which bind to regulatory regions of cardiovascular and vascular genes and recruit the histone demethylase LSD1, resulting in gene silencing (Thambyrajah et al., 2015). Expression of GFI1 and GFI1B, together with RUNX1, mark the HE stage (Lancrin et

al., 2012) and are required to enable HSC emergence within the AGM (Thambyrajah et al., 2015). Another HSC regulator is SOX17, which contributes to the proliferation and preservation of their undifferentiated state (Clarke et al., 2013; Nobuhisa et al., 2014). However, the generation of haematopoietic progenitors requires the downregulation of *SOX17* by RUNX1 binding, resulting in downregulation of the endothelial program (Lichtinger et al., 2012) (Nakajima-Takagi et al., 2013; Nobuhisa et al., 2014).

RUNX1 also upregulates expression of several TFs regulating myelopoiesis. SPI1 (PU.1) is a direct target of RUNX1 (Hoogenkamp et al., 2007; Huang et al., 2008) and is upregulated only after the onset of RUNX1 expression (Lancrin et al., 2009; Lichtinger et al., 2012; Swiers et al., 2013). A balanced expression of PU.1 is required for proper development of myeloid and lymphoid lineages (Leddin et al., 2011; McKercher et al., 1996; Rosenbauer et al., 2006; Scott et al., 1997) as well as HSC maintenance (Staber et al., 2013). RUNX1 regulates PU.1 expression by coordinating chromatin unfolding at cis-regulatory elements and reorganizing the binding of the PU.1 priming factors SCL/TAL1 and FLI1 (Hoogenkamp et al., 2009; Lichtinger et al., 2012). In turn, PU.1 expression is then maintained by the C/EBP family of TFs, as they remain bound to regulatory elements forming stable complexes that keep transcription active even in the absence of RUNX1 (Leddin et al., 2011). C/EBPα and C/EBPβ are both indispensable for early embryonic development (Begay et al., 2004) and its expression is also dependent on RUNX1. CEBPA is expressed following RUNX1 and SPI1 expression (Burda et al., 2009; Lichtinger et al., 2012). However, CEBPB appears already expressed in the first stage of HE, before RUNX1 expression (Goode et al., 2016; Hoogenkamp et al., 2009; Lichtinger

et al., 2012). Another PU.1 target is *CSF1R*, which is absolutely required for macrophage differentiation and whose expression also requires binding of RUNX1 and other PU.1-induced factors (Hoogenkamp et al., 2009).

Definitive haematopoiesis requires the expression of *ERG* (Loughran et al., 2008), which, together with FLI1, regulates HSC homeostasis and normal megakaryopoiesis (Kruse et al., 2009). The generation of HSCs and their survival after the EHT also requires expression of GATA2 (De Pater et al., 2013). Moreover, GATA2 blocks erythroid differentiation in haematopoietic progenitors and promotes megakaryocytic differentiation (Ikonomi et al., 2000). Conversely, GATA1 is involved in the maturation of red blood cell precursors (Fujiwara et al., 1996; Pevny et al., 1991; Simon et al., 1992; Weiss et al., 1994). *NFE2* expression regulates erythropoiesis (Shivdasani, 1996) and is bound and primed by SCL/TAL1, FLI1 and C/EBPβ and upregulated upon RUNX1 binding (Lichtinger et al., 2012; Wang et al., 2010). Definitive erythroid differentiation demands expression of *KLF1* (Pilon et al., 2011; Tallack et al., 2010), which acts synergistically with KLF2 (Alhashem et al., 2011; Pang et al., 2012; Vinjamur et al., 2014)

Later in embryo development, the *C-MYB* proto-oncogene plays an important role in controlling haematopoiesis in the foetal liver (Mucenski et al., 1991). Other factors important for haematopoietic development are MEIS1, which is needed for definitive haematopoiesis as well as for megakaryocytic differentiation (Azcoitia et al., 2005), and C/EBPε, which is essential for terminal granulocytic differentiation (reviewed in Lekstrom-Himes 2001, Yamanaka et al. 1997).

# 1.5 Runt-related transcription factor 1 (RUNX1)

#### 1.5.1 RUNX1 structure

Runt-related transcription factor 1 (RUNX1) – also known as acute myelogenous leukemia-1 (AML-1), core binding factor alpha 2 (CBFA-2) or polyoma enhancer binding protein 2 alpha B (PEBP-2αB) – is absolutely required for definitive haematopoiesis and one of the most frequently mutated genes in human leukaemia. It belongs to the heterodimeric family of core-binding factors (CBFs), which includes the CBFα subunits RUNX1, RUNX2 and RUNX3 and the CBFβ subunit encoded by *Cbfb. Runx1* was the first CBF gene to be isolated, and it was cloned from the t(8;21) chromosomal translocation, which is the most frequent recurrent translocation in acute myeloid leukaemia (Miyoshi et al., 1991).

The RUNX1 protein (Figure 1.9) is characterized by (i) a RUNT homology DNA-binding domain of 128 amino acids in the N-terminal that specifically recognizes the PyGPyGGT consensus sequence, (ii) a nuclear matrix targeting signal or localization site (NLS), (iii) a transactivation domain at the carboxyl-terminus (C-ter) and (iv) a 5-amino acid VWRPY motif at the 3' end of the protein that mediates interactions with the transcriptional co-repressor Groucho/TLE (Aronson et al., 1997; Walrad et al., 2010; Zeng et al., 1998). The RUNT domain is highly homologous to the RUNT protein of *Drosophila melanogaster*, which is involved in segmentation, neurogenesis and sexual determination during embryonic development (Daga et al., 1992; Duffy and Gergen, 1991; Kania et al., 1990). C-terminal of the RUNT domain, RUNX1 contains transactivation domains (Kurokawa et al., 1996; Meyers et al., 1995), two inhibitory domains (Imai et al., 1998; Kanno et al., 1998). These C-terminal RUNX1

sequences are crucial for haematopoiesis since they are required for RUNX1 subcellular localization, biochemical functions and activation of haematopoietic target genes (Dowdy et al., 2010).

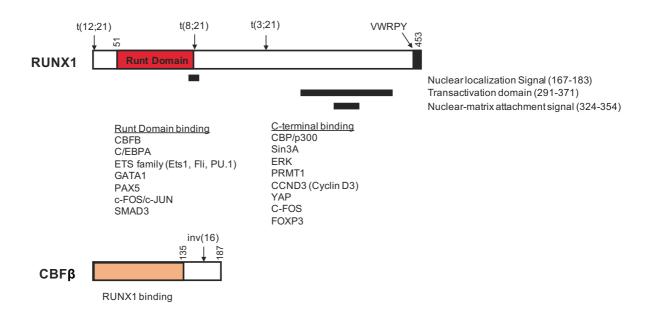



Figure 1.9: Structural domains and interaction partners of the CBF-family proteins RUNX1 and CBF $\boldsymbol{\beta}$ 

The RUNX1b isoform is shown with all its major domains. It contains an N-terminal Runt domain (red) that is shared between all CBF $\alpha$  subunits and mediates DNA-binding activity, heterodimerization with the core-binding factor- $\beta$  (CBF $\beta$ ) and interaction with other proteins. RUNX1 also contains sequences that are carboxyl-terminal to the Runt domain and are responsible for defined biochemical functions, including: a nuclear localization signal, a transactivation domain, attachment to the nuclear-matrix signal, and sequences important for interactions with other DNA-binding and non-DNA-binding proteins, such as CBP/p300 and Sin3A. RUNX1 also contains a 5-amino acid VWRPY motif, located in the C-ter, required for interactions with transcriptional co-regulators. The CBF $\beta$  subunit contains a heterodimerization domain for RUNX1 (orange) in the N-terminal. Common translocation breakpoints for both proteins are indicated with an arrow. Amino acids are indicated with numbers. CBF: corebinding factor, C/EBP: CCAAT/enhancer binding protein, YAP: YES- associated protein. Structural domains and protein interactions adapted from *Speck and Gilliland 2002* and *Lam and Zhang 2012* (Lam and Zhang, 2012; Speck and Gilliland, 2002).

## 1.5.2 The RUNX1 and CBFβ complex

RUNX1 function critically depends on the CBFβ subunit. Although CBFβ does not directly bind DNA by itself, it stimulates RUNX1 DNA-binding activity and protects it from proteolysis by forming a heterodimeric complex through the Runt domain

(Ogawa et al., 1993). The RUNT domain within the full-length RUNX1 isoform contains adjacent sequences that inhibit its DNA binding. Heterodimerization with CBFβ blocks this sequence-mediated auto-inhibition and allows correct binding of RUNX1 to DNA (Kanno et al., 1998). Importantly, both RUNX1 and CBFβ subunits are required for definitive haematopoiesis (North et al., 1999; Wang et al., 1996).

### 1.5.3 RUNX1 promoters and isoforms

Three main *Runx1* isoforms are transcribed in mice (Fujita et al., 2001) and human (Miyoshi et al., 1995). The *RUNX1* locus is under the control of distal (P1) and proximal (P2) alternative promoters, which generate one longer (RUNX1C) and two shorter (RUNX1A and RUNX1B) protein isoforms, respectively (Figure 1.10). RUNX1A, consisting of 250 amino acids, and RUNX1B, consisting of 453 amino acids, are transcribed from the same promoter (proximal, P2) but undergo different splicing events (Miyoshi et al., 1995). RUNX1A contains the same N-terminal region as RUNX1B, but lacks the regulatory sequences located in the C-terminal domain of the RUNX1B and RUNX1C isoforms (Tanaka et al., 1995). Conversely, RUNX1C is transcribed from the distal promoter (P1) and hence is the longest isoform, consisting of 480 amino acids. RUNX1B and RUNX1C isoforms have the same C-terminal sequences but differ in their 5' untranslated region (UTR) and N-terminal sequences (Miyoshi et al., 1995).

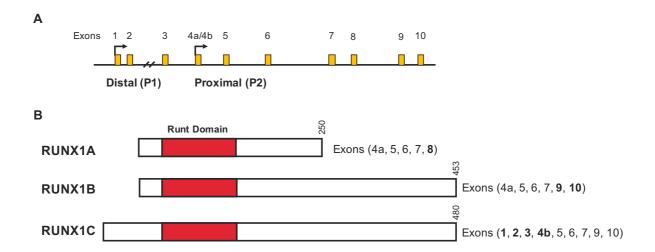



Figure 1.10: Structure of the RUNX1 genomic locus and protein isoforms

(A) Schematic representation of the RUNX1 genomic locus located on chromosome 21. The proximal and distal promoters are indicated with an arrow and exons are represented with yellow boxes. (B) The three main RUNX1 transcriptional isoforms, including RUNX1A, RUNX1B and RUNX1C. Amino acids and exons are indicated for each isoform. The shared Runt homology domain is coloured in red. Figure adapted from *Lam and Zhang 2012* (Lam and Zhang, 2012).

Different isoforms play different roles during embryonic haematopoiesis and in regulating HSC identity. Transcription of the RUNX1A isoform is more common in human cord blood CD34+ progenitors and its overexpression promotes engraftment of mouse progenitors upon transplantation (Tsuzuki et al., 2007). However, RUNX1A may act as a dominant-negative regulator of the other two isoforms, as suggested in studies showing leukaemia development upon RUNX1A overexpression in a mouse transplantation model (Liu et al., 2009). This result could be due to RUNX1A lacking the C-terminal regulatory domains required for normal RUNX1 function during haematopoiesis. The RUNX1B and RUNX1C isoforms mark different stages during haematopoietic development. Haematopoietic progenitors are generated from hemogenic endothelium that expresses the proximal isoform, *RUNX1B*, which has been shown to be required for definitive haematopoiesis in the AGM. The expression of the distal isoform, *RUNX1C*, is upregulated in definitive haematopoietic

progenitors, which coincides with the loss of the endothelial phenotype. Loss of the distal *RUNX1C* isoform does not affect haematopoietic commitment in mouse embryos, whereas mutation of the proximal promoter affects *RUNX1B* transcripts, leading to impaired AGM and foetal liver haematopoiesis, and results in neonatal lethality (Bee et al., 2010; Pozner et al., 2007; Sroczynska et al., 2009).

Promoter regulation in the *RUNX1* locus is dependent on a regulatory element located approximately 23 kb upstream of the distal promoter TSS (Ng et al., 2010; Nottingham et al., 2007). This element is enriched in binding sites for several haematopoietic TFs such as ETS members, GATA2 and LMO2 (Nottingham et al., 2007). In addition, this element has been shown to be active in haemogenic endothelium and in mouse HSCs (Bee et al., 2009; Ng et al., 2010).

## 1.5.4 RUNX1 post-translational modifications

RUNX1 can also be regulated at the protein level by post-translational modification. Phosphorylated RUNX1 has been detected in CD34+ haematopoietic progenitors (Erickson et al., 1996; Tanaka et al., 1996). Depending on the modified amino acid residue, RUNX1 phosphorylation can have opposing effects on RUNX1 function: it enhances RUNX1 transcriptional activity upon Extracellular Signal-Regulated Kinase (ERK)-dependent phosphorylation at serine 249 and 266 (Tanaka et al., 1996), increases its transactivation potential (Zhang et al., 2008a), and also decreases RUNX1 stability by promoting its degradation via the ubiquitin-proteasome pathway (Biggs et al., 2006; Zhang et al., 2008a).

However, mutation of these serines does not affect haematopoiesis in murine studies (Tachibana et al., 2008). Ubiquitin-mediated degradation of RUNX1 is positively and negatively regulated by CDK phosphorylation and heterodimerization with the CBFβ subunit, respectively (Biggs et al., 2006; Huang et al., 2001).

In addition, RUNX1 C-terminal sequences downstream to the RUNT domain can be methylated by the arginine methyltransferase PRMT1. This methylation inhibits RUNX1 interaction with the co-repressor Sin3A, which enhances RUNX1-dependent upregulation of *CD41* and *PU.1* (Zhao et al., 2008).

# 1.5.5 The role of RUNX1 during development

Runx1-deficient mice die at E12.5 due failure of definitive haematopoiesis and extensive haemorrhages (Okuda et al., 1996; Wang et al., 1996). RUNX1 is indispensable for the formation of intra-aortic haematopoietic clusters at E11.5 from the HE located on the ventral floor of the dorsal aorta and the adjacent vitelline and umbilical arteries (North et al., 1999). There is subsequently no formation of HSCs in the AGM and foetal liver in the absence of RUNX1 (Bertrand et al., 2010; Boisset et al., 2010; Chen et al., 2009; Eilken et al., 2009; Kissa and Herbomel, 2010; Lancrin et al., 2009; North et al., 2002; Yokomizo et al., 2001; Zovein et al., 2008). However, RUNX1 is dispensable for development after the emergence of blood cells from haemogenic endothelium (Chen et al., 2009). During adult haematopoiesis, RUNX1 is constitutively expressed in all definitive haematopoietic lineages excluding mature erythrocytes (North et al., 2004). The RUNX1 knock-out phenotype is less severe during terminal differentiation of megakaryocytic and lymphocytic lineages than

before the formation of HSCs, suggesting a distinct role for RUNX1 in either establishing or maintaining the different haematopoietic gene expression programs (Growney et al., 2005; Ichikawa et al., 2004).

RUNX1 controls the expression of several genes crucial for blood cell development. At the HE stage, RUNX1 initiates the transcription of key lineage-determining genes, which are already primed by SCL/TAL1, FLI1 and C/EBPβ, by reorganising these TF assemblies, altering histone marks and mediating long distance interactions between regulatory elements (Levantini et al., 2011; Lichtinger et al., 2012). RUNX1 has a role as a pioneer factor, since it has been shown to influence the initiation of the *Spi1*-related gene expression programme by unfolding the chromatin at the *Spi1* locus even before the emergence of active histone marks (Hoogenkamp et al., 2009).

RUNX1 function relies on its interaction partners, which allow for tissue-specific regulation of RUNX1 target genes. RUNX1 binding partners include: p300, mSIN3A, ETS1, FLI1, PU.1, C/EBPα and GATA1 among others. Interaction with epigenetic regulators, such as the acetyltransferase P300, reinforces the transcriptional activation of RUNX1 targets and also regulates RUNX1 activity (Kitabayashi et al., 1998). Moreover, RUNX1 also interacts with the co-repressor histone deacetylase mSIN3A to regulate its own phosphorylation, stability and nuclear localization (Imai et al., 2004). In order to further reinforce its activity, RUNX1 also co-operates with other proteins either by direct interaction with DNA-sequence-specific binding factors, such as FLI1, or indirectly, working with epigenetic regulators to enhance chromatin accessibility (reviewed in Lichtinger et al. 2010).

The correct function of RUNX1 can be perturbed in several ways, leading to leukaemogenesis, including: (i) point mutations, (ii) translocations fusing *RUNX1* to other genes resulting in chimeric proteins - including t(8;21), t(3;21) and t(12;21) in childhood B cell acute lymphoblastic leukaemia (ALL), (iii) and/or rearrangements within chromosome 16 involving the CBFβ subunit, that adversely affects the DNA-binding activity of RUNX1. Haploinsufficiency of *Runx1* as a result of mutations impairing the function of the RUNT DNA binding domain or the transactivation domain causes familial thrombocytopenia, an inherited platelet disorder in which patients also have a predisposition to AML (Song et al., 1999). Patients present with defective platelet formation, which correlates with the phenotype observed in the *Runx1* conditional knockout mouse model (Growney et al., 2005; Ichikawa et al., 2004). However, loss-of-function of RUNX1 alone is not sufficient to cause leukaemogenesis, and a 'second hit' mutation is required.

# 1.6 Acute myeloid leukaemia (AML)

Acute myeloid leukaemia (AML) is a clonal disorder of proliferating neoplastic myeloid cells with impaired differentiation and is characterized by more than 20% of immature precursors (termed 'blast cells') present in the bone marrow (Kumar, 2011). Incidence increases with age, with an average age of 67 years at diagnosis. AML is the most common leukaemia in adults and accounts for 25% of all adult cases. Younger patients commonly achieve complete remission upon conventional anthracycline- and cytarabine-based treatment, but long-term survival rates are only about 30-40% with the outcome being even poorer for older patients.

AML has been historically classified into different subtypes, using two established systems: the French-American-British (FAB) and the World Health Organization (WHO). The FAB classifies AMLs as 8 subtypes based on cell morphology and histochemistry (Bennett *et al.*, 1985), whilst the WHO classification takes into consideration the cell differentiation state as defined by molecular markers and chromosomal translocations (Vardiman et al., 2009). The WHO system defines a minimum of 17 subclasses of AML classified into 4 subgroups: i) AML with recurrent genetic aberration, ii) AML with multilineage dysplasia, iii) therapy-related AML and myelodysplastic syndrome (MDS), and iv) other AML.

## 1.6.1 Development and associated mutagenesis

The normal activity of TFs and/or regulatory proteins can be perturbed by three main mechanisms: (i) mutagenesis; including mutations in the coding sequence, gene amplification or translocation of coding regions adjacent to a highly active enhancer, (ii) chromosomal translocations that result in the generation of aberrant fusion

proteins and (iii) aberrant signalling linked to TF activity. The altered function of TFs can impair the tightly regulated gene expression during haematopoiesis, producing a block in blood cell differentiation and resulting in leukaemia (reviewed in Bonifer and Bowen 2010).

AML develops following the accumulation of somatic mutations in haematopoietic progenitors, which alter their proliferation, self-renewal and differentiation properties. The transcriptional network of mutated progenitors is redirected towards activation of a self-renewal program, eventually resulting in the emergence of rapid proliferating leukaemic blast cells. For that to occur, the co-operation of several complementary genetic alterations is required. These can be broadly classified into two groups (Figure 1.11): (i) those that confer increased proliferative capacity, usually associated with genes regulating signalling pathways such as FLT3 or RAS, and (ii) those that impair haematopoietic differentiation, associated with genes encoding TF and other regulators controlling the expression of the haematopoietic gene expression program, for example CEBPA, RUNX1 or mixed lineage leukaemia (MLL) (Dash and Gilliland, 2001; Gilliland and Tallman, 2002; Kelly and Gilliland, 2002). Acquisition of mutations encompassing both these groups results in the clonal expansion of the original single mutated, pre-leukaemic clone and the subsequent appearance of subclonal populations harbouring both the initial mutation along with secondarily acquired alterations. Exceptions to this scenario are translocations involving the MLL gene, which encodes a DNA-binding protein that contains a SET domain with H3K4 methyltransferase activity (Milne et al., 2002). MLL translocations result in the fusion of the N-terminus DNA-binding domain of *MLL* to the C-terminus of diverse genes, the most frequent ones being: AF4, AF9, AF10, ENL and ELL (Meyer et al., 2006).

What makes this translocation unique is their ability to directly transform, not only self-renewing HSCs, but also myeloid progenitor cells into leukaemic stem cells (Cozzio et al., 2003), independently of collaborative mutational events.

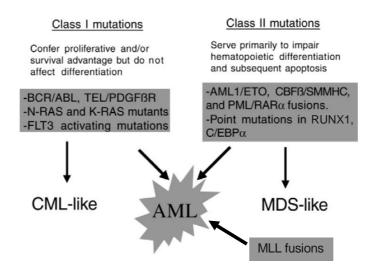



Figure 1.11: Two-hit model of leukaemogenesis

The two-hit model hypothesizes that AML develops in a multistep manner due to the co-operation of two groups of mutations classified depending on its effect. Class I mutations confer a survival or proliferative advantage, whilst class II mutations impair the function of transcription regulators important for blood development. When class I and class II mutations occur alone, they may develop a chronic myelogenous leukaemia (CML)-like or myelodysplastic syndrome (MDS)-like phenotype, respectively. AML develops when both types of mutations are acquired, with exception of *MLL* translocations, with can directly induce leukaemic transformation in both HSCs and myeloid progenitors. Figure adapted from *Kelly and Gilliland 2002* (Kelly and Gilliland, 2002).

AML may also originate secondary to an antecedent MDS or myeloproliferative disorder, *de novo* or consequent to prior radio- or chemo-therapy (Lindsley et al., 2015). Interestingly, dominant clones at the MDS stage may not accurately predict the pattern of future disease, because it may be smaller subclonal stem cell populations that become dominant during progression to AML (Chen et al., 2019). This concept of nonlinear clonal evolution emerging from the premalignant stem cell compartment highlights the importance and difficulty in trying to predict targets relevant to later disease progression in the stem cell populations of MDS patients when assessing pharmacological interventions to treat evolving disease.

AML exhibits a broad array of cytogenetic profiles, ranging from an ostensibly normal karyotype, to balanced translocations or inversions, other chromosome aberrations (deletions, monosomies and trisomies) and complex karyotypes (Byrd et al., 2002; Gaidzik and Döhner, 2008). Moreover, it presents a highly heterogeneous array of acquired secondary molecular alterations within cytogenetically-defined groups, which may also provide relevant diagnostic and prognostic information (Lindsley et al., 2015; Marcucci et al., 2011; The Cancer Genome Atlas Research Network, 2013). Specifically, the genes most frequently harbouring mutations in AML (Figure 1.12) include: Nucleophosmin 1 (NPM1) (Cheng et al., 2010; Falini et al., 2006, 2007), DNA methyltransferase 3A (DNMT3A) (Marcucci et al., 2012; Shlush et al., 2014), Fms-like Tyrosine Kinase 3 (FLT3) (Kayser et al., 2009; Kelly et al., 2002), Isocitrate Dehydrogenase (IDH) (Marcucci et al., 2010, 2011; Patel et al., 2012), Ten-Eleven Translocation 2 (TET2) (Chou et al., 2011b), RUNX1 (Marcucci et al., 2011; Meyers et al., 1993; Tang et al., 2009), CEBPA (Döhner et al., 2015; Mrózek et al., 2007), Additional Sex Comb-Like 1 (ASXL1) (Metzeler et al., 2011), Mixed Lineage Leukaemia (MLL) (Caligiuri et al., 1994, 1998; Meyers et al., 1993), Tumour Protein p53 (TP53) (Haferlach et al., 2008), c-KIT (Paschka et al., 2006), and mutations in both splicing-factor genes (Cazzola et al., 2013; Lindsley et al., 2015) and members of the DNA cohesion complex (Thota et al., 2014). Recent studies suggest a role for methylation-associated C/D box small nucleolar RNAs and ribonucleoproteins in increasing leukaemic self-renewal potential (Zhou et al., 2017). The function of the master haematopoietic regulator RUNX1 is commonly altered by intragenic mutations as well as by chromosomal rearrangements.

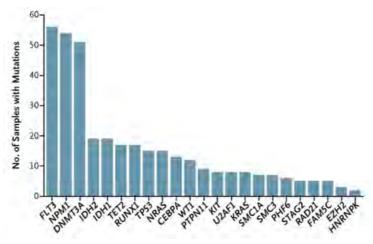



Figure 1.12: Frequently mutated genes in AML

Significantly mutated genes and number of samples carrying each mutation. Data and figure obtained from (The Cancer Genome Atlas Research Network, 2013).

# 1.6.2 AML with CBF chromosomal rearrangements

Besides mutations of RUNX1, a second group termed CBF AML is characterized by the altered function of CBF proteins due to dysfunctional chimeric proteins, as a result of chromosomal rearrangements. These include the t(8;21) and t(3;21) translocations, involving RUNX1, and rearrangements within chromosome 16 (inv(16) / t(16;16)), involving the RUNX1 heterodimeric partner CBFB. The t(8;21) or inv(16) rearrangements account for approximately 12% of younger adults with de novo AML (Grimwade et al., 2010). Conversely, t(3;21) is more commonly found in therapy-related AML, being present in only 1% of newly AML-diagnosed younger adults (Grimwade et al., 2010; Lugthart et al., 2010; Rubin et al., 1990). Unlike t(8;21) and inv(16), which carry a relative favourable prognosis, the t(3;21) confers an adverse prognosis with the poorest survival among the other cytogenetic entities (Grimwade al.. 2010). These rearrangements able et are to promote leukaemogenesis, but secondary co-operating mutations are required to develop overt leukaemia.

# 1.7 The t(8;21) fusion protein: RUNX1-ETO

# 1.7.1 Pathogenesis of t(8;21) leukaemia

The t(8;21) translocation represents one of the most frequent cytogenetic aberrations in AML, occurring in 7% of adult *de novo* AML and in nearly 40% of M2-subtype AML (AML with maturation) (Grimwade et al., 2010; Peterson et al., 2007; Rowley, 1984). Although t(8;21) AML patients have a relatively favourable prognosis, this is not the case for older patients who are unable to tolerate intensive chemotherapy. Moreover, given the high heterogeneity within this type of leukaemia, up to 40% of t(8;21) patients will relapse after initial remission. There is therefore an unmet medical need to successfully treat all t(8;21) patients.

This AML rearrangement initially promotes the expansion of myeloid progenitor cells with upregulation of self-renewal and proliferation transcriptional programs, leading to expansion of both HSC and GMP populations harbouring leukaemic initiating potential, as demonstrated in conditional mouse models (Cabezas-Wallscheid et al., 2013; Higuchi et al., 2002) and in human HSCs (Mulloy et al., 2002). However, several RUNX1-ETO-expressing mouse models have not been successful in fully reproducing the human t(8;21) disease and its associated molecular mechanisms. Heterozygous RUNX1-ETO knock-in mice (Okuda et al., 1998; Yergeau et al., 1997) showed embryonic lethality due to failure in establishing definitive haematopoiesis. Neither non-lethal transgenic mouse models (Higuchi et al., 2002; Rhoades et al., 2000; Yuan et al., 2001) nor RUNX1-ETO-transduced bone marrow transplantation assays (de Guzman et al., 2002; Higuchi et al., 2002; Mulloy et al., 2003) developed AML. These findings indicate that expression of the t(8;21) fusion protein alone shifts cells to a pre-leukaemic state, but that additional secondary mutations are required

for complete transformation to leukaemia (Kuchenbauer et al., 2005; Rhoades et al., 2000; Yuan et al., 2001).

Fusion transcripts of the t(8;21) translocation have been detected in neonatal blood samples though Guthrie spot analyses, which allows the identification of mutations that had occurred *in utero* (Wiemels et al., 2010). This finding indicates that the chromosomal rearrangement event can occur at an early stage of embryonic development. However, expression of the fusion protein causes a specific phenotype depending on the developmental stage (Regha et al., 2015). Germline expression of RUNX1-ETO results in embryonic lethality with haemorrhage and a severe block of the aortic EHT and foetal liver haematopoiesis (Okuda et al., 1998; Yergeau et al., 1997) – reminiscent of the phenotype observed in *Runx1* knock out mice (Okuda et al., 1996; Okuda et al., 1998; Wang et al., 1996; Yergeau et al., 1997). Conversely, conditional expression after birth gives rise to rapid growing cells with self-renewal properties that become malignant after acquisition of additional mutations (Higuchi et al., 2002; Rhoades et al., 2000).

#### 1.7.2 Structure of RUNX1-ETO

The t(8;21) translocation generates the RUNX1-ETO chimeric protein by fusing the *RUNX1* gene to the Eight-twenty-One (*ETO*, *RUNX1T1* or *MTG8*) gene, located on chromosomes 21 and 8, respectively, with breaks at 8q22 and 21q22.3 (Erickson et al., 1992; Gao et al., 1991; Miyoshi et al., 1991, 1993; Nisson et al., 1992; Rowley, 1973). The translocation breakpoints are located in intron 5 within chromosome 21 (Zhang et al., 2002b) and in introns 1a and 1b within chromosome 8 (Tighe and

Calabi, 1995; Tighe et al., 1993; Xiao et al., 2001; Zhang et al., 2002b). Studies on human CD34+ cord blood cells shed light onto the mechanisms by which this translocation is generated, showing that activated WNT/β-catenin signalling enhances transcription and spatial proximity of both *RUNX1* and *ETO* genes and that *in vitro* long-term treatment with WNT3A is able to induce the translocation event (Ugarte et al., 2015).

The RUNX1-ETO protein consists of the N-terminal 177 amino acids of RUNX1 (exons 1-5), including the Runt homology domain, fused in frame to almost the entire nuclear co-repressor ETO protein (exons 2-11). The ETO protein has a modular structure comprising four Nervy homology regions (NHR), which are evolutionary conserved domains named because of their sequence similarity to the Nervy mRNA transcript that localises to the neural precursors cells upon ubiquitous expression of the ultrabithorax (Ubx) gene in Drosophila (Feinstein et al., 1995). Each NHR mediates a distinct function. The NHR1 stabilizes the formation of complexes of high molecular weight, including interaction with N-CoR (Wei et al., 2007) and the E proteins E2A and HEB (Zhang et al., 2004a). The NHR2 constitutes a core-repressor domain together with its flanking sequences, as it recruits mSIN3A and induces transcriptional repression. Moreover, the NHR2 domain aids the formation of RUNX1-ETO homotetramers through hydrophobic and ionic interactions, due to its amphipathic helix structure. Lastly, the NHR3 and NHR4 co-operate to bind N-CoR and mediate interactions with other proteins via the two zinc finger motifs located in NHR4 (Davis et al., 2003; Hildebrand et al., 2001). The tetramerization and repressor functions from the NH2 domain and the NHR4 zinc-finger structures, respectively, have been shown to be critical for RUNX1-ETO transforming capacity (ChenWichmann et al., 2019; Liu et al., 2006; Minucci et al., 2000). Nuclear localization of RUNX1-ETO is mediated through a critical nuclear localization signal (NLS) located between the NHR1 and NHR2 domains (Barseguian et al., 2002; Odaka et al., 2000). The structure of RUNX1-ETO and the different domains with their interacting proteins is represented in Figure 1.13 (reviewed in Lin et al., 2017; Peterson and Zhang, 2004).

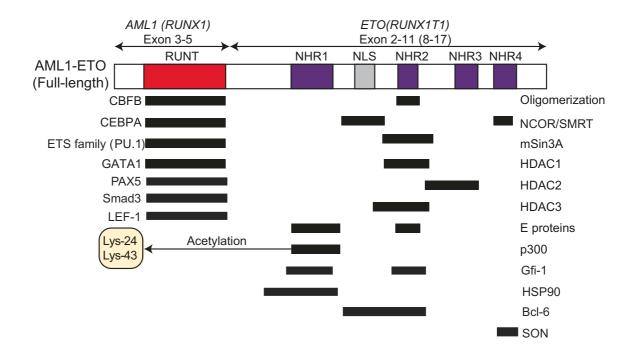



Figure 1.13: Structure and interacting proteins of RUNX1-ETO fusion protein

Diagram of the full-length RUNX1-ETO illustrating its structural domains alongside interactions with other proteins. RUNX1-ETO comprises the N-terminal portion of RUNX1 (exons 3-5), including the DNA-binding RUNT homology domain (RHD), and almost the entire ETO protein (exons 2-11), including four Nervy homology regions (NHR1-4). The oligomerization domain is located on NHR2. The nuclear localization signal (NLS) is located between the NHR1 and NHR2 domains. Figure adapted from Peterson and Zhang 2004 (Lin et al., 2017a; Peterson and Zhang, 2004).

#### **1.7.2.1 Isoforms**

Two distinct C-terminal truncated RUNX1-ETO isoforms harbouring reduced transcriptional repressor activity have been identified in t(8;21) patients (Figure 1.14). *RUNX1-ETOtr* (or *RUNX1-ETO11a*) lacks the NHR4 domain as a result of aberrant splicing due to a frameshift mutation. Expression of this alternate spliced variant with wild-type ETO recovers its repressor activity and stimulates further oligomerization of fusion proteins, which might contribute to malignant transformation (Kozu et al., 2005).

RUNX1-ETO9a lacks the NHR3-4 domains due to alternative splicing at exon 9 (Yan et al., 2006) and leads to AML development in mouse transplantation models (Yan et al., 2004, 2006). However, its presence or absence does not make a difference with respect to clinical outcome (Agrawal et al., 2019) and its ability to cause AML in the mouse was dependent on supra-physiological expression levels (Link et al., 2016), questioning the clinical relevance of this observation.

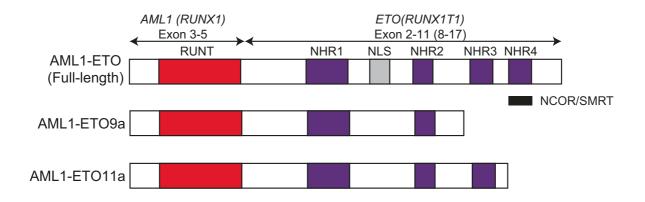



Figure 1.14: Structure of full-length RUNX1-ETO and two shorter isoforms

The truncated RUNX1-ETO isoforms RUNX1-ETO9a and RUNX1-ETO11a lack the NHR3-4 and NHR4, respectively. As a result, both proteins lack one of the interacting domains to NCOR/SMRT.

#### 1.7.2.2 Post-translational modifications

RUNX1-ETO function is modulated by post-translational modifications mediated by epigenetic modifiers that are bound by RUNX1-ETO. Site-specific lysine acetylation at Lys-24 and Lys-43 by p300 is required for RUNX1-ETO-dependent self-renewal in CD34+ cord blood cells and leukaemic transformation in mouse models (Wang et al., 2011a, reviewed in Goyama et al., 2015). RUNX1-ETO is also methylated at Arg-142 by bound PRMT1 (Shia et al., 2012, reviewed in Goyama et al., 2015). RUNX1-ETO stability is regulated through ubiquitination upon interaction with the UbcH8 ubiquitin E2 enzyme and the SIAH1 E3 ligase (Krämer et al., 2008). Although phosphorylation of ETO and RUNX1-ETO on serine and threonine residues has been described in cells (Erickson et al., 1996). its associated functions leukaemogenesis remain unclear. Nonetheless, the identification of phosphorylated RUNX1-ETO suggests that its function might be regulated by various kinases and proteins from signalling pathways.

## 1.7.3 The RUNX1-ETO co-factor complex and interacting proteins

RUNX1-ETO controls leukaemogenesis by forming a stable transcriptional co-factor complex that contains multiple DNA-binding domain proteins and co-localizes genome wide with other TFs to dysregulate gene expression (Sun et al., 2013). Proteins within the RUNX1-ETO co-factor complex include the RUNX1-binding partner CBFβ, the LIM-domain protein LMO2 and its partner LDB1, which operate as bridging factors, the E proteins HEB and E2A, and the E-box-binding TF LYL1 (Figure 1.15).

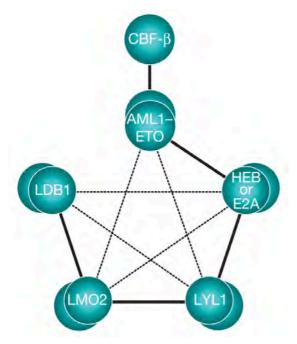



Figure 1.15: The RUNX1-ETO-containing transcription factor complex

Schematic of the components and the interaction network assembling and stabilizing the RUNX1-ETO-containing TF complex. Strong and weak interactions are depicted with thick and thin lines, respectively. Double spheres represent potential homodimerization of those components. Figure reproduced from Sun et al., 2013.

RUNX1-ETO interaction with CBFβ increases its binding to DNA and it is important for leukaemogenesis (Roudaia et al., 2009). However, the critical event for RUNX1-ETO's transforming activity is its oligomerization, mediated by the NHR2 domain (Kwok et al., 2009).

RUNX1-ETO directly represses target genes by interacting with the corepressor proteins N-CoR, SMRT and the HDAC(1-3) complex (Figure 1.16) (Amann et al., 2001; Davis et al., 2003; Gelmetti et al., 1998; Hildebrand et al., 2001; Lausen et al., 2004; Lutterbach et al., 1998a, 1998b; Meyers et al., 1993; Peterson et al., 2007; Trombly et al., 2015; Wang et al., 1998; Zhang et al., 2001). The main interaction partners and the respective binding domain to RUNX1-ETO are represented in Figure 1.13. In addition, RUNX1-ETO has been also shown to interact with the anti-apoptotic protein SON (Ahn et al., 2008). RUNX1-ETO can also operate as an indirect repressor through interference with the activity of other TFs, as exemplified by interaction with the E-box proteins contained within the RUNX1-ETO co-factor

complex (Figure 1.16) (Gardini et al., 2008; Guo et al., 2009; Park et al., 2009; Sun et al., 2013; Zhang et al., 2004b). RUNX1-ETO binds the E proteins HEB and E2A through the NHR1 domain (Gardini et al., 2008; Guo et al., 2009; Park et al., 2009; Zhang et al., 2004b) and through a dimeric-binding interface established upon NH2-mediated oligomerization (Sun et al., 2013). Importantly, the E-box-binding TFs within the co-factor complex mediate the recruitment of RUNX1-ETO to a selection of target genes, enabling RUNX1-ETO binding to DNA independently of its RUNT domain (Sun et al., 2013). Indirect repressor mechanisms important for the block in differentiation also include the sequestration of several haematopoietic TFs, such as CEBPA, GATA1 and PU.1, through the RUNX1-ETO DNA-binding domain (Burel et al., 2001; Choi et al., 2006; Elagib et al., 2003; Vangala et al., 2003; Westendorf et al., 1998).

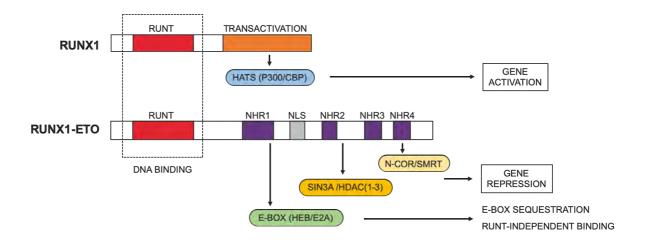



Figure 1.16: RUNX1 and RUNX1-ETO gene regulation by co-factor recruitment

The master haematopoietic regulator RUNX1 binds DNA through its N-terminal domain (Runt) and recruits histone acetyl transferases (HATs), such as P300/CBP, resulting in activation of genes that regulate blood development. The RUNX1-ETO fusion protein also contains the Runt DNA binding domain. However, RUNX1-ETO recruits corepressor proteins N-CoR, SMRT and the Sin3A/HDAC(1-3) complex to RUNX1-binding sites, resulting in direct gene repression leading to a differentiation block of myeloid progenitors. In addition, RUNX1-ETO may exert indirect gene repression through interference with the E proteins HEB and E2A present within the transcription co-factor complex and may bind DNA independently of the Runt domain via E-protein-mediated recruitment to DNA binding sites.

Despite its main role as a repressor, RUNX1-ETO has been reported to activate gene expression through interactions with transcription co-activators, including the lysine acetyltransferase p300/CBP (Wang et al., 2011a) and PRMT1 (Shia et al., 2012). However, using mass-spectrometry the association with p300 directly with RUNX1-ETO could not be confirmed (Sun et al., 2013) and re-ChIP experiments showed a strong preference of RUNX1-ETO for HDACs as compared to p300 (Ptasinska et al., 2014). In contrast to the stable interactions within the RUNX1-ETO transcription factor complex, RUNX1-ETO interactions with both co-activators and co-repressors (NCOR/Sin3A/HDACs) appears to be dynamic and context-dependent. RUNX1-ETO can also lead to gene upregulation through interference with intergenic negative regulatory elements, as it has been previously reported for RUNX1 (Setoguchi et al., 2008).

## 1.7.4 Molecular pathogenesis of RUNX1-ETO

## 1.7.4.1 Deregulation of gene expression by RUNX1-ETO

Transcriptional changes mediated by RUNX1-ETO in haematopoietic progenitors have been described in both mouse and human models (Dunne et al., 2006; Lo et al., 2012; Ptasinska et al., 2012; Tonks et al., 2007). Resulting gene expression profiles upon knock-down of both RUNX1 and RUNX1-ETO are inversely correlated, suggesting an opposed regulation of gene expression by both TFs (Ben-Ami et al., 2013). Although there is a 60-80% overlap of RUNX1-ETO and RUNX1 binding sites (Ben-Ami et al., 2013; Gardini et al., 2008; Ptasinska et al., 2012), their genome-wide distributions are dissimilar; RUNX1 binding is enriched at promoter regions, whilst

RUNX1-ETO binding is more abundant at intergenic regions harbouring distal elements (Ben-Ami et al., 2013; Okumura et al., 2008). The preferential binding of both TFs to specific regions could be explained by different affinity for their RUNX1-consensus sequence motif [5'-TGTGGT-3']. RUNX1 prefers longer motifs harbouring two additional thymidines at the 3' site (Okumura et al., 2008). RUNX1-ETO binds strongly to regions harbouring multimerized RUNX1 motifs and is more efficient than RUNX1 in binding to the short consensus motifs (Li et al., 2016; Okumura et al., 2008).

RUNX1-ETO is also able to deregulate expression of genes that are not RUNX1 targets (Shimada et al., 2000). Later studies have shown that binding of the RUNX1-ETO complex to DNA can occur independently of the presence of RUNX1 motifs (Maiques-Diaz et al., 2012; Ptasinska et al., 2012) and stabilization of binding may be facilitated by several interaction partners, such as the ETS-family members ERG and FLI1 (Martens et al., 2012; Ptasinska et al., 2012). ERG and RUNX1-ETO bind together at the same genomic loci, as confirmed by sequential re-ChIP experiments, whilst FLI1 binds prior to the binding of RUNX1-ETO, as shown in inducible RUNX1-ETO cell lines (Martens et al., 2012). This idea is also supported by several ChIP-Seq studies showing enrichment of E-box motifs within RUNX1-ETO binding regions (Gardini et al., 2008; Sun et al., 2013; Zhang et al., 2004b), which highlights the crucial role of E-box TFs within the co-factor complex in regulating RUNX1-ETO-mediated gene regulation.

Other studies have described the effect of RUNX1-ETO by siRNA-mediated knockdown and upon withdrawal of Dox in RUNX1-ETO inducible models. In these studies, reduction of RUNX1-ETO results in a decrease in leukaemic blasts, which

differentiate to mature myeloid cells (Cabezas-Wallscheid et al., 2013; Dunne et al., 2006; Martinez Soria et al., 2009; Ptasinska et al., 2012). It has been previously shown that RUNX1-ETO and RUNX1 form different complexes that dynamically compete for the same genomic sites (Meyers et al., 1995; Mulloy et al., 2002; Ptasinska et al., 2012, 2014). Studies on differentiated progenitors derived from mouse ES cells have shown that a similar set of genes is targeted by RUNX1-ETO before and after the endothelial to haematopoietic transition, but with differing outcomes affecting gene expression. This study showed that, through direct competition with RUNX1 binding, RUNX1-ETO disrupts pre-existing RUNX1 complexes, thus interfering with both activating and repressing RUNX1 activity (Regha et al., 2015).

Despite RUNX1-ETO's dominant negative effect on RUNX1 (Okuda et al., 1998; Yergeau et al., 1997), expression of both proteins must be balanced in order to maintain cell survival and the leukaemic phenotype (Ben-Ami et al., 2013). This study showed that presence of a wild-type RUNX1 allele prevents apoptosis of *RUNX1-ETO*-expressing cells, as RUNX1 knock-down induces apoptosis of t(8;21) Kasumi-1 cells. Requirement of RUNX1 activity for the survival of leukaemic cells has been also demonstrated in a mouse genetic model of MLL fusion AML (Goyama et al., 2013).

RUNX1-ETO-mediated transcriptional repression of its target genes involves the cooperation of several interaction partners. These include NCoR, which co-occupies many of the RUNX1-ETO-bound target genes (Trombly et al., 2015) and the DNA methyltransferase DNMTA1, which also interacts with RUNX1-ETO (Liu et al., 2005). Nevertheless, presence of RUNX1-ETO does not always result in transcriptional

repression. RUNX1-ETO can indirectly mediate gene activation by interfering with the repressive function of RUNX1 (Ptasinska et al., 2012) or by causing the upregulation of Activator Protein 1 (AP-1) family members (Martinez-Soria et al., 2019).

# 1.7.4.2 Disruption of the chromatin structure by RUNX1-ETO

RUNX1-ETO transcriptional regulation differs depending on the developmental stage in an *in vitro* mouse ES cell differentiation system (Regha et al., 2015), indicating a link between RUNX1-ETO binding and the chromatin status. RUNX1-ETO binding is also linked to accessible chromatin regions presenting the coactivator p300 and intermediate acetylation levels (Maiques-Diaz et al., 2012; Saeed et al., 2012). However, re-ChIP experiments performed in our lab have shown that binding of RUNX1-ETO and p300 in the same genomic loci is mutually exclusive; RUNX1-bound elements have preference for p300, whilst RUNX1-ETO-bound loci preferentially bind HDAC2 (Ptasinska et al., 2014). Intriguingly, removal of RUNX1-ETO results in a global redistribution of TF complexes within pre-existing accessible chromatin sites, a redistribution of RUNX1 binding, and a genome-wide reversal of the altered epigenome, indicating a role for RUNX1-ETO in mediating genome-wide changes of chromatin structure (Ptasinska et al., 2014).

# 1.7.5 Dysregulated genes and pathways in RUNX1-ETO leukaemia

**1.7.5.1 Myeloid transcription factor, tumour suppressor and other target genes**The RUNX1-ETO fusion protein blocks progenitors at an early myeloid stage through repression of genes that promote haematopoietic differentiation (Hatlen et al., 2012).

Expression of haematopoietic genes also appears indirectly dysregulated by RUNX1-ETO through interference with the activity of TFs. CEBPα is a TF that regulates expression genes of the myeloid lineage, and it is required for the formation of mature granulocytes (Zhang et al., 1997). *CEBPA* is a direct RUNX1-ETO target gene, downregulated through (i) direct interaction of RUNX1-ETO with CEBPα itself, resulting in sequestration of CEBPα from its promoter and hence suppressing its autoactivation (Pabst et al., 2001) and (ii) direct binding of RUNX1-ETO to an enhancer element located ~40 kb downstream of the *CEBPA* gene (Ptasinska et al., 2014), which is crucial for specific *CEBPA* expression in myeloid cells (Avellino et al., 2016). A similar mechanism has been shown for *SPI1* (PU.1), where physical binding of RUNX1-ETO to PU.1 results in downregulation of its transactivation capacity in t(8;21) cell lines (Vangala et al., 2003).

RUNX1-ETO has been shown to interfere with the normal expression of tumour suppressor genes. RUNX1-ETO has been shown to repress *RUNX3* (Cheng et al., 2008), which has a tumour suppressor role in solid tumours. In addition, RUNX1-ETO also represses the expression of *CDKN2A* (p14<sup>ARF</sup>) and *NF1* through a dominant negative effect on RUNX1 activity (Linggi et al., 2002; Yang et al., 2005). Strikingly, the cell cycle inhibitor *CDKN1A* (p21<sup>WAF1</sup>) is upregulated in RUNX1-ETO-expressing cells (Berg et al., 2008; Yan et al., 2004). One possible explanation for this could be a role of p21<sup>WAF1</sup> pathway in preventing exhaustion of leukaemic stem cells (Viale et al., 2009).

Upregulation of several anti-apoptotic genes upon expression of RUNX1-ETO has also been described. *BCL2* is upregulated in leukaemic cell lines (Klampfer et al., 1996) and it is a direct target of RUNX1-ETO co-operatively with ERG and FLI1

(Martens et al., 2012). In addition, RUNX1-ETO has been shown to indirectly upregulate BCL-XL expression through activation of thrombopoietin/myeloproliferative virus oncogene (TPO/MPL) signalling (Chou et al., 2012). However, the mechanisms underlying RUNX1-ETO-dependent gene activation remain unclear.

Other targets of RUNX1-ETO include signal transducers, cell-cycle regulators and DNA-associated proteins. The B-lymphocyte marker CD48 is downregulated by RUNX1-ETO in a HDAC-dependent manner and its repression may have a role in evasion of the immune response (Elias et al., 2014). The DNA-ATPase/helicase-encoding gene *RUVBL1* has been described as a RUNX1-ETO-upregulated target in *Drosophila* (Breig et al., 2014). A role for the G1-S-specific cell cycle regulator CCND2 in self-renewal and propagation of RUNX1-ETO leukaemic cells has recently been shown. RUNX1-ETO promotes proliferation and cell-cycle progression through maintenance of *CCND2* expression (i) directly by binding to an upstream element and (ii) indirectly by promoting AP-1 binding to the *CCND2* promoter (Martinez-Soria et al., 2019). However, the mechanisms behind upregulation of AP-1 members upon RUNX1-ETO expression remain unclear. Other downregulated genes through direct binding of RUNX1-ETO include the membrane-protein encoding genes *MS4A3* and *NKG7* as well as the ribonuclease *RNASE2* (Ptasinska et al., 2014).

Two recent studies have shed new light onto the connections within the gene regulatory networks resulting from RUNX1-ETO expression (Assi et al., 2019; Ptasinska et al., 2019). RUNX1-ETO plays a role in promoter-enhancer element interactions, which are mediated by cooperative binding of RUNX1-ETO-regulated TFs, such as AP-1.

#### 1.7.5.2 MicroRNAs

RUNX1-ETO has been shown to cause both up-and downregulation of microRNA (miRNA) genes to promote leukaemogenesis. Downregulated miRNAs include the tumour suppressors miR-9, miR-223 and miR193a. Forced expression of miR-9 in RUNX1-ETO cell lines induced differentiation and reduced leukaemic growth (Emmrich et al., 2014). miR-223 is involved in myelopoiesis and is repressed by RUNX1-ETO through a HDAC- and DNA methylation-dependent mechanism (Fazi et al., 2007). miR-193a is downregulated through RUNX1-ETO-dependent recruitment of chromatin modifiers, including HDACs and DNMTs, to RUNX1-binding sites. Interestingly, miR-193a has a negative effect on the expression of factors within the RUNX1-ETO complex, including RUNX1-ETO itself (Li et al., 2013). Presence of RUNX1-ETO upregulates several miRNAs, such as miR-24 and miR-126, that regulate signalling pathways to promote leukaemogenesis. miR-24 stimulates myeloid proliferation through downregulation of the mitogen activated protein kinase (MAPK) phosphatase-1, a MAPK-signalling inhibitor (Zaidi et al., 2009). miR-126 regulates haematopoietic and leukaemic stem cells through repression of the PI3K/AKT pathway (Lechman et al., 2012, 2016). Strikingly, both overexpression and knockout of miR-126 promote RUNX1-ETO-induced leukaemogenesis (Li et al., 2015). However, lack of miR-126 sensitises leukaemic cells to standard chemotherapy, suggesting a role for this miRNA in contributing to drug resistance (Li et al., 2015).

## 1.7.5.3 Signalling pathways

RUNX1-ETO affects the normal activity of many signalling pathways through transcriptional dysregulation of the genes encoding their modulators. Enhanced TPO/MPL signalling increases survival and leukaemogenesis in t(8:21) AML and results in the upregulation of the anti-apoptotic protein BCL-XL, which in turn activates the JAK/STAT and PI3K/AKT pathways (Chou et al., 2012; Pulikkan et al., 2012). Moreover, downregulation of the protein tyrosine phosphatase CD45 in RUNX1-ETO-expressing leukaemic cells also results in an activated JAK/STAT pathway (Lo et al., 2012). The PI3K/AKT pathway enhances the survival and proliferation capacity of RUNX1-ETO-expressing cells through an MPL-dependent antiapoptotic mechanism (Pulikkan et al., 2012). Targeting components of the AKT signalling pathway might be a potential therapeutic strategy, since inhibition of Inhibitor of DNA-binding 1 (ID1) – a RUNX1-ETO-upregulated protein – blocks initiation and progression of t(8;21) leukaemia in mice by abrogating the activation of protein kinase B1 (AKT1) and results in apoptosis of AML cells, but not wild-type haematopoietic progenitors (Wang et al., 2015). The levels of activity of the PIK3/AKT pathway might be differently regulated in LSCs or during leukaemic progression, given that miR-126 has been shown to downregulate multiple components of this pathway to enhance quiescence, self-renewal and therapeutic resistance (Lechman et al., 2012, 2016).

RUNX1-ETO expression leads to an activation of the WNT signalling pathway through downregulation of the WNT-antagonist *SFRP1* (Cheng et al., 2011) and through upregulation of γ-Catenin (JUP) (Müller-Tidow et al., 2004; Zheng et al., 2004), the Groucho-related amino-terminal enhancer of split (AES) (Steffen et al.,

2011) and the *COX2* gene (Yeh et al., 2009; Zhang et al., 2013b), which is important for tumour initiation, growth and self-renewal.

Several other pathways are also been reported to be upregulated in RUNX1-ETO expressing cells. RUNX1-ETO expression upregulates the nerve growth factor receptor TRKA (NTRK1), which contributes to the expansion of RUNX1-ETO-expressing human blood cells (Mulloy et al., 2005). Enhanced reactive oxygen species (ROS) promoted maintenance of leukaemic cells in a RUNX1-ETO *Drosophila* model (Sinenko et al., 2010). NF-KB signalling is also upregulated in RUNX1-ETO-expressing cells through a failure of inhibition of this pathway by native RUNX1 (Nakagawa et al., 2011). The UBASH3B/CBL pathway is indirectly activated by RUNX1-ETO through miR-9-dependent upregulation of UBASH3B. This pathway promotes the expansion of RUNX1-ETO cells by activating the TPO/MPL signalling pathway (Goyama et al., 2016).

## 1.7.6 RUNX1-ETO and DNA damage

There is evidence that the first oncogenic events initiating leukaemia, such as RUNX1-ETO, may promote mutagenesis and hence facilitate the acquisition of cooperating mutations (Araten et al., 2013; Krejci et al., 2008). Ectopic RUNX1-ETO expression results in the downregulation of genes involved in DNA repair pathways, including *BRCA2*, *OGG1*, *POLE* and *ATM*, and increases the level of phosphorylated TP53 and of the DNA-double-strand-break marker γH2AX (Alcalay et al., 2003; Krejci et al., 2008). These findings suggest increased DNA damage and a mutator phenotype conferred by RUNX1-ETO. A more recent study confirmed a RUNX1-

ETO-conferred predisposition to acquire mutations, both spontaneously and after treatment with genotoxic agents (Forster et al., 2016). This study also described RUNX1-ETO-dependent repression of *OGG1*, a DNA glycosylase involved in base excision and repair, hence hindering the repair of the RUNX1-ETO -associated mutagenesis. In line with this, RUNX1-ETO-expressing cells display increased levels of DNA damage that can be explained by a reduced expression of genes involved in the homologous recombination (HR) repair pathway, including *ATM*, *BRCA1*, *BRCA2* and *RAD51* (Esposito et al., 2015). Overall, these studies suggest that the acquisition of cooperating secondary mutations in RUNX1-ETO-expressing cells might be facilitated by the repression of DNA repair pathways mediated by RUNX1-ETO.

# 1.7.7 Collaborative genetic aberrations in t(8;21) AML

Transcripts of the *RUNX1-ETO* translocation have been detected in non-leukaemic cells of patients in long term remission (Miyamoto et al., 2000; Shima et al., 2014). Several studies have shown that RUNX1-ETO is able to shift cells to a pre-leukaemic state in both humans and mice, but that additional secondary mutations are required in order to cause overt leukaemia (Higuchi et al., 2002; Kuchenbauer et al., 2005; Rhoades et al., 2000; Shima et al., 2014; Yuan et al., 2001). Indeed, in transgenic and conditional knock-in mouse models (Higuchi et al., 2002; Yuan et al., 2001) and in retrovirally transduced human CD34+ cells (Mulloy et al., 2002, 2003), RUNX1-ETO alone was not able to induce AML. Collaborative secondary mutations commonly involve: (i) additional chromosomal aberrations, (ii) the activation of signalling pathways, (iii) mutations in genes encoding epigenetic regulators.

Additional cytogenetic abnormalities are detected in 70% of t(8;21) leukaemias, commonly involving loss of sex chromosomes, 9q deletion and trisomy 8 (Krauth et al., 2014; Kuchenbauer et al., 2006). Loss of sex chromosomes involves both X and Y chromosomes and hence candidate genes whose loss may enhance RUNX1-ETO leukaemogenesis and are therefore likely to be located on the common pseudo-autosomal regions (PARs) within the sex chromosomes. The GM-CSF receptor alpha-subunit (CSF2RA) is located in PAR1 and has been identified as a tumour suppressor in a murine transplantation model of RUNX1-ETO leukaemia, since lack of GM-CSF signalling promotes the development of RUNX1-ETO-induced AML (Matsuura et al., 2012).

Mutations affecting signalling pathways in t(8;21) AML mostly occur in growth factor receptors, including mutations in tyrosine kinase receptors such as *KIT* and *FLT3*, and other RAS pathway-activating mutations including *CBL*, *NRAS*, *KRAS* and *JAK2* (Kuchenbauer et al., 2006; Wang et al., 2005, 2011b). The co-existence of RUNX1-ETO fusion protein and *KIT* mutations – affecting either the activation loop, the tyrosine kinase or the receptor dimerization domains – is enough to develop AML in murine transduction and transplantation models (Nick et al., 2012; Wang et al., 2011b) and in a human CD34+ *ex vivo* progenitor cell expansion assay (Wichmann et al., 2015).

Epigenetic regulators, such as *ASXL1*, *ASXL2* and *IDH*2, are also frequently mutated in RUNX1-ETO leukaemia (Krauth et al., 2014; Madan et al., 2018; Micol et al., 2014). Mutated *ASXL1* and *ASXL2* may co-operate with RUNX1-ETO in a similar manner to induce leukaemogenicity, as mutations in these genes are mutually exclusive (Krauth *et al.*, 2014).

Expression of *RUNX1-ETO* together with a mutant *KIT*, *KRAS*, *NRAS* or *FLT3* in mouse progenitors was sufficient to develop leukaemia in mice (Nick et al., 2012; Schessl et al., 2005; Wang et al., 2011b; Zhao et al., 2014). However, a single second hit was insufficient in human cord blood cells (Chou et al., 2011a; Goyama et al., 2016; Wichmann et al., 2015). This indicates that several hits are required to induce overt human RUNX1-ETO leukaemia, as human cells might be more resistant to transformation. The expression of RUNX1-ETO already predisposes to the acquisition of these cooperating mutations in a protein-level-dependent manner, both spontaneously and after treatment with DNA damage-inducing agents (Forster et al., 2016; Wang et al., 2005). Increased mutagenesis upon treatment with genotoxic agents can be explained by propensity for faulty DNA repair, as exemplified by downregulation of *OGG1* (Forster et al., 2016).

# 1.8 Aims and objectives

Many studies have suggested an HSC as the cell of origin establishing the preleukaemic clone. Clinical studies have identified the t(8:21) translocation in nonleukaemic HSCs, indicating that RUNX1-ETO might represent the first oncogenic event. The Bonifer group and others have extensively studied the effect of RUNX1-ETO in many scenarios, including in vitro mouse and human ES cell differentiated progenitors, mouse models, t(8;21) cell lines, oncogene-expressing human CD34+ blood cells and patient samples. The majority of these studies agree that expression of RUNX1-ETO blocks myeloid differentiation, enhances self-renewal and is required to maintain the leukemic phenotype. However, different models present dissimilarities on their findings, which can be explained by variable dosages of RUNX1-ETO expression, the cellular context including the progenitor type, adaptations of cell lines to culture conditions and the presence of co-existing mutations. These caveats have hindered the understanding of the earliest epigenetic reprogramming events occurring after RUNX1-ETO induction. In addition, there are several questions, such as the direct RUNX1-ETO mechanisms leading to gene dysregulation, that need to be answered.

Therefore, the overall aims of this project include:

The generation of an *in vitro* human model of t(8;21) AML that represents the cell of origin acquiring the translocation event. We plan to generate inducible RUNX1-ETO human ES cell lines and use them in an *in vitro* protocol that allows the generation of definitive haematopoietic progenitors from *HOXA*+ endothelium, resembling progenitor cell populations generated within the intra-embryonic human AGM.

- ii) The characterization of the phenotypic effects resulting from RUNX1-ETO induction at different stages of the *in vitro* definitive haematopoiesis, including progenitor cell formation, clonogenic capacity and cell growth.
- iii) Comparison of the effects resulting from RUNX1-ETO induction on the distinct cell populations generated in our *in vitro* cultures.
- iv) The identification of the immediate effects of RUNX1-ETO induction on reprogramming the epigenome of the *in vitro* generated progenitors, in order to understand how the first genetic alteration alters the regulatory network.

Establishing a *bona fide* inducible system of RUNX1-ETO expression in human definitive progenitors will also allow us to investigate the outcomes of introducing collaborative mutations during the generation of fully transformed cells and will allow future screens for therapeutically active agents against pre-leukaemic cells.

# 2 MATERIALS AND METHODS

# 2.1 Generation of RUNX1-ETO, RUNX1-ETO K-RAS(G12D) and RUNX1-ETO KIT(N822K) knock-in vectors

AAVS1-targeting vectors containing a RUNX1-ETO cDNA transgene were generated as follows. The pSIEW-RUNX1-ETO vector, containing the RUNX1-ETO cDNA, was a gift from Olaf Heidenreich (Newcastle, UK) (Bomken et al., 2013). The pTREG-CAGGS-Tet3G plasmid for gene targeting into the AAVS1 locus, used as a backbone to insert the transgene, was a present from Su-Chun Zhang (Wisconsin, US) (Qian et al., 2014). Final vectors comprised: (i) an HA-tagged RUNX1-ETO transgene under the regulation of a tetracycline-inducible promoter (TRE3G-CMV), (ii) a Puromycin Nacetyltransferase resistance cassette with gene expression to be driven by endogenous promoter after insertion and (iii) а cytomegalovirus enhancer/chicken beta actin (CAG) promoter driving expression of a modified Tet3G reverse tetracycline-controlled transactivator (rtTA), between two homology arms of 804 bp (5') and 837 bp (3') to the AAVS1 genomic locus (Figure 2.1). Amplification of the RUNX1-ETO cDNA insert from the pSIEW-RUNX1-ETO donor plasmid was conducted by Polymerase Chain Reaction (PCR) using Phusion High-fidelity DNA Polymerase (New England Biolabs cat# M0530S). Forward and reverse primers included the restriction endonuclease (RE) sites Sall (5') and Mlul (3'), respectively, for subsequent cloning into the multiple cloning site of the pTREG-CAGGS-Tet3G knock-in plasmid (Table 2.1). Forward primers were designed with a human influenza hemagglutinin (HA) tag sequence following the Kozak sequence containing the start codon. Reactions of 50-µl volume were prepared containing 250 ng pSIEW-RUNX1-ETO template DNA 1X Phusion HF Buffer, 200 μM dNTPs, 0.5 μM forward primer,

0.5 µM reverse primer, 3% DMSO and 1-unit Phusion DNA Polymerase. Reactions were transferred to a Thermocycler with the following conditions: initial denaturation at 98°C for 30 seconds, 5 cycles (denaturation at 98°C for 10 seconds, annealing at 63°C for 15 seconds, elongation at 72°C for 150 seconds), 30 cycles (denaturation at 98°C for 10 seconds, annealing and elongation at 72°C for 150 seconds) and final extension at 72°C for 5 minutes. PCR products were purified using gel electrophoresis with 0.7-1 % agarose Tris-acetate-EDTA (TAE) (40 mM Tris, 1mM EDTA and acetic acid added to pH 8.0) gels containing 0.5 μg/ml ethidium bromide. Agarose gels were run in 1X TAE buffer supplemented with 0.5 µg/ml ethidium bromide. DNA products were visualised using a Bio-Rad Gel DocTM XR+ System and excised using a UV trans-illuminator (Bio-Rad). Excised products were purified from the gel using the QIAquick® Gel Extraction Kit (Qiagen cat# 28704) as described in the manufacturer's protocol and eluted in 30 µl Elution Buffer. DNA concentration was quantified using a Nanodrop 2000c spectrophotometer (Thermo Fisher Scientific). The knock-in pTREG-CAGGS-Tet3G plasmid and 500 - 1000 ng insert DNA were digested with 5 units of Sall and Mlul RE for 3 hours at 37°C and digested products were purified using agarose gel electrophoresis. Inserts were ligated into digested knock-in plasmids in molar ratio of 1:3 vectors to insert using a T4 DNA ligase (New England Biolabs cat# M0202S) following the manufacturer's protocol. The ligated reaction was transformed into One Shot™ TOP10 Chemically Competent E. coli (Thermo Fisher Scientific cat# C404010) by heat shock at 42 °C. Bacteria carrying the ligated product were selected on 100 µg/ml Ampicillin agar plates and plasmid DNA was purified from selected Ampicillin-resistant individual colonies on silica-based columns using QIAprep® Spin Miniprep kit (Qiagen cat# 27104) protocol

as described by the manufacturer. Successful insert recombination into vectors was confirmed by RE digestion and lack of point mutations in plasmid inserts was confirmed by Sanger sequencing, conducted in the sequencing service of the Biosciences department at the University of Birmingham (UK).

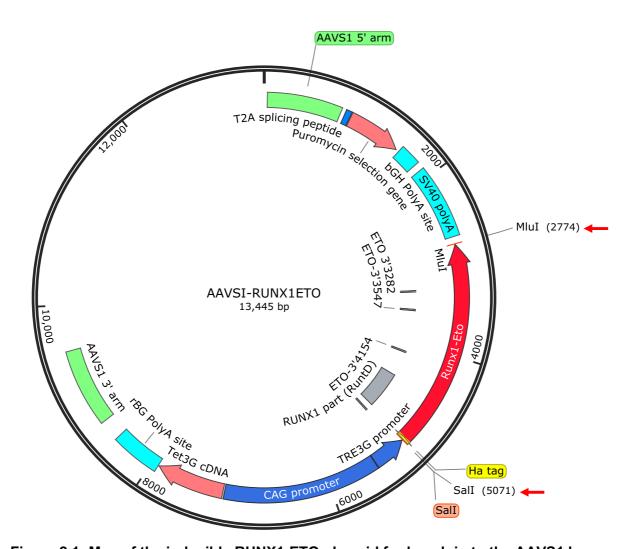



Figure 2.1: Map of the inducible RUNX1-ETO plasmid for knock-in to the AAVS1 locus

Schematic of the maps corresponding to the inducible RUNX1-ETO-containing plasmid for transgene knock-in into the human AAVS1 locus, including: 5' and 3' homology arms to the AAVS1 human locus, a T2A splicing peptide followed by a puromycin resistance cassette (expression under the endogenous promoter upon knock-in), a Tet3G reverse tetracycline-controlled activator (rtTA, Tet3G cDNA) under expression of a constitutive cytomegalovirus early enhancer/chicken beta actin (CAG) promoter and an HA-tagged *RUNX1-ETO* cDNA under control of a Tetracycline-inducible promoter (TRE3G-CMV). The *RUNX1-ETO* transgene was cloned substituting a GFP gene, using the Sall and Mlul restriction endonuclease (RE) sites (indicated with red arrows). Primers used for sequencing the vector after cloning the cDNA are indicated in grey boxes.

GAPDH-targeting vectors containing either K-RAS(G12D) or KIT(N822K) cDNA were generated as follows. The pGAPTrap-T2A-ecDHFR-Ires-Meo plasmid for gene targeting into the GAPDH locus, used as a backbone to insert the transgene, was previously generated in the laboratory of Ed Stanley (Melbourne, AUS) (Kao et al., 2016). Final vectors comprised: a 3,3 kb 5' GAPDH homology arm, a T2A peptide sequence fused in frame with the GAPDH coding sequence, the corresponding transgene (K-RAS(G12D) or KIT(N822K)) fused to an E. coli dihydrofolate reductase (ecDHFR) domain, an internal ribosomal entry site (IRES), a G418 neomycin selectable marker, and a 4.2 kb 3' GAPDH homology arm (Figure 2.2). For the KIT(N822K) vector only, sequences encoding a FLAG tag were cloned into BamHI RE site downstream of the ecDHFR domain of the pGAPTrap-T2A-ecDHFR-Ires-Meo (mouse neomycin) vector. KIT(N822K) and K-RAS(G12D) transgenes were inserted upstream and downstream, respectively, of the ecDHFR domain into the GAPTrap targeting vector by InFusion cloning (Takara Bio cat# 121416) following the manufacturers protocol. Briefly, GAPTrap targeting vectors were linearized using Ascl or Sall RE sites for the K-RAS or KIT cloning strategy, respectively, and dephosphorilated with Antartic phosphatase (New England Biolabs cat# M0289S) to prevent plasmid re-ligation. Transgenes were amplified from donor plasmids by PCR using a high-fidelity Platinum™ Taq DNA Polymerase (Thermo Fisher Scientific cat# 10966026), as described in the manufacturer's protocol, by using a 3-minute extension and overlapping primers to the boundaries of the RE used to linearize the GAPtrap targeting vector. Both linearized GAPTrap plasmids and insert PCR products were purified by agarose gel electrophoresis, as described above, and ligated by In-Fusion cloning with a 2:1 insert to vector molar ratio. Reactions were

transformed into Stellar Competent Cells (Takara Bio cat# 636766) and ligated products were purified from Ampicillin-resistant selected individual colonies as above. Successful insert recombination into vectors was confirmed by RE digestion and the lack of point mutations in plasmid inserts was confirmed by Sanger sequencing, conducted by Australian Genome Research Facility at Walter and Eliza Hall Institute (Melbourne, Australia). Generation of the KIT vector required the insertion of a 93-bp intron - the human Granulocyte-macrophage colony-stimulating factor (GM-CSF) intron 1 - containing a STOP codon between an exon-exon junction within the KIT cDNA to prevent bacteria from expressing the KIT and selecting clones with acquired STOP point mutation. Primers used and corresponding descriptions are listed in (Table 2.1).

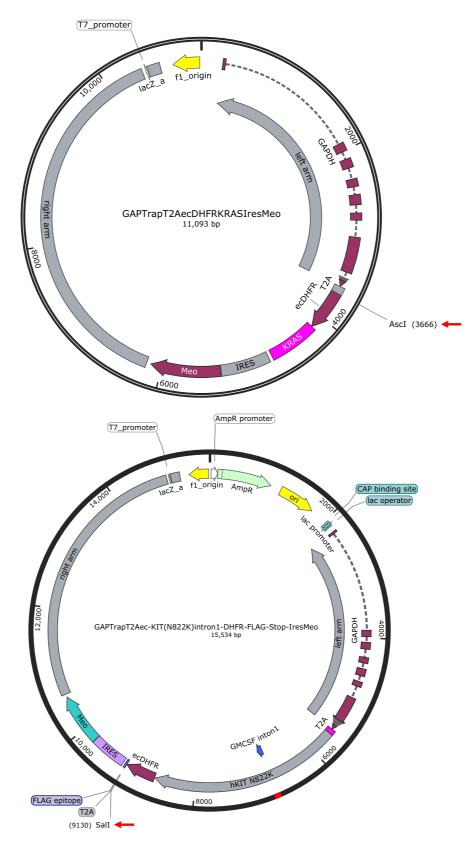



Figure 2.2: Maps of the K-RAS(G12D) and KIT(N822K) GAPTrap plasmids

Schematic of the maps corresponding to the GAPTrap plasmids containing a K-RAS(G12D) or a KIT(N822K) transgene, respectively. Vectors included: homology arms for gene targeting into the

human GAPDH locus, a T2A sequence following the GAPDH coding sequence (to allow expression of the transgene under the endogenous GAPDH promoter), cDNA sequence of the corresponding transgene fused to an *E. coli* dihydrofolate reductase (ecDHFR) domain, an internal ribosomal entry site (IRES) and a G418 neomycin selection cassette. Sequences encoding a FLAG tag were cloned into a BamHI RE site downstream of the ecDHFR domain of the KIT(N822K) vector only. The K-RAS(G12D) transgene was inserted downstream of the ecDHFR domain by using an Ascl RE site. The KIT(N822K) transgene was inserted upstream of the ecDHFR domain by using a Sall RE site, and included a 93-bp intron (GM-CSF intron 1) containing a STOP codon between two KIT exons codon to prevent bacteria from expressing the KIT and selecting clones with point mutations. The Ascl and Sall Re sites used to linearize the vectors and clone the transgenes are indicated with red arrows.

# 2.2 Growth and maintenance of human Pluripotent Stem Cells (hPSCs)

The dual reporter SOX17<sup>mCHERRY/w</sup>RUNX1C<sup>GFP/w</sup> H9 human Embryonic Stem (ES) Cell line previously generated in the laboratory of Andrew Elefanty (Melbourne, AUS) was used (Ng et al., 2016). Human ES cells were routinely co-cultured with mitotically inactivated primary mouse embryonic fibroblasts (MEFs) in a defined serum-free media at 37°C in a humidified incubator with 5% CO2 and low (5%) O2 conditions. The media was filter sterilized and consisted of DMEM Nutrient Mixture F-12 1x + L-glutamine Na bicarbonate (DMEM/F12, cat# 11320-033) supplemented with 20% KnockOut Serum Replacer (KOSR, cat# 10828028), 100x non-essential amino acids (NEAA, cat# 11140-050), 200 mM GlutaMAX<sup>TM</sup>I 100x (cat# 35050-061), 55 mM 2-Mercaptoethanol (cat# 21985-023) (all Thermo Fisher Scientific) and 10 ng/ml basic Fibroblast Growth Factor (FGF2, PeproTech cat# 100-18B). All cell centrifugations were done at 300 x g for 3 minutes at 4°C. Human ES cell cultures were passaged with TrypLE™ Select Enzyme (Thermo Fisher Scientific cat# 12563011). Cells were cryopreserved in 10% Dimethyl sulfoxide Hybri-Max™ (DMSO, Merck cat# D2650) and CJ2 solution consisting of 20x Choline Chloride (382 mg/ml in dH<sub>2</sub>O), 0.01 mM CaCl<sub>2</sub>.2H<sub>2</sub>O, 2.68 mM KCl, 1.47 mM KH<sub>2</sub>PO<sub>4</sub>, 6.54 mM K<sub>2</sub>HPO<sub>4</sub>.3H<sub>2</sub>O, 0.5 mM MgCl<sub>2</sub>.6H<sub>2</sub>O and 5.5 mM D-glucose in dH<sub>2</sub>O.

## 2.3 Growth of feeder cells

Irradiated MEFs were cultured in feeder media, consisting of DMEM high glucose (4.5 g/l) without glutamine and Na pyruvate (Thermo Fisher Scientific cat# 11960044) supplemented with 10% FCS, 200 mM GlutaMAXI and 1x Pen/Strep. T75 flasks were pre-coated with media for a minimum of 8 h and MEFs were plated at concentration of 1-1.5 x 10<sup>5</sup> cells/flask to support human ES cell cultures.

# 2.4 Establishment and validation of human ES cell lines expressing RUNX1-ETO, RUNX1-ETO K-RAS(G12D) or RUNX1-ETO KIT(N822K)

RUNX1-ETO cell lines were generated by Transcription activator-like effector nuclease (TALENs)-mediated transgene knock-in into the AAVS1 locus of the dual reporter SOX17<sup>mCHERRY/w</sup>RUNX1C<sup>GFP/w</sup> human ES cell H9 line. K-RAS(G12D) and KIT(N822K) were introduced by TALENs-mediated transgene knock-in into the GAPDH locus of the RUNX1-ETO SOX17<sup>mCHERRY/w</sup>RUNX1C<sup>GFP/w</sup> human ES cell H9 lines generated previously.

Corresponding parental cell lines were harvested, and 1 x 10<sup>6</sup> cells were resuspended with 5 µg transgene-containing plasmid DNA and 1 µg of each TALEN pair in a total volume of 100 µl Resuspension Buffer R from the Neon™ Transfection System Kit (Thermo Fisher Scientific cat# MPK1096). Human ES cells were electroporated using Neon tips in an electroporation tube containing 3 ml buffer E2 with the following conditions: 2 pulses of 1050 v and 30 ms. Cells were plated on 60 mm dishes pre-seeded with MEFs and positive clones were selected by addition of the respective antibiotic; RUNX1-ETO-targeted cell lines were selected with 1 µg/ml Puromycin Dihydrochloride (Thermo Fisher Scientific cat# A1113802) for two days, KIT and KRAS-targeted RUNX1-ETO cell lines were selected with 50 µg/ml

Geneticin (G418, Thermo Fisher Scientific cat# 10131035) for 7 to 10 days. Non electroporated cells were also subjected to antibiotic treatment as a negative control. Following antibiotic selection, media was refreshed every 2 days until visible colonies were formed. Cells were harvested and subsequently subjected to single cell sorting (section 2.7) on 96-well plates pre-seeded with MEFs and incubated in low O<sub>2</sub> conditions for 7 to 10 days or until a visible colony was formed. Individual clones were expanded and tested for transgene insertion after genomic DNA extraction (sections 2.4.1 and 2.4.2). For all lines, genomic integrity was confirmed using the Illumina HumanCytoSNP-12 v2.1 array by the Victorian Clinical Genetics Services (Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia).

#### 2.4.1 Genomic DNA extraction

Genomic DNA extraction from lysed cells was performed using a vacuum manifold. Adherent cells on a 48-well plate were washed with PBS and lysed by overnight incubation at 37°C with 100 µl lysis buffer (0.5% SDS, 10 mM EDTA, 10 mM Tris, 70 mM NaCl) containing 0.2 mg/ml Proteinase K (Sigma cat# P2308) added fresh. Cell lysates were mixed by pipetting with 500 µl binding buffer PB (Qiagen cat# 19066) and transferred to a Whatman UNIFILTER 96-Well Microplate (GE Healthcare Life Sciences cat# 7700-7201). The plate was placed on the vacuum manifold and lysate suspension was passed through the filter by suction, not exceeding -10 Hg of pressure. Filters were washed by 2-minute incubation with 400 µl of buffer PE (Qiagen cat# 19065), which was subsequently discarded using the vacuum manifold. Excess of liquid was removed by tapping off the plate onto tissue paper and filters were dried using the suction of the vacuum manifold for 2 minutes. DNA was eluted

after 1-minute incubation with 70 µl TE buffer (10 mM Tris-HCl containing 1 mM EDTA) pre-warmed at 70°C into a clean collection 96-well plate.

#### 2.4.2 Genomic Polymerase Chain Reaction

Correct transgene integration was screened by genomic PCR amplification using the GoTaq Green Master Mix (Promega #M712) or the Platinum™ Taq DNA Polymerase (Thermo Fisher Scientific cat# 10966026). Forward and reverse primers (Table 2.2) were designed to amplify the boundaries of the genomic insertion, covering a sequence of the locus and a sequence of the insert, respectively. Homozygous or heterozygous targeting of the AAVS1 locus was identified with a pair of primers designed to cover both locus sides, which only yielded fragment amplification in the presence of a wild type allele.

For the AAVS1 locus screen, reactions of 12 µl of volume were prepared containing 1X Gotaq mastermix, 0.5 µM forward primer, 0.5 µM reverse primer, <250ng genomic DNA and nuclease-free H<sub>2</sub>O to the final volume. A negative control reaction without DNA and a positive control reaction with DNA of a cell line targeted to our locus of interest were prepared. Reactions were transferred to a Thermocycler with the following conditions: initial denaturation at 95°C for 2 minutes, 33 cycles (denaturation at 95°C for 30 seconds, annealing at 60°C for 30 seconds, elongation at 72°C for 2 minutes) and a final extension at 72°C for 6 minutes.

For the GAPDH locus screen, reactions of 20  $\mu$ l volume were prepared containing 2 units Platinum Taq DNA Polymerase, 0.2  $\mu$ M forward primer, 0.2  $\mu$ M reverse primer, <250ng genomic DNA, 1X PCR buffer –Mg, 1.5 mM MgSO<sub>4</sub>, 0.8 mM dNTP mix, 5% DMSO and nuclease-free H<sub>2</sub>O to the final volume. Reactions were

transferred to a Thermocycler with the following conditions: 95°C for 2 minutes, 35 cycles (95°C for 30 seconds, 65°C for 30 seconds, 68°C for 3 minutes 30 seconds) and 68°C for 10 minutes.

PCR products were purified using agarose gel electrophoresis with 1% agarose (Bioline cat# BIO-41027) in 1x Tris/Borate/EDTA (TBE) buffer solution containing 5 µl/ml RedSafe Nucleic Acid Staining Solution (Intron Biotechnology cat# 21141). Agarose gels were run at 100 V in 1x TBE buffer and DNA products were visualised using a Bio-Rad Gel Doc<sub>TM</sub> XR+ System.

# 2.5 Haematopoietic differentiation

Haematopoietic differentiation of hPSCs was performed following the spin Embryo Body (EB) method in STAPEL medium (Ng et al., 2008, 2016). A confluent (95-98%) T75 flask of hPSCs was used to set up 10 Spin-EB plates of 60 EBs/plate. Low attachment 96-well plates (Sterile, Costar cat# COR3788) were prepared by adding 70 µl sterile ddH<sub>2</sub>O to the outer 30 wells of each plate. On the day of differentiation (day 0), hPSCs were passaged 1:1 onto flasks of the same surface area pre-coated with feeder media only. Cells were incubated for 2 hours in low O<sub>2</sub> conditions to allow the cells to re-attach. Alternatively, cells may be passaged onto low-density feeders, such that they will be 90-98% confluent the next day, the day prior to EB set-up. Adherent cells were rinsed with PBS, gently dissociated by 3-minute incubation at 37°C with Accutase<sup>TM</sup> solution (Merck cat# A6964) and harvested in Iscove's Modified Dulbecco's Media (IMDM) with no phenol red (Themo Fisher Scientific cat# 21056-023) with 0.2% recombinant human albumin Albucult (Albumedix). Cells were pelleted by centrifugation and mixed into the main corresponding volume of STAPEL

media supplemented with 0.5CH BVSAF cytokines (herein referred as STAGE1): 20 ng/ml bone morphogenetic protein 4 (BMP4, R&D Systems cat# 314-BP), 25 ng/ml vascular endothelial growth factor (VEGF, PeproTech cat# 100-20), 25 ng/ml stem cell factor (SCF, PeproTech cat# 300-07), 7.5 ng/ml ACTIVIN A (ACT, R&D Systems cat# 338-AC), 10 ng/ml FGF2 and 0.5 µM CHIR99021 (Tocris Biosciences cat# 4423). All human cytokines used for haematopoietic differentiation were recombinant. STAPEL media consisted of a mixture of 50% IMDM, 50% Ham's F12 (Thermo Fisher Scientific cat# 11765-062) and 0.05% Polyvinyl alcohol (PVA, Merck cat# P8136) supplemented with: 0.5% Albumin, 1x Gibco® Protein Free Hybridoma Medium II (PFHMII, Thermo Fisher Scientific cat# 12040077), 0.03%  $\alpha$ -Monothioglycerol (MTG, Merck cat# M6145), 2.2 µg/ml SyntheChol (Merck cat# S5442), 100 ng/ml Linolenic and Linoleic acids (Merck cat# L1376 and L2376), 0.005 mg/ml Soybean Oil (lecithin) (Merck cat# S7381), 2 mM GlutaMAXI, 50 µg/ml Ascorbic acid 2-phosphate (AA2P, Merck cat# A8960), 50 µg/ml L-Ascorbic acid (Merck cat# A4403) and 1x Insulin-Transferrin-Selenium-E (ITS-E, In Vitria cat# 777ITS092). Albumin could also be substituted for a 1:1 mixture of albumin from rice endosperm (ScienCell Research Labs cat# OsSA) and Bovostar acid stripped Bovine Serum Albumin (BSA, Bovogen cat# BSAS 0.1).

Following cell resuspension in STAGE1 media, volumes of 80 µl were distributed into the 60 inner wells of each low attachment 96-well plate using a multichannel pipette. Therefore, approximately 5 ml differentiation medium per plate was required. Cells were aggregated into EBs to the bottom of the wells by centrifugation and plates were incubated at 37°C with 5% CO<sub>2</sub> and high (air levels) O<sub>2</sub> conditions. On day 1 of the differentiation, EB formation was evaluated under the microscope: the forming

EBs presented a smooth defined edge. Approximately 4-6 hours before the 48-hour time point from setup was reached (day 1.6-1.7), 20 μl of STAPEL supplemented with 3.5 μM SB431542 (Sapphire Bioscience cat# 13031) and 3 μM CHIR99021 were added to each well to promote adequate mesoderm patterning, giving a final volume of 100 μl per well. At day 4 of differentiation, 70-80 μl of STAGE 1 media were carefully removed from each well using a multichannel pipette and 100 μl of STAPEL supplemented with BVSIF cytokines (herein referred as STAGE2) were added to each well. STAGE2 cytokines consisted of 5 ng/ml BMP4, 50 ng/ml VEGF, 50 ng/ml SCF, 10 ng/ml Insulin-like growth factor 2 (IGF2, PeproTech cat# 100-12) and 10 ng/ml FGF2.

At day 7 of differentiation, 20 EBs were harvested to evaluate mesoderm patterning and differentiation kinetics by flow cytometric analysis (section 2.6 and 2.9). At day 8, EBs were transferred onto adherent plates, which had been pre-coated for at least 60 minutes with Matrigel solution (IMDM with 1x Pen/Strep and 1:200 Corning® Matrigel® Growth Factor Reduced phenol red-free (In Vitro Technologies cat# FAL356231). Approximately 15-25 EBs or 70-85 EBs were used for each well of a 6-well plate or 10-cm plate, respectively. EBs may be plated at a higher density for early harvesting and analysis (short time after the adherent culture start date). Plates were incubated overnight to allow for proper attachment of the EBs to the surface and next day media was gently replaced with STAPEL supplemented with STAGE3 cytokines: 20 ng/ml BMP4, 100 ng/ml SCF, 100 ng/ml FMS-like tyrosine kinase 3 receptor (FLT3) ligand (PeproTech cat# 300-19), 50 ng/ml VEGF, 50 ng/ml Thrombopoietin (TPO, PeproTech cat# 300-18), 25 ng/ml Interleukin (IL) 3 (PeproTech cat# 200-06), 20 ng/ml IGF2, 10

ng/ml FGF2 and 1x Pen/Strep. Plates were toped up with media every 3 days and half-media changes – with care not to aspirate the floating progenitors, which lie close to the plate surface – were performed when the media capacity of the plate was reached. STAGE3 cytokines and concentrations may vary depending on specific hPSC lines and experiments, with inclusion of BMP4 and IGF2 being optional and concentrations lowered down to half when media was regularly changed. Upon Dox treatment, adherent cultures were supplemented with a 5-FACTOR cytokine mix including 100 ng/ml SCF, 100 ng/ml FLT3 ligand, 50 ng/ml TPO, 25 ng/ml IL3 and 25 ng/ml IL-6.

#### 2.6 Harvesting of haematopoietic cultures

For analysis of non-adherent EBs at day 7, EBs were collected using a multichannel pipette and transferred to a sterile collection tube. EBs were pelleted by 1-minute centrifugation and dissociated into single cells using a 21 or 23 G needle after a 30-minute incubation with TrypLE™ select enzyme. Cell suspensions were filtered through a 35 µm nylon mesh strainer into 5-ml round-bottom polypropylene sterile test tubes for subsequent flow cytometric analysis (section 2.9).

For analysis of adherent EB cultures, supernatants containing floating blood progenitors were collected and remaining adherent cells (including EBs and stroma) were washed with 1 ml PBS and incubated with TrypLE™ select at 37°C for 15 minutes. The stromal layer was collected using a cell scraper and EBs were detached with a pipette and transferred to a sterile tube containing 1 ml of 2 mg/ml Collagenase Type 1 or Type 4 (Worthington, CLS-1 or CLS-4). EBs were incubated for 15-30 minutes (when using CLS-1) or 30-45 minutes (when using CLS-4) in a

37°C water bath and dislodged using a 23 or 25 G needle. Dissociated EBs were collected together with the other cell fractions, which were filtered through a 40μm large filter cap and pelleted for subsequent single cell sort or flow cytometric analysis (sections 2.7 and 2.9, respectively).

# 2.7 Single cell sorting

Cells were single sorted using a Fluorescence-activated cell sorting (FACS) FACS Aria cell sorter. Following filtering of single-cell suspensions, pellets were resuspended in 200 µl FACS wash buffer (PBS with 2% FCS). Isotypes and single stainings were performed using 5 µl cells and the remaining cell suspension was stained with the correspondent antibody combination. Antibodies against CD9 and EpCam were used for sorting undifferentiated hPSCs and CD34, CD45 and CD90 for sorting haematopoietic progenitors (Table 2.3). Cell suspensions were incubated on ice and in the dark for 15 minutes, washed two times with 2 ml FACS wash and resuspended in 300 µl FACS wash with 1:1000 Propidium iodide (PI) prior to cell sort.

# 2.8 Magnetic-activated cell sorting of haematopoietic progenitors

The CD34<sup>high</sup> haematopoietic cell population was separated from the floating fraction of the cultures by magnetic-activated cell sorting (MACS) using CD34 MicroBeads Kit UltraPure human (Miltenyi Biotec cat# 130-100-453) and a Mini (MS) & Midi (ML) MACS™ Starting Kit (Miltenyi Biotec cat# 130-091-632). MS columns were used for 2 x 10<sup>8</sup> total cells with a maximum capacity of 10<sup>7</sup> CD34+ recovered cells per column. The floating cell fraction from the haematopoietic in vitro cultures was filtered through a 30 µm strainer in FACS wash buffer and cells were counted and kept on

ice. For the magnetic labelling, cells were pelleted by centrifugation and up to 108 total cells were resuspended in 300 µl ice-chilled MACS buffer (PBS, 2% FCS and 2 mM EDTA). Cell suspensions were mixed with 100 µl FcR blocking reagent, to block unwanted binding of antibodies and increase the specificity of antibody labelling, and 100 µl CD34 microbeads Ultrapure and incubated for 30 minutes at 4°C. Unbound antibody-beads were washed by addition of 10 ml MACS buffer and cells were pelleted by centrifugation at 300 x g for 10 minutes. Meanwhile, MS columns were placed on the magnet (Mini MACS separator) and equilibrated with 500 µl of MACS buffer. A 23 or 25 G needle was placed at the end of the column to slow down the flow rate, aiming to increase the binding of the cell-microbead complexes to the column. Cell pellets were resuspended in 500 µl MACS buffer and loaded into the equilibrated column. Unlabelled CD34- cells were cleared off the column with 3x washes using 500 µl MACS buffer. The column was then removed from the MACS separator and placed into a sterile 15 ml collection tube. CD34+ cell fraction was collected in 1 ml MACS buffer, which was loaded on top of the column and flushed out using the column plunger. Cells were pelleted to remove the MACS buffer and used for downstream analysis immediately.

# 2.9 Flow cytometry

Flow cytometric analysis was performed using a BD Fortessa analyzer. Following filtering of single-cell suspensions, cell pellets were resuspended in 200 µl FACS wash buffer (PBS with 2% FCS) and incubated with corresponding antibodies (Table 2.4) for 15 minutes on ice and in the dark. Cell suspensions were then washed twice with FACS wash and resuspended in 300 µl FACS wash with 1:1000 Pl for subsequent flow cytometric analysis.

For intracellular flow cytometry, cell pellets were fixed by resuspension in three times the pellet volume of Fixation/Permeabilization solution (BD Pharmingen cat# 554722) and subsequent incubation on ice for 30 minutes. Cell suspensions were pelleted by centrifugation and washed twice using 1x Perm/Wash<sup>TM</sup> buffer (BD Pharmingen cat# 554723) for subsequent 30-minute incubation on ice and in the dark with primary conjugated antibody (Anti-HA tag [16B12] DyLight® 650-conjugated, Abcam cat# ab117515) diluted 1:100 in 1x Perm/Wash<sup>TM</sup> buffer. Cells were washed again twice with 1x Perm/Wash<sup>TM</sup> buffer and resuspended in 200 µl of FACS wash prior to flow cytometric analysis.

# 2.10 Intracellular immunostaining

Adherent undifferentiated ES cells on a 48-well plate were washed with PBS and fixed and permeabilized by 15-minute incubation at room temperature with 300 µl of 4% Paraformaldehyde and 0.5% Triton solution. Cells were washed three times with 1x Perm/Wash<sup>TM</sup> buffer and non-specific binding of proteins to the antibody was blocked by 15-minute incubation with 300 µl Perm/Wash<sup>TM</sup> buffer containing 5% 2 mg/ml goat IgG or 10% FCS. Cells were washed three times with 1x Perm/Wash<sup>TM</sup> buffer and incubated for 1 hour with Anti-HA tag Daylight 650-conjugated antibody and DAPI, diluted 1:100 and 1:100, respectively, in 1x Perm/Wash<sup>TM</sup> buffer. Cells were washed three times with 1x Perm/Wash<sup>TM</sup> buffer and 300 µl of PBS were added per well for subsequent epifluorescence imaging.

# 2.11 Imaging

Epifluorescence images of the *in vitro* haematopoietic cultures and immunostainings were taken using the 10x and 20x objectives of a Zeiss AxioObserver Z1 microscope

and a Zeiss AxioCam monochrome camera and were processed with the Zen Blue software.

Confocal images of the *in vitro* haematopoietic cultures were taken with a Zeiss LSM780 microscope using a 10x objective and processed with Zen Black software.

Epifluorescence and confocal images were exported as separate layers in JPEG format and assembled in Adobe Photoshop when required. Brightness and contrast adjustments were applied equally to all images.

# 2.12 Colony-forming-unit assays

Colony-forming-unit (CFU) assays were performed as reported (Ng et al., 2016). Briefly, cells from the floating fractions and EBs of day 18-24 cultures were dissociated and 3-5 x 10<sup>3</sup> cells were cultured in 1% methylcellulose supplemented with: 5-FACTOR cytokine mix (as used in the haematopoietic differentiation), 10 µg/ml human low density lipoproteins (hLDL, Stem Cell Technologies cat# 02698) and 5 U/ml erythropoietin (EPO, PeproTech cat# 100-64). For the preparation of 1% methylcellulose, 40 ml serum-free 2.6% MethoCult<sup>TM</sup> H4100 (Stem Cell Technologies #01400) was mixed with an equal volume of 2x STAPEL-P medium (STAPEL medium made with IMDM containing 2x supplements and without PFHMII) plus 20 ml of 1x STAPEL medium to give a final volume of 100 ml. The bottle was shaken to mix the various layers and let sit at room temperature allowing the bubbles to dissipate. Cells were cultured either with or without Dox and each condition was set up in triplicate in ultra-low attachment 24-well plates (cat# NUN144530). Plates were scored for haematopoietic CFUs after 7 to 10 days.

# 2.13 Replating assays

Replating assays were conducted on floating haematopoietic progenitors plated at a known concentration on wells of a 6-well plate that had been pre-coated with Matrigel solution. Cells were harvested, counted and replated weekly. Alive and dead cells were determined using a FL Countess-II Automated Cell Counter (Thermo Fisher Scientific) after Trypan-Blue staining.

# 2.14 Apoptosis cell staining

Cell death was analyzed by flow cytometry detection of the apoptosis marker AnnexinV and of a DNA-intercalator, using the eBioscience AnnexinV Apoptosis Detection Kit APC (Thermo Fisher Scientific cat# 88-8007-74). Cells were resuspended in 1X binding buffer (10X solution: 0.2 µm sterile filtered 0.1M Hepes (pH 7.4), 1.4M NaCl and 25 mM CaCl2) at a concentration of 1x10<sup>6</sup> cells/ml. For each staining, including a double staining of AnnexinV and the DNA intercalator and single stainings, 1x10<sup>5</sup> cells suspended in a volume of 100 µl were used. AnnexinV-APC staining was conducted using 1:20 dilution of the antibody followed by 15-minute incubation at room temperature and in the dark. A volume of 400 µl of binding buffer was added to each tube prior to addition of the DNA intercalator. Vybrant DyeCycle Violet Stain (Thermo Fisher Scientific cat# V35003) was used as a DNA intercalator at 1 µM concentration and incubated for 30 minutes at 37°C in the dark before proceeding to flow cytometric analysis.

### 2.15 Cell cycle analysis

Cell cycle was analyzed by flow cytometry using incorporation of the thymidine analog BrdU and of a fluorescent cell-membrane permeable DNA intercalator. First,

25 µM BrdU (Sigma cat# B5002) was added to the cells and incubated for 3 hours. Thereafter, around 3-4 million floating blood progenitor cells were collected, washed with PBS and resuspended in 250 µl PBS. Cells were fixed on a vortex shaker at low speed (1000 rpm) by drop-wise addition of 750 µl ice-cold pure ethanol to the cells to achieve a final concentration 75% ethanol. Cells could be stored at 4°C up to a week before proceeding to BrdU staining. Suspensions of fixed cells were transferred to a microcentrifuge tube and cells were pelleted by centrifugation at 500 x g for 5 minutes and 4°C. Cells were washed with PBS by flicking the tube and cell pellets were hydrated by a 20-minute incubation in PBS. Cells were then resuspended in 200 µl 2N HCl and incubated for 20 minutes to denature the double-stranded DNA and allow binding of the antibody to the BrdU nucleoside. Cells were subsequently washed twice with PBS and then washed twice with blocking buffer (5% FBS, 0.1% NaN<sub>3</sub>, 0.1% TritonC100 in PBS), which is required to avoid denaturation of the antibodies. After this step, samples were divided into two tubes for the IgG control and the BrdU staining and subjected to RNAseA treatment (100 µg/ml) in PBS for 30 minutes at 37°C. Cell pellets were resuspended in 40 µl of undiluted IgG-FITC or BrdU-FITC conjugated antibodies (BD Pharmingen cat# 556028), respectively, and incubated at room temperature for 50 minutes. Cells were washed twice with PBS, resuspended in 400 µl PBS containing 1 µM Vybrant DyeCycle Violet Stain and incubated for 30 minutes at 37°C in the dark before proceeding to flow cytometric analysis.

#### 2.16 RNA isolation

# 2.16.1 Chaotropic salt RNA Lysis buffer-based protocol

Total RNA was isolated from cell cultures by using the ISOLATE II RNA Mini Kit (Bioline cat# BIO-52073). Up to 5 x10<sup>6</sup> cells were collected and lysed with 350 µl RNA Lysis (RLY) Buffer and 3.5 µl ß-mercaptoethanol. Homogenized samples were stored at -80 °C. RNA was isolated following the manufacturer's protocol and final elution was performed in 30 µl or 10 µl RNase-free water, for the mini kit or the Micro kit, respectively. The eluate was passed twice through the column to increase the elution efficiency. RNA concentration was quantified using a Nanodrop 2000c spectrophotometer. Total RNA was directly used for cDNA generation using random hexamer priming (section 2.18.2).

# 2.16.2 TRIzol-based protocol

Total RNA was isolated from cell cultures using TRIzol Reagent (Thermo Fisher Scientific cat# 15596026). Cell pellets were lysed and homogenized with 1 ml of TRIzol and incubated 5 minutes at room temperature. For each 1 ml of TRIzol, 0.2 ml of chloroform were added and hand-mixed for 15 seconds and reactions were incubated for 3 minutes at room temperature. Phases were separated by centrifugation at 12,000 x g for 15 minutes at 4°C and the RNA-containing upper-aqueous phase was pipetted out, avoiding pipetting any of the interphase or phenol-chloroform organic layers. RNA was subsequently isolated from the aqueous phase by addition of 5 µg of UltraPure glycogen (Thermo Fisher Scientific cat# 10814010) and 0.5 ml of 100% isopropanol per 1 ml TRIzol used. Samples were incubated at room temperature for 10 minutes and centrifuged at 12,000 x g for 10 minutes at 4°C.

RNA pellets were washed with 1 ml of 75% ethanol, vortexed and then centrifuged at 16,000 x g for 10 minutes at 4°C. RNA pellets were air-dried for a maximum of 10 minutes and resuspended in 17 µl DNase/RNase-free water (Thermo Fisher Scientific cat# 10977049). Following incubation at 55-60°C for 10 minutes, 1 µl RNase-free DNase I (Thermo Fisher Scientific cat# EN0521) and 2 µl DNase I Buffer were added to each sample and reactions were incubated at 37°C for 30 minutes. RNA was isolated following the manufacturer's "Clean-up of RNA from Reaction Mixtures" protocol from the Nucleospin RNA kit (Macherey-Nagel cat# 740955.50). RNA was eluted in 30 µl RNase-free water passed twice through the column to increase the elution efficiency. RNA concentration was quantified using a Nanodrop 2000c spectrophotometer. Total RNA was directly used for cDNA generation using oligo (dT)<sub>18</sub> priming (section 2.18.1).

# 2.17 RNA library preparation and sequencing

RNA-sequencing (seq) libraries were prepared using a TruSeq® Stranded mRNA Library Prep kit (Illumina cat# 20020594) following the Low Sample (LS) workflow according to manufacturer's instructions. Briefly, polyA-containing mRNA was purified with 50 µl oligo-dT-attached magnetic (RNA Purification) beads and subjected to two rounds of purification. Thereafter, the RNA was fragmented and primed with random hexamers for cDNA synthesis by addition of 19.5 µl Fragment-Prime-Finish buffer and incubation at 94°C for 8 minutes. The cleaved RNA was then reverse transcribed into first strand cDNA using 1 µl Superscript II reverse transcriptase (Invitrogen) and 7 µl First Strand Synthesis Mix, where false DNA-dependent synthesis was prevented by Actinomycin D included in the Synthesis mix, and samples were subsequently incubated (25°C 10 minutes, 42°C 15 minutes, 70°C

15 minutes). Second strand cDNA was synthesized by incubation at 16°C for 1 hour using a Second Strand marking mix containing dUTP instead of dTTP, which allowed quenching of the second strand during the library amplification step. RNAseH was included during the second strand synthesis to remove the RNA template. The resulting blunt-ended cDNA was purified from the reaction mix by addition of 90 µl of AMPure XP (Beckman Coulter cat# A63881) magnetic beads to each sample and 15-minute incubation at room temperature, followed by subsequent removal of the supernatant, two washes with 80% ethanol and elution in 17.5 µl of resuspension buffer. In order to prevent simultaneous ligation of the blunt-ended cDNA during the adapter ligation step – and therefore concatenate template formation – 3' ends of the fragments were adenylated to provide a complementary overhang to the corresponding single 'T' nucleotide on the 3' end of the adaptors, by addition of 12.5 µl A-Tailing mix and 2.5 µl resuspension buffer prior to incubation (37°C for 30 minutes and 70°C for 5 minutes). Single-index Illumina adaptors were ligated to the ends of the double-stranded adenylated cDNA fragments for later hybridization onto a flow cell, allowing for multiplexed sequencing. This was performed by addition of 2.5 µl RNA Adaptor Index (diluted 1:4), 2.5 µl Ligation Mix and 2.5 µl resuspension buffer following a 10-minute incubation at 30°C and addition of 5 µl Stop Ligation Buffer. Ligated fragments were subjected to two rounds of purification with 42 µl and 50 µl, respectively, of AMPure magnetic beads and DNA fragments containing adaptor sequences on both ends were eluted in 22.5 µl and selectively enriched by 15 cycle PCR amplification. Reactions were prepared containing 20 µl of eluted DNA fragments, 5 µl PCR Primer Cocktail and 25 µl PCR Master Mix and were incubated as follows: 98°C for 30 seconds, 15 cycles (98°C for 10 seconds, 60°C for 30

seconds, 72°C for 30 seconds) and final extension 72°C for 5 minutes. On this amplification step, the second strand is effectively quenched during amplification, given that the Polymerase used does not incorporate past dUTP.

Libraries were subjected to a quality control by determining the average fragment size using a High Sensitivity DNA chip on an Agilent Technologies 2100 Bioanalyser™ instrument and were quantified using the real-time quantitative PCR (RT-qPCR)-based method KAPA Library Quantification Kit for Illumina Sequencing Platforms (Roche cat# KR0405), following the manufacturer's protocol, on an Applied Biosystems StepOne Plus RT-qPCR system. Libraries were run in a pool of twelve indexed libraries in a NextSeq (Illumina) machine using sequencing by synthesis chemistry and a NextSeq® 500/550 High Output 150 cycle sequencing kit v2 (cat# FC-404-2002), obtaining 75 bp paired-end reads. Sequencing Service was performed at the Genomics Birmingham sequencing facilities (Institute of Cancer & Genomic Sciences, University of Birmingham, United Kingdom).

For some other samples, RNA was sequenced at 20M reads per sample (2x75 bp) after TruSeq stranded mRNA library preparation. RNA Quality Controls, library prep, library Quality Controls, library pooling, pool QCs, and sequencing were performed by the Sequencing Service and Development Platform (Translational Genomics Unit, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia).

# 2.18 cDNA synthesis from total RNA

#### 2.18.1 Oligo (dT)<sub>18</sub> priming protocol

Reverse-transcription of RNA to cDNA with Oligo (dT)<sub>18</sub> priming was conducted using 1000 ng and the SuperScript™ II Reverse Transcriptase (Thermo Fisher Scientific cat# 18064014) following the manufacturer's protocol. Transgene expression was quantified by RT-qPCR using a DNA-intercalating fluorescent dye-based method (section 2.19.1).

### 2.18.2 Random hexamer priming protocol

Reverse-transcription of RNA to cDNA with random hexamer priming was performed using 200-500 ng purified mRNA and the Tetro cDNA Synthesis Kit (Bioline cat# BIO-65043) according to the manufacturers' instructions. Samples were stored at -20 °C or directly used for subsequent RT-qPCR with either DNA binding dyes or hydrolysis probes (section 2.19).

#### 2.19 Real-Time Quantitative PCR

### 2.19.1 DNA binding dye-based methods

Gene expression levels were evaluated by RT-qPCR analysis using the DNA intercalating dyes GoTaq qPCR Master Mix (Promega cat# A6001) and SYBR Green qPCR master mix protocol (Thermo Fisher Scientific cat# 4309155) with primers listed in Table 2.5. Reactions were prepared in MicroAmp™ Fast Optical 96-Well Reaction Plates with Barcode 0.1 ml (Thermo Fisher Scientific cat# 4346906). Reactions using the GoTaq qPCR Master Mix contained 5 µl cDNA dilution (1:15) and 10 µl of a master mix including 0.5 µl 10 µM primer mix, 7.5 µl GoTaq® qPCR

Master Mix and 2 μl DNase-free water per well. Reactions using the SYBR Green qPCR Master Mix contained 2.5 μl cDNA dilution (1:10) and 7.5 μl of a master mix including 0.3 μl 10 μM primer mix, 5 μl SYBR Green master mix and 2.2 μl DNase-free water per well. Standards consisted of a mixed pool of 3 μl from each cDNA sample diluted to 1, 0.2, 0.04 and 0.008 ng/μl (1:5 serial dilutions). A negative control without cDNA sample was performed and reactions were prepared as technical duplicates. Plates were sealed with MicroAmp<sup>TM</sup> Optical Adhesive Film (Thermo Fisher Scientific cat# 4360954) and centrifuged at 300 x g for 1 minute to collect reactions at the bottom of the wells. Gene expression was quantified in a AB StepOnePlus Real-Time PCR System (Thermo Fisher Scientific cat# 4376600) or a QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific). SDS software was used to validate the primer specificity, by analysis of the melting curve plot, and to determine the cycle thresholds (Ct). Gene expression was calculated relative to the standard curve and normalized to the expression of the housekeeping gene *GAPDH*, which was used as an internal control.

#### 2.19.2 Hydrolysis probe-based method

Gene expression levels were manually evaluated by RT-qPCR analysis using TaqMan FAST Advanced Master Mix Applied Biosystems (Thermo Fisher Scientific cat# 4444556) and hydrolysis probes listed in Table 2.6. Reactions were prepared in MicroAmp™ Fast Optical 96-Well Reaction Plates with Barcode 0.1 ml by addition of 9 μl of a master mix per well containing 0.5 μl Taqman assay probe, 5 μl 2X TaqMan FAST Advanced Master Mix and 3.5 μl DNase-free water for subsequent resuspension of 1 μl cDNA dilution (1:15). Plates were sealed with MicroAmp™ Optical Adhesive Film and reactions were pelleted by centrifugation. Gene

expression was quantified in a QuantStudio 5 Real-Time PCR System. Primer specificity was validated by analysis of the melting curve plot and Ct were determined. Gene expression was calculated relative to the standard curve and *GAPDH* was used as the reference gene to normalize data.

# 2.20 Assay for Transposase-Accessible Chromatin using sequencing

Chromatin accessibility was evaluated using the Assay for Transposase-Accessible Chromatin (ATAC)-seq employing a modified protocol to as reported (de Boer et al., 2018). Following single-cell sorting, 50.000 haematopoietic progenitors were pelleted by centrifugation at 300 x g for 10 minutes and 4°C and resuspended in 5 µl sucrose freezing buffer, consisting of 60 mM KCl, 15 mM NaCl, 5 mM MgCl<sub>2</sub>, 10 mM Tris pH 7.4 and 1.5 M sucrose. Cells in sucrose freezing buffer were snap frozen in liquid nitrogen and stored for subsequent ATAC digestions. Tubes were thawed at room temperature and 45 µl of ATAC reaction buffer, consisting of 25 µl Tagmentation DNA Buffer (Illumina cat# FC-121-1030, Nextera DNA Library Prep Kit), 2.5 µl Tn5 Transposase enzyme (Illumina cat# FC-121-1030, Nextera DNA Library Prep Kit), 1 μl of 0.5% Digitonin (Promega cat# G9441) and 16.5 μl water, were added. Reactions were gently pipetted to resuspend the nuclei in the transposition mix and incubated for 30 minutes at 37°C with gentle shaking. Reactions were purified using a MinElute Reaction Cleanup Kit (Qiagen cat# 28204) and transposed DNA was eluted in 10 µl Elution Buffer (10mM Tris buffer, pH 8). Purified DNA was stored at -20°C or directly amplified by PCR. To amplify transposed DNA fragments, reactions of 50 µl were prepared containing: 10 µl transposed DNA, 10 µl Nuclease-Free H<sub>2</sub>O, 2.5 µl 25 µM Customized Nextera PCR Primer Adaptor 1, 2.5 µl 25 µM Customized Nextera PCR Primer Adaptor 2 (barcoded) and 25 µl NEBNext High-Fidelity 2x PCR Master Mix (New England Biolabs cat# M0541). Adaptor 1 was the same for all reactions, whilst Adaptor 2 changed depending on the barcode required for each flow cell. Reactions were transferred to a Thermocycler with the starting following conditions: incubation at 72°C for 5 minutes, initial denaturation at 98°C for 30 seconds, 5 cycles (denaturation at 98°C for 10 seconds, annealing at 63°C for 30 seconds and elongation at 72°C for 1 minute) and reactions were held at 4°C.

Before proceeding with library amplification, 5 µl of DNA amplification was analysed by RT-qPCR reaction to monitor the PCR cycles, which allowed to determine the optimal number of cycles to amplify the transposed DNA, stopping amplification prior to saturation, in order to reduce GC and size bias. The remaining 45 µl of PCRamplified DNA was kept on ice. Reactions for RT-qPCR were prepared as follows: 5 μl of 5-cycle PCR-amplified DNA or water control, 4.44 μl Nuclease Free H2O, 0.25 μl 25 μM Customized Nextera PCR Primer Adaptor 1, 0.25 μl 25 μM Customized Nextera PCR Primer Adaptor 2, 0.06 µl 100x SYBR Green I (diluted from 10,000x stock in 10 mM Tris buffer pH 8), 5 µl NEBNext High-Fidelity 2x PCR Master Mix. Reactions were transferred to an ABI StepOne Real-time PCR machine with the following conditions: initial denaturation at 98°C for 30 seconds and 25 cycles (denaturation at 98°C for 10 seconds, annealing at 63°C for 30 seconds and elongation at 72°C for 1 minute). The additional number of cycles needed for the remaining 45 µl 5-cycle PCR-amplified DNA were calculated from the blue fluorescence raw values: the baseline value of the water reaction was subtracted from the plateau value of each sample reaction, then the resulting values were divided by 3 and finally the baseline value was added on. Resulting values were plotted in a linear graph together with the blue fluorescence raw data and the number of cycles required were determined by the intersection of the calculated values with the fluorescent values. The smaller cycle threshold value was taken when the intersection lied in between two cycle numbers.

The remaining 45 µl of amplified DNA were re-run on the starting PCR conditions with the correspondent calculated number of additional cycles. Adaptor dimers were removed from the libraries by adding 1.2x the sample volume of AMPure magnetic beads and pipetting 10x up and down. Reactions were incubated for 15 minutes at room temperature and the supernatant was removed by using a magnet to pellet the DNA-bead conjugates. Reactions were subjected to 2 washes with 200 µl freshly prepared 80% EtOH and beads were air-dried for 5-10 minutes. DNA was eluted from the beads by 5-minute incubation in water and beads were cleared out using the magnet. Libraries were evaluated using a High Sensitivity DNA chip on an Agilent Technologies 2100 Bioanalyser™ instrument and concentration was measured using a RT-gPCR-based method (KAPA Library Quantification Kit for Illumina Sequencing Platforms). Libraries were also validated by RT-qPCR evaluation of the ratio of open (TBP promoter) to closed regions of DNA (chromosome 18) and active gene body ( $\beta$ actin) (Table 2.7). Libraries were run in a pool of twelve indexed libraries in a NextSeq (Illumina) machine using sequencing by synthesis chemistry and a NextSeq® 500/550 High Output 75 cycle sequencing kit v2 (cat# FC-404-2005), obtaining 75 bp single-end reads.

# 2.21 Chromatin Immunoprecipitation

Haematopoietic progenitor cells in the floating fraction were harvested and a maximum of  $10 \times 10^6$  cells were pelleted per 15-ml collection tube. On some

occasions, the CD34+ fraction was enriched by MACS. Pellets were washed three times with PBS and single crosslinked by addition of 1 ml per 10<sup>6</sup> cells of IMDM with 10% FCS containing 1% methanol-free Formaldehyde (Thermo Fisher Scientific cat# 28906). Reactions were incubated for 10 minutes at room temperature on a tube roller mixer and stopped by addition of 1/10<sup>th</sup> of the reaction volume of 2M glycine solution. Cells were pelleted by centrifugation at 400 x g for 5 minutes at 4°C, washed twice with ice-cold PBS and snap frozen for storage at -80°C.

The Chromatin Immunoprecipitation (ChIP) protocol includes pre-conjugation of the antibody to the magnetic beads, chromatin preparation and sonication, immunoprecipitation (IP) of the chromatin-bound protein complexes, washes of the unbound antibodies, elution, reverse-crosslink of the immunoprecipitated chromatin and DNA isolation.

Antibodies were used against the following antigens (manufacturer, cat #): HA tag (Sigma, H6908), RUNX1 (Abcam, ab23980), H3K27ac (Abcam, ab4729), H3K4me3 (Merk, 07-473), H3K79me2 (Abcam, ab3594). Antibodies were first pre-conjugated to the magnetic beads: 15 μl per each IP of Dynabeads-Protein G (Thermo Fisher Scientific cat# 10003D) were washed with 500 μl 0.1 M citrate phosphate pH 5.0 buffer (4.7 g Citric Acid MW=192, 9.2 g Dibasic Sodium Phosphate (Na<sub>2</sub>HPO<sub>4</sub>) dehydrate MW=141.96 for 1L). For histone IP, 10 μl of Dynabeads-Protein G were used per reaction. Tubes were placed on a magnetic rack until supernatant was clear and the supernatant was discarded. Beads were resuspended in 15 μl per IP of 0.1 M citrate phosphate pH 5.0 buffer and the appropriate amount of primary antibody and 0.5% BSA were added per reaction. For most antibodies, 2 μg /IP was used,

whilst 1 µg was used for histone modification IPs. Antibody-bead reactions were incubated on a rotating wheel at 4°C for 2 hours.

Meanwhile, cell lysis and chromatin preparation were conducted: cell pellets were resuspended to 1 x 10<sup>7</sup> cells/ml in ice-cold lysis buffer A (10 mM HEPES pH 8.0, 10 mM EDTA, 0.5 mM EGTA, 0.25% Triton X-100) with freshly-added proteinase inhibitor cocktail (PIC, Merck cat# P8340). Suspensions were incubated on a rotating wheel for 12 min at 4°C and nuclei was pelleted by centrifugation at 500 x g for 7 min at 4°C. The supernatant was discarded, and nuclei were resuspended to 1 x 10<sup>7</sup> cells/ml in ice-cold lysis buffer B (10 mM HEPES pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.01% Triton X-100) with freshly-added PIC. Tubes were again incubated on a rotating wheel for 12 min at 4°C and chromatin was pelleted by centrifugation at 500 x g for 7 min at 4°C. The supernatant was discarded, and chromatin was resuspended in 300 µl per 2 x 106 starting cells of ice-cold IP buffer 1 (25 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.5% SDS) with freshly-added PIC. Sonication of the chromatin was performed using a Bioruptor® Pico sonication device (Diagenode). For that, 300 µl of each sample were transferred into 1.5 ml Bioruptor® Pico Microtubes with Caps (Diagenode cat# C30010016) and subjected to 6 cycles (30 sec ON, 30 sec OFF) for transcription factor IP or 10 cycles (30 sec ON, 30 sec OFF) for histone IP to produce fragments between 200-500 bp. Insoluble chromatin was pelleted by centrifugation at 16,000 x g for 10 min at 4°C and 300 µl of supernatant was transferred to a clean tube. Two volumes (600 µl) of IP buffer 2 (25 mM Tris-HCl pH 8.0,150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 7.5% glycerol) were added per tube and a 5% of reaction volume was aliquoted into a clean tube for input control preparation. For samples that were to be immunoprecipitated using the anti-H3K79me2 ab, a concentration of at least 0.2% SDS in the chromatin (after addition of IP buffer 2) was used. This opens up the chromatin within the deep cleft of H3 where K79 sits, allowing the antibody to bind. Samples could be snap frozen and stored at -80°C at this step if needed.

To continue with the IP step, the antibody-bead reactions were washed with 500 µl citrate-phosphate buffer after the 2-hour incubation step and supernatant was removed using a magnetic stand. Antibody-conjugated beads were resuspended in 15 µl per IP of citrate phosphate buffer 0.5% BSA and then 15 µl were added into each sonicated chromatin solution of 2 x 10<sup>6</sup> cells (suspended in approximately 900 µl of IP buffers). Chromatin-antibody reactions were incubated on a rotating wheel at 4°C overnight. Next day, 1 µl glycogen (20 mg/ml) was added to each chromatinantibody-beads mixture and reactions were subjected to washing steps on a magnetic rack. For that, supernatant was removed and beads were washed with 500 ul per wash, swapping the tube twice and leaving the buffer during 3 min, with the following buffers: once with Wash Buffer 1 (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM EDTA pH 8.0, 1% Triton X-100 and 0.1% SDS), twice with Wash Buffer 2 (20 mM Tris-HCl pH 8.0, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, and 0.1% SDS), once with LiCl Buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5% NP-40 and 0.5% Na-deoxycholate) and twice with TE/NaCl Buffer (10 mM Tris-HCl pH 8.0, 50 mM NaCl and 1 mM EDTA pH 8.0). Alternatively, a different washing protocol (twice with Wash Buffer 1, once with Wash Buffer 2, once with LiCl Buffer and twice with TE/NaCl Buffer) was used to reduce the stringency of the washes of samples with lower amount of immunoprecipitated chromatin. Chromatin was then eluted from the beads in a final volume of 100 µl by doing two consecutive incubations with 50 µl

Elution buffer (100 mM NaHCO $_3$  and 1% SDS) while shaking at 1,200 rpm at room temperature for 15 min. Meanwhile, input controls were incubated with 1  $\mu$ I RNaseA (10 mg/ml, Roche cat# 10109142001) for 30 min at 37°C and then samples were diluted to a final volume of 100  $\mu$ I in elution buffer. To proceed with reverse crosslink, reactions were prepared by adding 4  $\mu$ I NaCl 5M and 0.5  $\mu$ I of Proteinase K (50 mg/ml, Roche cat# 03115879001) to each IP sample and 1  $\mu$ I Proteinase K (50 mg/ml) and 1/10 volume (10  $\mu$ I) 10% SDS to each input control. Chromatin crosslinking was reversed by overnight incubation in a 65 °C water bath. Next day, DNA was isolated by 15-minute incubation at room temperature with 1.8x volume of AMPure beads, two washes with freshly-prepared 80% ethanol and elution with two incubations with 50  $\mu$ I 0.1x TE (pH 8.0) while shaking 15 minutes at room temperature. Samples were stored at -80°C or directly validated by RT-qPCR.

Prior to library preparation, the enrichment of specific antibody-bound chromatin regions was assessed by RT-qPCR using a SYBR Green master mix and primers designed to amplify human genomic regions (Table 2.8) in a AB StepOnePlus Real-Time PCR System. Standards consisted of genomic DNA from Kasumi-1 cell line diluted to 5, 1, 0.2 and 0.04 ng/µl (1:5 serial dilutions). A negative control without DNA sample was performed and reactions were prepared as technical duplicates. SDS software was used to validate the primer specificity, by analysis of the melting curve plot, and to determine the Ct. Amplification was calculated relative to the standard curve and normalized to the values obtained in the input control. Enrichment of genomic-bound regions was calculated comparing positive control regions (using primers amplifying known binding sites by the immunoprecipitated protein) to an unbound control region (Involucrin (IVL) gene, located in chromosome

1). RT-qPCR validations of RUNX1 and RUNX1-ETO ChIPs at both uninduced (0 Dox) and RUNX1-ETO-induced (5 Dox) conditions are shown in Figure 2.3.

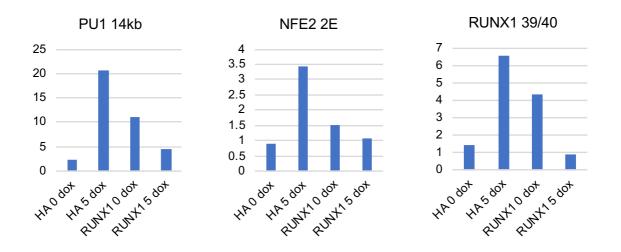



Figure 2.3: Enrichment of RUNX1 and RUNX1-ETO (0 and 5 Dox) ChIP at known binding regions

Manual ChIP qPCR showing enrichment of RUNX1 and RUNX1-ETO binding (at both 0 Dox and 5 Dox conditions) at known binding regions (PU 14 Kb, NFE2, and intronic RUNX1 enhancers). Enrichment is shown as normalized to input and to a control unbound region (IVL).

# 2.22 ChIP-sequencing (CHIP-seq) library preparation and sequencing

ChIP libraries for Illumina sequencing were prepared using the KAPA Hyper Prep Kit (Roche, KR0961), using the whole ChIP product suspended in a volume of 50 μl. End repair and A-tailing was conducted by 30-minute incubation at 20°C of the immunoprecipitated DNA fragments with 7 μl End Repair and A-tailing buffer and 3 μl of enzyme mix, followed by 30-minute incubation at 65°C. Adapters were ligated by 15-minute incubation at 20°C of the reactions after addition of 5 μl 1:10 dilution of adaptor stocks (to make a 200:1 adapter:insert ratio), 5 μl PCR-grade water, 30 μl ligation buffer and 10 μl DNA ligase. A bead-based post-ligation cleanup was performed using 0.8X AMPure XP beads and DNA fragments were eluted in 20 μl to proceed with library amplification. Reactions of 50 μl were prepared containing the

eluted adapter-ligated library, 25 μl KAPA HiFi HotStart ReadyMix (2X) and 5 μl KAPA Library Amplification Primer mix (10X). Libraries were amplified using the following thermocycling protocol: 98°C for 45 seconds, 16 cycles (98°C for 15 seconds, 60°C for 30 seconds and 72°C for 30 seconds) and 72°C for 60 seconds. Non-ligated adapters were eliminated by performing a post-amplification cleanup with 1.2X AMPure XP beads and libraries were subjected to size selection in a 2% agarose TAE gel containing 0.5 μg/ml ethidium bromide. Fragments of 200-500 bp in size were excised from the gel and purified using the QIAquick® Gel Extraction Kit as described in the manufacturer's protocol with the following modifications: gels were diluted in QG buffer whilst rotating and libraries were eluted in 12 μl Buffer EB.

Quality control of the libraries was performed using a High Sensitivity DNA chip on an Agilent Technologies 2100 Bioanalyser™ instrument and libraries were quantified using the RT-qPCR-based method KAPA Library Quantification Kit for Illumina Sequencing Platforms, following the manufacturer's protocol. Libraries were run in a pool of twelve indexed libraries in a NextSeq (Illumina) machine using sequencing by synthesis chemistry and a NextSeq® 500/550 High Output 75 cycle sequencing kit v2 (cat# FC-404-2005), obtaining 75 bp single-end reads.

# 2.23 Single Cell RNA-Seq (scRNA-Seq)

Non-adherent progenitors at day 22 of differentiation (untreated and 24-hour Dox treatment) were sorted for CD45+ CD34+ and RUNX1C+ in a MoFlo cell sorter. Cells were re-suspended in 80 µl at a concentration of 100-1200 cells/µl for evaluation of cell viability prior to loading of 4000 single cells on a Chromium Single Cell Instrument (10X Genomics). Library generation for scRNA-seq was performed by the

Genomics Birmingham Sequencing Facility using the Chromium Single Cell 3' Library and Gel Bead Kit v2 (10X Genomics). Libraries were paired-end sequenced on an Illumina NextSeq machine using the cycle parameters recommended by 10X Genomics.

# 2.24 Immunoblotting

Immunoblotting was performed as reported (Lamandé et al., 2011) with some modifications. Briefly, snap-frozen dry cell pellets were defrosted in cell lysis buffer consisting of 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 10 mM EDTA, 1% (vol/vol) Triton-X100, and 1:100 Protease Inhibitor Cocktail (2 M N-Ethylmaleimide and 100 mM 4-benzenesulfonyl fluoride hydrochloride). Nuclei and insoluble material were pelleted by centrifugation at 16,000 x g for 10 minutes at 4°C and the supernatant was transferred to a clean tube. Protein lysates were diluted in 4X Bolt™ lithium dodecyl sulphate Sample Buffer (Thermo Fisher Scientific cat# B0007) and 10 mM Dithiothreitol (DTT) and were denatured by incubation at 65°C for 10 minutes. Proteins were separated under denaturing conditions in Bolt 4-12 % Bis-Tris Plus precasted polyacrylamide gels (Thermo Fisher Scientific #NW04120BOX) with Bolt™ MOPS SDS Running Buffer (Thermo Fisher Scientific cat# B000102) at 80 V for the first 20 minutes and 150 V until the end. Precision Plus Protein Standard (#161-0373. BioRad) was used as a molecular weight marker. Proteins were transferred onto 0.2 μm Amersham™ Hybond® LFP PVDF Western blotting membranes (Merck cat# GE10600022) at 20 V for 1 hour using the Mini Blot Module (Thermo Fisher Scientific cat# B1000) as described by the manufacturer. Non-specific protein binding to the membrane was blocked by 1-hour incubation in 5% BSA (diluted in PBS) on a tube roller mixer. Membranes were rinsed with PBST (PBS + 0.1% Tween20) and

incubated in the dark with corresponding primary antibodies (Table 2.9) in PBST with 0.5% BSA. Membranes were rinsed twice and washed twice for 5 minutes with PBST and, when required, incubated in the dark with corresponding secondary antibodies (Table 2.10). Membranes were rinsed twice and washed three times for 5 minutes with PBST, rinsed three times with PBS and air-dried between two filter papers in a 37°C incubator for 30min. Fluorescent detection of antibodies was performed using an Amersham Typhoon NIR Plus Biomolecular Imager (GE Healthcare).

# 2.25 Statistical analysis

Experiments were analysed using GraphPad Prism versions 5–7 (GraphPad Software Inc.) and Microsoft Excel (Microsoft corporation).

# 2.26 Bioinformatic data processing and analysis

Bioinformatic analyses were performed by Dr Peter Keane (Prof Bonifer's lab).

#### 2.26.1 Bulk RNA-Seq data analysis

Sequencing adaptors and low quality bases were trimmed from the raw RNA-Seq reads using Trimmomatic v0.32 (Bolger et al., 2014). The processed reads were then aligned to the human genome (version hg38) using Hisat2 v2.1.0 (Kim et al., 2015) with default settings. Gene expression was measured as fragments per kilobase of transcript per million mapped reads (FPKM) values using with Stringtie v.1.3.3 (Pertea et al., 2015) with default settings. Gene models from the RefSeq database (O'Leary et al., 2016) were used as the reference transcriptome. Only genes that were expressed with an FPKM > 1 in at least one of the samples were retained for further analysis. The raw FPKM values were quantile normalized using the Limma package v3.26.9 (Ritchie et al., 2015) in R v3.5.1. The normalized data was then

log2-transformed, with a pseudocount of 1 being added to each of the FPKM values prior to transformation.

Differential gene expression analysis was carried out using Limma. A gene was considered to be differentially expressed if it had a greater than 2-fold change between experimental conditions, and a Benjamini-Hochberg adjusted p-value < 0.05. Kyoto encyclopedia for genes and genomes (KEGG) pathway enrichment analysis was done using the ClueGO plugin v2.5.0 (Bindea et al., 2009) for Cytoscape v.3.61 (Shannon et al., 2003). This was done using a right-sided hypergeometric test, with Benjamini-Hochberg p-value correction for multiple testing. A pathway was deemed to be significantly enriched if the adjusted p-value was < 0.05.

Hierarchical clustering of RNA-Seq samples and replicates was done by first calculating the Pearson correlation value for each pair of samples. The resulting correlation matrix was then hierarchically clustered using complete linkage clustering of the Euclidean distances, and finally plotted as a heatmap in R.

To carry out gene expression co-variance analysis, gene expression values were first transformed to Z-scores using the scale function in R. These were then hierarchically clustered using complete linkage of the Euclidean distances. Clusters corresponding to sets of genes with similar patterns of expression were then extracted from the dendrogram using the dynamicTreeCut package v1.63 (Langfelder et al., 2008) in R using the hybrid method with a minimum cluster size of 25 genes.

To compare the gene expression profile of the RUNX1-ETO induced cells to that of AML patients with the t(8;21) translocation, RNA-Seq data from t(8;21) patients and

from healthy peripheral blood stem cells (PBSCs) from *Assi et al.*, 2019 was downloaded from GEO using the accession GSE108316. These data were aligned and processed as described above. The sets of genes that were up and down regulated in the RUNX1-ETO induced cells was then compared to the gene expression profiles of the t(8;21) AML cells and PBSCs using gene set enrichment analysis (GSEA) using the GSEA software (Subramanian et al., 2005).

### 2.26.2 ATAC-Seq data analysis

Single-end reads from ATAC-Seq experiments were processed to remove low-quality bases and sequencing adaptors using Trimmomatic. Reads were then aligned to the human genome (version hg38) using Bowtie2 v2.2.6 (Langmead and Salzberg, 2012) with the parameter --very-sensitive-local. Reads that aligned to the mitochondrial genome were removed from further analysis. Potential PCR duplicated reads were identified and removed from the alignments using Picard v2.10.5 (http://broadinstitute.github.io/picard). Open chromatin regions (peaks) were identified using MACS2 v2.1.1 (Zhang et al., 2008b) using the settings --nomodel -nolambda -B --trackline. The resulting peaks were then filtered against the hg38 blacklist and simple repeat tracks from the UCSC table browser (Karolchik et al., 2004) to remove any potential artefacts. Peaks were annotated to the nearest gene, and then further annotated as either a promoter or distal element using the annoatePeaks.pl function in the Homer software package v4.9.1 (Heinz et al., 2010). A peak was annotated as being within a gene promoter if it was within 1.5 kb of a TSS and as a distal element otherwise.

ATAC peak unions were constructed by merging peaks that had summit positions within 400bp of each other. In these cases, peaks were combined to a single peak with a new summit position defined as the mid-point between the summit positions of the original peaks. These average peak positions were used in all further downstream analysis.

To identify regions of differential chromatin accessibility, a peak union was first created for each pair of samples being considered. The read density for these peaks was then retrieved directly from the bedGraph files produced by MACS2 using the annotatePeaks.pl function in Homer with the parameter -size 200. These tag counts were normalized as counts per million (CPM) in R, and further log2-transformed with a pseudocount of 1 added to each value prior to transformation. A peak was considered to be differentially accessible if the fold-difference of the normalized tag count was greater than 2 between experiments. Motif enrichment analysis was then carried out in these sets of peaks using the findMotifsGenome.pl function in Homer.

To create read density plots, peaks were first ordered according to fold-difference. The read density in a 2 kb window centred on the peak summits was then calculated from the bedGraph files produced by Homer using the annotatePeaks.pl file in Homer, using the options -size 2000 -hist 10 -ghist. These were then plotted as heatmaps using java TreeView v1.1 (Saldanha, 2004).

ATAC-Seq data from hematopoietic cell type in various stages of differentiation were obtained from *Corces et al.*, 2016 via GEO using the accession GSE74912. These data were aligned and processed as described above.

### 2.26.3 ChIP-Seq data analysis

Reads from ChIP-Seq experiments were processed, aligned to the human genome and de-duplicated in the same way described above for the ATAC-Seq data. Peaks from ChIP-Seq experiments targeting the transcription factors RUNX1 and RUNX1-ETO were identified using MACS2 with default settings. These peaks were then compared to the ATAC-Seq data, with only peaks that occurred within open chromatin regions being retained for further analysis. To identify differential binding of RUNX1 between the 0 and 5 Dox datasets, a union of RUNX1 peaks was first constructed by merging peaks that had summits within 100bp of each other. The read density in these peaks was then retrieved using the annoatePeaks.pl function in Homer and normalized as counts per million in R. Peaks that had a fold-difference of at least 2 were considered to be differentially bound between experiments. RUNX1 and RUNX1-ETO target genes were identified by annotating each peak to its closest TSS using the annotatePeaks.pl function in Homer.

Peaks corresponding to the histone modifications H3K27ac and H3K4me3 were called using MACS2 with default settings. These peaks were then filtered against the hg38 blacklist and simple repeat tracks from the UCSC table browser to remove any potential artefacts.

#### 2.26.4 Construction of average profiles

Average profiles for ATAC and ChIP-Seq data were constructed by first normalizing each of the alignment tracks as counts per million (CPM) using the bamCoverage function in deepTools v3.2.0 (Ramírez et al., 2016). These were then plotted using the plotProfile function in deepTools.

# 2.26.5 Single cell RNA-Seq data analysis

Illumina base call (BCL) files that were generated using the Chromium platform from 10x genomics were de-multiplexed and converted to the fastq format using the mkfastq function in CellRanger v2.1.1. These were then aligned to the human genome (version hg38) using the count function in CellRanger. Gene models from the RefSeq database were used as the reference transcriptome. Unique molecular identifier (UMI) counts were processed and normalized using the Seurat v2.3.4 package (Butler et al., 2018) in R. Cells with less than 1500 detectable transcripts, or that had more than 10% of UMIs aligned to mitochondrial genes were removed from further analysis. Additionally, transcripts that were detected in less than 20 cells were also excluded from analysis. The cell cycle stage for each cell was inferred using the CellCycleScoring function in Seurat. The possible effects of cell cycle stage, as well as sequencing depth (as measured by the total number of UMIs) per cell were removed from the analysis by linear regression using the ScaleData function in Seurat.

Clustering of cells was performed by first combining the datasets from the 0 and 5 dox treated cells into a single dataset using canonical correlation analysis (CCA). This combined dataset was then clustered using the t-distributed stochastic neighbour embedding (t-SNE) method. Cell clusters were identified using the FindClusters function in Seurat, using a resolution value of 0.4. Cell marker genes, corresponding to genes that are enriched on one cluster relative to others, were identified using the FindMarkers function. A gene was considered as a marker gene if it had a log fold-change value greater than 0.5 and could be detected in at least 50% of cells in that cluster. Differential gene expression analysis was also carried out for

each cluster using the FindMarkers function, with genes with a log-fold-change greater than 0.25 and an FDR < 0.05 being considered to be differentially expressed. Cell trajectory (pseudo-time) analysis was carried out using Monocle v2.10.1 (Qiu et al., 2017; Trapnell et al., 2014). Normalized UMI counts from Seurat were first imported into Monocle using the importCDS function. Cells were then ordered along a pseudo-time trajectory using the discriminative dimensionality reduction with trees (DDRTree) method using the complete set of cell marker genes identified by Seurat to order the cells.

# 2.27 Tables of primers and antibodies

Table 2.1: Primers used for cloning

| Oligonucleotide                  | Sequence                                                                           | Orientation | Modifications/N otes  | Description                                                                    |
|----------------------------------|------------------------------------------------------------------------------------|-------------|-----------------------|--------------------------------------------------------------------------------|
| Sall_HA-RUNX1                    | TACCGTCGACCCGCCATGT<br>ACCCATACGACGTCCCAGA<br>CTACGCTCGTATCCCCGTA<br>GATGCCAGCACGA | Forward     | NA                    | RUNX1-ETO cloning into AAVS1 plasmid                                           |
| ETO_Mlul                         | CGCAACGCGTCTACTAGCG<br>AGGGGTTGTCTCTA                                              | Reverse     | NA                    | RUNX1-ETO cloning into AAVS1 plasmid                                           |
| KRAS(Nter)<br>inFusion into Sall | GCTTTGAGATTCTGGAGCG<br>GCGAATGACTGAATATAAA<br>CTTGTGGT                             | Forward     | NA                    | KRAS InFusion<br>cloning downstream<br>DHFR domain                             |
| KRAS(Cter)<br>inFusion into Sall | GAGAGAGGGGCGGATCCG<br>TCTTACATAATTACACACTT<br>TG                                   | Reverse     | NA                    | KRAS InFusion<br>cloning downstream<br>DHFR domain                             |
| BamHI-FLAG-<br>STOP              | GATCCGACTACAAGGACGA<br>CGATGACTAA                                                  | Forward     | 5'<br>Phosphorylation | FLAG tag + STOP<br>insertion into BamHI<br>site downstream<br>DHFR domain      |
| BamHI-STOP-<br>FLAG              | GATCTTAGTCATCGTCGTC<br>CTTGTAGTCG                                                  | Reverse     | 5'<br>Phosphorylation | FLAG tag + STOP<br>insertion into BamHI<br>site downstream<br>DHFR domain      |
| KIT(Nter)_inFusi<br>on into Ascl | TGGAGGAGAATCCTGGCC<br>CGATGAGAGGCGCTCGCG<br>GCGC                                   | Forward     | HPLC purified         | KIT InFusion cloning upstream DHFR domain                                      |
| KIT(Cter)_inFusi<br>on into Ascl | GCAATCAGACTGATCATTT<br>GGCCGCCGACATCGTCGT<br>GCACAAGCA                             | Reverse     | HPLC purified         | KIT InFusion cloning upstream DHFR domain                                      |
| hGMCSF intron<br>1_KIT (Nter)    | GAGAATGAAAGTAATATCA<br>GGTAAGTGAGAGAATGTGG<br>GC                                   | Forward     | HPLC purified         | InFusion cloning of a STOP-containing INTRON between two exons of KIT          |
| hGMCSF intron<br>1_KIT (Cter)    | GTTAGATGAAGTTCACTTA<br>CGTATCTGTAGAAAAGGAA<br>AATGTC                               | Reverse     | HPLC purified         | InFusion cloning of a<br>STOP-containing<br>INTRON between two<br>exons of KIT |

Table 2.2: Primers for genomic DNA used in transgene screening assays

| Oligo name (binding)        | Orientation | Sequence                 |
|-----------------------------|-------------|--------------------------|
| AAVS1 5' screen (AAVS1 5')  | Forward     | GGACCACTTTGAGCTCTACT     |
| AAVS1 5' screen (T2A)       | Reverse     | TCCACGTCACCGCATGTTAG     |
| AAVS1 3' screen (TET3G)     | Forward     | TGCCTGCTGACGCTCTTGACGATT |
| AAVS1 3' screen (AAVS1 3')  | Reverse     | GAAGGATGCAGGACGAGAAA     |
| Wild-Type screen (AAVS1 5') | Forward     | CCCCTATGTCCACTTCAGGA     |
| Wild-Type screen (AAVS1 3') | Reverse     | CAGCTCAGGTTCTGGGAGAG     |
| T2AScreen 3.1               | Forward     | CCGCATGTTAGAAGACTTCCTCTG |
| GapScreen_5.2               | Reverse     | CCACTAGGCGCTCACTGTTCTCTC |

Table 2.3: Conjugated antibodies used for single cell sorting

| Antibody      | Fluorochrome | Manufacturer  | Catalogue # | Stock     | Dilution |
|---------------|--------------|---------------|-------------|-----------|----------|
| CD9           | PE           | BD Pharmingen | 555372      | 100 tests | 1:100    |
| CD34          | PeCy7        | BioLegend     | 343516      | 100 μg/ml | 1:100    |
| CD45          | BV-421       | BioLegend     | 304032      | 25 μg/ml  | 1:50     |
| CD90          | APC          | BD Pharmingen | 559869      | 0.2 mg/ml | 1:100    |
| CD326 (EpCam) | BV-421       | BioLegend     | 324220      | 100 tests | 1:30     |

Table 2.4: Conjugated antibodies used for flow cytometry

| Antibody               | Fluorochrome | Manufacturer  | Catalogue #   | Stock     | Dilution |
|------------------------|--------------|---------------|---------------|-----------|----------|
| CD16                   | PeCy7        | BioLegend     | 302015/302016 | 200 μg/ml | 1:40     |
| CD31                   | APC          | BioLegend     | 303115        | 80 µg/ml  | 1:50     |
| CD34                   | BV-421       | BioLegend     | 343609        | 25 tests  | 1:50     |
| CD34                   | PeCy7        | BioLegend     | 343516        | 100 μg/ml | 1:100    |
| CD38                   | APC          | BD Pharmingen | 555462        | 100 tests | 1:50     |
| CD43                   | BV-421       | BD HORIZON    | 562916        | 100 tests | 1:50     |
| CD45                   | BV-421       | BioLegend     | 304032        | 25 μg/ml  | 1:50     |
| CD90                   | APC          | BD Pharmingen | 559869        | 0.2 mg/ml | 1:100    |
| CD90                   | BV-421       | BioLegend     | 328121        | 200 μg/ml | 1:100    |
| CD144<br>(Ve-Cadherin) | APC          | BioLegend     | 348508        | 100 tests | 1:10     |

Table 2.5: Primers used for RT-pPCR gene expression analysis from total RNA

| Primers for cDNA    | Forward                  | Reverse                   |
|---------------------|--------------------------|---------------------------|
| GAPDH               | CCTGGCCAAGGTCATCCAT      | AGGGCCATCCACAGTCTT        |
| RUNX1 (Cter)        | CCCTCAGCCTCAGAGTCAGAT    | AGGCAATGGATCCCAGGTAT      |
| RUNX1 (Runt Domain) | AACAAGACCCTGCCCATCGCTTTC | CATCACAGTGACCAGAGTGCCAT   |
| RUNX1-ETO junction  | TCAAAATCACAGTGGATGGGC    | CAGCCTAGATTGCGTCTTCACA    |
| DHFR-KRAS           | AATTCCACGATGCTGATGCG     | CAAGGCACTCTTGCCTACGC      |
| KIT-DHFR            | TCAATTCTGTCGGCAGCACC     | CATGGCGTTTTCCATGCCGA      |
| RUNX1-EVI1 junction | CCACAGAGCCATCAAAATCA     | TCTGGCATTTCTTCCAAAGG      |
| EVI1 exon 7         | AAACCTTTGCCGTCATAAGCG    | CGTAGTGCTGAACATTTGTCCACAG |

Table 2.6: Taqman probes used for gene expression analysis from total RNA

| Name         | Probe         |
|--------------|---------------|
| GAPDH        | Hs99999905_m1 |
| GATA1        | HS00231112_m1 |
| GFI1         | Hs00382207_m1 |
| GFI1B        | Hs01062469_m1 |
| PU.1         | HS00231368_m1 |
| RUNX1 COMMON | HS00231079_m1 |
| RUNX1C       | Hs01021967_m1 |
| RUNX1T1      | Hs00231702_m1 |

**Table 2.7: Primers for validating ATAC** 

| Target        | Forward                 | Reverse                 |  |
|---------------|-------------------------|-------------------------|--|
| TBP promoter  | CTGGCGGAAGTGACATTATCAA  | CCCGACCTCACTGAACCC      |  |
| Chromosome 18 | AGGTCCCAGGACATATCCATT   | GTTCAAATTGTGTTTTGTGGTTA |  |
| β-actin       | GCAATGATCTGAGGAGGGAAGGG | AGCTGTCACATCCAGGGTCCTCA |  |

Table 2.8: Primers for human genomic DNA used for ChIP-qPCR enrichment

| Primers for gDNA Forward |                      | Reverse               |  |
|--------------------------|----------------------|-----------------------|--|
| IVL                      | GCCGTGCTTTGGAGTTCTTA | CCTCTGCTGCCACTT       |  |
| PU.1 -14kb enhancer      | AACAGGAAGCGCCCAGTCA  | TGTGCGGTGCCTGTGGTAAT  |  |
| CSF1R FIRE enhancer      | GCCTGACGCCAACAATGTG  | GGCAAAGGAGGGAAGTGAGAG |  |
| NFE2 2Enhancer           | AATAGCGAGGCCCCTCTTAG | ACCCAAACTGGAACACAA GG |  |
| RUNX1 39/40              | GATACCGGAAAGGCCTGTGA | AGTGCCTGGAAATGAACGT   |  |

Table 2.9: Primary antibodies used for Immunoblotting

| Antibody         | Fluorochrome | Manufacturer         | Cat #     | Immunoglobulin    | [mg/ml]   | Dilution |
|------------------|--------------|----------------------|-----------|-------------------|-----------|----------|
| FLAG tag         | APC          | BioLegend            | 637308    | Rat IgG2a         | 0.2       | 1:1000   |
| KRAS             | unconjugated | Abcam                | ab206969  | Rabbit monoclonal | 1.175     | 1:1000   |
| GAPDH            | unconjugated | Novus<br>Biologicals | NB300-221 | Mouse monoclonal  | 1         | 1:1000   |
| CD117<br>(c-KIT) | APC          | BioLegend            | 313206    | Mouse IgG1        | 100 tests | 1:100    |

Table 2.10: Secondary antibodies used for Immunoblotting

| Fluorochrome                   | Manufacturer            | Catalogue # | Immunoglobulin        | [mg/ml] | Dilution |
|--------------------------------|-------------------------|-------------|-----------------------|---------|----------|
| Alexa Fluor 488 anti-mouse     | Thermofisher Scientific | A-21202     | Donkey anti-Mouse IgG | 2       | 1:1000   |
| Alexa Fluor 488<br>anti-rabbit | Thermofisher Scientific | A-11034     | Goat anti-Rabbit IgG  | 2       | 1:1000   |
| Alexa Fluor 594<br>anti-rabbit | Thermofisher Scientific | A-11012     | Goat anti-Rabbit IgG  | 2       | 1:1000   |

### 3 RESULTS

#### 3.1 Generation of inducible RUNX1-ETO human ES cell lines

Human pluripotent stem cell models with conditional expression of RUNX1-ETO have been previously generated (Mandoli et al., 2016). However, the *in vitro* haematopoietic differentiation systems used remained skewed towards the differentiation of blood progenitors resembling those generated in the embryonic yolk sac. For this reason, we generated an inducible RUNX1-ETO human ES cell line and used a novel method to obtain progenitors resembling those generated in the embryonic AGM, as previously described (Ng et al., 2016).

In order to efficiently track the haematopoietic lineage differentiation, a dual reporter SOX17<sup>mCHERRY/w</sup> RUNX1C<sup>GFP/w</sup> human H9 ES cell line — wherein "w" refers to a wild-type allele — was previously generated in Prof Elefanty's lab (Ng et al., 2016) This tracer cell line carries a *mCHERRY* gene in the exon 1 of *SOX17* locus and a *GFP* gene in the exon 1 of *RUNX1* locus, resulting in expression of GFP from the distal promoter (*RUNX1C*) (Figure 3.1). *SOX17* expression marks the haemogenic endothelium and it is required to generate HSCs from the embryonic AGM in the mouse (Clarke et al., 2013; Kim et al., 2007). Despite its critical role in development of the haemogenic endothelium, SOX17 downregulation is required during the EHT to allow haematopoietic differentiation (Clarke et al., 2013; Nakajima-Takagi et al., 2013; Nobuhisa et al., 2014). *RUNX1C* expression is upregulated compared to the RUNX1B isoform in definitive haematopoietic progenitors, which coincides with the loss of the endothelial phenotype, making RUNX1C the dominant RUNX1 isoform in foetal liver blood progenitors (Sroczynska et al., 2009). In contrast to *RUNX1B*,

RUNX1C expression is restricted to haematopoietic cells and defines a subset of CD34+ cells with clonogenic and bone marrow homing activity (Ng et al., 2016). It has been shown that one functional RUNX1C isoform allele is sufficient for functional definitive progenitors (Ng et al., 2016; Sroczynska et al., 2009) and that disturbance of both alleles only modestly affects haematopoiesis (Sroczynska et al., 2009). Likewise, heterozygous deletion of Sox17 does not yield any adverse phenotype (Kim et al., 2007). Therefore, the SOX17mCHERRY/w RUNX1CGFP/w human H9 ES cell line allows to easily and safely track the endothelial (SOX17, mCHERRY) to haematopoietic (RUNX1C, GFP) transition and hence was selected as parental cell line for our RUNX1-ETO-targeting approach.

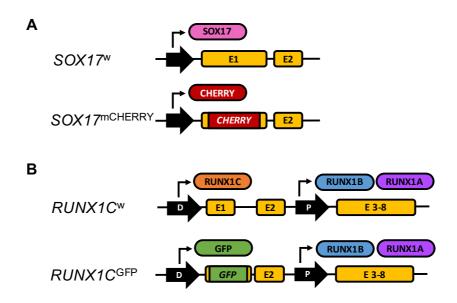



Figure 3.1: Schematic representation of the targeted alleles in the human H9 ES cell dual reporter line

<sup>(</sup>A) Wild-type and targeted alleles in the *SOX17* locus, with mCHERRY sequence inserted into exon 1. (B) Wild-type and targeted alleles in the *RUNX1* locus. GFP sequence was inserted into exon 1, resulting in expression of GFP from the distal (D) promoter and RUNX1B and RUNX1A isoforms from the proximal (P) promoter within the same allele. Promoters and exons are shown with black arrows and yellow boxes, respectively. Protein products generated from each allele is represented with ovals.

The AAVS1 locus displays an open chromatin conformation and contains insulator elements, thus allowing robust and unperturbed transgene expression (Lamartina et al., 2000; Lombardo et al., 2011; Ogata et al., 2003). For this reason, RUNX1-ETO was targeted to the AAVS1 locus of the dual reporter cell line. To achieve inducible activation of the oncogene, RUNX1-ETO was cloned into vectors containing a doxycycline (Dox) regulated promoter. For ease of detection of RUNX1-ETO in downstream assays, an HA tag was fused to its N-terminal domain. Vectors also included a puromycin cassette to select successfully targeted clones and homology arms to the human AAVS1 locus, allowing recombination of the cassette after linearization. RUNX1-ETO-containing vectors were co-transfected with a pair of previously validated transcription activator-like effector nucleases (TALENs) (Qian et al., 2014) into the dual reporter parental cell line (Figure 3.2). Targeted clones were selected with puromycin and subsequently subjected to single-cell sorting. In order to screen for transgene targeting into the AAVS1 locus, primer pairs were designed amplifying the 5' AAVS1 integration site, as shown in Figure 3.3A. Primer pairs were also designed spanning the AAVS1 integration site to distinguish double from single allele targeting, yielding a PCR amplifiable product only in presence of a residual wild-type allele. TALEN-mediated integration into the AAVS1 locus showed highly efficient double allele targeting of the RUNX1-ETO transgene (Figure 3.3B). Selected clones were re-screened for complete integration of the transgene by PCR amplification of the 3' vector-AAVS1 integration junction. In order to avoid the selection of clones harbouring aneuploidies, the molecular karyotype was evaluated by single nucleotide polymorphism (SNP) chromosomal microarray (Illumina Infinium

CoreExome-24 v1.1, 0.50Mb resolution), performed by Victorian Clinical Genetics Services Ltd. No aneuploidies were detected in any of the clones.

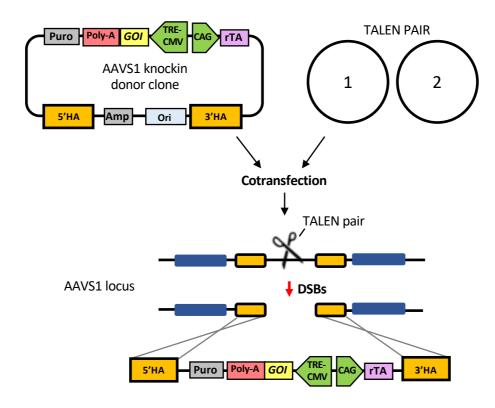



Figure 3.2: Schematic representation of the gene targeting approach

of Efficient knock-in the selected oncogenes into the AAVS1 of the locus SOX17<sup>mCHERRY/w</sup>RUNX1C<sup>GFP/w</sup> human ESC line H9 was performed as shown above. Genes of interest (GOI) were previously cloned into knock-in plasmids containing a puromycin resistance gene within two AAVS1 homology arms (HA). Knock-in donor plasmids were co-transfected with the TALEN pair and were integrated into the genome via homology recombination with the AAVS1 locus after a TALENs-mediated double strand break (DBS).

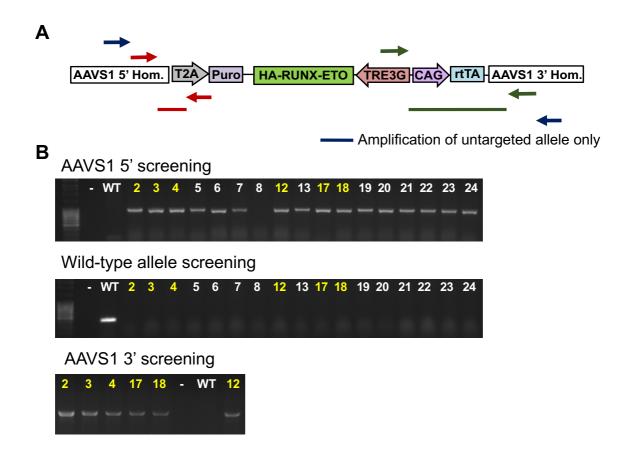



Figure 3.3: Efficient targeting RUNX1-ETO into the AAVS1 human locus

PCR screening to identify targeted clones. (A) Schematic representation of the transgene knock-in strategy into the AAVS1 safe harbour locus, showing the binding of AAVS1 5' (red) and AAVS1 3' (green) primer pairs, which amplify correctly targeted alleles, and of wild-type (blue) primer pair, which amplifies residual untargeted alleles. (B) Agarose gels showing PCR products corresponding to the amplification of the AAVS1 5' breakpoint (956 bp), wild-type allele (500 bp) and AAVS1 3' breakpoint (2,067 bp). Water was used as a negative control (-) and an AAVS1-untargeted cell line was used as a positive control (WT) for the wild-type allele amplification. Selected clones are coloured in yellow.

In order to prove efficient induction of the transgene expression and translation, targeted ESC clones were treated with 1 µg/ml Dox for two days and subjected to single-cell protein detection assays. Intracellular flow cytometry using a monoclonal anti-HA-tag DyLight® 650-conjugated antibody showed expression of RUNX1-ETO after Dox treatment in a pool of targeted cells (Figure 3.4A). RUNX1-ETO expression was also detected upon induction in all the selected single-sorted clones by

immunofluorescence assays, confirming homogeneous expression of the transgene within our cell populations (Figure 3.4B).

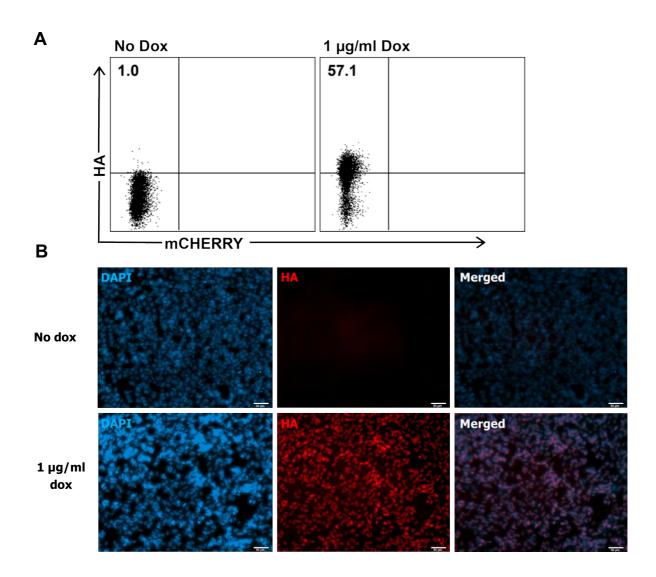



Figure 3.4: Targeted clones showed Dox-inducible *RUNX1-ETO* expression from the AAVS1 locus

Detection of RUNX1-ETO using an anti-HA tag DyLight® 650-conjugated antibody upon addition of 1  $\mu$ g/ml Dox for two days evaluated by (A) flow cytometry analysis in a pooled population of puromycin-resistant cells after transfection and (B) immunofluorescence assay of clone #18. Immunofluorescence images are representative of six single-sorted clones. Cell nuclei are stained with DAPI (blue) and cells expressing HA-RUNX1-ETO are detected through the anti-HA antibody (red). Fluorescence channels are merged on right panels. Scale bar: 50  $\mu$ m.

# 3.2 RUNX1C+ blood progenitors are generated from SOX17+ haemogenic endothelium

Recently, *Ng et al.* have developed a protocol that generates definitive progenitors from hPSCs, which rely in the formation of *HOXA*-expressing cultures resembling human AGM haematopoiesis in a dish (Ng et al., 2016). This protocol uses whole EBs in an adherent culture, allowing the formation of SOX17+ vascular structures and subsequent generation of RUNX1C+ haematopoietic progenitors. Aiming to better reproduce the first events leading to a t(8;21) pre-leukaemia in the embryo, we differentiated our RUNX1-ETO cell line following the method developed in Prof. Elefanty's lab (Ng et al., 2016). The experimental time course, culture conditions including non-adherent spin culture (or the formation of EBs) and adherent culture (for the generation of blood progenitors), equivalent embryonic developmental stages and cytokines used in culture are summarized in Figure 3.5. Importantly, mesoderm patterning to a definitive haematopoietic programme occurs upon addition of the Activin-inhibitor SB and the Wnt-agonist CHIR from day 2 to 4 (Ng et al., 2016). At this stage (d4), EBs appear round with a very defined edge (Figure 3.5, d6 image).

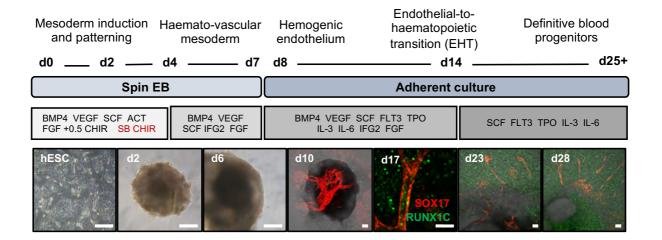



Figure 3.5: Time course of the in vitro human definitive haematopoietic differentiation

Diagram showing the time course of the *in vitro* human definitive haematopoietic differentiation as spin culture (for the formation of EBs) and adherent culture (for the generation of blood progenitors). Developmental stages as well as cytokines and factors are indicated. Epifluorescence (hESC, d2 and d6) and confocal images (d10-d28) of the cultures as representatives of each stage are shown. Human Embryonic Stem cells (hESC) appear at 50% confluency on a feeder layer. EBs appear as opaque round structures, surrounded by adherent cells (including stroma, endothelium and the first blood progenitors) from d10. Fluorescence and brightfield channels are merged in images corresponding to d10, d13 and d28. Scale bar: 100 µm. SOX17 (mCHERRY, red) expression marks vascular structures and RUNX1C (GFP, green) marks haematopoietic progenitors.

We were able to visually monitor the formation of SOX17+ (CHERRY) vascular structures and RUNX1C+ (GFP) haematopoietic progenitors thanks to the fluorescent markers of our dual reporter cell line. A selection of epifluorescence and confocal images representing the main phenotypic features of the time course during the *in vitro* human definitive haematopoietic cultures is represented in Supplementary Figure 1. By d8, EBs started expressing the vascular SOX17 (CHERRY) and the stem-like CD34 marker but lacked surface expression of the CD45 haematopoietic marker. During adherent cultures, EBs generate a stromal cell layer of vasculature, containing arterial cells, and haemogenic endothelium, as shown in Figure 3.6A. After the EHT (around d14), RUNX1C+ progenitors started to emerge from the EBs and SOX17+ haemogenic endothelium – including the inner side of the vasculature,

resembling progenitor formation within the AGM – forming cell clusters (Figure 3.6B). In our experiments, cytokines in the media were then changed to a 5-factor cocktail including SCF, FLT3, TPO, IL6 and IL3, given that this combination supports the growth of RUNX1-ETO-expressing CD34+ cord blood cells (Mulloy et al., 2002). Subsequently, haematopoietic progenitors detached from the endothelium and started populating the culture within the following days (Figure 3.7). Generation of haematopoietic progenitors continued until about day 28 (Figure 3.5, d28 image), which further differentiated to more mature stages.

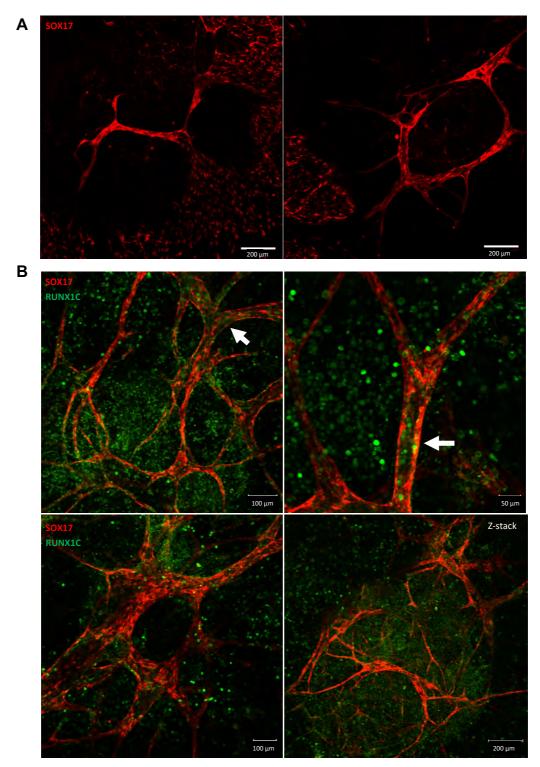
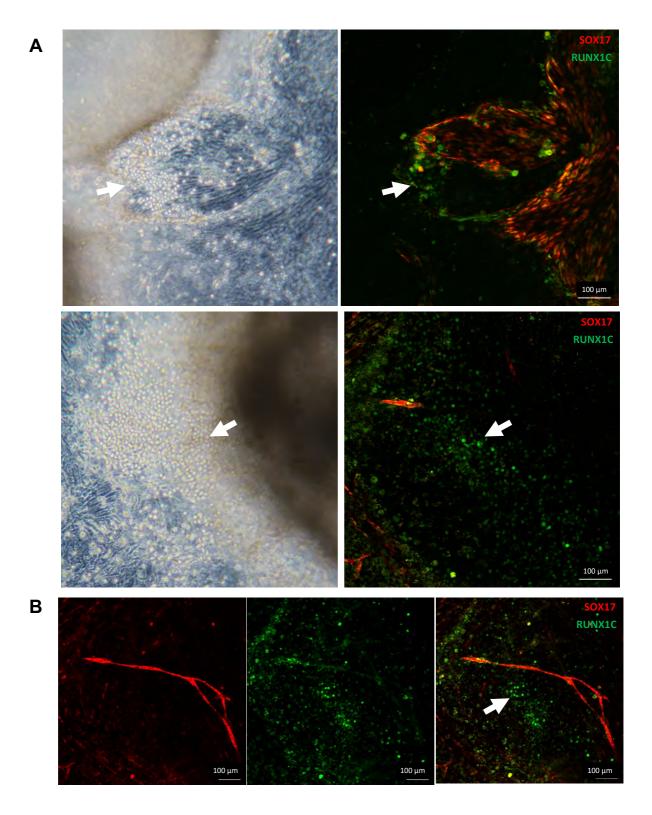
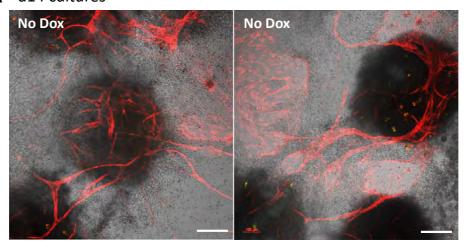


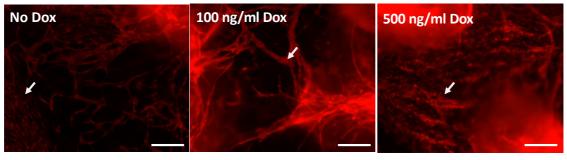

Figure 3.6: RUNX1C+ haematopoietic progenitors emerge from cell clusters located within vascular structures of SOX17+ hemogenic endothelium after the EHT

Confocal images at d12 (A) and d17 (B) of the adherent EB cultures. (A) SOX17+ hemogenic endothelium and vascular structures formed before the EHT. (B) Generation of RUNX1C+ blood progenitors from SOX17+ haemogenic endothelium. Bottom right panel shows an image as combined layers of Z-stack capture. Arrows point intra-vascular haematopoietic cell clusters mimicking the structures observed in the embryonic AGM. Scale bar:  $200 \, \mu m$ ,  $100 \, \mu m$  or  $50 \, \mu m$  as indicated. SOX17 (mCHERRY, red) and RUNX1C (GFP, green).





Figure 3.7: RUNX1C+ haematopoietic progenitors detach from the hemogenic endothelium and populate the culture

(A) Brightfield (left) and confocal (right) microscopy images. (B) Confocal single-layer (right and middle panels) and combined layers (left panel) of Z-stack images. Arrows point cell clusters of RUNX1C+ haematopoietic progenitors. Scale bar: 100 µm. SOX17 (mCHERRY, red) and RUNX1C (GFP, green).


### 3.3 High dosage of RUNX1-ETO reorganizes the vascular structures in a dose-dependent manner and blocks blood formation

In order to evaluate the effect of RUNX1-ETO during embryonic development, a preliminary assay was performed where EB cultures were treated with 0, 100 and 500 ng/ml Dox at d15 of differentiation and analysed at multiple time points thereafter. Half of the media was exchanged to add fresh Dox every three days. Cultures were carefully tracked during haematopoietic differentiation using fluorescence microscopy to visualize the fluorescent reporters. Wild-type EB cultures at d14, before the induction of RUNX1-ETO, presented an extensive SOX17+ (CHERRY+) endothelium, organised into a combination of vascular structures and endothelial cell monolayers, and few forming blood progenitors around the edges of the EBs (Figure 3.8A). Induction of RUNX1-ETO from d15 caused a disorganization of the vascular structures in a dose-dependent manner (Figure 3.8B); induction using 100 ng/ml Dox caused a reduction in SOX17+ (CHERRY+) cell monolayers and a gain in vessel thickness and higher Dox concentrations (500 ng/ml) resulted in aberrant aggregates of cell monolayers and further disorganization of the vessels. In the untreated control, RUNX1C+ blood progenitors appeared from around d15 and were abundant by d24. In contrast, high RUNX1-ETO expression from d15 completely abrogated blood formation (Figure 3.8C). Overall, high RUNX1-ETO dosage disrupts the organization of SOX17+ endothelial structures and abrogates the formation of haematopoietic progenitor cells.

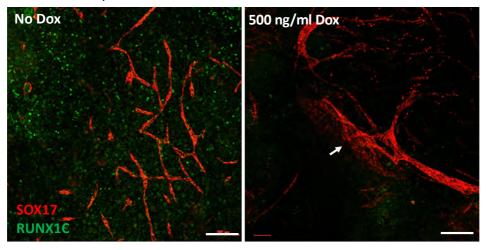
#### A d14 cultures

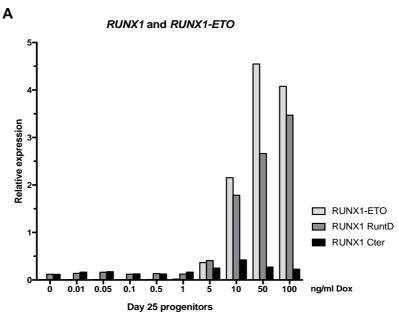


**B** d17 cultures, Dox from d15



C d24 cultures, Dox from d15





Figure 3.8: High dosage of RUNX1-ETO reorganizes the vascular structures in a dose-dependent manner and blocks blood formation

(A) Confocal images of wild-type EB cultures at d14 of haematopoietic differentiation. EBs appear as opaque round structures surrounded by a stromal layer containing SOX17+ vessels and monolayer endothelial structures. Fluorescence and brightfield channels are merged. (B) Epifluorescence microscopy images of d17 EB cultures upon 2-day treatment with 100 or 500 ng/ml Dox. Arrows point changes in SOX17+ structures upon induction of RUNX1-ETO. (C) Confocal images of d24 EB cultures wild-type and treated with 500 ng/ml Dox from d15 of differentiation. Scale bar: 200 μm. SOX17 (mCHERRY, red) and RUNX1C (GFP, green).

Small numbers of blood progenitors with multilineage capacity and abnormal morphology are present in the foetal liver of RUNX1-ETO knock-in mice (Okuda et al., 1998; Yergeau et al., 1997). Therefore, the lack of blood formation upon RUNX1-ETO expression suggested that induction at those levels is toxic for minimal blood cell development in general, and hence for the formation of a pre-leukaemic clone. Previous studies have proven a requirement for a delicate balance between the levels of RUNX1-ETO and endogenous RUNX1 expression for the maintenance of the leukaemic phenotype and cell growth and survival (Ben-Ami et al., 2013; Loke et al., 2017; Ptasinska et al., 2014). For this reason, Dox concentrations ranging from 0 to 100 ng/ml were titrated on d25 mixed haematopoietic progenitors and RUNX1-ETO and RUNX1 mRNA expression was evaluated. RUNX1-ETO transcripts could not be detected by qPCR using concentrations below 1 ng/ml Dox. However, RUNX1-ETO expression exceeded that of the endogenous RUNX1 by using concentrations over 10 ng/ml (Figure 3.9A). Addition of 1 µg/ml Dox to untargeted human H9 ES cell line had been previously tested by another PhD student in the lab and proved safe for cell viability and differentiation (data not shown). Thus, a negative control using the parental cell line was not performed in our assays, given the lower working concentrations of Dox used in our experiments as well as the high cost of the differentiation protocol.

Further evaluation of the induction levels of RUNX1-ETO was performed in three different CD34+ haematopoietic progenitors sorted on SOX17 and RUNX1C (S+R-, S-R- and S+R-). Upon sorting, populations of CD34+ progenitors were co-cultured on an AKT-expressing human umbilical vein endothelial stromal layer, to support their growth, and RUNX1-ETO was induced with 3, 5 or 10 ng/ml Dox thereafter. These

studies further demonstrated that both 3 and 5 ng/ml Dox yielded levels of *RUNX1-ETO* transcripts comparable to those of endogenous *RUNX1*. In line with the previous experiment, 10 ng/ml Dox resulted in higher levels of *RUNX1-ETO* expression (Figure 3.9B). Therefore, 5 ng/ml was selected as the optimal Dox concentration and used thereafter. The 3 and 10 ng/ml Dox concentrations were kept as indicators of the effect of a lower and higher RUNX1-ETO dosage.



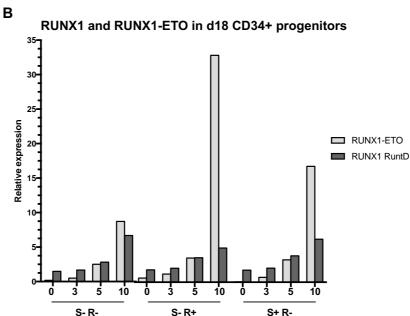



Figure 3.9: Balanced RUNX1-ETO levels are achieved using a low Dox concentration

(A) RUNX1-ETO and RUNX1 gene expression in response to Dox titration on d25 haematopoietic progenitors. Primers were designed to amplify: the translocation breakpoint (RUNX1-ETO), the DNA-binding domain present in both gene products (RUNX1 RuntD) and the Carboxy-terminal present only in endogenous RUNX1 (RUNX1 C-ter). Gene expression was normalized to that of GAPDH. N=1.

(B) RUNX1-ETO gene expression in response to Dox titration on SOX17 and RUNX1C sorted populations of CD34+ haematopoietic progenitors. Three CD34+ populations were sorted at d18 depending on SOX17 (marked as S) and RUNX1C (marked as R) expression and cultured on AKT-expressing human umbilical vein endothelial stromal layer. Primers were designed to amplify: the translocation breakpoint (RUNX1-ETO), the DNA-binding domain present in both gene products (RUNX1 RuntD) and the Carboxy-terminal present only in endogenous RUNX1 (RUNX1 C-ter). Gene expression was normalized to that of endogenous RUNX1 instead of GAPDH in order to exclude the stromal cells from the analysis.

# 3.4 Expression of *RUNX1-ETO* at balanced levels before the EHT disrupts vasculature and prevents blood formation

Studies on *in vitro* differentiation of mouse ES cells have described a developmental-stage-specific effect on blood cell development upon RUNX1-ETO induction, highlighting the importance for the oncogenic hit to appear in the right target cell (Regha et al., 2015). As described in the previous section, balanced levels of RUNX1-ETO to those of endogenous RUNX1 in our *in vitro* system can be achieved by using 5 ng/ml Dox. Based on these observations, our experimental strategy was designed to evaluate: (i) to which extent blood differentiation was affected by inducing RUNX1-ETO at balanced levels and (ii) whether the phenotype was affected by the time of Dox treatment. This was achieved using a series of experiments that involved a 7-day Dox treatment starting at different time points of the adherent EB cultures, as outlined in Figure 3.10.



Figure 3.10: Diagram of the experimental strategy of RUNX1-ETO induction for 7 days

Experimental outline used to evaluate the effects of different levels of RUNX1-ETO induction at several time points during the *in vitro* haematopoietic differentiation. Dox (0, 3, 5 or 10 ng/ml) was added at different time points after the adherent EB culture was set up. The floating haematopoietic cell fraction was subsequently harvested 7 days after Dox addition, and used for several assays including flow cytometry analysis, colony forming unit (CFU) assays in methylcellulose, replating assays and mRNA sample collection for gene expression analysis.

Maintenance of the desired RUNX1-ETO induction upon long-term Dox treatment at multiple time points was evaluated by analysis of gene expression levels from total RNA. As expected, *RUNX1-ETO* expression levels were strictly dependent on Dox dosage regardless of the induction time point during differentiation (Supplementary

Figure 2). Importantly, *RUNX1-ETO* expression was undetectable in the untreated samples as compared to an untargeted control cell line, hence indicating that transgene expression was not leaky in the absence of the inducer.

Prior studies using a mouse ES cell in vitro differentiation system have described a block of the EHT upon RUNX1-ETO induction (Regha et al., 2015). We therefore wanted to evaluate to which extent this holds true in our human ES cell system of definitive haematopoiesis. To this end, we induced RUNX1-ETO before the EHT (at d10) using 3, 5 or 10 ng/m Dox and evaluated phenotypic changes by confocal microscopy 4- or 6-days post-induction. We observed a Dox-dependent overall reduction of the number of blood progenitors, which also appeared phenotypically abnormal as compared to the wild-type conditions (Figure 3.11, Supplementary Figure 3). Wild-type cultures (no Dox) presented RUNX1C+ progenitors emerging from the EB as individual blood cells by d14 (Figure 3.11A) and/or forming cell clusters from hemogenic endothelium by d16 (Figure 3.11B). However, cultures treated with the low Dox concentration (3 ng/ml) generated reduced number of progenitor cells, which also lacked RUNX1C expression (Figure 3.11A). By using 10 ng/ml Dox, progenitor-resembling cells were attached to the endothelium forming big clusters and showing SOX17 expression by d14 (Figure 3.11A), which should be downregulated at the progenitor stage, and co-expression of both SOX17 and RUNX1C (appearing yellow) by d16 (Figure 3.11B). Moreover, induction of RUNX1-ETO not only affected the generation of blood progenitors but also yielded the appearance of aberrant structures in the cultures including disorganization of the vasculature (Figure 3.11A column 3, Supplementary Figure 3 (top panel), Supplementary Figure 4).

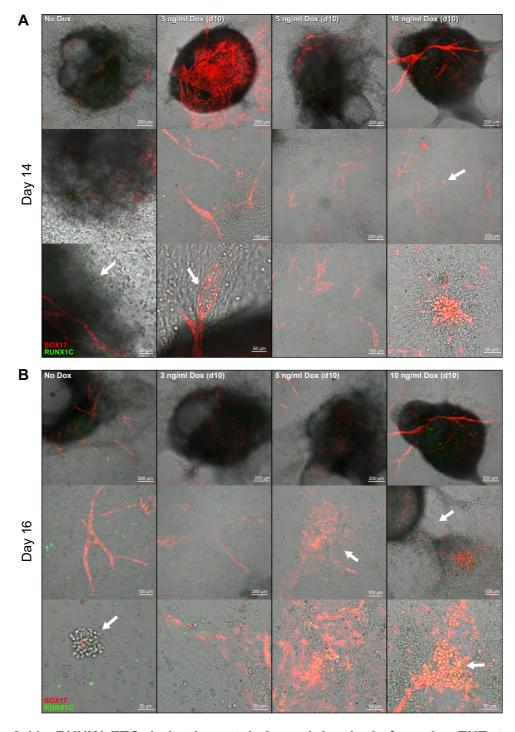
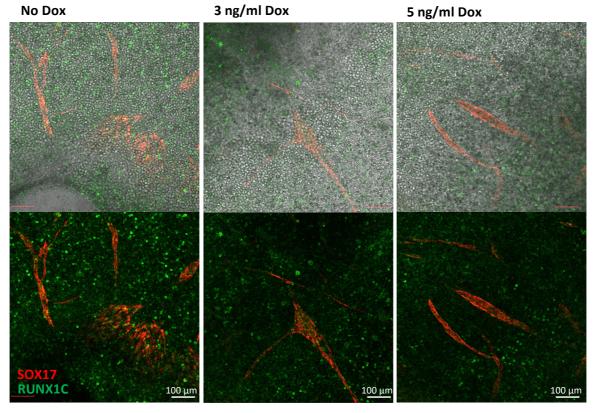




Figure 3.11: RUNX1-ETO induction at balanced levels before the EHT transition disrupts the vascular organization and blocks blood formation

Confocal images of combined Z-stack layers from d14 (A) and d16 (B) of haematopoietic differentiation cultures with RUNX1-ETO induced from d10 (before the EHT) using 3, 5 or 10 ng/m Dox. Each column shows different fields and magnification within the same Dox-treated culture. White arrows in the 0 Dox condition point emerging RUNX1C+ blood progenitors. Arrows in the Dox-treated samples point aberrant structures including disorganized vasculature, RUNX1C- emerging progenitors and RUNX1C+SOX17+ co-expressing progenitors. Brightfield and fluorescence field channels are merged. Scale bars: 50, 100 or 200  $\mu$ m, as indicated. SOX17 (mCHERRY, red) and RUNX1C (GFP, green).

### 3.5 Balanced *RUNX1-ETO* expression after the EHT allows vasculogenesis and emergence of blood progenitors

Previous studies have described a partial block in myeloid differentiation occurring in *RUNX1-ETO*-expressing myeloid progenitor cells (Regha et al., 2015; Rhoades et al., 2000). For this reason, we evaluated the effect on differentiation upon induction of the oncogene after the EHT, when blood progenitors were already present in culture. Induction during 7 days with 3 and 5 ng/ml Dox at several time points after d15, allowed apparently normal formation of SOX17<sup>CHERRY</sup> vessel structures and continuous production of RUNXC<sup>GFP</sup> blood progenitors. However, phenotypically abnormal vasculature and reduced formation of blood progenitors occurred upon 10 ng/ml Dox treatment (Figure 3.12).



10 ng/ml Dox

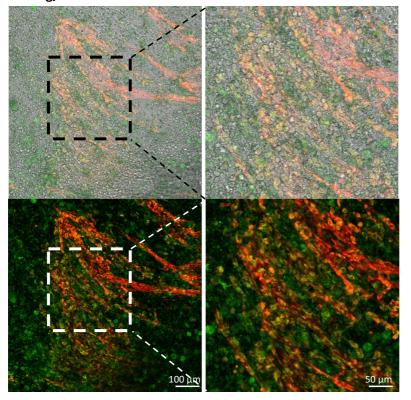



Figure 3.12: Balanced RUNX1-ETO expression (5 ng/ml Dox) after the EHT allows phenotypically normal vasculogenesis and generation of blood progenitors

Confocal microscopy images of cultures at d28 haematopoietic differentiation treated with 3, 5 or 10 ng/ml Dox from d21. Top images are an overlay of fluorescence and brightfield channels, bottom show florescence images channel only. Images are a representative of many day and biological replicates. Scale bars: 100 µm, last image it is a zoomin at 50 µm. SOX17 (mCHERRY, red) and RUNX1C (GFP, green).

### 3.6 Cells expressing *RUNX1-ETO* retain markers of immature progenitors

Balanced expression of *RUNX1-ETO* permits continuous formation of blood progenitors. We therefore evaluated whether the nature of the cell populations in culture was affected upon expression of the oncogene for 7 days. Blood cells in suspension were characterized by flow cytometric analysis based on expression of haematopoietic markers. Expression of *RUNX1-ETO* resulted in a dose-dependent decrease of RUNX1C+ and CD16+ granulocytic myeloid cells, the latter being barely present in the 10 ng/ml Dox-induced culture. Interestingly, we observed an appearance of a CD34+ CD38- CD90+ population of immature blood progenitors (Figure 3.13). Comparable results were observed following Dox induction of RUNX1-ETO at multiple time points during blood differentiation (Supplementary Figure 5). Moreover, cell populations also expressed additional immature markers, such as CD31 and VECad, upon *RUNX1-ETO* expression (Supplementary Figure 5). Overall, these results are in line with the previously reported studies in the mouse RUNX1-ETO-dependent block of haematopoietic differentiation at an early stage (Regha et al., 2015; Rhoades et al., 2000).

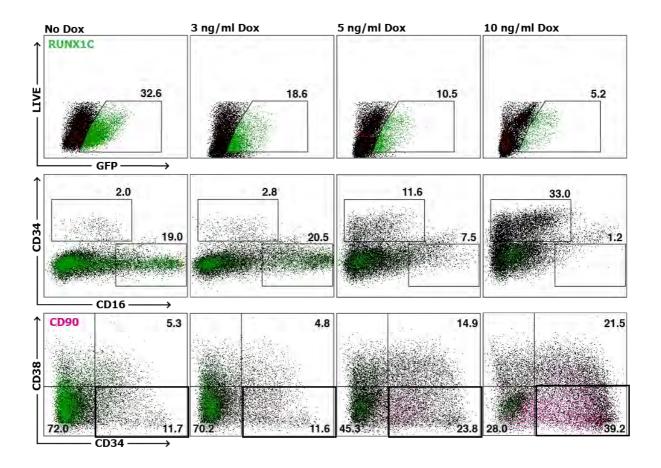



Figure 3.13: *RUNX1-ETO*-expressing cultures retain markers of immature myeloid progenitors

Flow cytometry analysis of the floating fraction of d34 haematopoietic progenitors upon RUNX1-ETO induction from d27. Results are a representative of three biological replicates with comparable results in all the selected stages during haematopoietic differentiation. Average data of flow cytometry analysis is shown in Supplementary Figure 5.

# 3.7 *RUNX1-ETO* expression results in a reversible decrease in colony forming capacity

In order to further characterise the nature of RUNX1-ETO expressing cells in longterm-induced cultures, methylcellulose assays were conducted to assess their clonogenic potential. Cultures were induced for 7 days with a range of Dox concentrations (3, 5 and 10 ng/ml) and progenitors in suspension were harvested and plated into colony-forming unit (CFU) methylcellulose assays. In the methylcellulose wells, either Dox treatment was continued at the same concentration or the inducer was removed (Figure 3.14A). Continued expression of RUNX1-ETO in CFU assays resulted in a dose-dependent inhibition of colony formation. However, withdrawal of Dox at the start of methylcellulose cultures, even after prolonged Dox exposure in culture, reversed the reduction of CFU activity, resulting in a dosedependent increase, suggesting reversibility of the proliferation or differentiation block mediated by RUNX1-ETO (Figure 3.14B). This was found reproducible and highly significant across different biological replicates and clones. Comparable results were observed with Dox treatment at different days during differentiation (Supplementary Figure 6A). In addition, the presence or absence of Dox did not impact on colony shape as compared to the un-induced conditions (Supplementary Figure 6B). Similar results were observed in RUNX1-ETO-induced yolk-sac-like haematopoietic progenitors (Supplementary Figure 6A), which were obtained by omitting the SB/CHIR-depending HOXA patterning step during d2-d4 of the differentiation. The reversible decrease in colony-forming capacity together with the accumulation of immature cells in culture, as observed in prior flow cytometric analysis, suggests a role for RUNX1-ETO in retaining highly clonogenic cells in a

quiescent state. A comparable phenotypic effect was observed regardless of the induction time in the progenitor cultures and in both definitive- and yolk-sac-resembling differentiation protocols, hence suggesting that the RUNX1-ETO-specific block of differentiation occurs regardless of the origin and nature of the progenitor cell acquiring the translocation event.

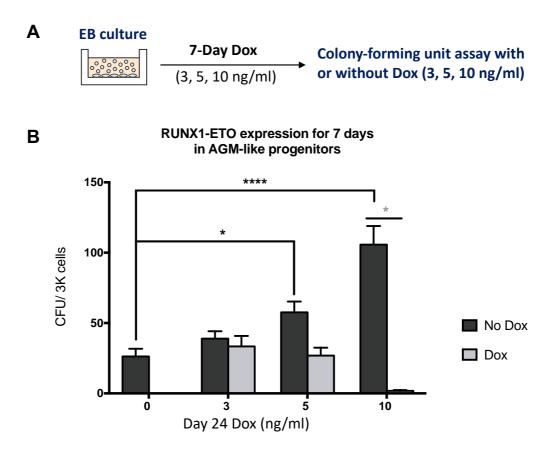
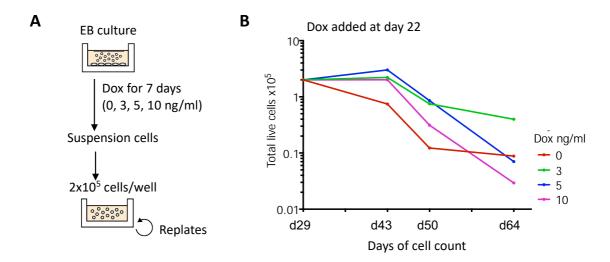




Figure 3.14: *RUNX1-ETO* expression results in a reversible decrease of colony forming capacity

Colony- forming unit (CFU) assays of progenitors from the floating fraction of EB cultures with continued or removed Dox treatment. (A) Diagram depicting the experimental strategy: EB cultures were treated with 3,5, or 10 ng/ml Dox at day 24 for 7 days and plated in methylcellulose (CFU assay) either in presence (light grey) or absence (dark grey) of Dox. (B) CFU assay representing data from three independent biologic replicates using two different clones (clone #2 and #4) conducted in triplicates with 3,000 cells plated per well. Continued Dox treatment in the CFU assay is light grey-coloured, absence of Dox appears as dark grey bars. Comparable results were observed with Dox treatment at different days during differentiation and at yolk-sac-like differentiated progenitors (Supplementary Figure 6). Error bars represent Standard Error of the Mean (SEM). Grey-coloured (\*): Multiple T-test, Statistical significance determined using the Holm-Sidak method, with alpha = 0.05. Each row was analysed individually, without assuming a consistent SD. Black-coloured (\*): Two-way ANOVA, Statistical significance determined using the Dunnett's multiple comparisons test.

# 3.8 *RUNX1-ETO* expressed at low levels confers survival but not proliferation to definitive blood progenitors *in vitro*

Previous studies have reported that constitutive RUNX1-ETO expression enhanced in vitro proliferation of human CD34+ cord blood haematopoietic cells whilst maintaining their self-renewal and differentiation potential (Mulloy et al., 2002, 2003). We therefore evaluated whether balanced levels of RUNX1-ETO promoted expansion of human blood progenitors generated in our in vitro hPSC differentiation system. To this end, EB cultures were treated with Dox (3, 5,10 ng/ml) for 7 days and the floating haematopoietic cells were subjected to serial replating assays (Figure 3.15A). Cells were replated at 2 x10<sup>5</sup> cells/well in fresh medium including the corresponding Dox concentration with which they were originally induced. Cell counts and serial replating of non-adherent cells was performed at 1-2 week intervals. Noninduced haematopoietic progenitors survived poorly, and most cells had died by the second passage. In contrast, all Dox-treated cells underwent an initial transient expansion/growth phase, but the long-term survival of the cultures was inversely related to the concentration of dox used. Whilst 10 ng/ml Dox treatment yielded rapid cell death after the initial growth phase; 5 ng/ml Dox treatment produced a less toxic phenotype. Treatment with 3 ng/ml Dox promoted the prolonged survival of a small subpopulation of cells (Figure 3.15B, Supplementary Figure 7). Cells from EB cultures initially treated with 3 ng/ml Dox from either day 20, 22 or 24, but not untreated cells, could be maintained in replating assays for over 100 days with continued Dox treatment (3ng/ml) (Figure 3.15C, Supplementary Figure 7B). Importantly, none of the different levels of RUNX1-ETO expression yielded cell expansion in our experimental system.



#### C Replated progenitors at d87

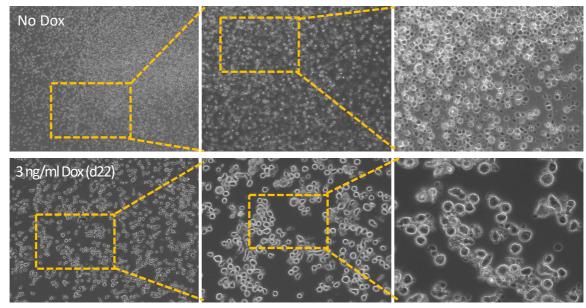



Figure 3.15: *RUNX1-ETO* expressed at low levels confers survival but not proliferation to a subset of *in vitro* definitive blood progenitors

(A) Schematic diagram of the replating assays: EB cultures were treated at different stages of haematopoietic differentiation with 0, 3, 5 or 10 ng/ml Dox for 7 days. Floating progenitors were plated at 2 x10<sup>5</sup> cells/well in the correspondent Dox concentration and were serially replated. (B) Cell count of haematopoietic progenitors from cultures treated at d22 with Dox showing one representative of three biological replicates. Cell growth was measured 3 times as indicated. (C) Brightfield images of haematopoietic progenitors from replating assays at d87 of differentiation uninduced (top row) and treated from d22 onwards with 3 ng/ml Dox (bottom row).

#### 3.9 RUNX1-ETO reduces cell proliferation through a G1-block

To examine the reason for the lack of cell expansion upon RUNX1-ETO expression in our in vitro system, we characterized the changes in cell cycle dynamics of our cultures upon induction of the oncogene. For this reason, we performed a cell proliferation assay by monitoring cell division through pulse labelling with Bromodeoxyuridine (5-bromo-2'-deoxyuridine, BrdU); a synthetic thymidine analogue that gets incorporated into newly synthesized DNA of replicating cells (Gratzner and Leif, 1981). RUNX1-ETO was induced for 4 days in our cultures using 5 ng/ml Dox and 25 μM BrdU was added to cell media for 3.5h. Non-adherent progenitor cells were collected and BrdU incorporation was detected using fluorescent-conjugated antibodies and analysed by flow cytometry. The DNA-intercalator Vybrant-DyeCycle was used as a DNA dye in order to evaluate the distribution of cells in the different cell cycle phases (G0/1, S or G2/M). RUNX1-ETO-induced cultures contained half the amount of non-adherent progenitor cells entering and progressing through the S-phase compared to untreated cells from cultures (Figure 3.16), suggesting a reduction of proliferation due to a block in G0/1.

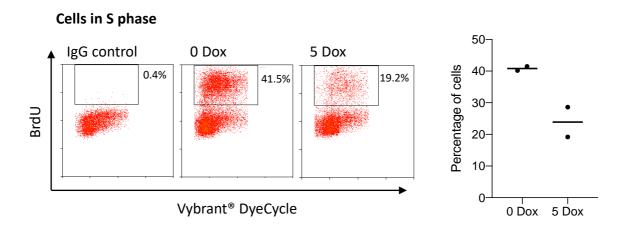



Figure 3.16: RUNX1-ETO induction produces a cell cycle arrest in the G1 phase

Histogram showing cell cycle kinetics of wild-type and RUNX1-ETO induced progenitor cells. EB cultures were induced at d21 with 5 ng/ml Dox for 4 days and then were pulse-labelled with BrdU for 3.5h. Non-adherent cell progenitors were fixed and stained with FITC-conjugated anti-BrdU antibody and Vybrant-DyeCycle. DNA content and cell cycle distribution were analysed by flow cytometric analysis. FITC IgG control is shown. Diagram on the right shows the percentage of cells in S-phase corresponding to two biological replicates (represented as dots) and the median values (represented with a line).

#### 3.10 RUNX1-ETO does not cause cell death via apoptosis

Given the lack of enhanced proliferation and the block at the G1 phase of the cell cycle in RUNX1-ETO induced progenitors, we sought to determine whether the RUNX1-ETO-dependent growth arrest would result in cell death via apoptosis. We therefore induced haematopoietic cultures for four days using 5 ng/ml Dox and non-adherent progenitors were harvested for subsequent stain with AnexinV, which is a marker of apoptosis. Balanced levels of RUNX1-ETO did not lead to cell death via the apoptotic pathway in our differentiation system (Figure 3.17). Whilst this experiment was conducted only once, we did not observe an overall increased cell death when performing routine trypan blue cell counts and flow cytometric analysis in our cultures (data not shown).

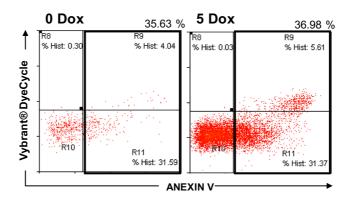
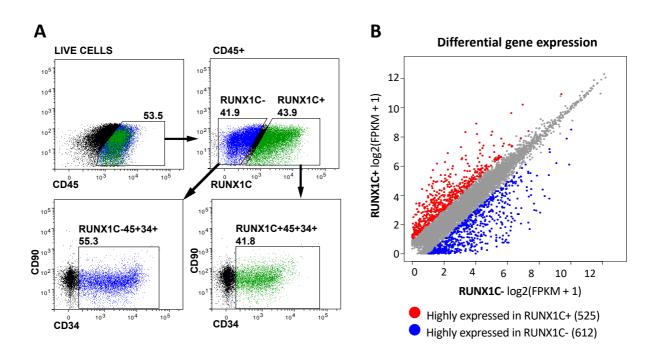



Figure 3.17: RUNX1-ETO does not cause cell death via apoptosis

Histograms showing AnexinV staining of wild-type and RUNX1-ETO induced progenitor cells. EB cultures were induced at d21 with 5 ng/ml Dox for 4 days and then non-adherent cell progenitors were harvested and stained with APC-conjugated anti-AnexinV antibody and Vybrant-DyeCycle. DNA content and apoptosis were analysed by flow cytometric analysis.


### 3.11 Expression of *RUNX1C* marks distinct haematopoietic lineages in uninduced cultures

Induction of RUNX1-ETO in progenitors derived from an *in vitro* mouse ES cell differentiation model result in distinct transcriptional outcomes that are dependent on the nature of the induced target population (Regha et al., 2015). We therefore examined the response to RUNX1-ETO induction in different cell populations.

In uninduced conditions, our in vitro system generates two main populations of CD45+ CD34+ non-adherent progenitor cells: RUNX1C- and RUNX1C+. RUNX1Cprogenitors may still express the RUNX1B isoform from the proximal promoter, as it has been shown that RUNX1B is important for definitive haematopoiesis in the AGM (Sroczynska et al., 2009). RUNX1C expression is more prevalent in murine HSC and developing T-cells (Telfer and Rothenberg, 2001). However, transcriptional control, including expression patterns and dosage levels, of the distinct RUNX1 isoforms requires further characterization in the human system. Unpublished data from Elefanty's lab (data not shown) has identified RUNX1C expression appearing in CD43+ yolk-sac-like in vitro differentiated progenitors. Moreover, RUNX1C expression is retained in myeloid progenitors and in mature myeloid cells, such as monocytes, even after loss of colony forming ability. RUNX1C was also downregulated during erythroid differentiation and very early during commitment to the lymphoid lineage in the in vitro differentiation system. However, molecular analyses of chromatin structure and gene expression patterns to confirm such observations are warranted.

In order to better understand the nature of both cell populations and hence identify the target cells resembling those in which the RUNX1-ETO translocation occurs *in* 

*utero,* prior to the establishment of the pre-leukaemic clone, we performed a deeper molecular characterization of both populations in uninduced conditions. To this end, we took advantage of our lineage tracing system to isolate two cell populations of interest from our wild-type cultures: SOX17-/CD45+/CD34+/ RUNX1C+(GFP+) and SOX17-/CD45+/CD34+/RUNX1C-cells, and performed bulk mRNA gene expression analysis (Figure 3.18A).



#### C Up-regulated in RxC+

| Term ID    | Term                                   | N. genes | p-value  | FDR      |
|------------|----------------------------------------|----------|----------|----------|
| KEGG:04015 | Rap1 signaling pathway                 | 27       | 4.08E-09 | 3.43E-07 |
| KEGG:04510 | Focal adhesion                         | 23       | 4.42E-07 | 1.86E-05 |
| KEGG:04640 | Hematopoietic cell lineage             | 14       | 6.65E-06 | 0.0001   |
| KEGG:04611 | Platelet activation                    | 16       | 5.82E-06 | 0.0002   |
| KEGG:04512 | ECM-receptor interaction               | 12       | 2.66E-05 | 0.0004   |
| KEGG:04151 | PI3K-Akt signaling pathway             | 28       | 2.47E-05 | 0.0004   |
| KEGG:04810 | Regulation of actin cytoskeleton       | 20       | 5.39E-05 | 0.0006   |
| KEGG:04270 | Vascular smooth muscle contraction     | 13       | 0.0003   | 0.0027   |
| KEGG:05200 | Pathways in cancer                     | 28       | 0.0003   | 0.0028   |
| KEGG:05205 | Proteoglycans in cancer                | 17       | 0.0008   | 0.0061   |
| KEGG:04014 | Ras signaling pathway                  | 18       | 0.0011   | 0.0074   |
| KEGG:04062 | Chemokine signaling pathway            | 15       | 0.0019   | 0.0113   |
| KEGG:04022 | cGMP-PKG signaling pathway             | 14       | 0.0018   | 0.0116   |
| KEGG:05410 | Hypertrophic cardiomyopathy (HCM)      | 9        | 0.0025   | 0.0130   |
| KEGG:05222 | Small cell lung cancer                 | 9        | 0.0027   | 0.0133   |
| KEGG:05219 | Bladder cancer                         | 6        | 0.0029   | 0.0136   |
| KEGG:04060 | Cytokine-cytokine receptor interaction | 19       | 0.0031   | 0.0138   |
| KEGG:04540 | Gap junction                           | 9        | 0.0037   | 0.0155   |
| KEGG:04371 | Apelin signaling pathway               | 11       | 0.0094   | 0.0343   |
| KEGG:05202 | Transcriptional misregulation in       | 13       | 0.0110   | 0.0386   |
|            | Wnt signaling pathway                  | 11       | 0.0110   | 0.0380   |
|            | ,                                      |          |          |          |
| NEGG.05414 | Dilated cardiomyopathy                 | 8        | 0.0138   | 0.0446   |

#### Down-regulated in RxC+

| Term ID      | Term                                   | N. genes | p-value  | FDR      |
|--------------|----------------------------------------|----------|----------|----------|
| KEGG:04640 H | ematopoietic cell lineage              | 23       | 2.02E-12 | 4.71E-11 |
| KEGG:04514 C | ell adhesion molecules (CAMs)          | 22       | 4.90E-08 | 2.02E-07 |
| KEGG:04658 T | h1 and Th2 cell differentiation        | 15       | 2.80E-06 | 1.03E-05 |
| KEGG:04060 C | ytokine-cytokine receptor interaction  | 27       | 7.98E-06 | 2.66E-05 |
| KEGG:04620 T | oll-like receptor signaling pathway    | 15       | 1.33E-05 | 4.04E-05 |
| KEGG:04064 N | IF-kappa B signaling pathway           | 14       | 2.01E-05 | 5.63E-05 |
| KEGG:04659 T | h17 cell differentiation               | 14       | 7.79E-05 | 0.0002   |
| KEGG:04621 N | IOD-like receptor signaling pathway    | 18       | 0.0001   | 0.0003   |
| KEGG:04380 C | steoclast differentiation              | 14       | 0.0006   | 0.0014   |
| KEGG:04062 C | hemokine signaling pathway             | 17       | 0.0009   | 0.0020   |
| KEGG:04610 C | omplement and coagulation cascades     | 9        | 0.0039   | 0.0083   |
| KEGG:05202 T | ranscriptional misregulation in cancer | 15       | 0.0052   | 0.0104   |
| KEGG:04670 L | eukocyte transendothelial migration    | 11       | 0.0055   | 0.0106   |
| KEGG:04066 H | IF-1 signaling pathway                 | 10       | 0.0066   | 0.0122   |
| KEGG:04668 T | NF signaling pathway                   | 10       | 0.0105   | 0.0179   |
| KEGG:04662 B | cell receptor signaling pathway        | 7        | 0.0221   | 0.0344   |

Figure 3.18: The wild-type CD45+CD34+RUNX1C+ cell population presents upregulation of genes active in multipotent progenitors and signalling pathways.

- (A) Flow cytometry strategy for sorting of d21 cultures based on CD45 (BV), RUNX1C (GFP/FITC) and CD34 (Pe-Cy7) expression.
- (B) Clustering of gene expression RNA-Seq data by log2 fold FPKM +1 (fragments per kilobase of transcripts per million mapped reads) values of genes differentially expressed (two-fold change) between RUNX1C+ and RUNX1C- cell populations. Adjusted P value <0.05.
- (C) Gene Ontology terms for up- (left) and down- (right) regulated genes in the RUNX1C+ (RxC+) compared to the RUNX1C- cell population.

Alignment statistics, including the number of total and aligned reads as well as the percentage of reads aligned, for each corresponding RNA-Seq library are shown in Table 3.1.

| RNA-Seq alignment statistics |             |               |           |  |  |
|------------------------------|-------------|---------------|-----------|--|--|
| Sample ID                    | Total reads | Aligned reads | % aligned |  |  |
| RUNX1c_neg_0Dox_Rep1         | 19642478    | 19294229      | 98.23     |  |  |
| RUNX1c_neg_0Dox_Rep2         | 20021355    | 19668635      | 98.24     |  |  |
| RUNX1c_neg_0Dox_Rep3         | 19424798    | 18986780      | 97.75     |  |  |
| RUNX1c_neg_3Dox_Rep1         | 21378674    | 20994904      | 98.2      |  |  |
| RUNX1c_neg_3Dox_Rep2         | 21936702    | 21061264      | 96.01     |  |  |
| RUNX1c_neg_3Dox_Rep3         | 19067867    | 18719083      | 98.17     |  |  |
| RUNX1c_neg_5Dox_Rep1         | 27420165    | 27032260      | 98.59     |  |  |
| RUNX1c_neg_5Dox_Rep2         | 29934399    | 29599972      | 98.88     |  |  |
| RUNX1c_neg_5Dox_Rep3         | 28992414    | 28650589      | 98.82     |  |  |
| RUNX1c_neg_10Dox_Rep1        | 22885523    | 22441877      | 98.06     |  |  |
| RUNX1c_neg_10Dox_Rep2        | 22194071    | 21765037      | 98.07     |  |  |
| RUNX1c_neg_10Dox_Rep3        | 17562889    | 17165571      | 97.74     |  |  |
| RUNX1c_pos_0Dox_Rep1         | 18344612    | 18001582      | 98.13     |  |  |
| RUNX1c_pos_0Dox_Rep2         | 19973654    | 19613159      | 98.2      |  |  |
| RUNX1c_pos_0Dox_Rep3         | 19651144    | 19322123      | 98.33     |  |  |
| RUNX1c_pos_3Dox_Rep1         | 22091133    | 21709205      | 98.27     |  |  |
| RUNX1c_pos_3Dox_Rep2         | 20602306    | 20258859      | 98.33     |  |  |
| RUNX1c_pos_3Dox_Rep3         | 16444423    | 16095980      | 97.88     |  |  |
| RUNX1c_pos_5Dox_Rep1         | 24377176    | 24051699      | 98.66     |  |  |
| RUNX1c_pos_5Dox_Rep2         | 32186546    | 31812118      | 98.84     |  |  |
| RUNX1c_pos_5Dox_Rep3         | 25008160    | 24653300      | 98.58     |  |  |
| RUNX1c_pos_10Dox_Rep1        | 21341572    | 20894702      | 97.91     |  |  |
| RUNX1c_pos_10Dox_Rep2        | 19445370    | 19051145      | 97.97     |  |  |
| RUNX1c_pos_10Dox_Rep3        | 13259339    | 12924741      | 97.48     |  |  |

Table 3.1: Read alignment statistics of RNA-Seq libraries

RNA-Seq statistics in the RUNX1C+ (RUNX1x\_pos) and RUNX1C- (RUNX1c\_neg) samples treated with 3, 5 and 10 ng/ml Dox and untreated, showing three sequenced independent biological replicates.

Bioinformatic analyses were performed by Dr Peter Keane (Prof Bonifer's lab) on data from three biological replicates of sorted progenitors. Comparison of differential gene expression in RUNX1C+ versus RUNX1- cell populations showed over 500 and 600 genes up- and down- regulated, respectively, demonstrating the different nature

of the two cell populations (Figure 3.18B, Supplementary Table 1). The RUNX1C+ population presented higher expression of the HSC-specific genes *GATA2*, *LYL1*, *MYB*, *NFE2* and *SOX4*, as well as the homeobox genes *MEIS1* and *MEIS2*. In addition, it also expressed the erythroid genes *GATA1*, *GFI1* and *KLF1*. Conversely, the RUNX1C- population has elevated expression of genes regulating monocyte lineage differentiation, such as *CD14*, *CSF1R*, *FCGR3A* (CD16a), *KLF4*, *IRF8*, *MS4A7*, *VCAN*, *FGL2* and, as well as macrophage development, such as *CEBPB*, *IL10* and *IL13RA1*. Moreover, it also displays high expression of lymphoid progenitor genes, such as *NKG7* and *IL7R*, expressed in Natural killer (NK) cells and T-cell progenitors, respectively.

Understanding the pathways and processes that these genes regulate might aid in the characterization of the two cell populations, for this reason we performed a pathway analysis on the differential expressed genes upon comparison to the KEGG (Kyoto Encyclopaedia of Genes and Genomes) PATHWAY database. Upregulated genes in the RUNX1C+ population are involved in megakaryocyte differentiation, cardiac development and Wnt signalling, which is important for cell fate (Gertow et al., 2013; Sturgeon et al., 2014). Upregulated genes in the *RUNX1C*- population (referred to as downregulated in RUNX1C+ in the differential gene expression analysis) are involved in Th cell differentiation as well as TNF and NK-kappa B signalling pathways, which are activated in both lymphoid lineages and macrophages (Figure 3.18C).

In order to evaluate whether differential gene expression was related to differences in chromatin structure between both populations, we examined genome-wide chromatin accessibility through an Assay for Transposase-Accessible Chromatin followed by next-generation sequencing (ATAC-seq). ATAC-Seq relies in the mapping of accessible DNA regions by hyperactive Tn5 transposase upon insertion of sequencing adapters into open genomic regions (Buenrostro et al., 2015). For the analyses of the sequenced open chromatin fragments, peaks that displayed a 2-fold differential enrichment in tag counts between samples were considered samplespecific. We observed 4297 and 2652 open chromatin sites specific for RUNX1C+ and RUNX1C-, respectively, that correlate with gene expression (Figure 3.19A, ATAC-Seq). Motif analysis in the RUNX1C+ open chromatin regions showed an enrichment of GATA, RUNX1, PU.1 and AP-1 binding motifs (Figure 3.19B), with GATA sites being exclusively present within the RUNX1C+ specific peaks (Figure 3.19A, Motif density). The RUNX1C- specific peaks were enriched in motifs that were also present in the shared and RUNX1C+ specific peaks, such as PU.1, but were lacking GATA and AP-1 motifs (Figure 3.19A and B). In line with this, RNA-Seg data from our experiments shows that both GATA1 and GATA2 transcription factors are expressed in the RUNX1C+ population, suggesting their binding onto the GATA specific sites.

Overall, analyses of differential gene expression and enrichment of accessible transcription factor motifs suggest that the RUNX1C+ population represents early multipotent and stem-like progenitors as well as erythroid precursors, whilst the RUNX1C- population includes common lymphoid progenitors as well as maturing myeloid cells, being mostly monocytes and primitive macrophages.

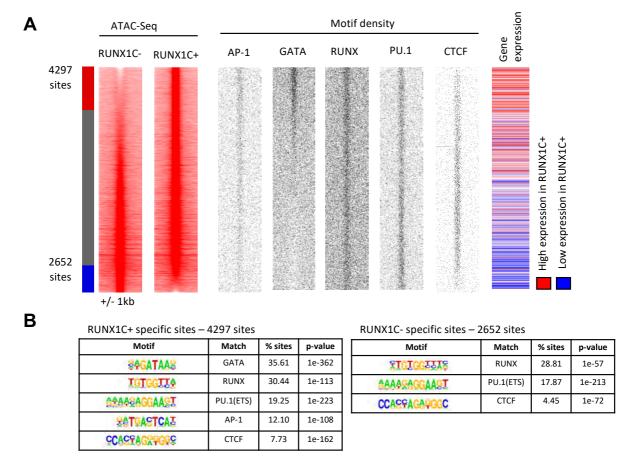



Figure 3.19: Open chromatin sites specific for the RUNX1C+ cell population are enriched in GATA and AP-1 motifs and correlate with upregulated gene expression

(A) Heatmaps depicting accessible chromatin regions ranked by fold difference between the RUNX1C- and RUNX1C+ CD45+ CD34+ sorted samples. ATAC-Seq peaks were considered sample-specific when displaying a greater than 2-fold enrichment compared to the other sample. Sample-specific sites and number of peaks are indicated alongside being: red the RxC+ specific, blue the RxC- specific and grey the shared peaks. Motif density plots and gene expression at these sites are ranked along the same coordinates as the ATAC-Seq peaks.

(B) Motif enrichment analysis in RxC- and RxC+ specific peaks.

## 3.12 RUNX1-ETO induction leads to cell-type and dose-dependent changes in gene expression

In order to understand the molecular basis underlying the cell stage-dependent RUNX1-ETO-driven phenotype we sought to examine the gene expression pattern of induced progenitors in the RUNX1C+ and the RUNX1C- population. We therefore used RNA-Seq to examine whether induction of RUNX1-ETO affected distinct sets of genes by performing a comparative gene expression analysis on data from three biological replicates of CD45+CD34+RUNX1C- and CD45+CD34+RUNX1C+ progenitors upon 24-hour Dox exposure (0, 3, 5 or 10 ng/ml) (Figure 3.20).



Figure 3.20: Experimental strategy for the comparison of the RUNX1-ETO-driven effect in RUNX1C- and RUNX1C+ progenitor populations

Outline of the experimental strategy used to evaluate the immediate molecular effects of different levels of RUNX1-ETO induction on distinct progenitors of the *in vitro* haematopoietic differentiation. Dox (0, 3, 5 or 10 ng/ml) was added during 24h in cultures at days d20-d21. Subsequently, CD45+CD34+ haematopoietic progenitors were sorted for RUNX1C- or RUNX1C+ (GFP+) expression and subjected to gene expression (RNA) and chromatin accessibility (ATAC) experiments followed to high throughput sequencing.

Prior RNA-Seq analyses, transcript levels from a collection of haematopoietic genes were manually quantified by RT-qPCR on both RUNX1C+ and RUNX1C- populations upon 24-hour induction from three biological replicates (Supplementary Figure 8). *RUNX1-ETO* and *RUNX1C* expression were used as a positive control for both the oncogene induction and the RUNX1C+ cell sort, respectively. RUNX1-ETO did not affect overall endogenous *RUNX1* expression – being mostly *RUNX1B* – which appeared sustained regardless of Dox treatment. However, RUNX1-ETO induction

resulted in a slight downregulation of RUNX1C transcript levels in RUNX1C+ populations. Moreover, cells showed downregulation of RUNX1 targets, such as GFI1B, PU.1 and GATA1, in both RUNX1C-/+ populations upon expression of *RUNX1-ETO*, in line with the phenotypic observation of the haematopoietic differentiation block.

As a control for oncogene induction, we first evaluated from our RNA-Seq data the *ETO* (*RUNX1T1*) transcript levels within each replicate. RUNX1-ETO induction levels were consistent across the biological replicates and each Dox concentration (Figure 3.21A). Gene expression analyses showed up- and down-regulation of similar number of genes in both RUNX1C- and RUNX1C+ populations with the same level of RUNX1-ETO induction, with the number of differentially expressed genes correlating to RUNX1-ETO dosage (Figure 3.21B, Supplementary Table 2). An exception was RUNX1-ETO induction using 10 ng/ml Dox in the RUNX1C- population, which yielded less upregulated genes than in the 5-Dox-induced RUNX1C- counterparts (Figure 3.21B, bottom right panel).

Although a similar number of genes was dysregulated in both populations, not all genes responded to RUNX1-ETO induction in the same manner, as some were upregulated, some were downregulated and the expression of others remained unchanged (Figure 3.22). Most of the genes that show a distinct response to RUNX1-ETO correspond to those that were already differentially expressed in both uninduced RUNX1C- and RUNX1C+ populations (Figure 3.22B, orange squares). A comparative analysis showed over 300 differentially expressed genes in RUNX1C+, as compared to the RUNX1C- population, upon induction with 3 and 10 ng/ml Dox (Supplementary Figure 9A), being 236 upregulated and 167 downregulated in the

RUNX1C+ population. Altogether, these analyses demonstrate that RUNX1-ETO dysregulates a different subset of genes depending on the type of progenitor cell.

We observed that a common subset of genes was dysregulated regardless of the RUNX1-ETO expression level, such as *CYP1A1* and *SPINK4*, with 10 ng/ml including the vast majority of the genes responding to 3 ng/ml Dox treatment (Supplementary Figure 9B, Supplementary Table 2). Differentially expressed genes upon treatment were clustered in 8 different groups depending on whether they were up- or down- regulated in each cell population or in both. Induction with 3 ng/ml Dox increased the proportion of upregulated genes (groups 1 (red), 2 (brown) and 3 (green)), whilst 10 ng/ml dox resulted in a larger proportion of downregulated genes overall (groups 6 (purple), 7 (yellow) and 8 (blue)) (Supplementary Figure 9C).

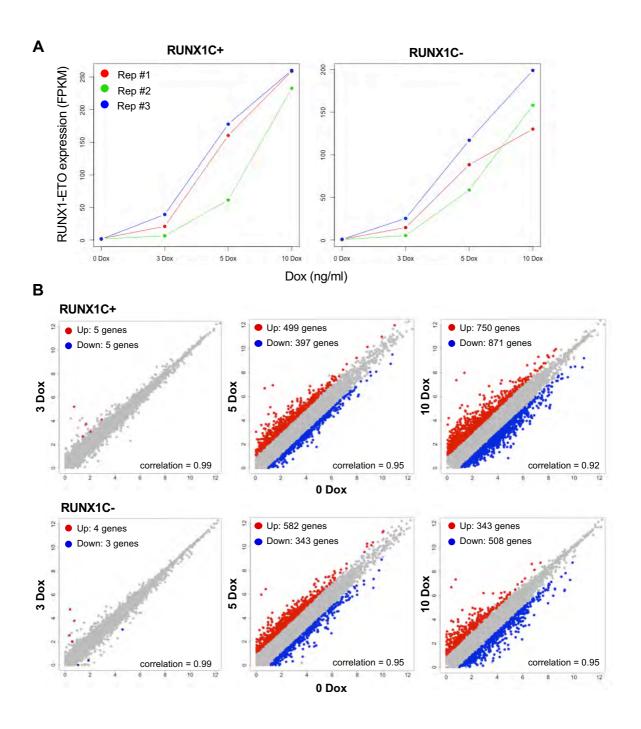
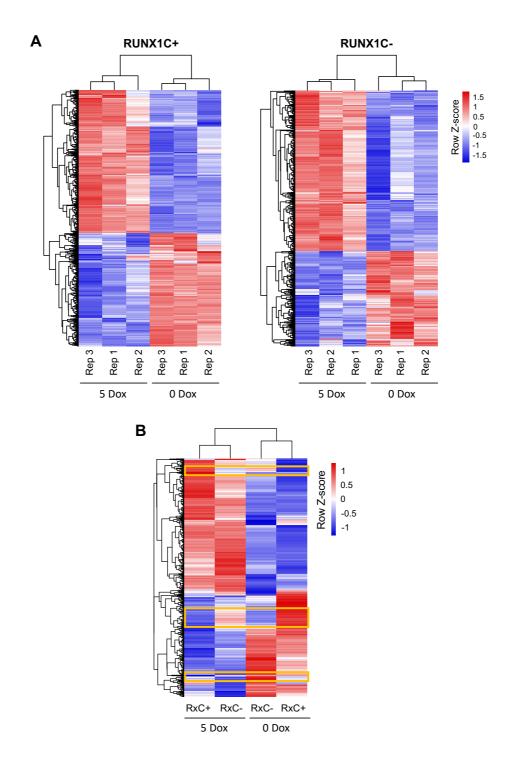
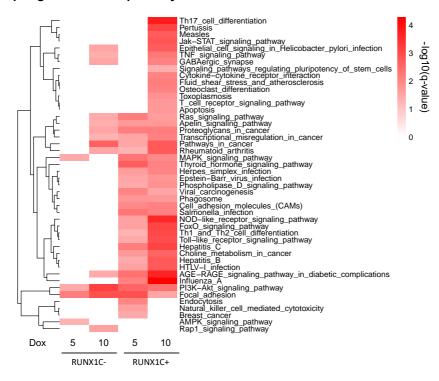



Figure 3.21: RUNX1-ETO induction leads to dose-dependent quantitative changes in gene expression

- A) ETO (RUNX1T1) mRNA transcript levels in both CD45+CD34+RUNX1C+ and CD45+CD34+RUNX1C- progenitors in response to treatment with 3, 5 10 ng/ml Dox for 24h. N=3. Each colour represents a distinct biological replicate.
- B) Clustering of gene expression RNA-Seq data by log2 fold FPKM +1 (fragments per kilobase of transcripts per million mapped reads) values of genes differentially expressed (two-fold change) after RUNX1-ETO induction using 3, 5 or 10 ng/ml Dox in both RUNX1C+ and RUNX1C- (CD45+ CD34+) populations. Adjusted P value <0.05.</p>





Figure 3.22: Distinct subsets of genes show different response to RUNX1-ETO induction

- (A) Clustering of gene expression data for the three replicates representing RUNX1C+ (left panel) and RUNX1C- (right panel) CD45+ CD34+ sorted cells both wild-type and after 24-hour RUNX1-ETO induction using 5 ng/ml dox. The figure includes all genes which showed up/down regulation after RUNX1-ETO induction in either the RUNX1C+ or RUNX1C- cell populations.
- (B) Clustering of gene expression in RUNX1C- and RUNX1C+ cells upon 24-hour RUNX1-ETO induction using 5 ng/ml dox using the merged data from each replicate in (A).

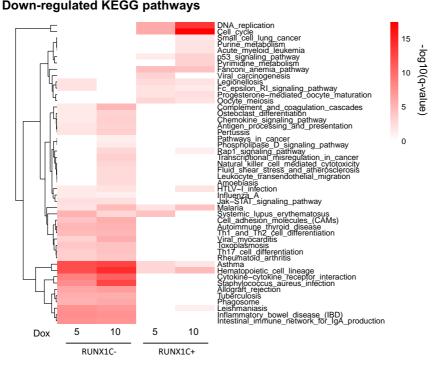
To examine whether RUNX1-ETO dysregulated distinct associated cellular functions in each population, we assigned differentially expressed genes to their associated KEGG pathways (Figure 3.23, Supplementary Dataset 1). Dysregulated cellular functions associated to gene sets responding to 5 or 10 ng/ml Dox induction differed as well. Upon RUNX1-ETO induction, the RUNX1C+ population upregulated genes, such as MAPK13, MYC, NOTCH1, PIK3IP1, STAT1 and TP53INP2, involved in cell signalling pathways including the RAS, Mitogen-Activated Protein Kinase (MAPK), Jak-STAT and PI3K/AKT/mTOR pathways. In contrast, RUNX1-ETO induction in RUNX1C- cells led to upregulation of only a subset of the pathways enriched in the induced RUNX1C+ population, such as the RAS and PI3K/AKT/mTOR pathways. Downregulated pathways in the RUNX1C+ populations included cell cycle (such as BUB1), DNA replication and repair (such as FANCB), p53 signalling (such as CHEK2) and haematopoietic lineages (such as CD38). The RUNX1C- population mainly downregulated genes related to the haematopoietic cell lineage (such as CSF1R and IL10) and genes from other haematopoietic functions such as the complement and coagulation cascade, natural killer cytotoxicity, leukocyte migration and Th cell differentiation. Interestingly, DNA replication and cell cycle pathways were only downregulated in the RUNX1C+ population. KEGG pathway enrichment analysis on the differentially expressed genes in RUNX1C+ compared to the RUNX1C- population further illustrates the heterogeneity of functional pathways depending on cell type and dosage of RUNX1-ETO. For example; Wnt signalling, protein digestion and absorption and phagosome pathways appeared upregulated in RUNX1C+ populations upon 3 ng/ml Dox only, whilst cell cycle genes appeared to be downregulated after treatment with 10 ng/ml Dox only (Supplementary Figure 9D).

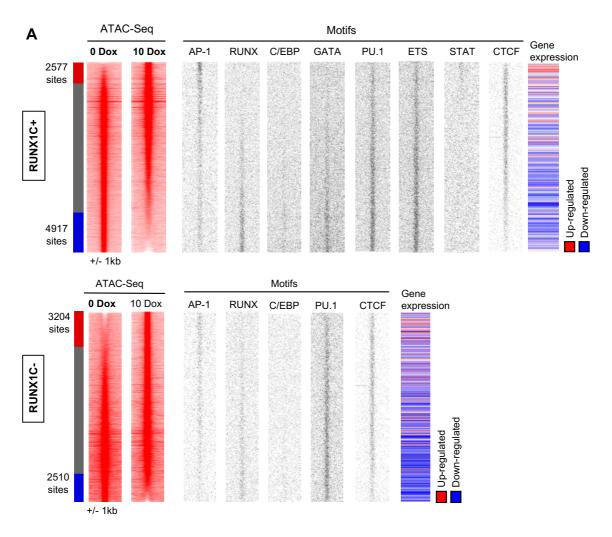
Overall, these data show that RUNX1-ETO induction yields a distinct gene expression response in a cell-type and dosage-dependent fashion and therefore evidences the importance of performing adequate RUNX1-ETO induction within the appropriate cell population.

#### **Up-regulated KEGG pathways**



#### **Down-regulated KEGG pathways**





Figure 3.23: Induction of RUNX1-ETO affects distinct pathways and associated cellular functions in each population

Heatmaps clustering KEGG pathways from the differentially expressed genes (up and down regulated) upon RUNX1-ETO induction (5 and 10 ng/ml Dox) in both RUNX1C- and RUNX1C+ sorted populations. Red colour intensity reflects the enrichment significance of the terms in -log10 (q value).

## 3.13 RUNX1-ETO induction in RUNX1C- and RUNX1C+ populations results in distinct patterns of accessible chromatin that are enriched in similar transcription factor binding motifs

We next wanted to evaluate whether the differential gene expression response after RUNX1-ETO induction was related to a distinct pattern of open chromatin and RUNX1-ETO binding in RUNX1C- and RUNX1C+ populations. In order to examine changes in chromatin accessibility, we performed ATAC-Seq on RUNX1C- and RUNX1C+ cells with or without 10 ng/ml Dox induction (Figure 3.24A). Sample specific peaks were defined by a 2-fold differential enrichment between samples. Induction of RUNX1-ETO with 10 ng/ml Dox resulted in 2577 and 3204 open chromatin sites in the RUNX1C+ and RUNX1C- populations, respectively. The majority of these open chromatin sites in the RUNX1C+ population, but not in the RUNX1C-, correlate with up-regulated gene expression. This result is consistent with the differential gene expression observed in both populations upon induction of the oncogene. Conversely, RUNX1-ETO induction resulted in closure of 4917 sites in the RUNX1C+ samples but only in 2510 inaccessible sites in the RUNX1C-. Shared peaks between both induced cell populations correlated with downregulated genes. Despite the distinct accessible chromatin profile between both induced populations, motif analysis in Dox specific regions showed an enrichment of similar transcription factor binding motifs, including AP-1, ETS and CTCF motifs (Figure 3.24A and B). In addition, 10-Dox specific accessible sites in RUNX1C+ treated cells were also enriched in STAT binding motifs. Both treated populations presented loss of chromatin accessibility in sites harbouring RUNX1, PU.1 and C/EBP. However, RUNX1-ETO induction in RUNX1C+ also resulted in closure of sites enriched in

GATA motifs. This finding is consistent with the presence of accessible GATA sites in uninduced RUNX1C+, but not in RUNX1C-, cells, as demonstrated above (Figure 3.19A). Altogether, this assay suggests that RUNX1-ETO affects chromatin accessibility in a cell-specific manner but resulting accessible sites are enriched in similar transcription factor motifs.



#### B RUNX1C+

10 Dox specific sites - 2577

| Motif              | Match     | % sites | p-value |
|--------------------|-----------|---------|---------|
| SAGGAAGT           | ETS 24.06 |         | 1e-72   |
| <b>∲£TGASTCA</b> ₹ | AP-1      | 16.14   | 1e-232  |
| CCASSAGSAGGC       | CTCF      | 11.02   | 1e-161  |
| TTCCSCGAAS         | STAT      | 8.54    | 1e-38   |

0 Dox specific sites - 4917

| Motif                    | Match     | % sites | p-value |
|--------------------------|-----------|---------|---------|
| IGATAASS                 | GATA      | 24.08   | 1e-168  |
| <b>AAAAGAGGAAGI</b>      | PU.1(ETS) | 20.99   | 1e-422  |
| TGTGGTIA                 | RUNX      | 20.70   | 1e-255  |
| <b><u>ETTASSCAAE</u></b> | C/EBP     | 12.24   | 1e-55   |
| <b>ATGASTCATS</b>        | AP-1      | 9.52    | 1e-63   |
| <b>ECCETCTORIGE</b>      | CTCF      | 7.81    | 1e-151  |

### **RUNX1C-**

10 Dox specific sites - 3204

| Motif               | Match     | % sites | p-value |
|---------------------|-----------|---------|---------|
| CCACTAGRAGGC        | CTCF      | 14.24   | 1e-289  |
| <b>AAAAGAGGAAGT</b> | PU.1(ETS) | 11.24   | 1e-115  |
| ATGASTCATS          | AP-1      | 8.77    | 1e-89   |

0 Dox specific sites - 2510

| Motif               | Match     | % sites | p-value |
|---------------------|-----------|---------|---------|
| <b>AAAAAGGAAGIR</b> | PU.1(ETS) | 24.58   | 1e-159  |
| <b>FUTGTCGTUA</b>   | RUNX      | 11.47   | 1e-65   |
| <b>STTZCISA</b> A   | C/EBP     | 6.18    | 1e-29   |
| CCASSAGAGGGC        | CTCF      | 5.70    | 1e-91   |

Figure 3.24: RUNX1-ETO-expressing RUNX1C- and RUNX1C+ cells present a different pattern of accessible chromatin sites that are enriched in similar motifs

(A) Heatmaps depicting accessible chromatin regions ranked by fold difference between the 0 and 10 ng/ml Dox treated samples in RUNX1C+ (above) and RUNX1C- (below) cell populations.

- ATAC-Seq peaks were considered sample-specific when displaying a greater than 2-fold enrichment compared to the other sample. Sample-specific sites and number of peaks are indicated alongside, being: red the 10-Dox specific, blue the 0-Dox specific and grey the shared peaks. Motif density plots and gene expression at these sites are ranked along the same coordinates as the ATAC-Seq peaks.
- (B) Motif enrichment analysis in 0 and 10 Dox-specific peaks from both RUNX1C+ (left) and RUNX1C- (right) samples.

# 3.14 RUNX1-ETO dysregulates a similar subset of RUNX1-ETO target genes in both *in vitro* RUNX1C+ and *RUNX1-ETO*-transduced CD34+ cord blood progenitors

In order to further evaluate the significance of the RUNX1-ETO-mediated gene expression response in our progenitors, we sought to identify the shared RUNX1-ETO target genes to previously published data. Given that leukaemic blasts express RUNX1-ETO at higher levels than HSCs (Shima et al., 2014), we compared differentially expressed genes upon 10 ng/ml Dox induction, merged from both RUNX1C- and RUNX1C+ CD34+CD45+ cells, to known RUNX1-ETO-target genes (Figure 3.25A). Known RUNX1-ETO targets were obtained from data of RUNX1-ETO-transduced CD34+ cord blood cells (Lin et al., 2017b) and from t(8;21) patient sample databases (Ptasinska et al., 2012). We observed that a third of the upregulated genes and half of the downregulated genes from our progenitor samples corresponded to known RUNX1-ETO direct targets (Figure 3.25A).

We next wanted to identify the target cell population that yielded an analogous RUNX1-ETO-responding gene expression profile to other *RUNX1-ETO*-expressing systems and patient samples. With this aim, we compared, by hierarchical clustering, RUNX1C- and RUNX1C+ populations with or without 3 or 10 ng/ml Dox induction to gene expression data from wild-type and *RUNX1-ETO*-transduced CD34+ cord blood

cells (Lin et al., 2017b) as well as from peripheral blood stem cells (PBSCs) and t(8;21) patient samples (Ptasinska et al., 2012) (Figure 3.25B). Samples of the same cell nature clustered together, with our early *in vitro* progenitors clustering away from the more mature CD34+ cord blood progenitors and patient blasts, indicating that RUNX1-ETO does not totally override cell intrinsic gene expression programs. However, comparison of gene expression using only known RUNX1-ETO targets highlighted similarities between our induced RUNX1C+ populations and the *RUNX1-ETO*-transduced CD34+ cord blood cells, which represented the most undifferentiated cells within the comparative samples (Figure 3.25C). This highlights the relevance of our model, representing a more undifferentiated progenitor, compared to adult haematopoietic cells, that shares expressed RUNX1-ETO targets with other *RUNX1-ETO*-expressing systems.

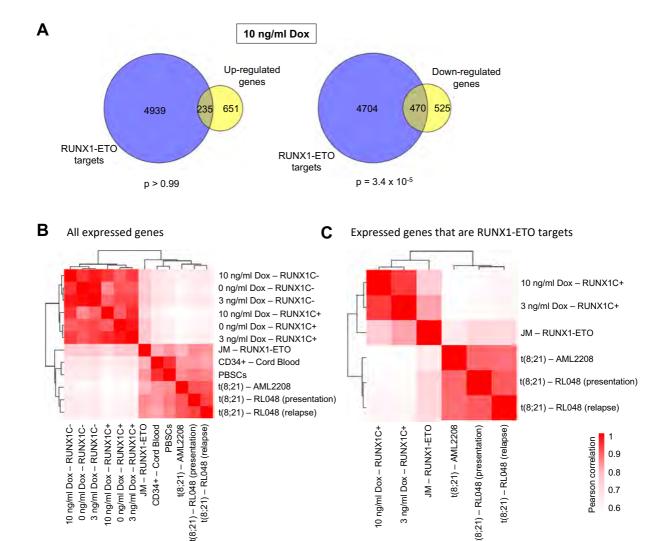



Figure 3.25: RUNX1-ETO dysregulates a similar subset of RUNX1-ETO target genes in both in vitro RUNX1C+ and CD34+ cord blood progenitors

- (A) Venn Diagram showing the overlap of upregulated (left) or downregulated (right) genes in CD45+CD34+ progenitors treated with 10 ng/ml Dox for 24 hours to known RUNX1-ETO target genes (from RUNX1-ETO-transduced CD34+ cord blood and t(8;21) patient samples). The p value is the result of a hypergeometric test.
- (B) Hierarchical clustering based on the strength of correlation of gene expression between samples of RNA-Seq data from: our RUNX1-ETO human ES cell haematopoietic differentiated cells (treated with 0, 3 or 10 ng/ml Dox for 24h and sorted for CD45+CD34+ and RUNX1C- or RUNX1C+), RUNX1-ETO-transduced CD34+ cord blood cells (JM-RUNX1-ETO) (Lin et al., 2017b), CD34+ cord blood cells, peripheral blood stem cells (PBSCs) and two patients with t(8;21) (AML2208 and RL048 both at presentation and at relapse) (Ptasinska et al., 2012).
- (C) Correlation clustering of RNA-Seq data (as in B) considering only the expressed genes that are known RUNX1-ETO targets, between: our RUNX1-ETO human ES cell haematopoietic differentiated cells (treated with 3 or 10 ng/ml Dox for 24h and sorted for CD45+CD34+RUNX1C+), RUNX1-ETOtransduced CD34+ cord blood cells (JM-RUNX1-ETO) (Lin et al., 2017b) and two patients with t(8;21) (AML2208 and RL048 both at presentation and at relapse) (Ptasinska et al., 2012).

0.6

## 3.15 RUNX1-ETO induction in RUNX1C+ cells results in dose-dependent heterogeneous changes in gene expression

RUNX1-ETO-expressing RUNX1C+ progenitors deregulated the same RUNX1-ETO targets as in other RUNX1-ETO-expressing systems. For this reason, the RUNX1C+ population was selected to perform further molecular analyses upon induction of RUNX1-ETO.

We next characterized the immediate gene expression response depending on RUNX1-ETO induction levels in RUNX1C+ progenitors and evaluated whether this would yield quantitative and/or qualitative changes. For that, EB cultures were induced around day 20 of differentiation using either 0, 3, 5 or 10 ng/ml Dox for 24 hours and mRNA from CD45+ CD34+ RUNX1C+ sorted haematopoietic progenitors was isolated for subsequent gene expression analyses. We observed a highly dosedependent gene expression response to RUNX1-ETO induction in RUNX1C+ cells, with a higher number of dysregulated genes with higher Dox concentrations, which was highly reproducible across biological replicates (Figure 3.26A and B). The only exception was the 5 ng/ml Dox induced samples on the replicate number 2, which can be explained due to lower RUNX1-ETO transcript levels as compared to the other replicates (Figure 3.21A). In order to evaluate whether distinct levels of RUNX1-ETO induction would regulate individual genes in a different manner, we performed a covariance analysis on the differentially expressed genes (Figure 3.26C). Interestingly, RUNX1-ETO induction yielded highly heterogeneous changes in gene expression, as distinct subsets of genes displayed a differential response depending on the oncogene dosage. The covariance analysis generated 12 clusters,

grouping together genes showing a similar response to the *RUNX1-ETO* expression levels.

Individual examples of downregulated genes include the cell cycle gene *BUB1*, the TP53 pathway members *CHEK2*, and *CCNB1*, the growth factor receptor gene *KIT* and the *WT1* gene (cluster 2), the stem cell regulator *GATA2* (cluster 3) (Figure 3.27). In contrast, upregulated genes included those involved in signalling pathways, such as *MAPK3* (cluster 7) and immediate early response genes, such as *JUN* and *FOS* (clusters 1 and 11, respectively) (Figure 3.27). The full list of genes within each cluster are listed in Supplementary Table 3.

Overall, these results suggest that (i) RUNX1-ETO produces a different effect depending on the nature of cell population and that (ii) different levels of *RUNX1-ETO* expression dysregulate the same subset of genes but in a different manner.

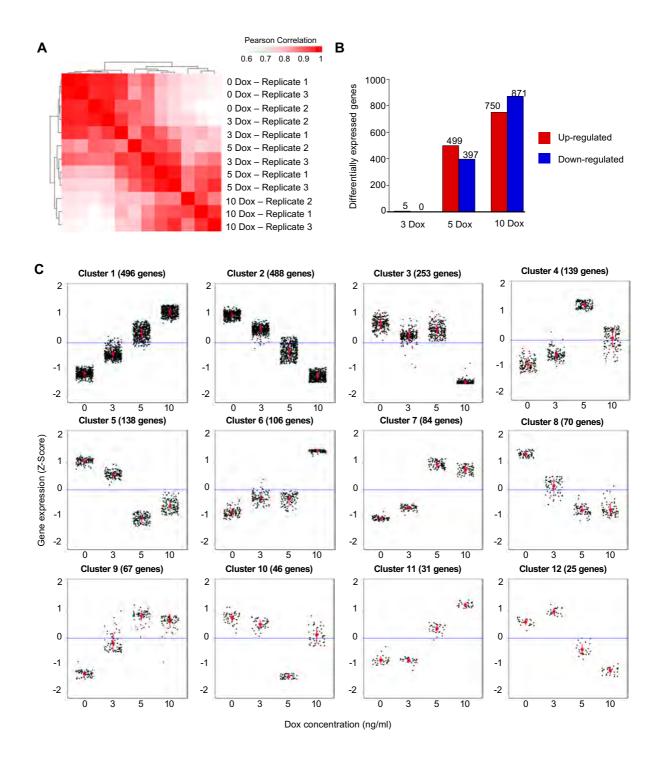



Figure 3.26: RUNX1-ETO induces highly heterogeneous changes in gene expression in a dose-dependent manner

- (A) Hierarchical clustering using Pearson correlation coefficients of gene expression in CD45+ CD34+ RUNX1C+ progenitors upon 24-hour Dox exposure (0, 3, 5 or 10 ng/ml) from three biological replicates.
- (B) Number of differentially expressed genes between wild-type and Dox-treated (3, 5 and 10 ng/ml) CD45+ CD34+ RUNX1C+ sorted progenitors.

(C) Covariance analysis of gene expression RNA-Seq data by Z-score from CD45+ CD34+ RUNX1C+ sorted progenitor cells upon RUNX1-ETO induction with 3, 5 or 10 ng/ml Dox for 24h, showing 12 clusters/groups of genes with differential expression response to the level of RUNX1-ETO induction. Number of genes comprised on each cluster are indicated. Black dots represent transcript levels for each individual gene. Red dots and bars represent the mean and standard deviation.

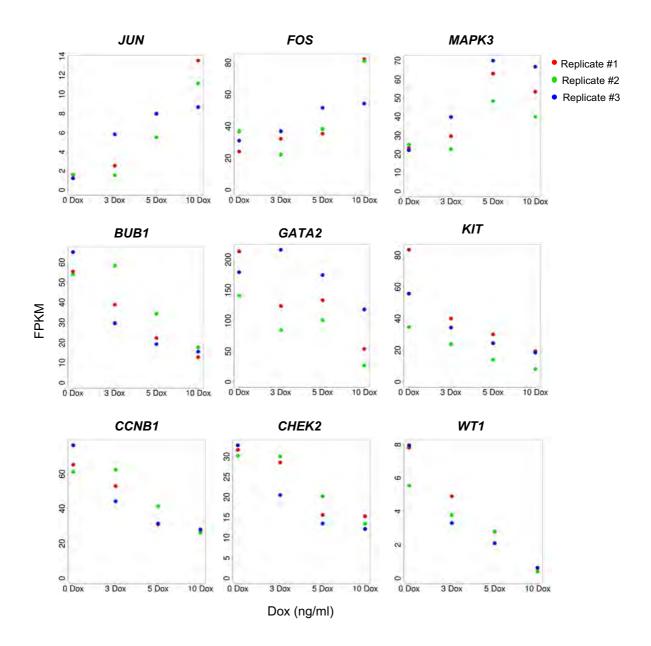



Figure 3.27: Individual genes show distinct responses to RUNX1-ETO dosage

Individual gene examples displaying upregulated (FOS, JUN and MAPK3) and downregulated (BUB1, GATA2, KIT, CCNB1, CHEK2 and WT1) mRNA transcripts in CD34+ RUNX1C+ progenitors in response to RUNX1-ETO induction (3, 5 10 ng/ml Dox) for 24h. N=3. Each colour represents a distinct biological replicate.

In order to evaluate whether genes showing a similar expression response to each level of RUNX1-ETO induction were involved in regulating similar cellular functions, we compared associated KEGG pathways to the genes included within each cluster (Figure 3.28). Intriguingly, differentially expressed genes responding to RUNX1-ETO dosage in the same fashion were involved in the regulation of similar cellular activities. For example, downregulated genes belonging to clusters 2 and 3 were involved in regulation of many DNA repair and replication pathways as well as haematopoietic cell lineage. Upregulated genes, belonging to cluster 1, have roles in regulating cell signalling.

In order to further dissect dysregulated cellular functions upon induction of RUNX1-ETO (as shown in Figure 3.23 and Figure 3.28) in the RUNX1C+ population, we generated a KEGG pathways network diagram of associated genes that were at least 2-fold differentially expressed. Induction of RUNX1-ETO using 3 ng/ml Dox did not dysregulate enough genes involved in the same pathway to yield any significant enrichment. However, induction with 5 ng/ml Dox caused upregulation of a large number of signalling genes (such as *MAPK3*, *RRAS*, and *JUN*) and downregulated genes involved in cell cycle (such as *BUB1B* and *CDK1*), DNA replication and repair (such as *BRCA1*, *FANCI*, and *RNASEH2B*) as well as genes related to hematopoietic lineages (such as *CD38*, *IL4* and *KIT*) (Figure 3.29). Similarly, KEGG pathway analysis of the differential expressed genes upon RUNX1-ETO induction with 10 ng/ml Dox showed enrichment of the same major pathways (Supplementary Figure 10): whilst distinct and additional genes were dysregulated by using 10 ng/ml dox, we could observe downregulation of genes involved in myelopoiesis (such as *CEBPA*, *KIT*, *CSF1R* and *MYC*), cell cycle (such as *BUB1*) and DNA replication and

repair genes, including homologous recombination and Fanconi anaemia pathways (such as *BRCA1*, *RAD51*, *RNASEH2A* and *FANCA*) (Supplementary Figure 10). Moreover, genes related to the MAPK and Vascular Endothelial Growth Factor (VEGF) pathways were upregulated as well, as observed upon induction with 5 ng/ml Dox.

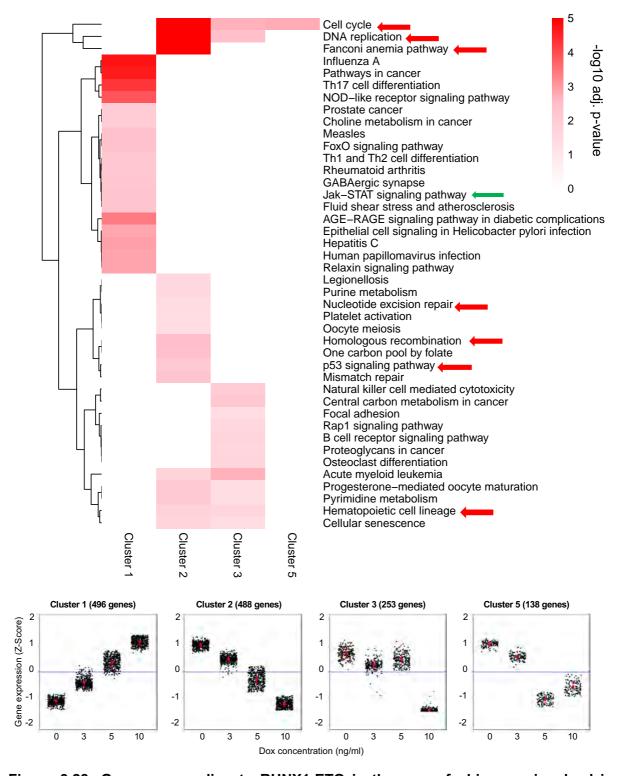



Figure 3.28: Genes responding to RUNX1-ETO in the same fashion are involved in similar cellular activities

Heatmaps clustering enrichment of KEGG pathways from genes included within clusters 1, 2, 3 and 5 of genes with differential expression response to the level of RUNX1-ETO induction. Red colour intensity reflects the enrichment significance of the terms in -log10 (q value). Green and red arrows show upregulated and downregulated relevant pathways, respectively.

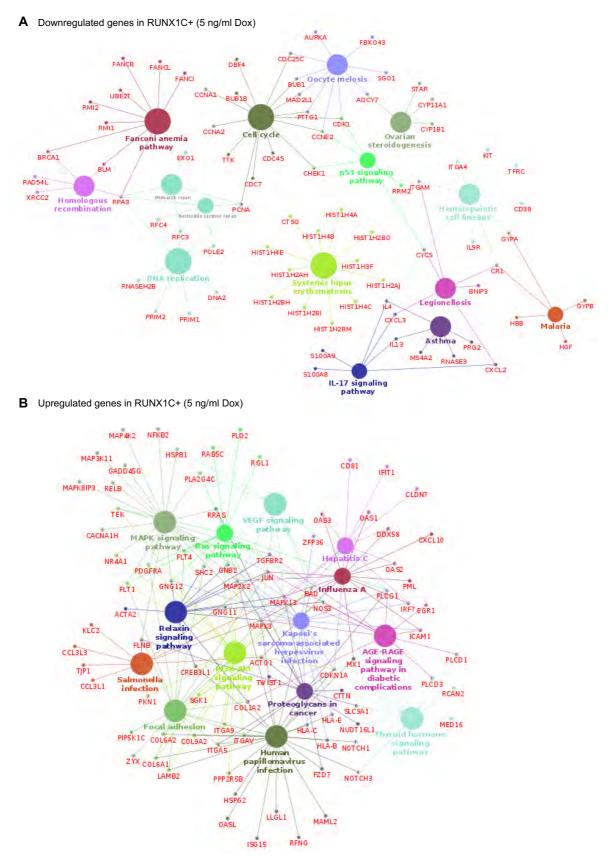



Figure 3.29: RUNX1-ETO induction downregulates myelopoiesis, cell cycle, DNA replication / repair genes and upregulates genes from multiple signalling pathways

## 3.16 RUNX1-ETO induction abrogates the RUNX1-mediated gene expression programme by interfering with RUNX1 binding

Whilst induction of RUNX1-ETO using 10 ng/ml Dox yielded the strongest oncogenic effect, it also resulted in a moderate block of blood formation and affected the vascular structure, as shown above in Figure 3.12. Induction with 5 ng/ml Dox, which yielded levels of RUNX1-ETO transcripts comparable to those from endogenous RUNX1, resulted in an increase in the number of immature blood progenitors in culture as well as other RUNX1-ETO-dependent features such as a reduction in colony formation and arrest on the G1 phase, whilst allowing proper vasculogenesis and generation of blood progenitors. Moreover, gene expression analyses showed that induction with both 5 and 10 ng/ml Dox resulted in dysregulation of the same cellular pathways. For these reasons, 5 ng/ml Dox was the selected concentration for subsequent studies on the RUNX1-ETO-mediated chromatin reprogramming and effect on transcription factor and histone binding. Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq) allows the analysis of the binding sites of modified histones and DNA-binding factors. Therefore, we evaluated open chromatin regions and protein binding upon RUNX1-ETO induction by performing ATAC-Seg and ChIP-Seg experiments, respectively (Figure 3.30A). Alignment statistics, including the number of total and aligned reads, the percentage of reads aligned and the number of peaks for each corresponding ATAC and ChIP-Seq libraries are shown in Table 3.2 and Table 3.3.

| ATAC-Seq alignment statistics |             |               |           |              |
|-------------------------------|-------------|---------------|-----------|--------------|
| Sample ID                     | Total reads | Aligned reads | % aligned | No. of peaks |
| RUNX1c_pos_0Dox               | 25355305    | 25274660      | 99.68     | 36298        |
| RUNX1c_pos_3Dox               | 19585104    | 19535210      | 99.75     | 19307        |
| RUNX1c_pos_5Dox               | 17577061    | 17546151      | 99.82     | 26532        |
| RUNX1c_pos_10Dox              | 14514152    | 14453558      | 99.58     | 24044        |

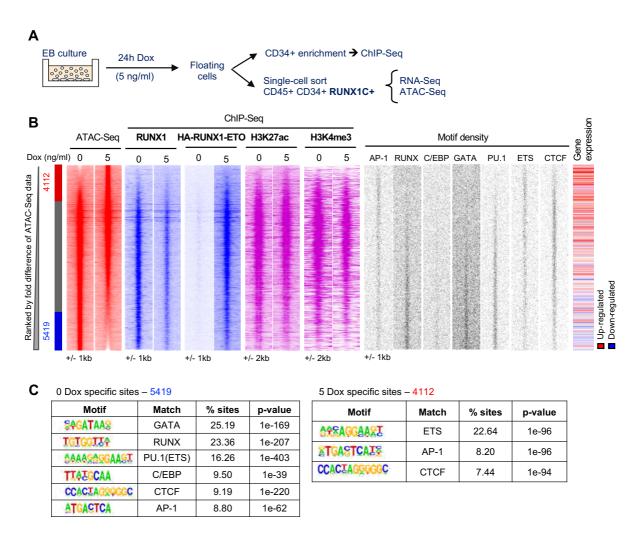
Table 3.2: Read alignment statistics of ATAC-Seq libraries from RUNX1C+ cells upon RUNX1-ETO induction

ATAC-Seq statistics in the RUNX1C+ (RUNX1x\_pos) samples treated with 3, 5 and 10 ng/ml Dox and untreated.

| ChIP-Seq alignment statistics |             |               |           |              |
|-------------------------------|-------------|---------------|-----------|--------------|
| Sample ID                     | Total reads | Aligned reads | % aligned | No. of peaks |
| HA-RUNX1-Eto_0Dox             | 8562202     | 8521125       | 99.52     | 49           |
| HA-RUNX1-Eto_5Dox             | 20172416    | 20100121      | 99.64     | 9675         |
| RUNX1_0Dox                    | 44712626    | 44616395      | 99.78     | 8403         |
| RUNX1_5Dox                    | 49277921    | 49167956      | 99.78     | 1161         |
| H3K27ac_0Dox                  | 24767587    | 24606924      | 99.35     | 36768        |
| H3K27ac_5Dox                  | 25320888    | 25144300      | 99.3      | 36928        |
| H3K4me3_0Dox                  | 23410265    | 23292055      | 99.5      | 30243        |
| H3K4me3_5Dox                  | 17278581    | 17196663      | 99.53     | 27754        |

Table 3.3: Read alignment statistics of ChIP-Seq libraries in RUNX1C+ cells upon RUNX1-ETO induction

Statistics for each ChIP-Seq library (HA (RUNX1-ETO), RUNX1, H3K27ac, H3K4me3) performed in RUNX1C+ samples untreated or upon RUNX1-ETO induction with 5 ng/ml Dox for 24h.


Induction of RUNX1-ETO resulted in a dramatic shift of the accessible chromatin landscape, as it involved the closure of 5419 sites and the gain of accessibility in 4112 new sites (Figure 3.30B, ATAC-Seq columns). Lost sites were enriched in binding motifs for several haematopoietic transcription factor families including PU.1 (but not other transcription factors belonging to the ETS family), RUNX, GATA, and C/EBP family members (Figure 3.30B, motifs and Figure 3.30C, 0 Dox specific sites). As expected, lost sites were associated with downregulated gene expression (Figure 3.30B gene expression column). Interestingly, different levels of RUNX1-ETO

induction (3 and 10 ng/ml Dox) also resulted on loss of accessibility in sites enriched for RUNX1, GATA, PU.1 and C/EBP binding motifs (Supplementary Figure 11A and B, motif densities).

Most of the upregulated genes as a result of RUNX1-ETO induction correlate with a gain of new accessible chromatin sites (Figure 3.30B, gene expression column). Even though this stands true upon RUNX1-ETO induction with 10 ng/ml Dox, new sites resulting from induction with 3 ng/ml Dox do not significantly affect differential gene expression (Supplementary Figure 11B). These 5-Dox specific new sites present enrichment in binding motifs for members of the ETS transcription factor family (Figure 3.30B, motifs and Figure 3.30C, 5 Dox specific sites). Binding motifs for CTCF and AP-1 family members was enriched across the gained (red) and lost (blue) sites as well as those that remained unchanged (grey zone) (Figure 3.30B, motifs).

These observations were confirmed by ChIP-Seq experiments, showing a reduction of RUNX1 binding across all the RUNX1-ETO-bound sites as well as slight decrease in the abundance of the active histone marks H3K27ac and H3K4me3 (Figure 3.30B, ChIP-Seq columns). Interestingly, newly gained open chromatin sites were not associated with RUNX1-ETO binding but presented AP-1 binding motifs and were associated with upregulation of gene expression. RUNX1-ETO-dependent interference with RUNX1 binding can be easily observed on the average profiles plotted on RUNX1 ChIP binding peaks (Figure 3.30D): RUNX1-ETO (green) displaces RUNX1 (blue) from a subset of RUNX1-binding sites (0 dox specific sites). In some other sites (common sites), RUNX1-ETO causes a reduction of RUNX1 binding (red vs blue). In both scenarios, RUNX1-ETO binding to those sites is higher

than of RUNX1 under uninduced conditions (green vs red). This result is exemplified by the representative gene loci *RASSF5* (Figure 3.31), *RUNX1* or *SPI1* (Supplementary Figure 12). In the *RASSF5* gene example, RUNX1 binds at the TSS and within the gene body, most likely representing distal regulatory elements, in the absence of RUNX1-ETO (No Dox conditions). These sites correlate with open chromatin regions (ATAC – 0 Dox) enriched with active H3K27ac marks. Induction of RUNX1-ETO results in its binding at those sites accompanied by a RUNX1-ETO-level dependent reduction (5 ng/ml Dox) or abolition (10 ng/ml Dox) of RUNX1 binding. RUNX1-ETO-bound sites retain the H3K27ac marks but display slightly less open chromatin profile.



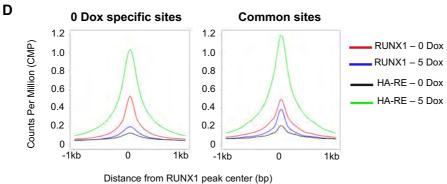



Figure 3.30: RUNX1-ETO induction causes extensive global chromatin reorganisation and blocks the binding of RUNX1

(A) Outline of the experimental strategy used to evaluate the immediate molecular changes in chromatin accessibility and protein binding upon RUNX1-ETO induction in formed progenitors of the *in vitro* haematopoietic differentiation. Dox (5 ng/ml) was added during 24h in cultures at days d20-d21. CD45+ CD34+ RUNX1C+ progenitors were subsequently sorted and subjected to gene expression (RNA-Seq) and chromatin accessibility (ATAC-Seq). Analysis of transcription-factor and histone binding (by Chromatin Immunoprecipitation, ChIP-Seq) was performed on CD34+ enriched populations and in non-adherent progenitors >30% CD34+, respectively.

- (B) Heatmaps depicting accessible chromatin regions ranked by fold difference between the 0 and 5 Dox RUNX1C+ treated samples. ATAC-Seq peaks were considered sample-specific when displaying a greater than 2-fold enrichment compared to the other sample. Sample-specific sites and number of peaks are indicated alongside, being: red the 5-Dox specific, blue the 0-Dox specific and grey the shared peaks. ChIP-Seq enrichment for RUNX1, HA-RUNX1-ETO, H3K27ac and H3K4me3 in each sample, motif density plots and gene expression at these sites are ranked along the same coordinates as the ATAC-Seq peaks.
- (C) Motif enrichment analysis in 0 and 5 Dox-specific peaks.
- (D) Average profiles for RUNX1 and RUNX1-ETO ChIP-Seq data centred on RUNX1 binding peaks (+/- 1000bp from peak centre) in the 0 Dox-specific and common peaks.

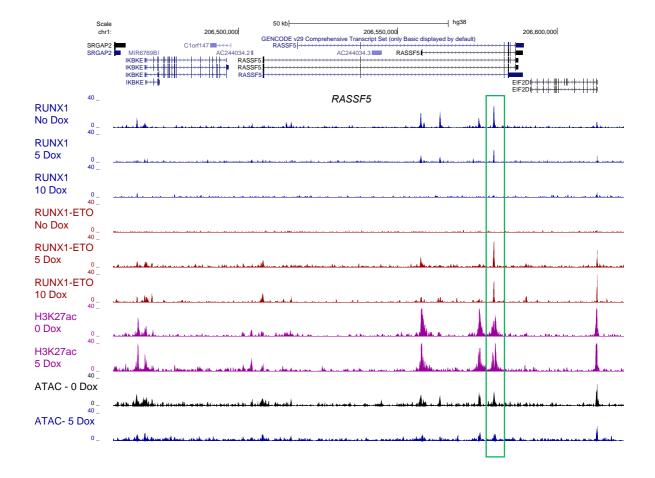



Figure 3.31: Individual examples at the RASSF5 locus showing RUNX1-ETO-dependent displacement of RUNX1 and reduced chromatin accessibility

Genome browser screenshot depicting RUNX1, HA-RUNX1-ETO, H3K27ac ChIP-Seq and ATAC-Seq tracks for the indicated samples at *RASSF5* representative gene. Green box highlights an example of displacement of RUNX1 binding and reduction of chromatin accessibility upon RUNX1-ETO induction.

In order to dissect RUNX1 and RUNX1-ETO binding, ChIP-Seq data was compared at regulatory regions ranked by fold change of differential RUNX1 binding. Induction of RUNX1-ETO displaced RUNX1 binding at both promoters and enhancers from 5068 and 2104 sites, respectively, that remained bound by RUNX1-ETO only (Figure 3.32 A and B). In a small proportion of the sites (1271 at promoters and 446 at enhancers), RUNX1-ETO did not abrogate but reduced RUNX1 binding. RUNX1-bound promoters were highly enriched in H3K27ac and H3K4me3, but RUNX1-ETO did not affect enrichment on these active marks in neither the 0-dox specific nor the common sites (Figure 3.32B, promoters). However, reduction of these active marks upon RUNX1-ETO induction was most pronounced on distal elements, with H3K27ac being the most affected one (Figure 3.32B, distal elements). Not surprisingly, we observed a reduction of chromatin accessibility in lost RUNX1-bound sites mainly in distal elements, whilst promoter sites were less affected.

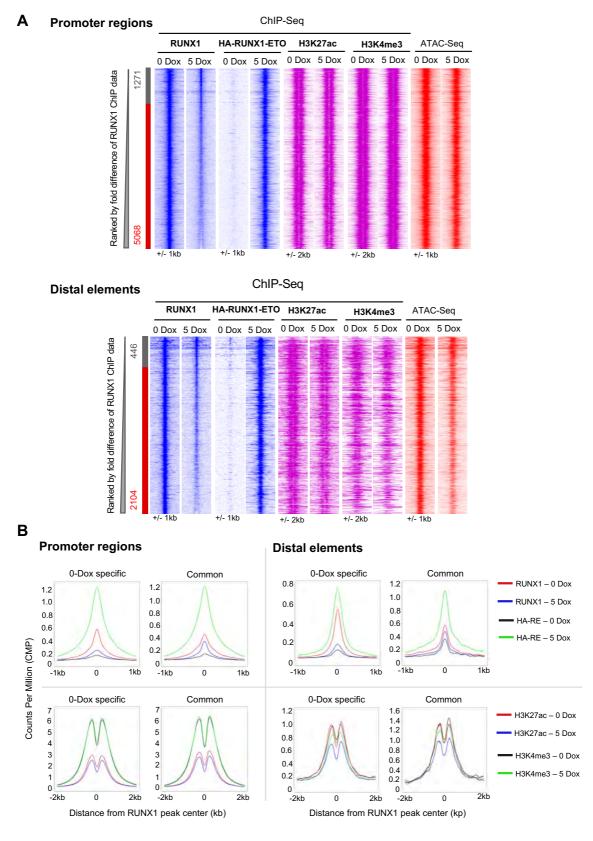
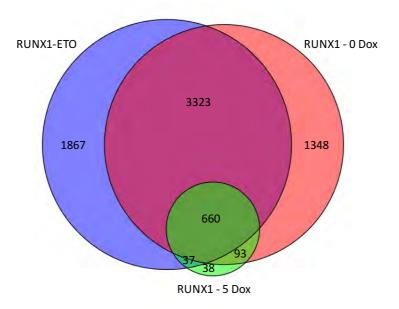




Figure 3.32: Loss of RUNX1 binding and active histone marks upon RUNX1-ETO induction is more pronounced at distal elements than at promoters

- (A) Comparison of RUNX1 binding at promoter (above) and distal element (below) regions from ChIP-Seq in 0 and 5 Dox-treated CD34-enriched populations ranked by fold difference of RUNX1 ChIP data, considering peaks with enrichments greater than 2-fold between samples to be specific. Sample-specific sites and number of peaks are indicated alongside, being: red the 0-Dox specific and grey the shared peaks. ChIP-Seq enrichment for HA-RUNX1-ETO, H3K27ac and H3K4me3 in each sample and chromatin accessibility peaks are plotted along the same coordinates as the RUNX1 ChIP-Seq promoter and distal element peaks.
- (B) Average profiles for transcription factor (Top panels) and histone modification (Bottom panels) ChIP-Seq data centred on RUNX1 promoter (left) or RUNX1 distal element (right) -binding peaks in the 0 Dox-specific and common peaks.

We next analysed the overall pattern of RUNX1-ETO and RUNX1 binding in both wild-type and in the presence of RUNX1-ETO (Figure 3.33 A). RUNX1-ETO binding shows a large overlap with that of RUNX1 in uninduced conditions (3323 sites) and, as expected, most of the genes that can be bound by both factors lose the RUNX1 binding after induction, resulting in 660 overlapping sites only. Interestingly, RUNX1-ETO is able to bind sites that were not previously bound by RUNX1. We next combined gene expression and transcription factor binding data and observed that around 40% of both up and downregulated genes were RUNX1-ETO target genes (Figure 3.33B). Despite the majority of dysregulated RUNX1 targets that lose binding upon induction being also RUNX1-ETO target genes, there is a small proportion that do not appear to be targeted by RUNX1-ETO (Figure 3.33B, light colours), suggesting indirect mechanisms of gene regulation. The full list of up and downregulated RUNX1-ETO and RUNX1 target genes can be found in Supplementary Table 4.

### A Total number of RUNX1-ETO, RUNX1 (0 Dox) and RUNX1 (5 Dox) target genes



### B Percentage of genes responding that are targets

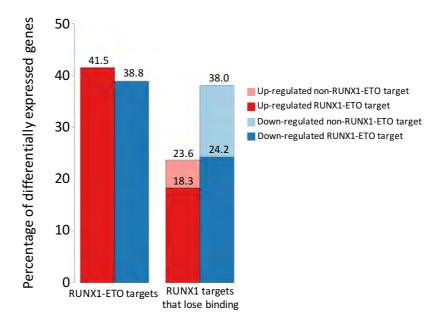



Figure 3.33: Many but not all of the dysregulated RUNX1 targets that lose binding upon induction are also RUNX1-ETO target

- (A) Venn diagram of RUNX1-ETO and RUNX1 ChIP data showing overlap of binding events between the total number of RUNX1-ETO, RUNX1 (in 0 Dox uninduced cells) and RUNX1 (after 5 Dox induction) target genes.
- (B) Graph depicting the percentage of differentially expressed (up- or down-regulated) genes that respond to RUNX1-ETO induction and are either RUNX1-ETO or RUNX1 targets.

# 3.17 RUNX1-ETO induction extinguishes many of the adult HSC/myeloid chromatin accessibility pattern and accounts for a large part of the altered network in t(8;21) AML patients

ES-cell-derived definitive haematopoietic cells generated using our culture conditions have a similar transcriptional profile to those generated within the human AGM and are capable of short-term reconstitution in immunocompromised mice (Ng et al., 2016), indicating that our cultures are able to generate progenitor cells with multipotent capacity. Therefore, we aimed to identify whether our ES cell-derived progenitors shared a similar chromatin structure to that of wild-type stem and progenitor blood cells. For this purpose, we compared our ATAC-Seq data from uninduced and induced RUNX1C+ cells to that generated from highly purified human hematopoietic precursor populations as well as monocytic cells (Corces et al., 2016) (Figure 3.34A). We found that the accessible chromatin profile in our wild-type CD45+CD34+RUNX1C+ population strongly resembles that of adult HSCs and MPP populations. However, it differs to that of monocytes, which present a large portion of closed sites. Intriguingly, RUNX1-ETO induction completely shifted the HSC-specific chromatin accessibility pattern, resulting in loss of open chromatin regions specific for early multipotent progenitors and in appearance of new accessible sites that are absent in all the wild-type blood cells. Given the strong difference of our induced progenitors as compared to the wild-type counterparts, we next evaluated the similarities in differential gene expression between our RUNX1-ETO-induced RUNX1C+ progenitors and t(8;21) AML patient cells, as compared to wild-type CD34+ stem/progenitor cells (Figure 3.34B). We observed that up and downregulated RUNX1-ETO target genes in our RUNX1C+ cells are dysregulated in

the same fashion in t(8;21) patient cells. This result indicates that, despite the additional mutations present in t(8;21) patient cells, RUNX1-ETO may account for a large portion of the t(8;21) altered network in leukaemic cells.

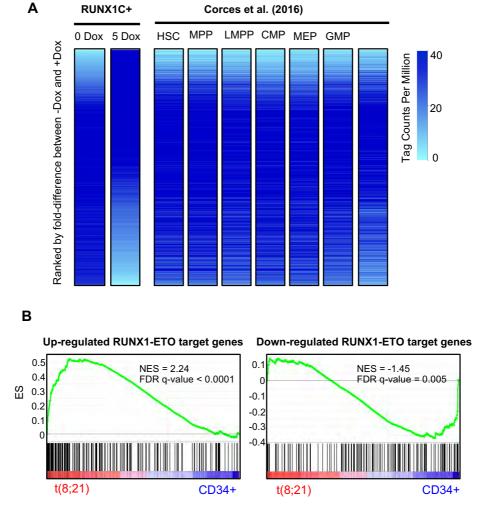



Figure 3.34: RUNX1-ETO-induced human ESC-derived progenitors lack many accessible chromatin sites of adult HSC/myeloid cells and share the same dysregulated RUNX1-ETO targets as in cells from t(8;21) AML patients

- (A) Comparison of chromatin accessibility in RUNX1C+ cells (0 and 5 Dox-treated samples) to myeloid progenitor cell types from Corces et al (2016). Heatmaps show ATAC-Seq tag-counts ranked by fold difference between the 0 and 5 Dox treated RUNX1C+ samples. ATAC-Seq tag counts from distinct myeloid progenitor cell types (Corces et al., 2016) are ranked along the same coordinates as the 0 Dox ATAC-Seq peaks. Colour intensity reflects tag counts per million, with red representing closed chromatin.
- (B) Gene Set Enrichment Analysis (GSEA) for correlation of upregulated (upper panel) and downregulated (lower panel) RUNX1-ETO target genes between CD45+ CD34+ RUNX1C+ sorted cells upon 24-hour RUNX1-ETO induction (5 ng/ml Dox) and the gene expression profile of the RUNX1-ETO targets in t(8;21) patients. ES: Enrichment Score, NES: Normalized Enrichment Score, FDR: False discovery rate.

### 3.18 Induction of RUNX1-ETO results in the emergence of a new subpopulation of cells that present a block at the G1 phase

Gene expression analysis on uninduced bulk cell populations showed that RUNX1C+ cells expressed genes and associated signalling pathways from distinct haematopoietic lineages, whilst the RUNX1C- population expressed mainly monocyte and macrophage-related genes, hence indicating that multipotent progenitors might be found in the RUNX1C+ population. In order to identify the nature of the precursor cells present within the RUNX1C+ cell population, we performed single cell (sc) RNA-Seq in wild-type and induced (5 ng/ml Dox for 24 hours) CD45+CD34+RUNX1C+ purified cells (Figure 3.35A). A total number of 7,135 cells were sequenced, being 3,321 from the uninduced and 3,814 from the induced conditions. We obtained a read depth (median reads per cell) of 75,452 and 67,098 reads in each condition, respectively, with approximately 3,100 genes sequenced per cell. Alignment statistics for the two scRNA-Seq datasets are shown in Table 3.4.

| scRNA-Seq alignment statistics |             |              |                       |                                |                     |                                   |
|--------------------------------|-------------|--------------|-----------------------|--------------------------------|---------------------|-----------------------------------|
| Sample ID                      | Total reads | %<br>aligned | Total number of cells | Total number of cells after QC | Mean reads per cell | Median genes<br>detected per cell |
| scRNAseq_0Dox                  | 251032072   | 97.8         | 3327                  | 3141                           | 75452               | 3149                              |
| scRNAseq_5Dox                  | 255914998   | 97.7         | 3814                  | 3669                           | 67098               | 3166                              |

Table 3.4: Read alignment statistics of scRNA-Seq datasets (0 and 5 Dox) in CD45+CD34+RUNX1C+ purified cell populations

Statistics for scRNA-Seq data from CD45+CD34+RUNX1C+ samples untreated (0Dox) or upon RUNX1-ETO induction for 24h (5 Dox).

Clusters representing distinct cell populations were visualised upon analysis of the combined datasets (uninduced and 5 ng/ml Dox-treated) with a t-distributed stochastic neighbour embedding (t-SNE) algorithm, which constructs a probability distribution over pairs of points (individual gene expression) and embeds the data points in a low-dimensional map based on their similarities (Supplementary Figure 13A). Thereafter, the nature of each cell cluster was identified by comparison of their individual gene expression to previously known lineage marker genes. We identified eight progenitor populations including early and maturing erythroid precursors, GMPs, monocytes, eosinophils and immature populations resembling stem and CD34+ progenitor cells (Supplementary Figure 13A), which had a cell-type specific gene expression pattern (Supplementary Figure 13B). A complete list of the marker genes used to classify each scRNA-seq cell population can be found in Supplementary Dataset 1.

In order to recognize whether RUNX1-ETO induction affected the density of the cell populations, we performed the clustering analysis on the two datasets individually (Figure 3.35B). Strikingly, induction of RUNX1-ETO resulted in the strong enrichment of a cell population, herein referred to as 5-Dox enriched cluster (green), which was barely detectable in untreated conditions. Comparison of the number of sequenced cells belonging to each cluster clearly depicts an equal contribution within each population in both uninduced and 5 Dox conditions (Figure 3.35C). Notably, a higher proportion of cells contributed to 5-Dox enriched cluster (green) upon induction, as compared to cell contribution across the other clusters (Figure 3.35C).

We next evaluated the total number of deregulated genes and we observed that the 5-Dox enriched cluster represented the most responsive cell population to RUNX1-

ETO induction (Figure 3.35D). Other populations showing a moderate transcriptional response to RUNX1-ETO induction included the stem-like population followed by cells from the myeloid lineage, but, overall, gene expression changes within the whole RUNX1C+ population were mainly represented by those occurring in the 5-Dox enriched cluster. Conversely, CD34+ and erythroid progenitors did not undergo many gene expression changes upon induction.

We showed that long-term induction of RUNX1-ETO in *in vitro* haematopoietic progenitors results in an arrest in the G1 phase of the cell cycle, preventing the cells to enter the DNA replication phase. The next question was whether the RUNX1-ETO-mediated G1 block held true in all the distinct cell populations or whether this was a cell-type specific phenotype. We therefore analysed changes in expression of genes regulated during cell cycle within our scRNA-Seq clusters (Supplementary Table 5). We observed that the 5-Dox enriched population presented a strong arrest in the G1 phase, as the majority of the cells in the induced dataset lacked expression of genes regulated during the G2-M and S phases of the cell cycle (Figure 3.35D). Cell cycle arrest was also observed, to a lesser degree, in the stem/progenitor, GMP-like and eosinophil populations, whilst the erythroid, monocytic and CD34+ populations remained unaffected, in agreement with their lack of RUNX1-ETO responsive genes.

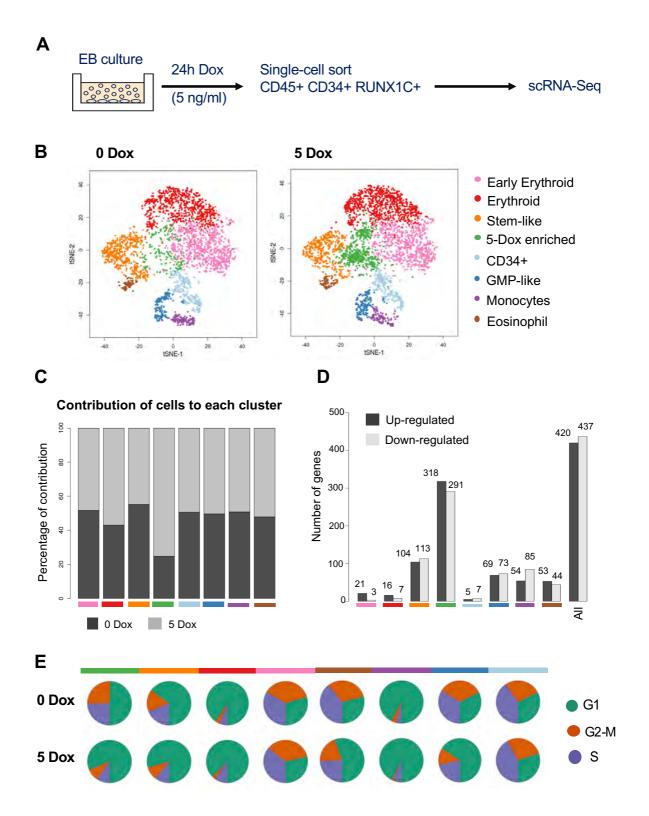



Figure 3.35: RUNX1-ETO induction expands a cell population arrested in the G1 phase of the cell cycle and results in a cell-specific transcriptional response

(A) Diagram of the sorting strategy for scRNA-Seq performed upon 24h Dox induction of RUNX1-ETO with 5 ng/ml Dox.

- (B) Two-dimensional t-SNE maps displaying sequenced CD45+CD34+RUNX1C+ single cells upon 0 and 5 ng/ml Dox treatment (24h), respectively. Colours represent the different clusters identified based on expression of known marker genes.
- (C) Proportion bars showing the percentage of contribution of cells from each 0 and 5 ng/ml Dox dataset to each individual cell cluster. Cell cluster colour coding as in (B).
- (D) Number of up- and down- regulated genes in each cell cluster upon treatment with 5 ng/ml Dox. Cell cluster colour coding as in (B).
- (E) Pie plots displaying the proportion of cells in each cell cycle phase (G1, G2-M and S) within each cluster, as identified by expression of cell cycle responsive genes. Cell colour coding as in (B).

We then characterized the cell type-specific response to induction of RUNX1-ETO by evaluating whether single genes were differentially regulated in each cell cluster. We therefore projected the expression levels of individual haematopoietic genes on the cell cluster map (Figure 3.36). Not surprisingly, the majority of differentially expressed genes between the two datasets (0 and 5 Dox) occurred in the 5-Dox enriched cells. The 5-Dox enriched population presented reduced expression of *Spi1* (PU.1) expression, high expression of *SOX4* and abrogation of *CEBPA*, *GFI1B* and *GATA2*, as compared to the other cell clusters.

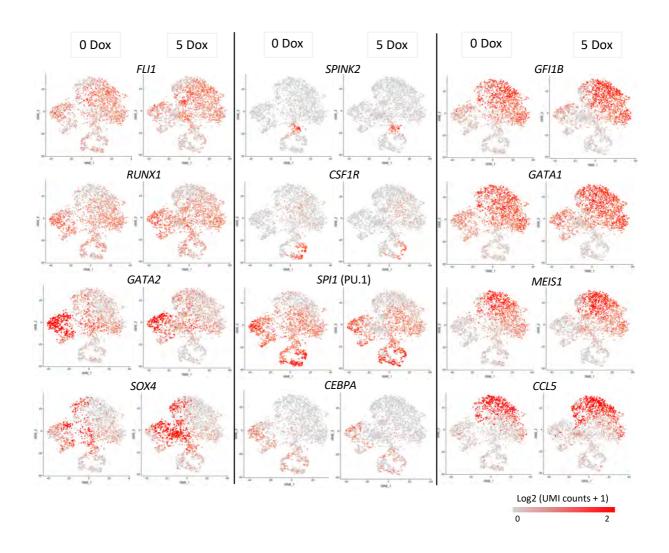



Figure 3.36: RUNX1-ETO induction leads to cell-type specific changes in gene expression mainly in the 5-Dox enriched cell cluster

Expression of individual marker genes projected on the t-SNE maps of both untreated (0 Dox) and treated (5 Dox; 5ng/ml for 24h) scRNA populations. Colour intensity represents number of transcripts sequenced in Log2 of unique molecular identifier (UMI) counts +1.

In order to precisely identify the most RUNX1-ETO-responsive genes and compare their transcriptional behaviour between cell clusters, we quantified differential gene expression in single cells from each cell cluster (Figure 3.37). We quantitatively confirmed the upregulation of *SOX4* as well as downregulation of *GATA2* within the 5-Dox enriched and the stem-cell like populations upon induction of RUNX1-ETO. Expression of the erythroid lineage genes *GFI1B* and *GATA1* appeared reduced in

the 5-Dox enriched and myeloid populations but not in the erythroid cell clusters. Two of the most striking changes were the downregulation of Spi1 (PU.1) and the complete abrogation of CEBPA expression, which occurred only in the 5-Dox enriched cells. Expression of the mature myeloid gene CSF1R was downregulated in the myeloid lineages and completely shut down in cells of the 5-Dox enriched cluster. The fact that myeloid regulators were less perturbed in monocytic cells than in the 5-Dox enriched population suggests that cells that have passed a certain differentiation stage may become less sensitive to perturbation. Expression of HSC-specific and early haematopoietic genes, such as FLI1, MEIS1 and SPINK2, remained unaffected in all cell clusters, with the latter being downregulated in the GMP population only. In the same way, expression of the master haematopoietic regulator RUNX1 did not change upon induction of RUNX1-ETO, which suggests the existence of a specific window for RUNX1-ETO perturbation during differentiation. Interestingly, the 5-Dox enriched population upregulated the inflammatory chemokine gene CCL5. In agreement with the prior analyses, the erythroid populations did not show much response to RUNX1-ETO induction.

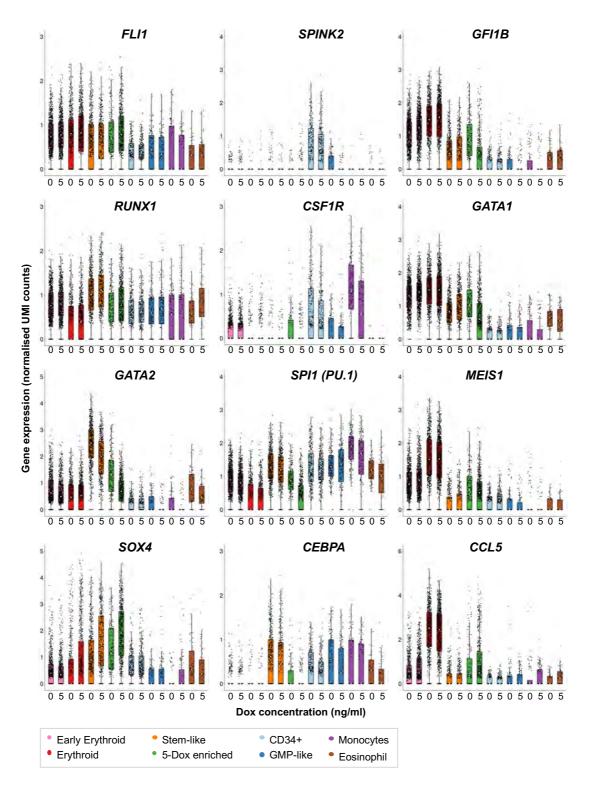



Figure 3.37: RUNX1-ETO induction of results in the upregulation of *SOX4* and downregulation of regulators of myelopoiesis in the 5-Dox enriched population

Box plots indicating expression levels of the individual marker genes in Figure 3.36 in the different ESC derived cell populations (colour coded) and both datasets (0 and 5 Dox). Black dots represent transcript levels in an individual single cell. Boxes and bars represent the mean and standard deviation, respectively.

In prior analyses, comparison of dysregulated RUNX1-ETO targets in our RUNX1-ETO-induced human ESC-derived progenitors to differential gene expression in t(8;21) AML patients (as compared to CD34+ wild-type counterparts), showed that both RUNX1-ETO-expressing cell populations share a similar expression profile. In our scRNA-Seq analyses we identified the 5-Dox enriched cell population as the most responsive to RUNX1-ETO induction, hence most likely to represent the specific RUNX1-ETO target cell population. We therefore wanted to compare RUNX1-ETO target genes that respond to induction in the 5-Dox enriched cell cluster to the gene expression profile in t(8;21) leukaemic patient samples. Gene Set Enrichment Analyses (GSEA) in these cell populations showed a strong correlation, with most of the up and downregulated RUNX1-ETO target genes in the 5-Dox enriched population also being deregulated in t(8;21) patients in the same fashion (Figure 3.38A). The pattern of differentially expressed genes in the 5-Dox enriched population is similar to that of the overall CD45+CD34+RUNX1C+ population, when compared to data from our bulk RNA-Seq analysis (Figure 3.38B). These results confirm the prior observation that RUNX1-ETO deregulates similar targets in our selected subpopulation of *in vitro* progenitors as in t(8;21) patient cells and therefore strengthens the argument of the 5-Dox enriched population representing the early progenitor cell that acquires the translocation event.

Gene expression within the bulk progenitor population identified a downregulation of cell cycle and DNA replication as well as an upregulation of signalling pathways in response of RUNX1-ETO induction. In order to determine the RUNX1-ETO-deregulated pathways within the 5-Dox enriched cell cluster, we again performed KEGG pathway analysis in the differentially expressed genes within this specific

population (Supplementary Figure 14). Deregulated pathways were consistent with the prior analyses in the bulk population, since induction of RUNX1-ETO resulted in downregulation genes with roles in regulating cell cycle (such as *CCND3* and *CDK1*) and myelopoiesis (such as *MYC*). Interestingly, it also led to the downregulation of spliceosome and ribosomal genes. We also observed the upregulation of genes involved in signalling pathways, such as *MAPK13*, *JAK1* and *CDKN1A*. All genes associated to the KEGG pathways are listed in Supplementary Dataset 1.

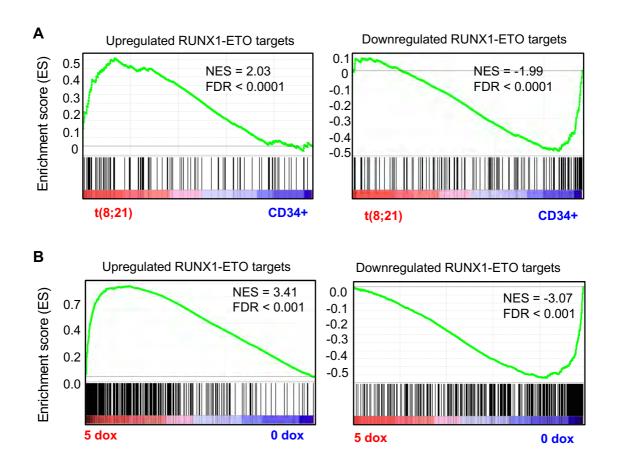



Figure 3.38: A large portion of the RUNX1-ETO-targeted transcriptional network in t(8;21) AML patients might be already deregulated in the pre-leukaemic population

Gene Set Enrichment Analysis for correlation of upregulated and downregulated gene signatures between the 5-Dox enriched single-cell sorted cells and (A) the gene expression profile of t(8;21) patient cells, and (B) induced CD45+CD34+RUNX1C+ bulk populations (5 ng/ml Dox for 24 hours). ES, Enrichment Score; NES, Normalized Enrichment Score. FDR, False discovery rate.

## 3.19 RUNX1-ETO induction disturbs the development of stem/progenitor and myeloid cells but not the erythroid differentiation trajectory

Following identification of the progenitor cell types composing the CD45+CD34+RUNX1C+ ES-cell derived population, we aimed to infer the developmental trajectories of the populations conforming these cells. In addition, we wanted to evaluate whether RUNX1-ETO induction interferes with the normal distribution of the distinct cell populations in the haematopoietic paths and to identify the position of the 5-Dox enriched cell cluster within the trajectories. We therefore performed a pseudo-time trajectory analysis, in both uninduced (0 Dox) and induced (5 Dox) scRNA-Seq datasets, by ordering the cells based on comparison of the complete set of cell marker genes identified (Figure 3.39). In uninduced conditions, progenitor cell populations are clearly distributed across the differentiation trajectories; with progenitors committed to the erythroid and myeloid lineages branching off the stem-like (orange) population and the most differentiated progenitor populations, monocytes (purple) and more mature/committed erythroid (red), at the tip of each lineage-specific branch (Figure 3.39, top panels). Intriguingly, induction of RUNX1-ETO not only resulted in the emergence of the 5-Dox enriched population but completely altered the differentiation trajectories (Figure 3.39, bottom panels). Consistent with the cell-specific responsive gene expression, the erythroid branch remained unaffected. However, induction of RUNX1-ETO distorted both the stem-like and myeloid branches, since cells belonging to those lineages appeared scattered all over the trajectory. Moreover, the 5-Dox induced population presented an additional small ramification within the trajectories that branched off before the erythroid lineages.

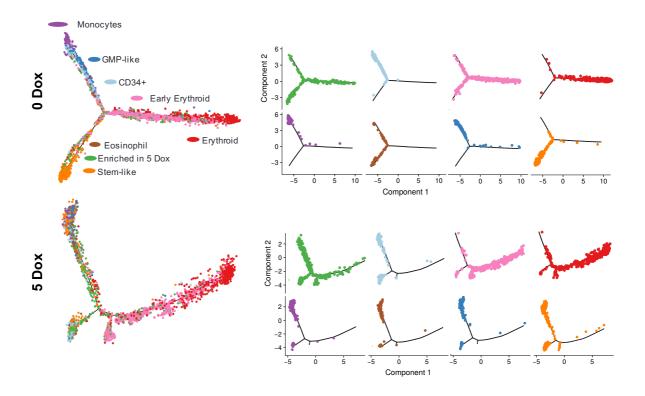



Figure 3.39: RUNX1-ETO induction distorts the myeloid but not the erythroid differentiation trajectory

Trajectory analysis using Monocle algorithm of the 0 dox (top panel) and 5 Dox (bottom panel) sorted cell populations plotted according to each cell cluster (same colour coding, as indicated in the 0 Dox panel). Right panels show the distribution within the trajectories of each cell clusters individually.

In order to better identify the shift in the position of the RUNX1-ETO-responding cells within the differentiation branches, we projected on the trajectories the expression of the individual marker genes shown in Figure 3.36, and also plotted them individually in selected cell clusters (Figure 3.40). Agreeing with prior analyses (Figure 3.37), we observed an upregulation of *SOX4* in cells of the stem-like and 5-Dox induced populations, which appeared scattered on the trajectories, but not on cells of other lineages such as monocytes. Not surprisingly, cells from the stem-like and 5-Dox enriched populations also presented downregulated expression of the lineage-specific *GATA2* and *SPI1* (PU.1), which also appeared disorganized across the differentiation paths. Despite the lack of changes in *RUNX1* and *FLI1* expression

levels (Figure 3.37), cells expressing these genes appeared shifted within the differentiation trajectory. Additionally, we did not observe changes in the cell distribution expressing genes of mature myeloid cells, such as *CSF1R*, suggesting a developmental window receptive to RUNX1-ETO transcriptional dysregulation.

Altogether, our single cell gene expression analyses show a distortion of the stemprogenitor cell programme upon RUNX1-ETO induction, with the emergence of a specific target cell population representing multipotent progenitor or a very early myeloid cell with a diffuse distribution across the differentiation trajectories. The enriched population responds to RUNX1-ETO induction by dysregulating genes crucial for stemness and early myeloid development, but not those for erythroid commitment and/or maturation, and, in agreement with preliminary assays, causes an arrest in the G1 phase of the cell cycle and a block in differentiation.

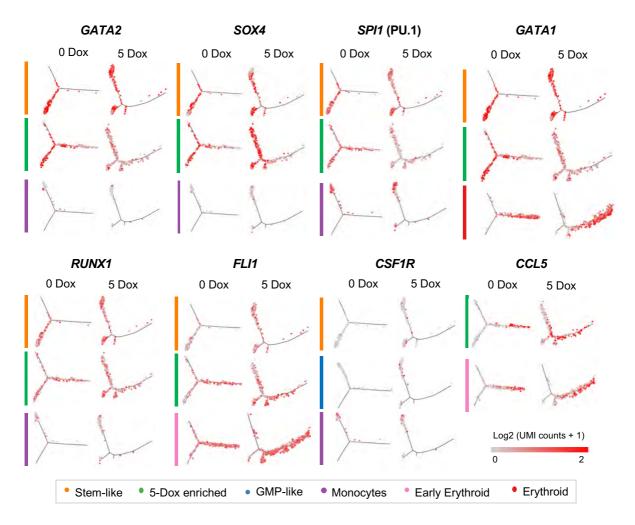



Figure 3.40: Induction of RUNX1-ETO dysregulates genes involved in stem/progenitor development

Expression of individual marker genes projected on the trajectories plotted according to each cell cluster in (A), indicated with the respective colour-coded vertical bar besides each set of two panels (0 and 5 Dox). Each dot represents a cell expressing that individual gene and red colour intensity indicates number of transcripts sequenced in Log2 of unique molecular identifier (UMI) counts +1.

#### 3.20 Introduction of mutated KIT (N822K) and K-RAS (G12D)

Human t(8;21) acute myeloid leukaemia is a multi-step process that occurs upon acquisition of self-renewal-conferring mutations within cells harbouring the RUNX1-ETO translocation (Higuchi et al., 2002; Kuchenbauer et al., 2005; Rhoades et al., 2000; Shima et al., 2014; Yuan et al., 2001). Additional mutations that are known to co-operate with RUNX1-ETO in transformation include activated *KIT* (*N822K*) or *K-RAS* (*G12D*) oncogenes (Higuchi et al., 2002). Moreover, K-RAS (G12D) has been shown to cooperate with RUNX1-ETO to initiate leukaemogenesis in a mouse model of human leukaemia (Zhao et al., 2014).

Aiming to further dissect the molecular features involved in the establishment of overt AML, *KIT (N822K)* and *K-RAS (G12D)* cDNA was introduced into the RUNX1-ETO cell line. Constructs were targeted into the safe harbour of GAPDH locus (Kao et al., 2016). In order to control KIT/K-RAS protein level independently of the Dox-inducible RUNX1-ETO, a modified *E.coli* DHFR module was introduced as a destabilization domain (DD) that targets the protein to the proteasome for degradation in the absence of the ligand Trimethoprim (TMP) (Figure 3.41A) (Banaszynski et al., 2006; Iwamoto et al., 2010). Both *KIT* and *K-RAS* showed TMP-independent expression across different clones, as compared to an untargeted control (Figure 3.41B). Given that KIT is a surface receptor, flow cytometric analysis was performed upon addition of 10 μM TMP for 2 days to evaluate the functionality of the induction system. Surface KIT was upregulated in three independent KIT-targeted clones upon addition of the ligand (Figure 3.41C). However, low levels of KIT were also observed in the absence of the ligand as compared to an untargeted control. This could be due to the protein transiently reaching the cell surface before being degraded. K-RAS protein

was successfully detected in undifferentiated cells upon TMP treatment (Figure 3.41D).

Two clones from both KIT and K-RAS cell lines were differentiated to haematopoietic progenitors and KIT and K-RAS protein levels were evaluated. K-RAS was successfully detected in blood progenitors upon TMP-induction independently of RUNX1-ETO Dox-dependent induction (Figure 3.41D). Note that K-RAS could not be detected in samples corresponding to 0, 3 and 5 ng/ml Dox treatment, most likely due to insufficient protein loading or suboptimal transfer from the gel to the membrane, since the GAPDH loading control band was not visible on the gel. Unfortunately, KIT could not be detected neither through flow cytometry nor Western blotting assay in the differentiated progenitors.

In order to discard a shut-down of the locus due to possible toxicity from the mutated KIT, targeted clones were subjected to Geneticin treatment to re-select for resistance cells, hence harbouring the transgene and displaying open chromatin in the locus. Experiments were repeated using the re-selected clones and KIT was again detected by flow cytometry on ES cell stage. However, protein upregulation could not be detected in haematopoietic progenitors. Possible explanations for this could be: (i) a change on the chromatin state during differentiation due to some specific sequences of the transgenes, (ii) a detrimental effect of the expressed transgene on the cells causing a forced closure of the locus, or (iii) the requirement for stage-specific splicing sequences for proper translation of the transgene.

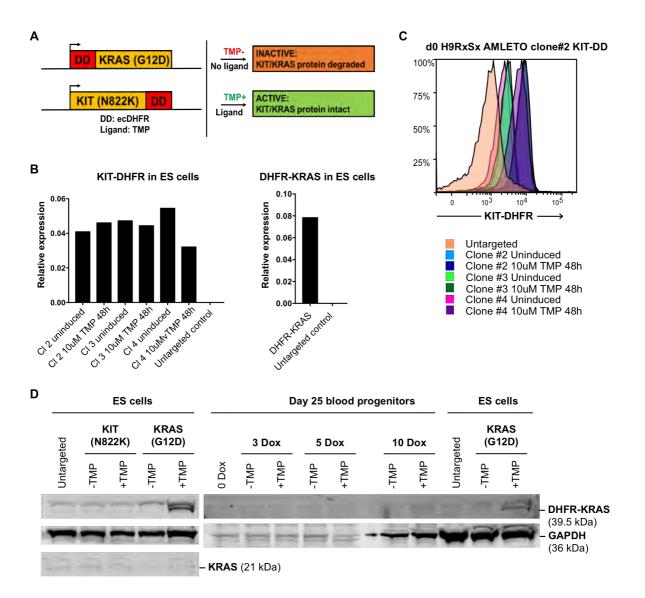



Figure 3.41: K-RAS(G12D) and KIT(N822K) expression in inducible RUNX1-ETO lines

- (A) Diagram depicting the induction system of K-RAS (G12D) and KIT (N822K) targeted into the GAPDH locus of the RUNX1-ETO-targeted human H9 ES cells. An E.Coli DHFR, used as a Destabilization Domain (DD), was fused to the oncogenes prior to the locus targeting. In the absence of the ligand Trimethoprim (TMP), proteins are directed to the proteasome and broken down.
- (B) Transgene expression from total RNA upon 2 days of TMP treatment, with relative expression to GAPDH. K-RAS expression shown corresponds to clone #2.
- (C) Flow cytometric detection of KIT performed on untargeted RUNX1-ETO clone#2 cell line, and three independent KIT-targeted clones (2, 3 and 4) on both un-induced and induced conditions. Induction was performed with a 2-day 10 µM TMP treatment.
- (D) DHFR-K-RAS (39.5 KDa) protein detection by Western blotting in both hES and differentiated haematopoietic progenitors at 48 hours after 10 µM TMP treatment. GAPDH (36 KDa) was used as a loading control. Untargeted parental cell line and KIT-targeted ES cells samples were used as a negative control. Dox treatments for RUNX1-ETO expression are an independent event to induction of K-RAS. The anti-K-RAS antibody also detected endogenous K-RAS (21 KDa).

#### 4 DISCUSSION

## 4.1 A novel inducible RUNX1-ETO system representing an advantageous human model to recapitulate early oncogenic events

Transcripts of the t(8;21) translocation and RUNX1-ETO-expressing clones can be detected in utero and in post-natal blood samples, respectively, of asymptomatic patients, suggesting that cells that acquired the mutation might form a pre-leukaemic, non-proliferative clonal reservoir (Wiemels et al., 2010). Molecular events that occur in pre-leukaemic haematopoietic stem cells and progenitors in the developing embryo may not manifest in the same fashion as when the same oncogenic event occurs in adult counterparts (Barrett et al., 2016). A possible explanation for the distinct oncogenic mechanisms in both embryonic and adult progenitors may be the gene regulatory networks regulating the development and maintenance of mutated progenitors, which differ at the different developmental stages. AML patients may present minimal residual disease after chemotherapy, retaining HSCs harbouring the original t(8;21) translocation as the single oncogenic event that are the basis for relapse upon acquisition of secondary mutations (Shima et al., 2014). However, it is still not known how RUNX1-ETO reshapes the transcriptional network of these HSCs harbouring the translocation in remission. Therefore, we generated a model system of inducible RUNX1-ETO on in vitro generated embryonic haematopoietic progenitors to: (i) help to elucidate the changes that occur when the translocation is acquired during early development, unveiling the first steps of the leukaemic process, and (ii) improve the understanding of the molecular mechanisms implicated in the maintenance of the RUNX1-ETO-expressing progenitor cells, which may represent both the pre-leukaemic clone and/or that cellular reservoir present during remission.

However, it is important to highlight a caveat of our model system; despite the observed homogeneous induction of *RUNX1-ETO* in clones of undifferentiated ES cells, it is uncertain whether the oncogene induction works equally in all cell types during the haematopoietic differentiation protocol. This scenario would skew some of the data and therefore has to be taken into consideration for subsequent interpretations, as uninduced cells types could be the responsible of the observed effect after Dox addition to our cultures.

Until recently, the majority of in vitro human haematopoietic differentiation protocols were biased towards embryonic yolk sac haematopoiesis and were unable to generate HSC-like cells (reviewed in Ackermann et al. 2015). Aiming to attain the ideal in vitro model for the mechanistic study of HSC development and the modelling of childhood leukaemia, the laboratory of Prof A Elefanty has developed a protocol for the generation of CD34+RUNX1C+ definitive haematopoietic progenitors from HOXA+SOX17+ haemogenic endothelium, hence recapitulating the molecular events leading to definitive haematopoiesis within the AGM (Ng et al., 2016). Although cells derived from this protocol have not shown evidence of long-term repopulation capacity, they show similar expression of cell surface markers, signalling molecules and transcriptional profiles to corresponding cells sorted from human 5-week AGM. However, similarities in the chromatin structure between our in vitro generated progenitors and stem and haematopoietic progenitors were not determined. Here, we further characterized the nature of the CD45+CD34+ populations generated in our cultures based on their expression of RUNX1C (GFP+). Expression of the RUNX1C isoform is restricted to haematopoietic cells and marks CD34+ cells with high clonogenic activity and with ability to home to the bone marrow (Ng et al., 2016).

Moreover, *RUNX1C* is the dominant isoform in foetal liver blood progenitors and is expressed in developing T-cells (Sroczynska et al., 2009; Telfer and Rothenberg, 2001). Here we show that our *in vitro* CD45+CD34+RUNX1C+ progenitors share an accessible chromatin pattern with human adult HSC and multipotent progenitor cells (Corces et al., 2016), but not with monocytes. This finding strengthens the significance of our differentiation model over other systems and sheds light onto the nature of the CD45+CD34+RUNX1C+ progenitor population, resembling adult immature progenitors.

The comparison of the transcriptional profiles of our in vitro generated RUNX1C+ and RUNX1C- populations of CD45+CD34+ progenitors showed over 500 differential expressed genes, demonstrating the different nature of the two cell populations. It is important to take into consideration the delay between the expression of the RUNX1C-reporter gene, GFP, and the formation of the detectable fluorescent chromophore (Tsien, 1998). Therefore, the earliest cells acquiring RUNX1C+ expression may have been considered as RUNX1C- during our GFP-based cell sort due to the time required for GFP maturation. However, these cells would represent a very small percentage of the whole sorted population, not materially affecting the outcome of the analysis. Having a closer look at the differentially expressed genes, we identified expression of HSC-specific genes (SOX4, GATA2, LYL1, MYB, NFE2, MEIS1 and MEIS2) in the RUNX1C+ population (Orlic et al., 1995; Zhang et al., 2014) as well as genes regulating erythroid development (GATA1, GFI1 and KLF1). GATA2 is important for HSC generation, function and maintenance (De Pater et al., 2013). HSC function, at both foetal and adult developmental stages, is also dependent on expression of LYL1 (Capron et al., 2006; Souroullas et al., 2009). The

homeobox gene MEIS2 is expressed in HSC and in maturing erythrocytes, but not in granulocyte-monocyte progenitors (GMP) (Miller et al., 2016; Wang et al., 2018). Whilst GATA2 is expressed in HSCs and multilineage progenitors, GATA1 marks erythroid, megakaryocyte, eosinophil, mast and dendritic cells and it is crucial for erythroid differentiation (Weiss et al., 1994). The switch from GATA2 to GATA1 expression regulates expression of early and late erythroid genes, with GATA1 essential for terminal erythroid differentiation (Grass et al., 2003). GFI1 has roles in regulating the formation of haematopoietic progenitors during the EHT, HSC selfrenewal and erythropoiesis (Kim et al., 2014b; Lancrin et al., 2012; Zeng et al., 2004). KLF1 regulates definitive erythropoiesis and expression of β-globin genes (Hodge et al., 2006). Therefore, based on expression of lineage marker genes, the RUNX1C+ population may include multipotent progenitors as well as cells from the early myeloid and erythroid lineages. Conversely, the RUNX1C- population displayed expression of CD14, KLF4, MS4A7, VCAN, FGL2, FCGR3A, CSF1R, which are genes expressed in cord blood monocytic cell populations (Frankenberger et al., 2012; Zhao et al., 2019). RUNX1C- cells expressed genes essential for monocytic differentiation, such as KLF4 and IRF8 (Kurotaki et al., 2013) together with primitive macrophage genes, such as CEBPB, IL10 and IL13RA1 (Ruffell et al., 2009), lymphoid lineage genes including NKG7, which marks natural killer cells, and IL7R, which is expressed in T cells (Zhao et al., 2019). Thus, the RUNX1C- population may include common lymphoid progenitors as well as mature monocytes and macrophages. We found that RUNX1C+ cells expressed genes involved in pathways from distinct haematopoietic lineages, whilst cells lacking RUNX1C expression were mainly enriched in pathways related to distinct lymphoid cell functions as well as

complement and coagulation cascades, indicating presence of more mature megakaryocytes. Adding to the transcriptional differences between RUNX1C- and RUNX1C+ cells, these populations also differed in their chromatin structure, confirming that *RUNX1C* expression marks distinct haematopoietic lineages. Transcription factor motif analyses within accessible chromatin regions showed enrichment in GATA and AP-1 binding motifs within the RUNX1C+ specific sites, which correlated with upregulated gene expression.

Altogether, analyses of differentially enriched pathways and transcription factor binding motifs suggest that RUNX1C+ marks populations of multipotent progenitors with multilineage capacity and early myeloid- and erythroid-committed progenitors, whilst RUNX1C- progenitors may represent progenitors committed to the lymphoid, monocyte/macrophage and megakaryocyte/erythrocyte lineages. While we cannot rule out the possibility of RUNX1C+ also including a mixed population of more committed progenitors (see single cell analysis), our molecular analyses are in concordance with phenotypic observations from Prof Elefanty's laboratory of progenitors generated using this differentiation system (data not shown). They observed that RUNX1C was expressed in myelo-erythroid progenitors and was downregulated very early during commitment to the lymphoid lineage and during late erythroid differentiation. In addition, RUNX1C has been described as a master regulator of human haematopoietic development through upregulation of proinflammatory signalling pathways, which have been previously described to modulate HSC emergence (Navarro-Montero et al., 2017). Therefore, our comparison suggests that the RUNX1C+ population contains the target cells of interest to study the effects

of RUNX1-ETO induction, representing a multipotent progenitor with capacity to develop into cells from the myeloid and erythroid lineage.

# 4.2 The transcriptional response to RUNX1-ETO induction is dose- and cell type-specific

Overexpression of RUNX1-ETO in our in vitro human differentiation cultures using high levels of Dox (100-500 ng/ml) abrogates blood formation, as previously demonstrated in the murine ES cell differentiation system (Regha et al., 2015), and here we also show that it disrupts vasculogenesis. Small numbers of multilineage haematopoietic progenitors have been detected in the foetal liver of RUNX1-ETO knock-in mice (Okuda et al., 1998; Yergeau et al., 1997), suggesting that RUNX1-ETO could be expressed at levels that allow blood formation. Moreover, the low levels of RUNX1-ETO transcripts remaining in the blood of t(8;21) AML patients in long-term remission (Miyamoto et al., 2000), suggest that these residual levels of RUNX1-ETO are compatible with near normal cellular function. A more recent study has shown in a human iPSC model system that RUNX1-ETO overexpression results in cell death (Mandoli et al., 2016), again suggesting that the leukaemogenic effect of RUNX1-ETO is dose-sensitive. Therefore, failure of blood formation in our cultures upon induction of RUNX1-ETO reflects impaired haematopoietic differentiation resulting from high levels of RUNX1-ETO expression. Prior studies have demonstrated the requirement for a balanced expression of RUNX1-ETO and endogenous RUNX1 to allow cell growth and survival as well as to maintain the RUNX1-ETO-driven leukaemic phenotype (Ben-Ami et al., 2013; Loke et al., 2017; Ptasinska et al., 2014). After the EHT, induction of RUNX1-ETO at levels approximating those of RUNX1 expression (in response to 5 ng/ml Dox) allowed haematopoiesis to progress without morphological distortion of the vasculature or significant disruption of blood generation. However, similar induction of RUNX1-ETO

to the same level (5 ng/ml Dox) before the EHT caused a marked disorganization of the vascular structures and reduced formation of haematopoietic progenitors. This result confirms, in the human system, the RUNX1-ETO-dependent block of the EHT previously shown in the mouse (Regha et al., 2015). GFI1 and GFI1B downregulate endothelial differentiation and promote the morphological changes of emerging haematopoietic progenitors during intra-embryonic EHT, and are required for the production of HSCs and haematopoietic progenitor cells in the murine AGM (Lancrin et al., 2012; Thambyrajah et al., 2015). Given that *GFI1* is a RUNX1 target (Lancrin et al., 2012), induction of RUNX1-ETO might interfere with the RUNX1-mediated upregulation of *GFI1* expression, preventing the downregulation of the endothelial program and the detachment of blood cells from the endothelium, which could explain the disorganization of the vasculature and the lack of formed progenitors in culture.

In agreement with previous literature (Mandoli et al., 2016), we observed a dose-dependent RUNX1-ETO driven decrease in cells expressing markers of more mature myeloid cells, such as granulocytic CD16+ cells. Moreover, balanced RUNX1-ETO induction also promoted an increase in numbers of a cell population presenting a CD34+CD38-/loCD90+ signature. These surface markers are expressed, together with *CD45* and *RUNX1*, in embryonic cell populations containing the first few definitive human HSC (Ivanovs et al., 2014). Altogether, we have shown a RUNX1-ETO-mediated differentiation block that results in the accumulation of early progenitor cells that are unable to progress to more mature lineages. Our results confirm, in the human system, the partial block in myeloid differentiation upon induction of *RUNX1-ETO* previously seen in *in vivo* and *in vitro* mouse studies

(Regha et al., 2015; Rhoades et al., 2000). Our observations invite us to hypothesize that, during embryogenesis, the translocation event might occur after the EHT in a subpopulation of progenitors where RUNX1-ETO might remain expressed at low levels, allowing normal cell function and cell differentiation until the acquisition of collaborative molecular aberrations.

Prior studies in the mouse ES cell differentiation model have demonstrated that the RUNX1-ETO-mediated transcriptional dysregulation depends on the target cell that acquires the oncogenic event (Regha et al., 2015). Therefore, understanding the molecular outcome of RUNX1-ETO induction in the distinct cell populations obtained in our in vitro system is important to identify the target cell that more closely resembles the embryonic progenitors that acquire the translocation event and establish the pre-leukaemic clone. Similar to the murine studies, which showed that induction of RUNX1-ETO elicited a different response before and after the EHT, we observed distinct genomic responses to RUNX1-ETO induction in RUNX1C+ and the RUNX1C- cells. We found distinct accessible chromatin profiles in both induced populations, although the resulting gained and lost sites were enriched in similar transcription factor binding motifs, including loss of RUNX1, PU.1 and C/EBP and gain of AP.1 binding motifs. This observation suggests that RUNX1-ETO-might mediate transcriptional deregulation through a common mechanism in both populations. Analysis of pathways associated with the differentially expressed genes highlighted a cell-specific outcome of RUNX1-ETO induction; RUNX1C+ cells upregulated genes from several signalling pathways and downregulated genes associated to regulation of cell cycle, DNA replication and repair and haematopoietic lineages, whilst RUNX1C- cells only upregulated a small subset of those genes

observed in RUNX1C+ cells and downregulated genes associated to several haematopoietic functions. Thus, based on comparison of the differential gene expression, the RUNX1C+ population was identified as the most responsive to RUNX1-ETO induction. Overall, our results indicate that the resulting gene expression profile upon RUNX1-ETO induction is cell-type specific, but that the underlying epigenetic reprogramming mechanisms might be common in different cell populations.

Intriguingly, our RUNX1-ETO-induced progenitors presented a different global transcriptional profile compared to that of RUNX1-ETO-transduced CD34+ cord blood cells (Lin et al., 2017b) and t(8;21) patient samples (Ptasinska et al., 2012). Discrepancies in gene expression patterns between our induced progenitors and the other RUNX1-ETO-expressing cell populations could be explained by the different nature of the cells, whereby our progenitors represent a more immature phenotype and a different developmental stage. Moreover, distinct transcriptional profiles may also be indicative of the presence of secondary mutations in the patient samples. Importantly, when focussing on the expression of known RUNX1-ETO targets in our induced RUNX1C+ populations their expression overlapped with those in RUNX1-ETO-transduced CD34+ cord blood cells. This reflects basic similarities in the core transcriptional profile directly deregulated by RUNX1-ETO even in these developmentally disparate model systems. It is important to note that our in vitro derived immature progenitors might express genes directly bound by RUNX1-ETO not present in the data sets used for the comparison. Also, comparison data were obtained from more differentiated progenitors and hence these RUNX1-ETO targets might be underrepresented in our samples. Finally, all transduced cells are likely to

have undergone extensive clonal outgrowth and selection for appropriate RUNX1-ETO expression levels.

Altogether, our results show that the RUNX1C+ cell population generated in our *in vitro* system represents an immature embryonic progenitor that shares differentially expressed RUNX1-ETO targets with other *RUNX1-ETO*-expressing systems. Therefore, the RUNX1C+ cells were the population of choice for subsequent evaluation of the phenotypic and molecular changes driven by expression of *RUNX1-ETO*.

# 4.3 Balanced levels of RUNX1-ETO result in a reversible differentiation and growth arrest of human *in vitro* haematopoietic progenitors

In line with the observed RUNX1-ETO-mediated differentiation block, 7-day induced progenitors were unable to form colonies in the ongoing presence of Dox, as shown by CFU assays. Strikingly, the latent clonogenic capacity of these RUNX1-ETO-expressing cells was revealed following Dox removal, allowing cells to proliferate and differentiate, indicating reversibility of the differentiation block. These data suggest that expression of RUNX1-ETO leads to an accumulation of cell populations harbouring high clonogenic capacity that may remain in a quiescent stage, thus preventing its progression to further differentiated lineages. In line with our observations, a partial and reversible myeloid differentiation block at an early stage has also been observed in *in vitro* assays of mouse bone marrow cells upon removal of *RUNX1-ETO* expression (Rhoades et al., 2000). Our findings are also corroborated by a recent study that demonstrated that HSCs from RUNX1<sup>ETO/+</sup> mice present increased self-renewal and a quiescent transcriptional profile and phenotype, as compared to HSC from control mice (Di Genua et al., 2019).

Balanced long-term expression of *RUNX1-ETO* – using 3 and 5 ng/ml Dox – promoted the survival but not proliferation of a subset of cells during replating assays, allowing their maintenance in culture longer than 100 days. These results are again consistent with the work of *Rhoades et al.* in *RUNX1-ETO*-expressing murine bone marrow cells, showing an increase of self-renewal but not proliferation during replating assays (Rhoades et al., 2000). Conversely, previous studies in human CD34+ cord blood cells constitutively expressing *RUNX1-ETO* showed enhanced *in vitro* proliferation and maintenance of self-renewal and differentiation capacity

(Mulloy et al., 2002, 2003). However, in our experimental system none of the balanced levels of RUNX1-ETO induction showed cell expansion. The different outcome can be explained by adaptation of the CD34+ cord blood cells to cell culture, resulting from the outgrowth and associated selection of the most proliferative cells.

Induction of RUNX1-ETO in our cultures also resulted in a profound decrease in DNA-synthesis activity due to an arrest in the G1 phase of the cell cycle, as measured by BrDU incorporation. This finding confirms what has been recently shown in the mouse (Di Genua et al., 2019), indicating that RUNX1-ETO might confer a quiescent phenotype through an arrest in cell cycle. Prior studies have shown a decrease in the G1 to S phase transition upon RUNX1-ETO knockdown, along with impairment of engraftment, clonal expansion and proliferation capacity (Martinez et al., 2004; Martinez Soria et al., 2009). However, in both these studies the RUNX1-ETO knock-down: (i) was performed in the Kasumi-1 cell line, which harbours additional mutations to the t(8;21) translocation, and (ii) did not yield a complete depletion of RUNX1-ETO expression. Martinez et al. (Martinez et al., 2004) described induced cellular senescence in Kasumi-1 cells with reduced RUNX1-ETO levels. Interestingly, a role for RUNX1-ETO in inducing senescence-like growth arrest dependent on p53 has been previously described in primary fibroblasts (Wolyniec et al., 2009). Moreover, a follow up study also described a RUNX1-ETO-driven senescence-associated secretory phenotype that promotes the escape from senescence with subsequent immortalization of a subset of RUNX1-ETO-expressing murine fibroblasts (Anderson et al., 2018). It would therefore be interesting to

evaluate, in future experiments, whether RUNX1-ETO induces senescence -like growth arrest and associated secretory phenotype in our *in vitro* system.

A dual role of RUNX1-ETO in blocking differentiation and arresting cell growth has been previously described (Burel et al., 2001). In this study, RUNX1-ETO-dependent growth arrest resulted in apoptosis. However, RUNX1-ETO induction did not cause cell death via apoptosis in our *in vitro* human progenitors. It has been previously shown that elevated levels of *RUNX1-ETO* expression result in RUNX1-ETO-mediated apoptosis (Ben-Ami et al., 2013; Mandoli et al., 2016), explaining the increased cell death observed in the former study, as they used non-physiological levels of RUNX1-ETO. In their study, *Burel et al.* used the U937 cell line, which was generated from monocytic cells isolated from a lymphoma patient and hence represents a different type of myeloid leukaemia. Moreover, the U937 cell line most likely carries additional mutations, accounting for distinct results as compared to our study.

Taken together, we have shown that a balanced level of RUNX1-ETO induction in our *in vitro* generated human haematopoietic progenitors: (i) does not disrupt blood formation but blocks differentiation at an early stage, (ii) does not increase cell death via apoptosis, (iii) maintains cells with higher clonogenic capacity in a quiescent stage, (iv) confers survival but not proliferation to a subset of blood progenitors and (v) results in an arrest of cells in the G1 phase of the cell cycle. The combined observation of these phenotypes in *in vitro RUNX1-ETO*-expressing human progenitor cells has been only possible in our differentiation system but not in other human pre-leukaemic models, as discussed above, which strengthens the significance of our experimental approach as a *bona-fide* pre-leukaemic model.

There are several potential reasons that could explain the discrepancies of our data with previous findings. The first reason may be differences in the expression levels of RUNX1-ETO used. We expressed RUNX1-ETO at a level equivalent to that of the endogenous RUNX1, whilst other studies induced RUNX1-ETO at higher levels (Mulloy et al., 2002, 2003). Secondly, the different nature of the cells where the oncogene is expressed. Our system uses definitive multipotent progenitor cells at an embryonic stage of development (Ng et al., 2016), whilst previous experiments used either a later source of multipotent progenitors - CD34+ human cord blood - or mouse or human progenitors resembling those of generated in the yolk-sac, which are unlikely to represent the cell normally targeted by RUNX1-ETO (Mandoli et al., 2016; Mulloy et al., 2002, 2003; Regha et al., 2015). Lastly, the fact that other systems were based on ectopic oncogene expression that relied on the subsequent outgrowth and proliferation of the cells in the culture dish, implying the requirement for a selection step and hence making it difficult to distinguish the RUNX1-ETOdriven phenotype from that resulting from additional adaptations to cell culture (Mulloy et al., 2002, 2003).

# 4.4 RUNX1-ETO induction leads to dose-dependent deregulation of genes associated to distinct pathways

RUNX1-ETO-expressing RUNX1C+ cells presented different of patterns transcriptional response depending on the oncogene dosage. Whilst the total number of dysregulated genes positively correlated with the levels of RUNX1-ETO induction, individual gene response was highly heterogeneous, which highlights the importance of inducing the oncogene at the right level. One individual gene example that appeared consistently upregulated at all three levels of RUNX1-ETO induction (3, 5, 10 ng/ml Dox) was ERG, a member of the ETS family of transcription factors. This finding is consistent with prior studies in our lab using Kasumi-1 cell lines showing ERG downregulation upon RUNX1-ETO knockdown (Ptasinska et al., 2014). ERG is important for the emergence of definitive HSCs as well as for enhancing the repopulating capacity of adult HSCs (Loughran et al., 2008; Ng et al., 2011) and is included in the gene expression signature of both HSC and LSCs (Eppert et al., 2011). Therefore, RUNX1-ETO might upregulate ERG as a mechanism to promote "stemness" and to prevent apoptosis within the pre-leukaemic clone. Another individual gene exemplifying the heterogeneity of the RUNX1-ETO response is GFI1, which is both a RUNX1 and a RUNX1-ETO target in our progenitor cells and appears upregulated only upon RUNX1-ETO induction with 10 ng/ml, even though it is also bound by RUNX1-ETO when induced with 5 ng/ml Dox. GFI1 displays context dependent roles but is also required for leukaemic maintenance, since reduced GFI1 expression impairs initiation progression of RUNX1-ETO-driven and leukaemogenesis (Marneth et al., 2018). Therefore, high levels of GFI1 might play a

role during disease development by maintaining a pool of cells expressing increased levels of *RUNX1-ETO* transcripts.

Genes belonging to other common pathways responded to RUNX1-ETO in a similar fashion. For example, genes associated with the RAP1 signalling pathway were downregulated only in response to RUNX1-ETO induction with 10 ng/ml dox, thus indicating that the RUNX1-ETO dosage might dictate the resulting aberrant cell phenotype. This finding invites us to hypothesise that tightly regulated variation of the expression levels of the fusion gene through disease progression might be crucial for AML development, maintenance and relapse.

For the purposes of this work, we focused our molecular studies on induction of RUNX1-ETO using 5 ng/ml Dox in RUNX1C+ progenitors. We observed that RUNX1-ETO deregulates the same target genes in our progenitors as in cells from t(8;21) AML patients (Assi et al., 2019), which not only adds relevance to our study but suggests that the initial oncogenic event might account for a large part of the altered network in leukaemic blasts. Further evaluation of the RUNX1-ETO-responsive gene expression confirmed the downregulation of myelopoiesis, cell cycle, DNA replication and DNA repair genes. This molecular response is consistent with the RUNX1-ETO-dependent accumulation of progenitors at an immature stage, the absence of significant proliferative advantage conferred by RUNX1-ETO alone, and the block of transition to S phase. In addition, RUNX1-ETO induction resulted in upregulation of genes from multiple signalling pathways, including the MAPK and VEGF pathways, as previously observed in patient samples (Zaidi et al., 2009). Activation of signalling pathway genes may occur either as a survival response adopted by cells attempting to exit the RUNX1-ETO-dependent cell cycle arrest, as a direct RUNX1-ETO-

mediated mechanism to activate expression of early response genes necessary for leukaemic development, or as a combination of both.

Several studies provide supporting evidence for our findings, highlighting a balanced interplay between the RUNX1-ETO-dependent activated signalling pathway, cell cycle block and defective DNA repair. We found upregulation of the MAP kinase family members p38 (MAPK13) and ERK1 (MAPK3) as well as of the AP-1 members JUN and JUNB, which promote gene expression in response to a stimulus during early development and in distinct cellular contexts. MAPK13 and JUNB were bound by RUNX1-ETO in our progenitors, suggesting the presence of direct mechanisms for the activation of signalling and early response genes. MAPK signalling upregulates expression of AP-1 transcription factors (Whitmarsh and Davis, 1996), which in turn upregulate CCND2 expression (Mathas et al., 2002) resulting in cell cycle activation (Zhang et al., 2018). A recent study in Kasumi-1 cells has also shown a RUNX1-ETO-dependent induction of JUN, with subsequent upregulation of genes involved in the control of G1 progression, including CDK6 and CCND1 (Martinez-Soria et al., 2019). Upregulation of CDK6 and CCND1 was dependent on binding of both AP-1 and RUNX1-ETO with higher expression levels of these two genes found in cells from t(8;21) AML patients, compared with cells from other AMLs. Conversely, we found downregulation of CDK6 and CCND1 in a Dox-dependent manner, which was not dependent on direct RUNX1-ETO binding. In line with this, we observed strong upregulation of the cell-cycle inhibitor p21 (CDKN1A), as previously described (Berg et al., 2008; Peterson et al., 2007). CDKN1A was bound by RUNX1 in uninduced conditions but RUNX1-ETO bound in its place upon induction. The RUNX1-ETO-driven upregulation of p21 (CDKN1A) and downregulation of CDK6 are

consistent with the observed G1 cell cycle arrest in our in vitro progenitors. It has been previously shown that expression of p21 is crucial for maintaining self-renewal of LSCs through restricting cell cycle and limiting DNA damage (Viale et al., 2009). This study demonstrated that RUNX1-ETO expression in murine HSCs induces DNA damage and activates a p21-dependent cell cycle block that, in turn, results in repair of the damaged DNA, leading to the accumulation of genomically unstable HSCs. Maintenance of DNA integrity by different pathways is regulated during the cell cycle (Rothkamm et al., 2003; Takata et al., 1998), as exemplified by suppression of the BRCA1-driven DNA end resection and homologous recombination of DNA double strand breaks during the G1 phase (Escribano-Díaz et al., 2013). We found downregulation of cell cycle genes, such as BUB1, CCNE2 and CCNA1, which were bound by RUNX1-ETO. RUNX1-ETO induction also resulted in the downregulation of genes involved in DNA double strand break repair upon induction, agreeing with studies using RUNX1-ETO-expressing cell lines (Forster et al., 2016). We show that these DNA repair genes (such as BRCA1, BRCA2, CHEK1 and CHEK2) were not targeted by RUNX1-ETO, and some of these genes (such as RAD54L, RAD51AP1 and BLM) displayed RUNX1 binding in uninduced conditions, which was then lost upon induction without gain of RUNX1-ETO binding. These findings agree with the idea of RUNX1-ETO mediating a cell cycle arrest through direct binding and transcriptional repression of cell cycle regulators, which may lead to the indirect downregulation of DNA repair genes. In turn, reduced DNA repair could result in genomic instability and hence the accumulation of secondary mutations. It has been shown that RUNX1-ETO-expressing murine bone marrow cells display downregulation of genes involved in DNA repair via homologous

recombination, resulting in increased DNA damage (Esposito et al., 2015). RUNX1-ETO predisposes cells to acquisition of genetic alterations, spontaneously and after treatment with DNA damage-inducing agents, with a resulting mutator phenotype that positively correlates with its expression levels (Forster et al., 2016). In our data, however, expression of RUNX1-ETO is low as compared to other overexpression systems, which might prevent the excessive accumulation of DNA damage in our cells. Interestingly, we found upregulated expression of the Growth arrest and DNA-damage-inducible protein 45 gamma (*GADD45G*) upon RUNX1-ETO binding. As its name indicates, GADD45G acts as a tumour suppressor by responding to DNA damage stress via activation of the S-phase checkpoint, hence inhibiting cell cycle and resulting in suppression of cell growth and colony formation (Vairapandi et al., 2002; Ying et al., 2005), thus supporting the phenotype observed in our cultures.

Taken together, our data suggests that RUNX1-ETO regulates the interplay between cell cycle, DNA repair and cell signalling in order to ensure long-term survival of the pre-leukaemic clone and sensitise these cells to the acquisition of secondary mutations during for leukaemic development. Although seeming contradictory, the balance between the restricted DNA repair and the cell cycle arrest might favour a mutator phenotype, leading to the accumulation of cells carrying the translocation and variable levels of DNA damage (Rossi et al., 2007). In turn, low levels of RUNX1-ETO expression might prevent the excessive accumulation of DNA damage, which could result in exhaustion for the pre-leukaemic clone (Cheng et al., 2000), via the upregulation of GADD45G and hence cell growth restriction. The RUNX1-ETO-mediated activation of signalling pathways could establish a receptive environment for the acquired cooperating mutations, which, over time, could lead to by-pass of cell

cycle arrest, and subsequent proliferation. Importantly, re-activation of the cell cycle might then result in repair of DNA damage, leading to AML progression and therapeutic resistance (Bullinger et al., 2007; Liddiard et al., 2010).

# 4.5 RUNX1-ETO abrogates the RUNX1-mediated transcriptional program by interfering with RUNX1 binding

Transcriptional changes upon RUNX1-ETO induction were the result of extensive global reorganisation of the chromatin structure, including both loss and gain of accessible chromatin sites. In uninduced conditions, RUNX1-bound sites were enriched in H3K27ac and H3K4me3 active marks in both promoters and distal elements. Although H3K4me3 is widely known to mark active promoters, our data shows enrichment at distal elements as well, which might mark active enhancers correlating with high enhancer driven transcription (Henriques et al., 2018). Upon induction, RUNX1-ETO displaced RUNX1 from many of its binding sites and remained bound at the same site, resulting in reduced accessibility of those sites, which correlated with downregulated gene expression. H3K27ac and H3K4me3 were reduced mainly at distal regulatory elements, confirming the direct interference of RUNX1-ETO with the binding of RUNX1. Given that the combination of active distal regulatory elements defines cellular identity (Corces et al., 2016; Heinz et al., 2010), our data suggest that RUNX1-ETO may corrupt lineage specificity and reprogram the cellular identity of the target cell. Depletion of RUNX1 binding by RUNX1-ETO might be not only the cause for the block in myeloid differentiation, but for the disruption of many other crucial cellular functions that are transcriptionally regulated by RUNX1. This can be exemplified by the upregulation of Early growth response gene (EGR1), which maintains guiescence and long-term self-renewal of HSCs (Min et al., 2008) and is bound by RUNX1-ETO in our in vitro progenitors as well as in t(8;21) cell lines (Fu et al., 2014). Here we also show that RUNX1-ETO upregulates EGR1 expression by displacing RUNX1 and binding in its place. It has been previously shown that presence of RUNX1 prevents RUNX1-ETO-mediated apoptosis by upregulating genes involved in cell cycle checkpoints (Ben-Ami et al., 2013; Loke et al., 2017; Mandoli et al., 2016). We showed that, whilst RUNX1-ETO partially abolishes the RUNX1-mediated program, it also upregulates genes inhibiting cell cycle, such as *GADD45G*. This could be an alternative mechanism to prevent apoptosis in compensation for the lack of RUNX1-driven transcriptional program, hence promoting the survival of the pre-leukaemic clone. Other studies show that absence of RUNX1 increases the number of quiescent HSC (Ichikawa et al., 2008) but it also reduces the replating capacity of bone marrow cells as compared to their *RUNX1-ETO*-expressing conditions (Ichikawa et al., 2004). These observations agree with our data and suggest that the combined suppression of the RUNX1-mediated gene expression program and upregulation of several pathways preventing cell proliferation might be key mechanisms in regulating the homeostasis of the *RUNX1-ETO*-expressing pre-leukaemic clone.

RUNX1-ETO was also bound to many chromatin sites that displayed reduced levels of RUNX1 binding and remained accessible. These sites correlated with upregulated gene expression, suggesting that RUNX1-ETO might also promote exchange of factors to dictate gene expression. Accordingly, our lab has previously shown that 60% of the RUNX1-ETO sites also display RUNX1 binding (Ptasinska et al., 2012). These sites could represent co-existence of RUNX1 and RUNX1-ETO binding within one individual cell or exclusive binding in different cells within our population, hence appearing as "common" binding events in the overall bulk ChIP data. Heterogeneous binding within our cell population may represent several scenarios: (i) cell-type specific regulation at those sites involving complementary transcription factors

hindering the RUNX1-ETO-mediated displacement of RUNX1 in some cell populations, (ii) binding of the RUNX1-ETO co-factor complex in adjacent motifs thus not overlapping to those where RUNX1 is bound, and (iii) limited duration of Dox treatment (24-hour) not allowing enough time for RUNX1-ETO to disrupt RUNX1 binding at specific sites equally within the cells of our population.

We also observed RUNX1-ETO binding at genes that were not previously bound by RUNX1. A possible explanation could be due to RUNX1-ETO binding to non-RUNX1 motifs indirectly, by means of other factors contained within the RUNX1-ETO cofactor complex. This is exemplified by E-box-mediated recruitment of RUNX1-ETO to a selection of genes, enabling RUNX1-ETO binding independently of its RUNT domain (Sun et al., 2013). Likewise, we could also see that, upon induction, RUNX1 binding was lost in sites that were not subsequently bound by RUNX1-ETO. It has been previously shown that RUNX1 is able to bind DNA via PARP-dependent poly(ADP-ribosyl)ation (PARylation), hence in the absence of motifs for binding through the RUNT Domain (Tay et al., 2018). This scenario could explain the lack of RUNX1-ETO binding at such sites. That said, RUNX1 PARylation is associated with DNA damage response and enables RUNX1 binding to DNA repair structures. The fact that we observe that these RUNX1 targets appear deregulated upon induction points out to an indirect mechanism for the loss of RUNX1 binding, such as via RUNX1-ETO-driven signalling changes or dysregulated effector proteins.

Induction of RUNX1-ETO also resulted in the appearance of new accessible sites that correlated with upregulated gene expression but were not bound by RUNX1-ETO. We observed widespread enrichment of binding motifs for members for the AP-1 transcription factor family through all the detected chromatin sites, including the

newly accessible sites that lacked RUNX1-ETO binding. This is consistent with prior observations of extensive binding of AP-1 members across the genome (Gomes et al., 2018; Obier et al., 2016; Ptasinska et al., 2019). Together with the observed upregulation of AP-1 genes through direct RUNX1-ETO binding, and maybe through activated signalling, we propose that transcriptional activation at those sites might be mediated through AP-1 binding. The presence of AP-1 is essential for the engraftment of t(8;21) AML patient cells in mouse xenotransplants (Assi et al., 2019), indicating that the subset of genes upregulated by AP-1 upon RUNX1-ETO induction might be essential for leukaemic development. In addition, the transcription factors GATA2 and GFI1 can cooperatively bind AP-1 motifs together with the AP-1 family member FOS (Gomes et al., 2018), hence adding more complexity to the indirect activator phenotype resulting from RUNX1-ETO induction.

In conclusion, we show that RUNX1-ETO abrogates a large part of the RUNX1-mediated transcriptional program, leading to repression of those genes. Expression of RUNX1-ETO also enhances the accessibility of other sites that do not themselves bind RUNX1-ETO but present gene upregulation, most likely through AP-1 dependent transcriptional activation. We believe that RUNX1-ETO might compensate for the absence of the RUNX1-dependent gene expression program by upregulating signalling pathways and downregulating genes that promote entry to cell cycle, thus allowing cell survival.

# 4.6 *RUNX1-ETO* expression blocks the differentiation of a specific cell population

Differential gene expression analyses in RUNX1-ETO-expressing RUNX1C+ and RUNX1C- populations showed a cell-type specific response. In order to fully decipher the molecular response upon acquisition of the first oncogenic event, it is essential to understand the nature of the cells susceptible to transformation and, ultimately, to identify the cell of origin where the translocation occurs. Our single cell gene expression data demonstrated that the CD45+CD34+RUNX1C+ population is composed of precursors from diverse blood lineages as well as multipotent cell progenitors. This data agrees with the gene expression and associated pathways identified in whole transcriptome analysis of the bulk population. Our current efforts are focused on further characterization of the identity of these multipotent progenitors. Recent studies based on single cell transcriptomic analyses of embryonic progenitors have shed new light onto differentiation trajectories and defined cell populations with multi-lineage potential that were previously unknown, as exemplified by the erythroid-megakaryocyte-primed MPP (EMPP) (Drissen et al., 2019) or the megakaryocyte-erythroid-mast cell progenitor (MEMP) (Popescu et al., 2019). Genes encoding transcription factors and receptors are dynamically regulated during differentiation of the more immature HSC/MPP populations to the earliest lineage specific progenitors. Therefore, comparison of selected individual marker genes to the embryonic populations described in these studies can help elucidate the identity of our "stem-like" and "CD34+" populations. We believe that our CD34+ population might represent the earliest neutrophil-myeloid progenitors, as it expresses CD34, SPINK2, and myeloid markers including MPO and LYZ. Our GMP-

like population expresses *LYZ*, *MPO* and *AZU1*, which appear expressed in neutrophil-myeloid progenitor populations, hence confirming its identity as GMPs. Finally, our stem-like population shares marker genes with those present in eosinophil progenitors but also expresses genes marking the megakaryocyte-erythroid-mast cell lineage, including *EPOR*, low levels of *GATA1*, and high *GATA2* expression (Popescu et al., 2019). These similarities suggest that the Stem-like population might represent embryonic EMPPs or MEMPs recently described in those studies, positioning this population as one of the most multipotent of our single cell analysis.

Induction of RUNX1-ETO resulted in enrichment of a population, referred as 5-Dox enriched cluster, which was barely present in the uninduced conditions. The 5-Dox enriched cluster was arrested in the G1 phase of the cell cycle, demonstrating that the RUNX1-ETO-driven cell cycle arrest is cell type specific. Our preliminary results in bulk populations suggested that this cell cycle arrest is also reversible. We found that 5-Dox enriched cells downregulated multiple cell cycle genes, confirming what was found in the bulk population. However, DNA repair pathways were not affected in the 5-Dox population, suggesting that deregulation of the cell cycle might be the main RUNX1-ETO-driven mechanism to promote survival of the pre-leukaemic clone, whilst downregulation of DNA repair genes might be a downstream effect.

RUNX1-ETO induction strongly distorted the myeloid but not the erythroid differentiation trajectories, indicating that RUNX1-ETO produces a cell-type specific block by hindering cell fate decisions at a specific differentiation stage. Accordingly, not all the single cell populations were susceptible to induction of the oncogene. The most responsive populations included stem-like and the 5-Dox enriched cells, whilst

early and maturing erythroid cell populations did not suffer many changes. One of the most dramatic gene expression changes was a severe downregulation of SPI1 (PU.1) expression only in the 5-Dox enriched cells. PU.1 is an essential transcription factor for myelopoiesis (McKercher et al., 1996; Scott et al., 1994), thus its downregulation confirms the phenotypic differentiation block seen in our in vitro cultures. Conversely, levels of PU.1 remained unaffected in other myeloid lineages (CD34+, GMP-like, eosinophil and monocytic) upon RUNX1-ETO induction. This finding suggests that mature cells that have passed a certain differentiation state lose sensitivity to RUNX1-ETO-mediated perturbation, supporting the concept of a developmental window of leukaemogenic RUNX1-ETO response. This cell-stage specific differential response could be explained by activation of additional distal regulatory elements that do not require the presence of RUNX1, as shown for the autoregulation of the SPI1 (PU.1) locus (Leddin et al., 2011), hence acting independently of the RUNX1-ETO-mediated abrogation of RUNX1 binding. Another mechanism could be the priming of promoters by other transcription factors, hence maintaining active gene expression. This is exemplified by binding of the C/EBP family of transcription factors to regulatory elements, forming stable complexes that maintain SPI1 expression even in the absence of RUNX1 (Hoogenkamp et al., 2007). Accordingly, myeloid significantly downregulated other genes were also predominantly in the 5-Dox enriched population, including CEBPA and CSF1R, as well as the early erythro-myeloid regulator GATA2, confirming the differentiation block in this population at a multipotent progenitor stage. Induction of RUNX1-ETO also resulted in the upregulation of the stem cell regulator SOX4 in the most undifferentiated populations, including the stem-like and the 5-Dox enriched clusters,

consistent with the idea of RUNX1-ETO promoting self-renewal of a pre-leukaemic clone at an immature myeloid progenitor stage. Downregulation of *CEBPA* might be responsible for the higher expression of *SOX4*, as described in HSCs from *CEBPA*-null mice and in patients with abnormal CEBPA function (Zhang et al., 2013a).

The enriched 5-Dox population upregulated expression of the inflammatory chemokine ligand CCL5 (RANTES), which may promote cancer cell proliferation as well as the formation of a microenvironment favouring immune evasion (reviewed in Aldinucci and Colombatti, 2014). In addition, 5-Dox enriched cells expressed interferon (IFN)-stimulated genes, such as IFIT1 and STAT1, and it was the only population displaying expression of the IFN-inducible gene MX1. Induction of genes related to the IFN/STAT pathway has been described as a feature of chemo-sensitive cancers linked to DNA damage-response (Legrier et al., 2016). However, IFNstimulated genes, including IFT1 and MX1, are associated with immune adaptive resistance of cancer cells and hence are an indicator of relapse (Benci et al., 2016). Innate immune signalling pathways, including the MAPK signalling pathway, can be activated in response to cellular stress mechanisms, such as DNA damage, and also contribute to adaptive resistance in AML (Melgar et al., 2019), again highlighting the interplay of different deregulated pathways in the RUNX1-ETO oncogenic phenotype. In addition, induction of RUNX1-ETO results in the upregulation of the Aryl Hydrocarbon Receptor (AHR) in the 5-Dox enriched population as well as in the other two populations of multipotent progenitors (stem-like and CD34+). Activation of AHR expression is used in some protocols to induce ex vivo human HSC expansion (Boitano et al., 2010), indicating that it may also promote the expansion of the *RUNX1-ETO*-expressing pre-leukaemic pool.

Taken together, RUNX1-ETO distorts the stem progenitor cell programme with the presumed RUNX1-ETO-target cell representing a multipotent progenitor or early myeloid cell that appears blocked in differentiation. This enriched subpopulation presents similar deregulated RUNX1-ETO targets to cells from t(8;21) patients and, therefore, strengthens the argument of the 5-Dox enriched population representing the early progenitor cell acquiring the primary leukaemic mutation. Over the past twenty years, numerous studies have suggested the existence of a rare population of stem cells or HSCs as the cell of origin for leukaemic transformation (Bonnet and Dick, 1997; Lapidot et al., 1994) and of relapse (Shima et al., 2014). Moreover, both HSCs and LSCs share a common gene expression signature with genes involved in "stemness" functions such as self-renewal and quiescence (Eppert et al., 2011). Given that the 5-dox enriched population (i) was constituted by a rare number of cells in uninduced conditions, (ii) had the highest transcriptional response to RUNX1-ETO induction, (iii) was arrested at the G1 phase of cell cycle, (iv) suffered upregulation of stemness and downregulation of early myeloid development genes and (v) shared a large proportion of deregulated RUNX1-ETO target genes with cells from t(8;21) AML patients, we infer that this population might represent an in vitro counterpart of embryonic HSCs that mimics the expansion of a quiescent pre-leukaemic clone upon induction of RUNX1-ETO.

#### 4.7 Summary

In summary, we developed a human ES cell differentiation system able to generate definitive haematopoiesis to study the early events occurring in t(8:21) AML. We demonstrated that induction of RUNX1-ETO results in a dose-dependent and celltype specific transcriptional response, with the presumed target cells being multipotent progenitors that appear to be blocked in differentiation and arrested in the G1 phase of cell cycle. We have found that RUNX1-ETO reprograms the epigenome in part by directly interfering with the RUNX1-mediated transcriptional program, resulting in repression of genes involved in the regulation of cell cycle, DNA repair and myelopoiesis (Figure 4.1). Abrogation of RUNX1 binding was accompanied by a reduction of the active histone marks H3K27ac and H3K4me3 mainly at distal regulatory elements, suggesting that RUNX1-ETO might corrupt cellular identity and providing a molecular explanation for the observed distortion of the differentiation trajectories. Induction of RUNX1-ETO also leads to upregulated expression of early response genes and genes associated with signalling pathways. Whilst the precise mechanisms leading to RUNX1-ETO-mediated transcriptional activation remain unclear, our data support a mechanism involving the upregulation of AP-1 members that would subsequently bind and upregulate target genes, independently of RUNX1 and RUNX1-ETO binding at those sites. We hypothesize that the RUNX1-ETOmediated abrogation of RUNX1 binding and the associated downregulation of target genes might be a mechanism to promote quiescence, as previously described in RUNX1-deficient HSCs (Ichikawa et al., 2008). We believe that the combined downregulation of cell cycle and DNA repair genes - resulting from the suppressed RUNX1 program - and upregulation of signalling pathways are a mechanism to

control the homeostasis of the *RUNX1-ETO*-expressing clone by (i) preventing its exhaustion, (ii) promoting its long-term survival and (iii) enhancing the accumulation of genetic instability, thus favouring a mutator phenotype.

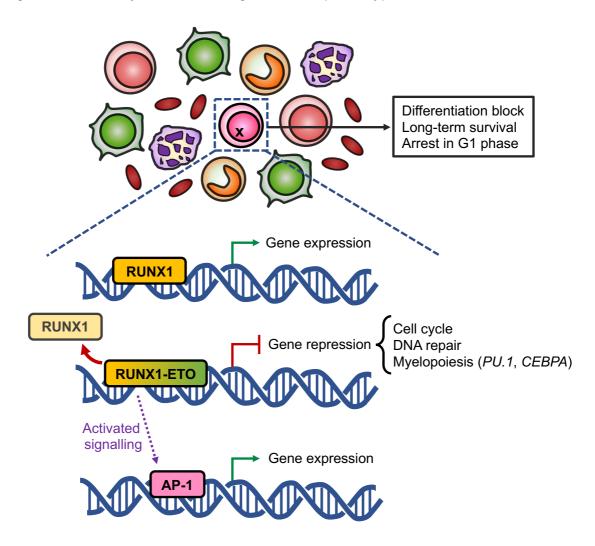



Figure 4.1: RUNX1-ETO-mediated epigenetic reprogramming of a sub-population of *in vitro* human definitive haematopoietic progenitors

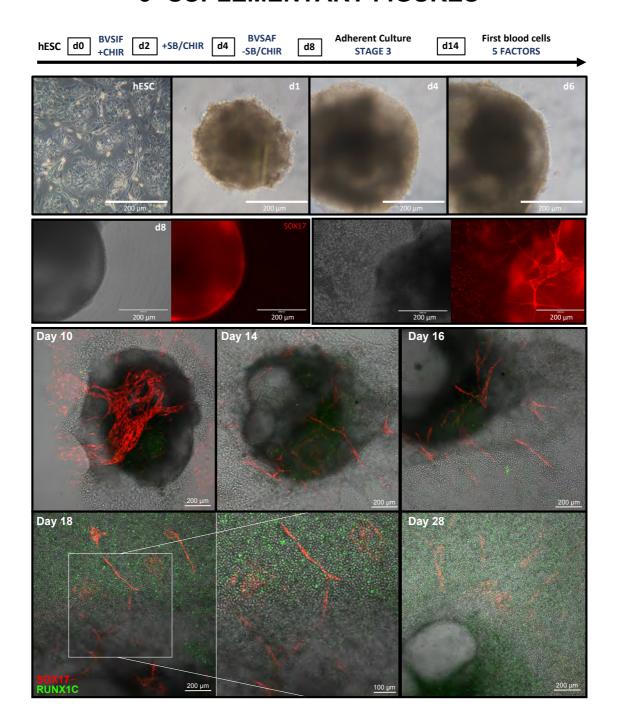
Graphical summary depicting the RUNX1-ETO-mediated reprogramming of the chromatin landscape and growth of a sub-population of *in vitro* human progenitors, inferred to represent a multipotent progenitor. Presence of RUNX1-ETO results in a cell-type specific differentiation block, arrest in the G1 phase of cell cycle and promotes long-term survival. At the molecular level, RUNX1-ETO abrogates the RUNX1-mediated transcriptional program through interference with RUNX1 binding at target genes, resulting in the downregulation of genes involved in the control of cell cycle, DNA repair and myeloid lineage differentiation. RUNX1-ETO induction also results in the activation of several signaling pathways and of early response genes, such as AP-1 family members, which could be responsible for the upregulation of gene expression independently of RUNX1 and RUNX1-ETO binding. Upregulation of the binding of AP-1 members through activated signaling (purple dashed line) and direct binding of AP-1 on upregulated target genes has been shown in the t(8;21) Kasumi-1 cell line (Ptasinska et al., 2019), but has not been verified in our system yet.

#### 4.8 Future plans and directions

Current therapeutic efforts are centred on the development of drugs that target oncogenic events occurring late during leukaemic development, such as activated FLT3 or RAS. However, therapeutic strategies targeting only late collaborating mutations in t(8;21) leukaemia may not be efficient in eliminating the preleukaemogenic reservoir, therefore failing to eradicate these mutated HSCs, favouring their clonal evolution during remission and supporting subsequent relapse. For this reason, future approaches should focus in ways to target both the factors contained within the RUNX1-ETO complex and the pathways directly deregulated by RUNX1-ETO. For example, we observed expression of IFN-stimulated genes and activation of signalling pathways related to the innate immune response in the RUNX1-ETO-responsive population, which could be a hallmark for the relapse observed in t(8;21) AML patients. Our RUNX1-ETO-expressing system can therefore be further exploited for the investigation of genes and pathways associated with the innate immune stress response and for the identification of druggable targets, which would permit the evaluation of inhibitor molecules for the development of treatment strategies to overcome adaptive resistance in AML. In order to target these resistant cells, it would be necessary to further elucidate the role of the preleukaemic clone in disease evolution and relapse. Success of drug therapies will also rely on the identification of molecular and functional differences between wild-type HSCs and those harbouring the translocation. For example, understanding the mechanisms behind the mutator phenotype associated with RUNX1-ETO expression could aid in developing targeted therapies to prevent the acquisition of secondary collaborative events during remission. Therefore, future studies should focus on elucidating key

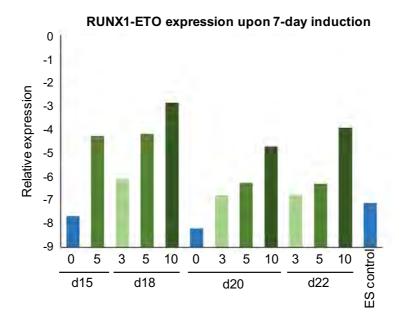
RUNX1-ETO mechanisms sustaining the survival of the preleukaemic clone, with experiments including:

- (i) Further evaluation of the RUNX1-ETO-mediated differentiation block, aiming to understand the nature of the blocked progenitors. Experiments would be performed by testing the potential of the induced cells, including a wider range of cytokines in our CFU assays, as well as by surface marker profiling of the colonies formed upon removal of Dox.
- (ii) Identification of determinant factors in recruiting co-regulators to the RUNX1-ETO co-factor complex, addressing whether these work in a co-operational manner in specific subsets of RUNX1-ETO target genes.
- (iii) Comprehensive analysis of the G1 arrest and downregulation of DNA repair genes in order to address whether *RUNX1-ETO*-expressing cells are going into quiescence or senescence. It would also be interesting to identify whether cells arrested in cell cycle are being immortalized via a RUNX1-ETO-mediated senescence-associated secretory phenotype, as described previously (Anderson et al., 2018).
- (iv) Evaluation of the molecular reversibility of the RUNX1-ETO-mediated transcriptional changes, which would be crucial to identify essential druggable molecules and pathways to abrogate the *RUNX1-ETO*-dependent leukaemogenic phenotype.
- (v) Transplantation experiments to evaluate the ability of our RUNX1-ETO-induced progenitors (in particular of the 5-Dox enriched cells) to home and repopulate bone marrow. Addition of collaborative mutations and improvement of the host


environment within the recipient mice might enhance the engraftment capabilities as well as the putative development of a myelodysplastic syndrome or leukaemic phenotype, as recently shown in mice (Di Genua et al., 2019).

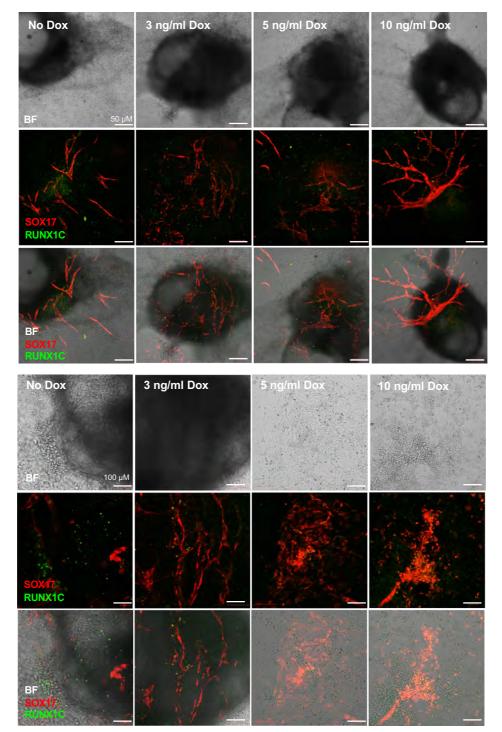
Patients display distinct clinical presentations and treatment responses depending on the order at which mutations are acquired, and addition of a secondary mutational event in RUNX1-ETO-expressing mouse haematopoietic progenitors is sufficient to cause in vivo overt leukaemia (Nick et al., 2012; Schessl et al., 2005; Wang et al., 2011b; Zhao et al., 2014). However, leukaemic transformation after a single second hit has not been achieved in studies using primary human samples, indicating that human cells might be more resistant to transformation (Chou et al., 2011a; Goyama et al., 2016; Wichmann et al., 2015). Therefore, this system is also a valuable tool to attempt the step-wise modelling of t(8;21) leukaemia, to understand changes in the transcriptional network upon acquisition of each oncogenic event and to evaluate the nature of the second hit required to kickstart the leukemogenicity of the RUNX1-ETOexpressing clone. Recent mouse studies show that the presence of mutated K-RAS is incompatible with the pre-leukaemic clone, arguing for a cell stage-specific activation of pathways leading to leukemogenesis (Di Genua et al., 2019). However, ex vivo studies in human CD34+ progenitors show that activator mutations in signalling pathway genes co-operate with the presence of a truncated version of RUNX1-ETO, promoting clonal selection and expansion via re-activation of homologous recombination DNA repair pathways (Wichmann et al., 2015). In addition, t(8;21) AML patients undergo disease relapse due to acquisition of new signalling pathway mutations (Shima et al., 2014), suggesting that mechanisms driving leukaemogenesis might differ between species.

Aiming to evaluate whether the second hit is an activated signaling pathway mutation, we introduced an inducible K-RAS(G12D) into our inducible RUNX1-ETO cell lines. Making use of our double targeted cell line, we will be able to compare the growth, immunophenotype, clonogenic potential, and transcriptional profile to those progenitors expressing *RUNX1-ETO* only. These data would inform us of differentially expressed pathways and therefore we would be able to compare therapeutic targets in the early and later stages of leukaemic development. Moreover, it would be valuable to determine whether these dual oncogene-bearing lines can engraft immunodeficient mice.


There are therefore several key questions that remain unanswered; would the reestablishment of the RUNX1-mediated transcriptional program reverse or aggravate the oncogenic phenotype? Is the second hit a mutation promoting a proliferative leukaemic phenotype? What are the key RUNX1-ETO-driven features that hinder the elimination of the pre-leukaemic clone by use of current therapies? Overall, what is clear is that, despite many studies on the molecular pathophysiology of t(8;21) AML in several settings and species, the fine molecular details underlying the survival of the pre-leukaemic clone and subsequent disease development are still open to question.

#### **5 SUPLEMENTARY FIGURES**

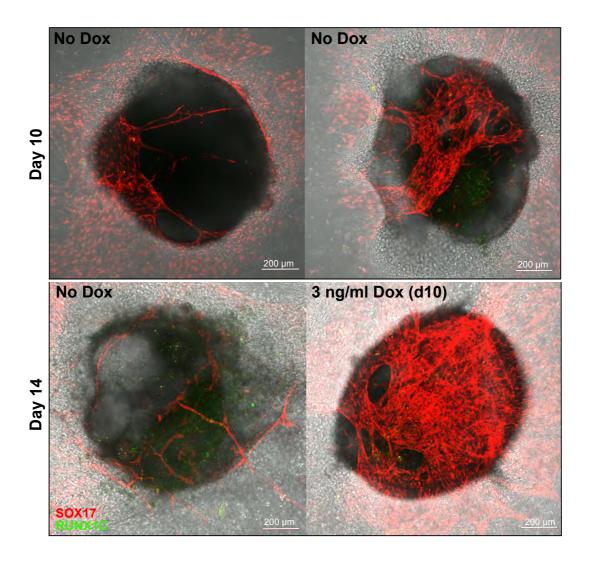



# Supplementary Figure 1: Time course of *in vitro* human definitive haematopoietic differentiation as spin EBs

Epi-fluorescence (hESC, d1 to d8) and confocal images (d10-d28) representing a time course of the *in vitro* human definitive haematopoietic differentiation as spin EB cultures. Piror to harvesting, hESC are at 50% confluency. EBs appear as dark opaque round structures. Fluorescence and bright field channels are merged. Scale bar: 200 μm. Day 18 zoom in at 100um. SOX17 (mCHERRY, red) expression marks arterial structures and RUNX1C (GFP, green) marks haematopoietic progenitors.

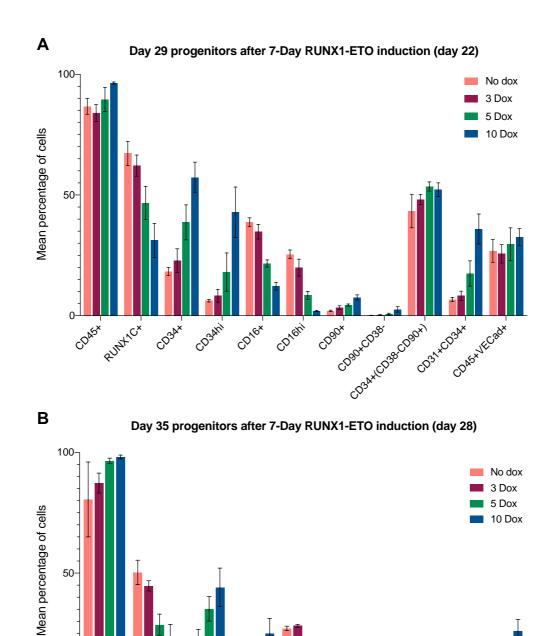


# Supplementary Figure 2: RUNX1-ETO expression levels are strictly dependent on Dox dosage regardless of the induction time point during differentiation


RUNX1-ETO expression from total RNA at 7 days after dox treatment (Dox refeed every 2-3 days), with relative expression to GAPDH. The figure corresponds to one experiment. X-axis labels indicate the amount of Dox added (ng/ml) and the day of addition during the differentiation. "ES neg control" corresponds to an untargeted and undifferentiated ES cell line.



Day 14-16 cultures upon RUNX1-ETO induction before the EHT (d10)


Supplementary Figure 3: RUNX1-ETO induction at balanced levels before the EHT transition disrupts the vascular organization and blocks blood formation

Confocal images of combined Z-stack layers of cultures at d14-16 of differentiation upon RUNX1-ETO induction from d10 (before the EHT) using 3, 5 or 10 ng/m Dox. Each column shows brightfield, fluorescence and merged field channels for each Dox concentration. Arrows show aberrant vascular structures (top panel) and RUNX1C+SOX17+ co-expressing progenitors (bottom panel). Scale bars: 50  $\mu$ m (top panel) and 100  $\mu$ m (bottom panel). SOX17 (mCHERRY, red) and RUNX1C (GFP, green).



# Supplementary Figure 4: Low RUNX1-ETO expression before the EHT transition (d10-12) disrupts the vascular organization and blocks blood formation

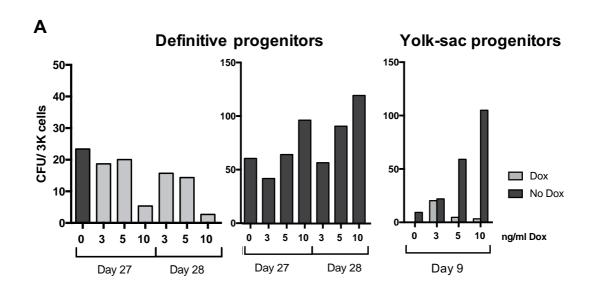
Confocal images of combined Z-stack layers of cultures at d14 of differentiation with RUNX1-ETO induction from d10 (before the EHT) using 3 ng/ml Dox. Brightfield and fluorescence field channels are merged. Scale bars: 200  $\mu$ m, as indicated. SOX17 (mCHERRY, red) and RUNX1C (GFP, green).



Supplementary Figure 5: *RUNX1-ETO*-expressing cultures retain markers of immature myeloid progenitors

CDIOX

CDAGAI

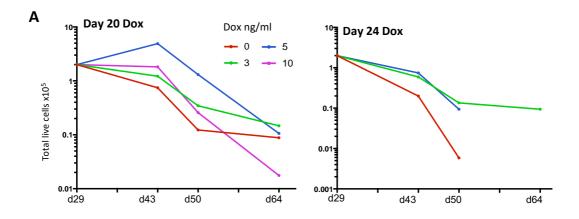

cD34ri

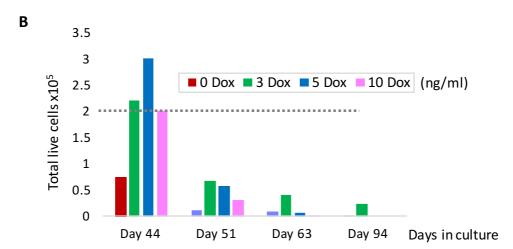
CD3Ax

RUNTICX

CDAS

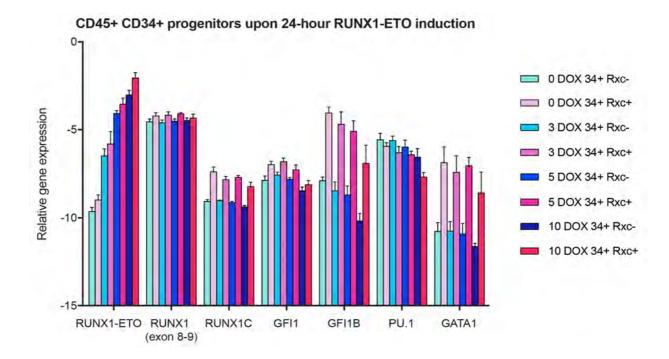
Average data of flow cytometry analysis of the suspension cells of d29 (A) and d35 (B) haematopoietic progenitors upon RUNX1-ETO induction for 7 days. Bar diagrams show the mean percentage of cells expressing selected surface markers representing data from five (A) and three (B) independent biological replicates. Error bars represent Standard Error of the Mean (SEM).





#### B Mixed myeloid colonies (no Dox)

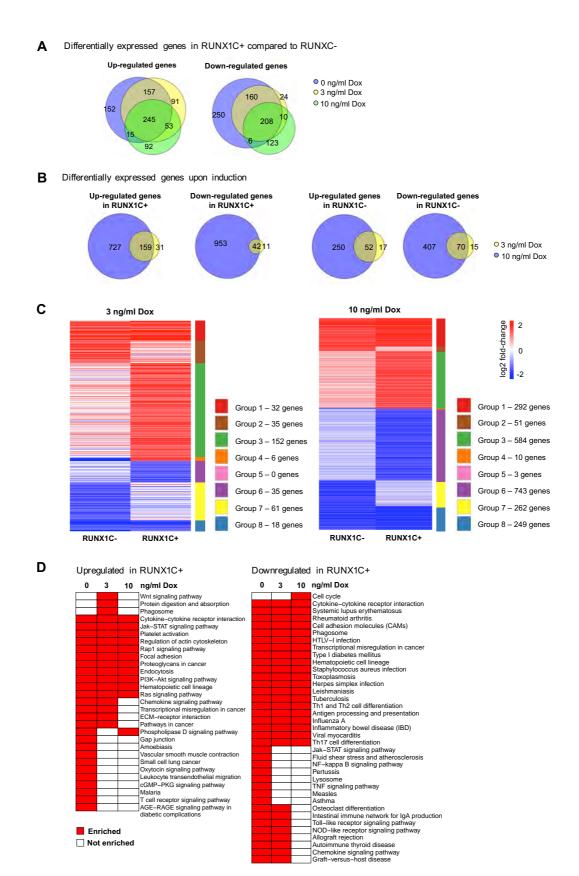


# Supplementary Figure 6: RUNX1-ETO expression maintains clonogenic cells in a quiescent stage regardless of the origin of the progenitor cell


- (A) Colony-forming unit assays of definitive progenitors from the floating fraction of EB cultures treated with Dox during 7 days at different stages during differentiation, and of yolk-sac-type progenitors treated with Dox from day 9 until different days of differentiation. Progenitors were plated in presence (light grey) or absence of Dox (dark grey) at a concentration of 3,000 live cells/well and in triplicate. Individual graphs correspond to different biological replicates.
- (B) Brightfield images representative of the colonies generated in CFU assays from wild-type in vitro cultures.






# Supplementary Figure 7: *RUNX1-ETO* expressed at low levels increases the survival of a subset of progenitor cells

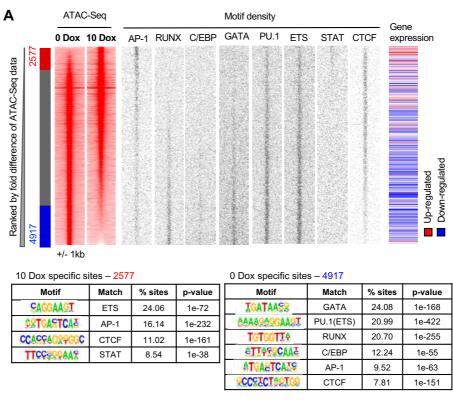
- (A) Additional examples of replating assays of haematopoietic progenitors from cultures treated at d20 or d24 with different Dox concentrations, showing two representatives each of three independent experiments. Floating haematopoietic cells were plated at 2 x10<sup>5</sup> cells/well in the correspondent Dox concentration and cell numbers were measured at three time points as indicated. On d24 graph, only 3-dox treated cells were able to survive over 28 days on the replating assays.
- (B) Absolute values (x10<sup>5</sup>) of the total live cells counted during replating assays (same data represented in log scale in figure 3.15). Dotted line represents the number of progenitors plated at the start of the replating assay.

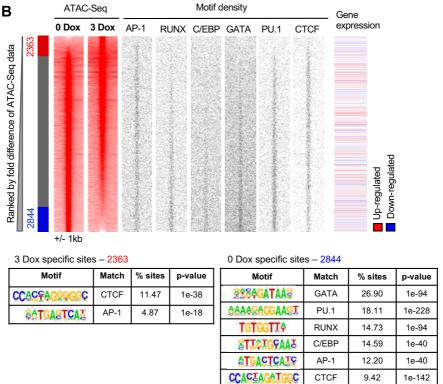


# Supplementary Figure 8: RUNX1-ETO induction for 24h causes a dose-dependent downregulation of haematopoietic genes

Gene expression from total RNA of CD45+ CD34+ RUNX1C-/+ sorted EB cultures upon induction of RUNX1-ETO for 24 hours at day 20 of differentiation with 0, 3, 5 or 10 ng/ml Dox. Gene expression was analyzed using Taqman primers and normalized to that of GAPDH. Error bars represent the s.e.m. of three independent experiments. RUNX1 (exon 8-9) primers bind downstream of the highly-conserved RUNT domain, thus detecting all RUNX1 isoforms but not the RUNX1-ETO oncoprotein.



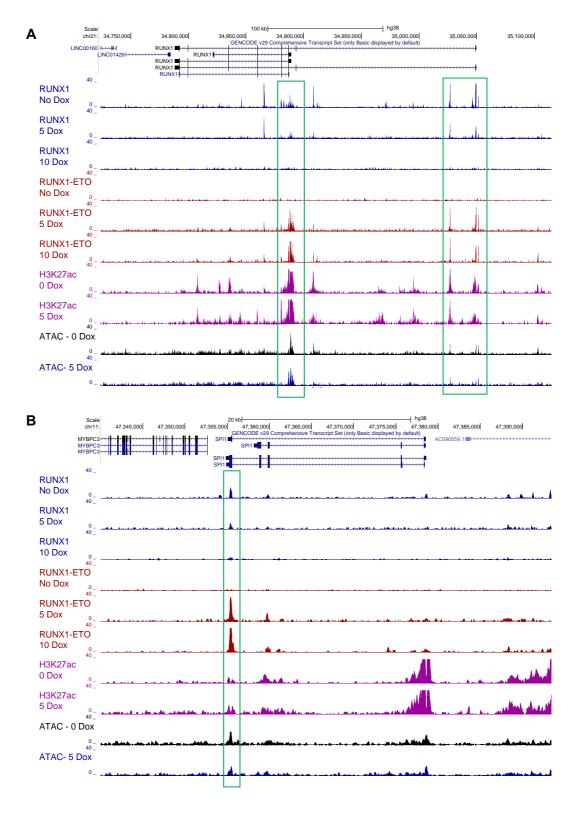

Supplementary Figure 9: Different levels of RUNX1-ETO dysregulates a common subset of genes but this differs depending on the type of progenitor cell


- (A) Venn diagrams showing the numbers and overlap of differentially expressed genes (upregulated: top, downregulated: bottom) in CD45+CD34+RUNX1C+ compared to CD45+CD34+RUNX1C-upon treatment with 0, 3 or 10 ng/ml Dox for 24 hours.
- (B) Venn diagrams showing number and overlap of differentially expressed genes (up/down-regulated) upon treatment with 3 or 10 ng/ml Dox for 24 hours in both CD45+CD34+RUNX1C+ (right two diagrams) and CD45+CD34+RUNX1C- (left two diagrams) populations.
- (C) Heatmap representation of differentially expressed genes upon treatment with 3 ng/ml Dox (left) or 10 ng/ml Dox (right) in both CD45+CD34+RUNX1C- and CD45+CD34+RUNX1C+ populations. Differentially expressed genes were clustered in 8 different groups depending on their response to RUNX1-ETO induction in each cell population or in both. Groups represent genes: upregulated in both (1, red), upregulated in RUNX1C- cells but not in RUNX1C+ (2, brown), upregulated in RUNX1C+ cells but not in RUNX1C- (3, green), downregulated in RUNX1C- cells but upregulated in RUNX1C+ (4, orange), upregulated in RUNX1C- cells but downregulated in RUNX1C+ (5, pink), downregulated in RUNX1C+ but not in RUNX1C- (6, purple), downregulated in RUNX1C- but not in RUNX1C+ (7, yellow) and downregulated in both (8, blue).
- (D) Enriched KEGG pathways for genes upregulated (right) and downregulated (left) in CD45+CD34+RUNX1C+ cells compared to CD45+CD34+RUNX1C- cells upon treatment with 3 and 10 ng/ml and in uninduced conditions (0 Dox).



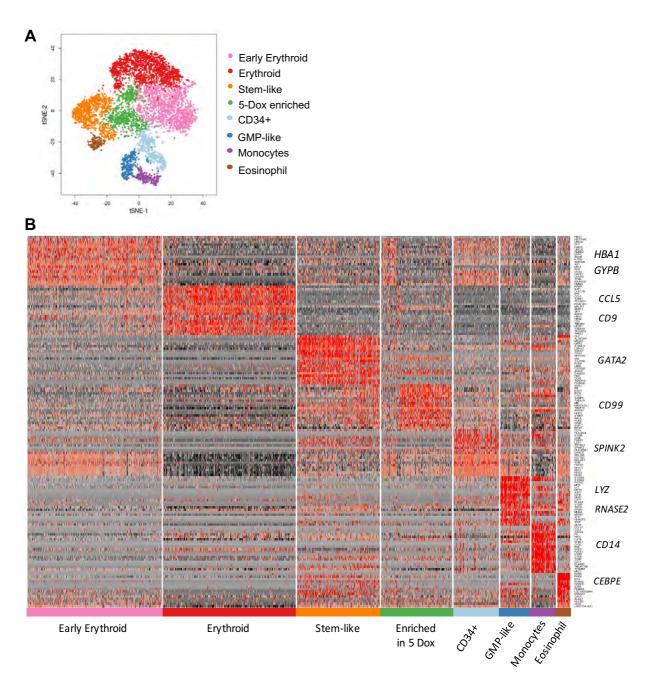
Supplementary Figure 10: Up and downregulated pathways upon RUNX1-ETO induction with 10 ng/ml Dox

KEGG pathways highlighting genes and pathways that are at least 2-fold (A) downregulated or (B) upregulated after 24-hour expression of RUNX1-ETO with 10 ng/ml Dox in CD45+CD34+RUNX1C+ hESC-differentiated progenitors.



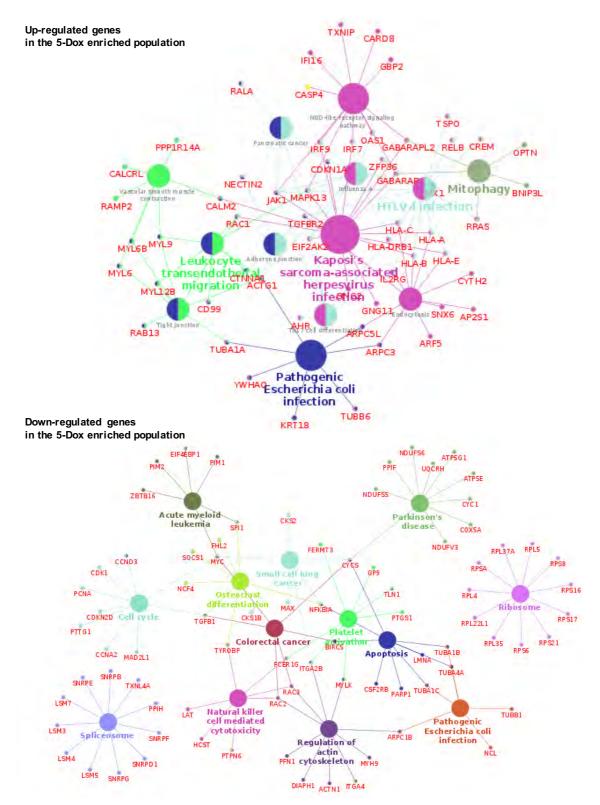



# Supplementary Figure 11: Induction of RUNX1-ETO results in loss of RUNX1, GATA, PU.1 and C/EBP accessible sites


Heat maps depicting accessible chromatin regions ranked by fold difference between (A) the 0 and 10 ng/ml Dox samples and (B) the 0 and 3 ng/ml Dox samples. ATAC-Seq peaks were considered

sample-specific when displaying a greater than 2-fold enrichment compared to the other sample. Sample-specific sites and number of peaks are indicated alongside, being: red the Dox specific, blue the 0-Dox specific and grey the shared peaks. Motif density plots and gene expression at these sites are ranked along the same coordinates as the ATAC-Seq peaks. Below: Motif enrichment analysis in (A) 0 and 10 ng/ml Dox or (B) 0 and 3 ng/ml Dox -specific peaks.




# Supplementary Figure 12: Individual gene examples showing RUNX1-ETO-dependent displacement of RUNX1 with associated reduction in chromatin accessibility

Genome browser screenshot depicting RUNX1, HA-RUNX1-ETO, H3K27ac ChIP-Seq and ATAC-Seq tracks for the indicated samples at (A) *RUNX1* and (B) *SPI1* representative gene loci. Green boxes show displacement of RUNX1 and reduction of accessible chromatin upon RUNX1-ETO induction.



# Supplementary Figure 13: The CD45+CD34+RUNX1C+ population contains precursors from distinct blood lineages as well as multipotent cell progenitors

- A) Two-dimensional t-SNE map displaying a total number of 7,135 CD45+CD34+RUNX1C+ sorted single cells from the combined data of 0 and 5 Dox treated cells including identified cell populations based on expression of known marker genes.
- B) Heatmap showing expression of the top 20 marker genes specific to each cluster (same colour coding as in (B)). Representative genes from each cluster are indicated.



Supplementary Figure 14: RUNX1-ETO-deregulated pathways in the 5-Dox enriched single cells are representative for those observed within the induced bulk population

Network diagram of KEGG pathways for upregulated (above) and downregulated (below) genes in the 5-Dox enriched cell cluster of CD45+CD34+RUNX1C+ sorted single cells upon 24-hours 5 Dox treatment.

### **6 SUPLEMENTARY TABLES AND DATASETS**

| R                | UNX1C- spe        | cific               |                  |
|------------------|-------------------|---------------------|------------------|
| GeneID           | RUNX1C+           | RUNX1C-             | logFC            |
| CCL13            | 2.8876            |                     | 5.4572           |
| CD1C             | 0.8294            | 66.1279             | 5.1975           |
| C1QA             | 0.8258            |                     | 5.0668           |
| ASGR2            | 3.9370            |                     | 5.0406           |
| MRC1             | 6.8812            |                     | 5.0382           |
| CLEC10A          | 1.1271            | 65.5592             | 4.9677           |
| C1QC<br>MPEG1    | 1.5475<br>0.9700  | 76.4195<br>58.0315  | 4.9256<br>4.9052 |
| MS4A7            | 0.8214            |                     | 4.8883           |
| C1QB             | 0.4992            | 42.3162             | 4.8526           |
| HLA-DRA          | 7.6657            | 230.9140            | 4.7421           |
| CD14             | 0.9925            | 51.1300             | 4.7095           |
| S100B            | 13.2541           | 370.0203            | 4.7021           |
| LY86             | 3.6811            | 112.6247            | 4.6013           |
| FGL2             | 1.1510            | 51.1035             | 4.5983           |
| JCHAIN<br>CTEARA | 7.3962            | 198.8754            | 4.5732           |
| STEAP4           | 2.2489            | 72.7786             | 4.5052           |
| CCR6<br>LUZP6    | 1.8984<br>0.3894  | 60.8520<br>28.3049  | 4.4155<br>4.3986 |
| IRF8             | 1.5533            |                     | 4.3900           |
| TIFAB            | 0.2911            | 25.8938             | 4.3806           |
| KCTD12           | 1.3244            | 46.0588             | 4.3396           |
| FGD2             | 1.0607            | 40.5671             | 4.3342           |
| CLEC7A           | 2.9326            | 74.7159             | 4.2670           |
| HLA-DRB5         | 15.5822           | 304.2367            | 4.2022           |
| GAS6             | 1.3554            | 41.0838             | 4.1592           |
| СҮВВ             | 10.1549           | 197.3484            | 4.1523           |
| MS4A6A           | 4.3473            | 89.3500             | 4.0787           |
| RNASE1           | 4.8113            | 96.8727             | 4.0740           |
| DCANP1           | 0.3273            | 20.3700             | 4.0091           |
| AGR2<br>IGSF6    | 0.0363<br>3.8040  | 15.6422<br>76.1071  | 4.0053<br>4.0046 |
| MMP9             | 0.4428            | 22.0772             | 3.9995           |
| LGMN             | 2.8123            | 59.6595             | 3.9920           |
| TMEM236          | 0.7530            | 26.5215             | 3.9727           |
| ACY3             | 0.1637            | 17.1191             | 3.9607           |
| DPP4             | 1.6829            | 38.5125             | 3.8804           |
| CD180            | 0.7566            | 24.2885             | 3.8476           |
| CXorf21          | 5.9388            | 97.7852             | 3.8315           |
| CD74             | 67.5525           |                     | 3.7797           |
| CX3CR1<br>CIITA  | 3.2869            | 57.6799             | 3.7749<br>3.7567 |
| CLEC4A           | 1.4253<br>2.6730  | 31.7827<br>48.4261  | 3.7502           |
| CSF1R            | 20.9445           | 286.2944            | 3.7106           |
| RASSF4           | 4.1597            | 66.1799             | 3.7027           |
| HLA-DMB          | 0.2392            | 14.9101             | 3.6825           |
| SAMHD1           | 8.1186            | 114.8835            | 3.6677           |
| FGL1             | 0.2004            | 13.9677             | 3.6403           |
| IL1RN            | 5.3865            | 78.4092             | 3.6362           |
| SLCO2B1          | 0.8152            | 20.6994             | 3.5794           |
| HLA-DPA1         | 0.8482            | 20.8888             | 3.5660           |
| STAB1            | 6.3658            | 85.7480             | 3.5579           |
| GPR183           | 3.5632            | 51.8735             | 3.5344           |
| CD163<br>APCDD1  | 0.6730<br>0.2294  | 18.1309<br>12.6884  | 3.5154<br>3.4769 |
| IL7R             | 2.0860            | 32.6217             | 3.4456           |
| CD1E             | 0.2520            | 12.3896             | 3.4188           |
| CCR5             | 0.5443            | 15.3831             | 3.4072           |
| IL13RA1          | 4.7034            | 59.0314             | 3.3958           |
| NME1-NME2        | 2.0647            | 31.0184             | 3.3851           |
| HFE              | 0.5443            | 14.9832             | 3.3715           |
| RNASE6           | 16.0558           | 173.5263            | 3.3551           |
| JAG1             | 2.2843            | 32.3618             | 3.3446           |
| TLR10            | 0.2801            | 11.9804             | 3.3421           |
| CD36             | 0.4279<br>14.7887 | 13.4297             | 3.3370<br>3.3293 |
| CD36<br>CCR2     | 4.4802            | 157.6992<br>53.1563 | 3.3048           |
| CONE             | <b>→.→</b> 002    | JJ.1JU3             | 3.3040           |

|                | C- specific (    |                    |                  |
|----------------|------------------|--------------------|------------------|
| GeneID         | RUNX1C+          |                    | logFC            |
| AOAH           | 1.6205           | 24.2833            | 3.2703           |
| MAF            | 2.5947           | 33.5749            | 3.2658           |
| RBM47          | 0.4813           | 13.1359            | 3.2545           |
| CD86           | 8.8782           | 91.6162            | 3.2289           |
| TLR2           | 3.4616           | 40.7607            | 3.2265           |
| NAIP           | 0.0065           | 8.3185             | 3.2108           |
| ENPP2          | 6.0048           | 63.4453            | 3.2017           |
| ABI3           | 0.1957           | 9.9868             | 3.1999           |
| MTUS1          | 0.5942           | 13.6348            | 3.1985           |
| TYMP<br>FCGR1A | 4.3381<br>1.7139 | 47.8204            | 3.1931           |
|                | 0.2315           | 23.8017            | 3.1920<br>3.1720 |
| GIMAP4         | 1.2879           | 10.1001<br>19.4203 | 3.1720           |
| A2M            | 1.5168           | 20.7652            | 3.1124           |
| PTPRO          | 0.6138           | 12.7957            | 3.0957           |
| HLA-DMA        | 1.5632           | 20.4594            | 3.0656           |
| SGSH           | 0.9456           | 15.2641            | 3.0634           |
| RGL1           | 1.5095           | 19.8529            | 3.0548           |
| SDC2           | 0.3223           | 9.9775             | 3.0534           |
| LSP1           | 21.1577          | 181.9020           | 3.0452           |
| MX1            | 0.7311           | 12.9624            | 3.0118           |
| EPB41L3        | 1.6643           | 20.1521            | 2.9890           |
| CSF2RA         | 6.0563           | 53.9480            | 2.9611           |
| BLNK           | 0.1027           | 7.5199             | 2.9499           |
| CCL24          | 1.0165           | 14.4864            | 2.9410           |
| OLFML2B        | 0.9832           | 14.1962            | 2.9378           |
| ODF3B          | 0.5785           | 11.0399            | 2.9312           |
| SPP1           | 9.3731           | 77.5519            | 2.9208           |
| PADI2          | 1.2452           | 15.9675            | 2.9179           |
| OGFRL1         | 6.2997           | 53.8151            | 2.9087           |
| FOLR2          | 1.5263           | 17.7382            | 2.8909           |
| CASP1          | 5.4252           | 46.2983            | 2.8800           |
| PLBD1          | 1.0780           | 14.2621            | 2.8767           |
| мовзв          | 0.7255           | 11.6039            | 2.8688           |
| ACPP           | 1.4938           | 17.0157            | 2.8528           |
| P2RY13         | 0.6753           | 10.9489            | 2.8344           |
| NRP1           | 4.6262           | 38.8605            | 2.8247           |
| CD163L1        | 0.2831           | 7.9888             | 2.8084           |
| LPAR6          | 20.1844          | 145.9210           | 2.7940           |
| TGFBI          | 2.1542           | 20.8632            | 2.7931           |
| B3GNT5         | 13.4922          | 98.5663            | 2.7804           |
| FLVCR2         | 0.7991           | 11.2997            | 2.7733           |
| NLRC4          | 1.1247           | 13.4959            | 2.7703           |
| BCL6           | 0.7681           | 10.9070            | 2.7515           |
| JAML           | 76.7661          | 514.5234           | 2.7288           |
| RIN2           | 0.5202           | 8.9756             | 2.7142           |
| PARM1          | 0.2048           | 6.9012             | 2.7133           |
| SETBP1         | 0.5730           | 9.2745             | 2.7075           |
| MS4A4A         | 0.1420           | 6.4362             | 2.7030           |
| P2RY6          | 0.3068           | 7.4907             | 2.6998           |
| IFI30          | 8.2767           | 59.1654            | 2.6973           |
| FAM198B        | 3.3329           | 26.9624            | 2.6901           |
| MS4A14         | 0.0713           | 5.8819             | 2.6835           |
| CCR1           | 6.0937           | 44.3408            | 2.6762           |
| GAS7           | 1.6254           | 15.5604            | 2.6572           |
| TMEM176B       | 6.6799           | 46.7833            | 2.6373           |
| IRF4           | 0.1464           | 6.0900             | 2.6287           |
| TLR6           | 2.0141           | 17.6147            | 2.6267           |
| SCN4B          | 1.1682           | 12.3210            | 2.6191           |
| S100Z          | 3.8733           | 28.8520            | 2.6149           |
| PDK4           | 1.3438           | 13.3381            | 2.6129           |
| TRIM71         | 1.6908           | 15.4227            | 2.6096           |
| TLR1           | 3.1784           | 24.3784            | 2.6026           |
| TLR7           | 0.1295           | 5.8438             | 2.5992           |
| SLC15A3        | 0.9428           | 10.7232            | 2.5932           |
| KCNE5          | 0.6312           | 8.7665             | 2.5819           |
| AMOT           | 2.8347           | 21.9116            | 2.5789           |

| PUNY1C               | specific (co      | ntinuation)        |                  |
|----------------------|-------------------|--------------------|------------------|
| GeneID               |                   | RUNX1C-            | logFC            |
| GGT5                 | 8.2407            |                    | 2.5781           |
| CES1                 | 0.3273            |                    | 2.5740           |
| PLA2G7               | 3.6853            | 26.6610            | 2.5617           |
| EPHB3                | 0.3626            | 6.9422             | 2.5431           |
| ADAM28               | 4.8370            | 32.9885            | 2.5418           |
| NCF2                 | 24.7128           | 148.5181           | 2.5398           |
| GLIPR1               | 10.2546           | 64.3448            | 2.5376           |
| URGCP-MRPS24<br>LY96 | 0.5652<br>3.6721  | 7.9922<br>25.4297  | 2.5223           |
| FHDC1                | 0.3229            | 6.4109             | 2.4860           |
| TLR8                 | 0.1837            | 5.5935             | 2.4777           |
| F13A1                | 40.9262           | 232.3278           | 2.4764           |
| HNMT                 | 3.4006            | 23.4604            | 2.4747           |
| PRAM1                | 3.3670            | 23.2532            | 2.4735           |
| POU2F2               | 1.3206            | 11.8041            | 2.4641           |
| SERPINF1             | 1.0500            |                    | 2.4637           |
| IFI16                | 31.3585           | 176.1627           | 2.4529           |
| SLA                  | 8.9035<br>12.3262 | 52.9008<br>70.3708 | 2.4443<br>2.4211 |
| HLX                  | 1.3941            | 11.5541            | 2.3906           |
| CMKLR1               | 0.7943            | 8.4018             | 2.3895           |
| ADAMDEC1             | 0.0725            | 4.6091             | 2.3868           |
| CD1B                 | 0.0230            | 4.3445             | 2.3852           |
| TMEM71               | 5.3441            | 32.0140            | 2.3796           |
| RTN1                 | 0.3480            | 5.9963             | 2.3758           |
| CLCN5                | 1.9979            | 14.5501            | 2.3749           |
| SCN3A                | 0.3386            | 5.8708             | 2.3597           |
| ACP5                 | 0.5779            |                    | 2.3528           |
| IL6R                 | 4.0044            | 24.5076            | 2.3496           |
| IL21R                | 5.3284            |                    | 2.3439           |
| TNS3<br>TNFRSF1B     | 0.7617<br>11.2411 | 7.9386<br>60.7732  | 2.3431<br>2.3352 |
| MARCH1               | 1.7013            | 12.5897            | 2.3308           |
| GNGT2                | 0.1623            | 4.8464             | 2.3306           |
| CLEC5A               | 2.0970            | 14.4546            | 2.3191           |
| ADAP2                | 0.2155            | 5.0597             | 2.3177           |
| HMOX1                | 4.4943            | 26.2917            | 2.3125           |
| HLA-DQB1             | 0.4515            | 6.2095             | 2.3124           |
| APBB3                | 6.6369            | 36.8557            | 2.3095           |
| MYOF                 | 0.6618            | 7.2208             | 2.3065           |
| TMEM176A<br>PRDM1    | 3.0792<br>0.6892  | 19.1772<br>7.3294  | 2.3064<br>2.3019 |
| CLNK                 | 0.0832            | 4.5815             | 2.2955           |
| RHBDF2               | 0.8229            | 7.8799             | 2.2843           |
| TNFSF18              | 0.0566            | 4.1450             | 2.2837           |
| IGLON5               | 1.7454            | 12.1596            | 2.2610           |
| TMEM144              | 2.5276            | 15.8702            | 2.2577           |
| CTSS                 | 11.1114           | 56.5810            | 2.2492           |
| CCDC170              | 1.4418            | 10.5023            | 2.2359           |
| SLFN12L              | 0.1605            | 4.4664             | 2.2358           |
| TNP1                 | 0.0065            | 3.7369             | 2.2347           |
| FCGR1B<br>OAS1       | 0.6690<br>2.1062  | 6.7710<br>13.4519  | 2.2191<br>2.2180 |
| KYNU                 | 0.2481            | 4.7919             | 2.2144           |
| FCGR3A               | 0.9365            | 7.8985             | 2.2001           |
| FPR1                 | 1.3473            | 9.7083             | 2.1897           |
| HLA-B                | 0.9198            | 7.7165             | 2.1828           |
| NLRP3                | 3.5490            | 19.5947            | 2.1786           |
| SYT17                | 0.1355            | 4.1347             | 2.1769           |
| SLC37A2              | 0.1952            | 4.4013             | 2.1760           |
| ASIC1                | 0.7449            | 6.7731             | 2.1554           |
| SLC16A10             | 0.5461            | 5.8638             | 2.1504           |
| HLA-DOA              | 0.0378            | 3.5910             | 2.1453           |
| PLD4<br>STAMBPL1     | 9.0088<br>2.0009  | 42.9952<br>12.1646 | 2.1361<br>2.1332 |
| HDAC9                | 1.8561            | 11.4960            | 2.1332           |
| CDKN1A               | 18.8473           | 85.6317            | 2.1260           |
|                      |                   |                    |                  |

| DIINV1      | C amosific (             | continuatio        | \      |
|-------------|--------------------------|--------------------|--------|
| GenelD      | C- specific (<br>RUNX1C+ | RUNX1C-            | logFC  |
|             |                          |                    |        |
| MILR1       | 14.2724                  | 65.3402            | 2.1190 |
| NLRP1<br>GK | 5.2463<br>11.3089        | 25.9830<br>51.8031 | 2.1110 |
| IPCEF1      | 3.8166                   | 19.6545            | 2.1009 |
| NAAA        | 3.1884                   | 16.8835            | 2.1004 |
| PLD2        | 1.0533                   | 7.7612             | 2.0932 |
| SIGLEC1     | 0.0984                   | 3.6652             | 2.0866 |
| LRRK2       | 0.4510                   | 5.1459             | 2.0826 |
| SLC11A1     | 2.9469                   | 15.6795            | 2.0793 |
| CD1A        | 0.0476                   | 3.3510             | 2.0543 |
| PDE1B       | 5.0058                   | 23.7428            | 2.0426 |
| CCDC85A     | 0.2557                   | 4.1401             | 2.0333 |
| ANKEF1      | 0.4338                   | 4.8673             | 2.0328 |
| NSUN7       | 0.6639                   | 5.7924             | 2.0293 |
| VCAN        | 2.5495                   | 13.3154            | 2.0119 |
| MAFB        | 0.1290                   | 3.5521             | 2.0115 |
| CAMK2D      | 0.6884                   | 5.8038             | 2.0107 |
| GPNMB       | 0.1441                   | 3.6102             | 2.0106 |
| NRG1        | 0.3074                   | 4.2585             | 2.0079 |
| CYTH4       | 17.1772                  | 71.5870            | 1.9976 |
| PLEKHG5     | 0.6789                   | 5.6971             | 1.9960 |
| GPRIN3      | 0.5480                   | 5.1606             | 1.9926 |
| TRIM36      | 0.3238                   | 4.2197             | 1.9792 |
| FFAR2       | 0.1690                   | 3.5977             | 1.9757 |
| C9orf72     | 7.3704                   | 31.8974            | 1.9746 |
| MYO1B       | 1.3157                   | 8.0757             | 1.9706 |
| FCN1        | 6.7389                   | 29.3054            | 1.9694 |
| TRIM22      | 7.0022                   | 30.0795            | 1.9575 |
| XAF1        | 0.6838                   | 5.5392             | 1.9574 |
| SNAP25      | 0.5626                   | 5.0624             | 1.9559 |
| PILRA       | 11.2724                  | 46.5549            | 1.9542 |
| IGFBP5      | 8.0348                   | 33.9551            | 1.9519 |
| TNFSF8      | 0.2353                   | 3.7546             | 1.9444 |
| IRF5        | 2.3543                   | 11.8250            | 1.9349 |
| HAVCR2      | 4.9626                   | 21.7853            | 1.9341 |
| BTLA        | 0.1086                   | 3.2122             | 1.9258 |
| RAB31       | 25.3531                  | 98.9233            | 1.9228 |
| SLC2A5      | 1.0188                   | 6.6416             | 1.9204 |
| NKG7        | 45.7796                  | 174.6392           | 1.9087 |
| IFNGR1      | 30.2466                  | 115.4885           | 1.8984 |
| SIRPB2      | 2.8259                   | 13.2008            | 1.8921 |
| S100A9      | 230.0380                 | 853.6254           | 1.8872 |
| LRRC8C      | 2.0986                   | 10.4592            | 1.8868 |
| PLEKHO1     | 15.0284                  | 58.0848            | 1.8822 |
| ADRB3       | 0.0725                   | 2.9516             | 1.8814 |
| BMF         | 12.1994                  | 47.5235            | 1.8782 |
| SLC7A7      | 1.4050                   | 7.8297             | 1.8763 |
| P2RY12      | 0.2119                   | 3.4419             | 1.8739 |
| HRH1        | 0.3304                   | 3.8615             | 1.8696 |
| ATP10A      | 0.4644                   | 4.3341             | 1.8650 |
| KCNA5       | 0.1571                   | 3.1946             | 1.8580 |
| TMOD2       | 1.0623                   | 6.4632             | 1.8555 |
| CLDN4       | 0.1182                   | 3.0334             | 1.8509 |
| HLA-DRB1    | 0.0065                   | 2.6224             | 1.8477 |
| P3H2        | 0.9528                   | 6.0109             | 1.8440 |
| RAP2A       | 16.4150                  | 61.4066            | 1.8414 |
| DUSP27      | 0.8308                   | 5.5511             | 1.8393 |
| SLC18B1     | 1.0839                   | 6.4463             | 1.8373 |
| DDIT4L      | 0.2998                   | 3.6376             | 1.8350 |
| KL          | 0.3493                   | 3.7638             | 1.8199 |
| SNX18       | 3.6612                   | 15.4177            | 1.8165 |
| RNASE4      | 0.7015                   | 4.9473             | 1.8054 |
| SECTM1      | 0.3546                   | 3.7097             | 1.7978 |
| CD300LB     | 0.5550                   | 4.4026             | 1.7968 |
| ATP2B1      | 5.2371                   | 20.6510            | 1.7955 |
| SLC7A2      | 1.4020                   | 7.3191             | 1.7922 |
| HLA-DPB1    | 0.5321                   | 4.2955             | 1.7893 |

| RUNX1C- specific (continuation) |                  |                   |                  |
|---------------------------------|------------------|-------------------|------------------|
| GeneID                          | RUNX1C+          | RUNX1C-           | logFC            |
| IL1R2                           | 0.0866           | 2.7458            | 1.7854           |
| SORBS3                          | 0.6391           | 4.6447            | 1.7840           |
| ALOX15B                         | 0.0643           | 2.6414            | 1.7746           |
| OLR1                            | 0.3274           | 3.5415            | 1.7746           |
| RASD1                           | 0.2819           | 3.3786            | 1.7722           |
| HRH2                            | 3.1466           | 13.1575           | 1.7716           |
| RNF19B<br>CD1D                  | 5.6128<br>0.1490 | 21.5064<br>2.9026 | 1.7670<br>1.7640 |
| MMP12                           | 0.0065           | 2.4027            | 1.7574           |
| UST                             | 1.0957           | 6.0839            | 1.7571           |
| SGPL1                           | 3.4649           | 14.0822           | 1.7562           |
| GADD45B                         | 3.6204           | 14.5501           | 1.7508           |
| CPVL                            | 12.1932          | 43.0660           | 1.7399           |
| CD80                            | 0.4194           | 3.7366            | 1.7385           |
| AXL                             | 0.1702           | 2.8951            | 1.7349           |
| SLC26A11                        | 0.6173           | 4.3678            | 1.7307           |
| SFMBT2                          | 3.0290           | 12.3688           | 1.7304           |
| CYSLTR1                         | 14.2427          | 49.4740           | 1.7274           |
| DPYD                            | 2.1483           | 9.4229            | 1.7271           |
| CST3                            | 33.9564          | 114.6243          | 1.7258           |
| TFEC                            | 4.1165           | 15.8879           | 1.7228           |
| OAS2                            | 1.4258<br>0.2831 | 7.0007<br>3.1991  | 1.7216<br>1.7105 |
| FUCA1                           | 15.8185          | 53.9377           | 1.7077           |
| PKIB                            | 46.6342          | 154.0756          | 1.7029           |
| LRRC25                          | 2.9803           | 11.8733           | 1.6934           |
| OSBPL11                         | 5.9445           | 21.4187           | 1.6908           |
| TBC1D9                          | 2.7014           | 10.9486           | 1.6907           |
| TMEM200A                        | 0.9148           | 5.1630            | 1.6864           |
| SLAMF8                          | 0.2737           | 3.0932            | 1.6842           |
| СТЅС                            | 119.3962         | 385.6146          | 1.6831           |
| MALT1                           | 3.6557           | 13.9266           | 1.6808           |
| CTSB                            | 39.4222          | 128.2130          | 1.6765           |
| SERPINA1                        | 0.4601           | 3.6455            | 1.6697           |
| PAK1                            | 17.8109          | 58.5571           | 1.6627           |
| GPR84<br>CRIP3                  | 0.1819           | 2.7395<br>3.0582  | 1.6617           |
| SPNS3                           | 0.2830<br>3.9221 | 14.4837           | 1.6613<br>1.6534 |
| FABP3                           | 0.3778           | 3.3312            | 1.6524           |
| ADAMTS10                        | 2.6268           | 10.4000           | 1.6523           |
| DSE                             | 6.3350           | 22.0519           | 1.6520           |
| GPC4                            | 0.1040           | 2.4558            | 1.6463           |
| HCK                             | 48.9878          | 155.2923          | 1.6446           |
| ICAM1                           | 5.7920           | 20.1884           | 1.6414           |
| TNFRSF25                        | 0.6452           | 4.1313            | 1.6410           |
| GFRA2                           | 0.0946           | 2.4101            | 1.6394           |
| KDM7A                           | 4.6073           | 16.4615           | 1.6388           |
| IMPA2                           | 2.6521           | 10.3527           | 1.6362           |
| WDFY4                           | 4.1096<br>0.1170 | 14.8353           | 1.6319           |
| VSIG4<br>TRPM2                  | 0.1170           | 2.4585<br>3.7083  | 1.6306<br>1.6285 |
| TBC1D14                         | 15.7787          | 50.7298           | 1.6244           |
| ASPH                            | 9.6223           | 31.6930           | 1.6219           |
| DOCK4                           | 0.4775           | 3.5378            | 1.6189           |
| PPARG                           | 0.8957           | 4.8172            | 1.6176           |
| FGD6                            | 0.5815           | 3.8479            | 1.6161           |
| SOCS3                           | 8.7451           | 28.8700           | 1.6159           |
| PCNX2                           | 0.4493           | 3.4403            | 1.6153           |
| CACNB4                          | 0.3558           | 3.1496            | 1.6138           |
| SMARCA1                         | 6.8302           | 22.9053           | 1.6102           |
| MEF2C                           | 25.0302          | 78.0666           | 1.6029           |
| ARPIN                           | 2.9789           | 11.0425           | 1.5977           |
| NOD2                            | 3.3686           | 12.1897           | 1.5942           |
| TNFSF13B                        | 1.2483           | 5.7629            | 1.5888           |
| ZNF366<br>RUNX3                 | 0.2044<br>5.4560 | 2.6143<br>18.3621 | 1.5854<br>1.5845 |
| ALDH7A1                         | 3.8379           | 13.5062           | 1.5842           |
|                                 | 3.03/3           | 13.5002           | 1.5042           |

| RUNX1C- specific (continuation)   |                                        |                               |                            |  |
|-----------------------------------|----------------------------------------|-------------------------------|----------------------------|--|
| GeneID                            | RUNX1C+                                |                               | logFC                      |  |
| FCGRT                             | 21.5756                                | 66.6162                       | 1.5826                     |  |
| IL10RA                            | 29.6444                                | 90.7321                       | 1.5818                     |  |
| TIAM1                             | 2.3763                                 | 9.1068                        | 1.5818                     |  |
| ADAM9                             | 2.0118                                 | 7.9371                        | 1.5692                     |  |
| LAP3                              | 30.0218                                | 90.5197                       | 1.5608                     |  |
| CD93                              | 8.5874                                 | 27.2171                       | 1.5573                     |  |
| SAT1                              | 333.8391                               | 981.7407                      | 1.5533                     |  |
| GPR82                             | 0.1094                                 | 2.2512                        | 1.5512                     |  |
| EDNRB                             | 0.2609                                 | 2.6911                        | 1.5496                     |  |
| CEBPD                             | 3.1659                                 | 11.0787                       | 1.5358                     |  |
| PDE4B                             | 2.0970                                 | 7.9684                        | 1.5340                     |  |
| RPGRIP1                           | 0.2226                                 | 2.5370                        | 1.5326                     |  |
| DTNA                              | 1.8264                                 | 7.1740                        | 1.5321                     |  |
| GPR68                             | 1.1796                                 | 5.2956                        | 1.5303                     |  |
| GLRX                              | 38.1914                                | 111.4727                      | 1.5210                     |  |
| SORL1                             | 4.3952                                 | 14.4682                       | 1.5195                     |  |
| ZNF217<br>CD101                   | 16.9862                                | 50.4762                       | 1.5170                     |  |
| CD101<br>SIPA1L1                  | 2.8766<br>2.9887                       | 10.0604<br>10.3772            | 1.5125<br>1.5122           |  |
| GPR35                             | 4.3383                                 | 14.1460                       | 1.5122                     |  |
| PTAFR                             | 28.2361                                | 81.9331                       | 1.5043                     |  |
| SASH3                             | 29.8112                                | 85.9270                       | 1.4964                     |  |
| DENND3                            | 21.7381                                | 63.1356                       | 1.4960                     |  |
| RNF144B                           | 0.3379                                 | 2.7690                        | 1.4942                     |  |
| SCIMP                             | 0.1758                                 | 2.3097                        | 1.4930                     |  |
| SLC8A1                            | 0.0708                                 | 2.0130                        | 1.4925                     |  |
| PLSCR1                            | 36.4718                                | 103.9023                      | 1.4852                     |  |
| GPR171                            | 0.2059                                 | 2.3612                        | 1.4789                     |  |
| TTC39C                            | 2.5522                                 | 8.8804                        | 1.4759                     |  |
| TRPS1                             | 0.5293                                 | 3.2455                        | 1.4731                     |  |
| TICAM2                            | 0.7306                                 | 3.7834                        | 1.4668                     |  |
| FAM170A                           | 0.0065                                 | 1.7764                        | 1.4639                     |  |
| SLC12A9                           | 5.4700                                 | 16.8427                       | 1.4635                     |  |
| PLAU                              | 4.1101                                 | 13.0867                       | 1.4629                     |  |
| MICAL1                            | 14.8386                                | 42.6354                       | 1.4621                     |  |
| SOD2                              | 25.7165                                | 72.0879                       | 1.4519                     |  |
| OTUD1                             | 1.2650                                 | 5.1961                        | 1.4518                     |  |
| ARHGAP26                          | 2.5880                                 | 8.7826                        | 1.4470                     |  |
| IL4I1                             | 0.2286                                 | 2.3340                        | 1.4403                     |  |
| GPR162                            | 3.2296                                 | 10.4239                       | 1.4335                     |  |
| TFEB                              | 0.9413                                 | 4.2396                        | 1.4325                     |  |
| TOX<br>TREM2                      | 3.1145<br>1.2061                       | 10.1018<br>4.9524             | 1.4320                     |  |
| UNC93B1                           | 4.1326                                 | 12.7724                       | 1.4320                     |  |
| FARP1                             | 0.8343                                 |                               | 1.4173                     |  |
| LYZ                               | 141.7378                               | 379.9348                      | 1.4162                     |  |
| VSIG10                            | 2.1001                                 | 7.2565                        | 1.4132                     |  |
| CEBPB                             | 1.7379                                 | 6.2910                        | 1.4131                     |  |
| ABCA6                             | 0.1420                                 | 2.0312                        | 1.4084                     |  |
| TTC7A                             | 4.2226                                 | 12.8512                       | 1.4072                     |  |
| CTSO                              | 0.2245                                 | 2.2437                        | 1.4054                     |  |
| ARL4C                             | 2.0374                                 | 7.0422                        | 1.4048                     |  |
| ABCG2                             | 0.0769                                 | 1.8509                        | 1.4045                     |  |
| FZD2                              | 0.3961                                 | 2.6915                        | 1.4028                     |  |
| LILRB3                            | 0.0801                                 | 1.8493                        | 1.3995                     |  |
| PTPRK                             | 0.0065                                 | 1.6521                        | 1.3979                     |  |
| SKIDA1                            | 0.2703                                 | 2.3472                        | 1.3978                     |  |
| TIGAR                             | 0.7125                                 | 3.5057                        | 1.3956                     |  |
| PXDC1                             | 0.3524                                 | 2.5572                        | 1.3952                     |  |
|                                   | 4.9673                                 | 14.6696                       | 1.3928                     |  |
|                                   |                                        | 33.0423                       | 1.3865                     |  |
| RFTN1                             | 12.0211                                |                               |                            |  |
| RFTN1<br>VENTX                    | 0.9450                                 | 4.0838                        | 1.3861                     |  |
| RFTN1<br>VENTX<br>DHTKD1          | 0.9450<br>10.0446                      | 27.8231                       | 1.3839                     |  |
| RFTN1<br>VENTX<br>DHTKD1<br>SNX10 | 0.9450<br>10.0446<br>10.0190           | 27.8231<br>27.7225            | 1.3839<br>1.3822           |  |
| GAA RFTN1 VENTX DHTKD1 SNX10 HP   | 0.9450<br>10.0446<br>10.0190<br>7.1337 | 27.8231<br>27.7225<br>20.1951 | 1.3839<br>1.3822<br>1.3817 |  |
| RFTN1<br>VENTX<br>DHTKD1<br>SNX10 | 0.9450<br>10.0446<br>10.0190           | 27.8231<br>27.7225            | 1.3839<br>1.3822           |  |

| RUNX1C- specific (continuation) |         |         |        |  |
|---------------------------------|---------|---------|--------|--|
| GeneID                          | RUNX1C+ |         | logFC  |  |
| ITGB7                           | 3.2309  | 9.9897  | 1.3771 |  |
| SYS1-DBNDD2                     | 0.0400  | 1.6992  | 1.3759 |  |
| MYCL                            | 1.2470  | 4.8297  | 1.3754 |  |
| EEPD1                           | 0.9355  | 4.0111  | 1.3724 |  |
| PSTPIP1                         | 3.2323  | 9.8979  | 1.3646 |  |
| PARP9                           | 7.2338  | 20.1904 | 1.3638 |  |
| RBKS                            | 0.9508  | 4.0177  | 1.3630 |  |
| IL1R1                           | 13.2232 | 35.5825 | 1.3629 |  |
| SRA1                            | 11.0816 | 30.0603 | 1.3623 |  |
| TSPAN33                         | 6.6017  | 18.5425 | 1.3622 |  |
| KLF4                            | 0.3765  | 2.5375  | 1.3617 |  |
| PLXNB2                          | 9.5881  | 26.1504 | 1.3585 |  |
| GSTA4                           | 6.1171  | 17.2250 | 1.3566 |  |
| TRIM25                          | 14.3106 | 38.1700 | 1.3552 |  |
| ABCA1                           | 0.4430  | 2.6888  | 1.3540 |  |
| CD200                           | 3.4035  | 10.2378 | 1.3516 |  |
| TTYH2                           | 1.3278  | 4.9303  | 1.3491 |  |
| TNFRSF13C                       | 0.8222  | 3.6341  | 1.3466 |  |
| KIAA0930                        | 5.7788  | 16.2264 | 1.3455 |  |
| CREM                            | 7.5745  | 20.7566 | 1.3433 |  |
| LRRK1                           | 1.0993  | 4.3248  | 1.3428 |  |
| CHCHD7                          | 30.1587 | 77.7159 | 1.3370 |  |
| TMEM106A                        | 6.8319  | 18.7425 | 1.3339 |  |
| C15orf38-AP3S2                  | 0.0321  | 1.6015  | 1.3338 |  |
| IFI35                           | 6.4387  | 17.6889 | 1.3291 |  |
| CXCL16                          | 0.9889  | 3.9960  | 1.3288 |  |
| EFHD2                           | 14.1153 | 36.8871 | 1.3257 |  |
| PLB1                            | 3.1214  | 9.3229  | 1.3246 |  |
| MEFV                            | 0.5967  | 2.9970  | 1.3238 |  |
| EMILIN2                         | 13.4069 | 35.0324 | 1.3225 |  |
| SLAMF7                          | 0.1359  | 1.8330  | 1.3185 |  |
| TBC1D12                         | 2.0170  | 6.5099  | 1.3157 |  |
| PIK3CD                          | 12.3399 | 32.1872 | 1.3149 |  |
| CHI3L2                          | 0.2042  | 1.9916  | 1.3129 |  |
| CD300C                          | 12.6444 | 32.8791 | 1.3121 |  |
| EPSTI1                          | 1.3955  | 4.9472  | 1.3118 |  |
| LAMP5                           | 0.2877  | 2.1914  | 1.3094 |  |
| CLECL1                          | 1.1884  | 4.4217  | 1.3089 |  |
| RASSF2                          | 15.9241 | 40.8798 | 1.3072 |  |
| RXFP1                           | 3.0625  | 9.0410  | 1.3055 |  |
| SGK1                            | 3.6151  | 10.3935 | 1.3038 |  |
| SLC38A1                         | 27.4840 | 69.3063 | 1.3035 |  |
| PLXDC2                          | 2.1093  | 6.6657  | 1.3018 |  |
| MEIKIN                          | 0.2751  | 2.1424  | 1.3012 |  |
| PRR16                           | 0.0541  |         | 1.2997 |  |
| RNF149                          | 18.0269 | 45.7826 | 1.2979 |  |
| RAB7B                           | 5.8130  | 15.7493 | 1.2977 |  |
| ZFP36                           | 19.9226 | 50.3838 | 1.2963 |  |
| TVP23A                          | 0.3291  | 2.2636  | 1.2960 |  |
| IRF7                            | 0.9413  | 3.7630  | 1.2948 |  |
| RGS2                            | 8.9346  | 23.3731 | 1.2947 |  |
| GRN                             | 22.2964 | 56.0951 | 1.2933 |  |
| SPATA6                          | 0.3444  | 2.2913  | 1.2917 |  |
| DMXL2                           | 12.2995 | 31.5366 | 1.2907 |  |
| NPL                             | 7.0602  | 18.7070 | 1.2898 |  |
| C19orf38                        | 9.4307  | 24.4564 | 1.2872 |  |
| DHRS3                           | 0.4046  | 2.4270  | 1.2868 |  |
| PTGER4                          | 0.5944  | 2.8855  | 1.2851 |  |
| RCBTB2                          | 9.7494  | 25.1610 | 1.2832 |  |
| SH3TC1                          | 4.0669  | 11.3228 | 1.2822 |  |
| SOX2                            | 0.0065  | 1.4471  | 1.2817 |  |
| MAN2B1                          | 20.7869 | 51.6771 | 1.2737 |  |
| CEP112                          | 0.3253  | 2.2040  | 1.2735 |  |
| ST5                             | 0.5280  | 2.6881  | 1.2712 |  |
| MAML2                           | 0.6154  | 2.8947  | 1.2696 |  |
| AKNA                            | 13.3133 | 33.3982 | 1.2650 |  |
| PARP14                          | 6.0605  | 15.9604 | 1.2643 |  |

| GenelD          | pecific (cont     | RUNX1C-           | logFC     |
|-----------------|-------------------|-------------------|-----------|
|                 |                   |                   | 1.2641    |
| FOSL2           | 4.8823            |                   |           |
| RETN            | 9.1797            | 23.4482           | 1.2640    |
| GIMAP8          | 0.9428            | 3.6594            | 1.2620    |
| CASP5           | 0.0065            | 1.4111            | 1.2604    |
| KCNMB4          | 0.9170            | 3.5770            | 1.2556    |
| PIGR            | 0.0065            | 1.4012            | 1.2545    |
| FAM20A          | 0.1790            | 1.8125            | 1.2543    |
| FES             | 25.7229           | 62.7083           | 1.2534    |
| DPYSL2          | 9.7263            | 24.5611           | 1.2528    |
| TYROBP          | 117.7270          | 281.4525          | 1.2504    |
| MXD1            | 10.2013           | 25.5231           | 1.2436    |
| SPECC1          | 4.3630            | 11.6869           | 1.2422    |
| IL17RB          | 4.9198            | 13.0036           | 1.2422    |
| MB21D2          | 0.5715            | 2.7148            | 1.2412    |
| AFF3            | 0.1214            | 1.6497            | 1.2405    |
| SBNO2           | 1.3891            | 4.6314            | 1.2370    |
| ARHGEF40        | 4.0187            | 10.8141           | 1.2351    |
| C15orf48        | 0.0322            | 1.4290            | 1.2347    |
| DAPP1           | 12.5258           | 30.8114           | 1.2338    |
| CBLB            | 3.5094            | 9.6056            | 1.2338    |
| COLGALT1        | 21.5382           | 52.0068           | 1.2338    |
| DIP2B           | 13.6222           | 33.3753           | 1.2332    |
| RAB43           | 1.7800            | 5.5332            | 1.2327    |
| SIPA1L2         | 0.9361            | 3.5313            | 1.2267    |
| MAP3K8          | 8.9964            | 22.3455           | 1.2237    |
| HEXB            | 31.6994           | 75.2841           | 1.2221    |
| CREBL2          | 6.7793            | 17.1473           | 1.2220    |
| PCM1            | 24.5534           | 58.6024           | 1.2219    |
| MARCKS          | 7.5912            | 19.0231           | 1.2207    |
| DHX58           | 0.5914            | 2.7078            | 1.2203    |
| MPPE1           | 6.1812            | 15.7094           | 1.2184    |
| C22orf42        | 0.0731            | 1.4813            | 1.2093    |
| VDR             | 2.0745            | 6.0850            | 1.2044    |
|                 | i                 |                   |           |
| CLEC2D          | 1.3494            | 4.4122            | 1.2039    |
| SMCO4           | 3.0551            | 8.3298            | 1.2021    |
| MMP19           | 1.4739            | 4.6898            |           |
| TMEM243         | 4.9230            | 12.5840           | 1.1975    |
| IL10            | 0.2890            | 1.9490            | 1.1940    |
| TXLNB           | 0.5426            | 2.5245            | 1.1920    |
| SERPING1        | 25.6230           | 59.7892           | 1.1911    |
| IGFLR1          | 4.5019            | 11.5529           | 1.1900    |
| LILRA3          | 0.0065            | 1.2952            | 1.1893    |
| ATP6V1G2-DDX39B | 0.6457            | 2.7525            | 1.1892    |
| LITAF           | 25.5466           | 59.4290           | 1.1867    |
| FMNL2           | 2.3010            | 6.5049            | 1.1850    |
| DTX4            | 0.2484            | 1.8368            | 1.1842    |
| ANXA5           | 33.5634           | 77.3732           | 1.1811    |
| ZFP36L2         | 31.0888           | 71.7420           | 1.1807    |
| ITGAL           | 23.0119           | 53.3653           | 1.1789    |
| AIG1            | 4.9770            | 12.5152           | 1.1771    |
| ZFP36L1         | 8.7816            | 21.1126           | 1.1767    |
| FBXO21          | 2.8712            | 7.7488            | 1.1763    |
| STK17B          | 14.6417           | 34.2692           | 1.1730    |
| NINJ1           | 11.7201           | 27.6624           | 1.1721    |
| CPNE3           | 21.0387           | 48.6214           | 1.1709    |
| RAPGEF1         | 9.6797            | 23.0092           | 1.1687    |
| STARD13         | 2.5228            | 6.9016            | 1.1654    |
| MPZL1           | 6.1113            | 14.9312           | 1.1637    |
| ZNF532          | 1.3087            | 4.1659            | 1.1620    |
| HOXA9           | 2.9441            | 7.8013            | 1.1580    |
| DUSP3           | 25.9813           | 59.0384           | 1.1539    |
| WDR91           | 3.6178            | 9.2689            | 1.1530    |
| DDX60           | 0.9374            | 3.2983            | 1.1497    |
| CARD11          | 1.6643            | 4.9092            | 1.1492    |
| ₩ 111DII        | 1.0043            |                   | 1.1432    |
|                 | 27 5560           | 0/1 [ 0/17        | 1 1 1 100 |
| TESC<br>TPK1    | 37.5560<br>1.9035 | 84.5047<br>5.4313 | 1.1490    |

| RUNX1C- specific (continuation) |         |          |        |  |
|---------------------------------|---------|----------|--------|--|
|                                 |         |          |        |  |
| GeneID                          | RUNX1C+ | RUNX1C-  | logFC  |  |
| OASL                            | 0.2194  | 1.6986   | 1.1460 |  |
| SLITRK4                         | 0.6419  | 2.6285   | 1.1440 |  |
| EVI2B                           | 27.1952 | 61.2867  | 1.1435 |  |
| MX2                             | 3.2307  | 8.3294   | 1.1409 |  |
| MVP                             | 10.1901 | 23.6756  | 1.1409 |  |
| FOS                             | 30.9171 | 69.2302  | 1.1378 |  |
| FAM219B                         | 12.3021 | 28.2502  | 1.1368 |  |
|                                 |         |          |        |  |
| LAT2                            | 29.6567 | 66.3231  | 1.1349 |  |
| KIAA1551                        | 21.4939 | 48.3626  | 1.1339 |  |
| KLRF1                           | 2.0567  | 5.7053   | 1.1333 |  |
| CYP2S1                          | 1.7517  | 5.0284   | 1.1315 |  |
| MKNK1                           | 15.1045 | 34.2563  | 1.1304 |  |
| TNNI2                           | 0.9164  | 3.1870   | 1.1275 |  |
| SNX8                            | 4.4767  | 10.9584  | 1.1266 |  |
| IFIH1                           | 2.6106  | 6.8668   | 1.1235 |  |
| SH3BP5                          | 5.6492  | 13.4692  | 1.1217 |  |
| BCL11A                          | 1.8471  | 5.1873   | 1.1198 |  |
| AHRR                            | 7.1087  | 16.6014  | 1.1181 |  |
|                                 |         |          |        |  |
| PXN                             | 13.2216 | 29.8259  | 1.1161 |  |
| SPINK2                          | 7.2935  | 16.9638  | 1.1150 |  |
| ARHGEF10L                       | 0.2441  | 1.6889   | 1.1119 |  |
| NUAK2                           | 0.1481  | 1.4814   | 1.1118 |  |
| HADH                            | 27.5588 | 60.6539  | 1.1103 |  |
| KCNJ2                           | 0.3443  | 1.9015   | 1.1099 |  |
| MNDA                            | 5.7076  | 13.4669  | 1.1089 |  |
| NOXA1                           | 1.9277  | 5.3136   | 1.1087 |  |
| NMRK1                           | 5.4478  | 12.8725  | 1.1054 |  |
|                                 |         |          |        |  |
| MYO1E                           | 1.9893  | 5.4309   | 1.1052 |  |
| PTPN1                           | 39.0586 | 85.0649  | 1.1033 |  |
| RAPH1                           | 0.5475  | 2.3241   | 1.1030 |  |
| RILPL1                          | 1.2858  | 3.9094   | 1.1029 |  |
| RNF125                          | 4.3817  | 10.5269  | 1.0989 |  |
| IFIT1                           | 0.6754  | 2.5862   | 1.0980 |  |
| TRIM26                          | 0.0065  | 1.1528   | 1.0969 |  |
| PRKCA                           | 9.1663  | 20.7069  | 1.0944 |  |
| NCF1                            | 4.7575  | 11.2896  | 1.0939 |  |
| RNF43                           |         | 1.4519   | 1.0913 |  |
|                                 | 0.1507  |          |        |  |
| OAS3                            | 3.0669  | 7.6625   | 1.0909 |  |
| CEP68                           | 5.4603  | 12.7377  | 1.0885 |  |
| PREX1                           | 14.3886 | 31.7193  | 1.0883 |  |
| IRF2BPL                         | 3.5235  | 8.6123   | 1.0875 |  |
| HIP1                            | 22.4084 | 48.7039  | 1.0863 |  |
| SBF2                            | 4.1068  | 9.7916   | 1.0794 |  |
| FCMR                            | 0.0316  | 1.1793   | 1.0790 |  |
| DISC1                           | 2.8958  | 7.2208   | 1.0774 |  |
| ITPR2                           | 7.1842  | 16.2645  | 1.0769 |  |
|                                 |         |          |        |  |
| ASS1                            | 1.7285  | 4.7544   | 1.0766 |  |
| ITGB2                           | 57.9809 | 123.2379 | 1.0748 |  |
| CEACAM4                         | 0.0065  | 1.1197   | 1.0745 |  |
| BCL3                            | 4.0206  | 9.5681   | 1.0738 |  |
| DDTL                            | 0.0065  | 1.1175   | 1.0731 |  |
| BTN2A2                          | 2.9888  | 7.3704   | 1.0693 |  |
| CREB5                           | 0.3415  | 1.8137   | 1.0687 |  |
| SEMA3C                          | 1.2544  | 3.7282   | 1.0686 |  |
| SMIM12                          | 4.1577  | 9.8077   | 1.0673 |  |
| SERPINB8                        |         |          | 1.0664 |  |
|                                 | 3.5400  | 8.5075   |        |  |
| TMEM51                          | 1.7645  | 4.7892   | 1.0663 |  |
| TMEM86A                         | 0.7032  | 2.5658   | 1.0660 |  |
| YPEL2                           | 2.4143  | 6.1418   | 1.0647 |  |
| SLC35F6                         | 2.1925  | 5.6759   | 1.0643 |  |
| DNASE1L3                        | 0.0065  | 1.1040   | 1.0638 |  |
| TRIM38                          | 8.6086  | 19.0772  | 1.0632 |  |
| LAIR1                           | 3.3673  | 8.1232   | 1.0628 |  |
| HAAO                            | 3.0046  | 7.3638   | 1.0625 |  |
| BRI3                            | 14.2396 | 30.8146  | 1.0619 |  |
|                                 |         |          |        |  |
| CCDC146                         | 0.9143  | 2.9902   | 1.0597 |  |
| FXYD6                           | 0.5966  | 2.3271   | 1.0593 |  |

| BIINY          | 1C- specific | Continuatio | n)     |
|----------------|--------------|-------------|--------|
| GeneID         | RUNX1C+      | RUNX1C-     | logFC  |
| CYBRD1         | 12.9053      | 27.8983     | 1.0554 |
| MEF2A          | 12.0783      | 26.1787     | 1.0553 |
| SPATS2L        | 1.6475       | 4.5013      | 1.0551 |
| SETD7          | 2.6423       | 6.5605      | 1.0536 |
| CDK18          | 1.2826       | 3.7368      | 1.0532 |
| KCNE3          | 24.7085      | 52.2877     | 1.0516 |
| USP28          | 5.2182       | 11.8858     | 1.0512 |
| ABCG1          | 0.5813       | 2.2747      | 1.0503 |
| EBI3           | 0.2441       | 1.5748      | 1.0494 |
| FAM177B        | 0.0239       | 1.1167      | 1.0477 |
| PIK3AP1        | 19.9394      | 42.2852     | 1.0477 |
| S100A8         | 307.0215     | 635.2106    | 1.0465 |
| ITPRIPL2       | 4.9687       | 11.3132     | 1.0447 |
| ADGRG5         | 10.7950      | 23.3316     | 1.0447 |
| RUBCN          | 2.5623       | 6.3269      | 1.0404 |
| DIAPH2         | 6.5961       | 14.6141     | 1.0395 |
| GNPTAB         | 30.3642      | 63.4627     | 1.0393 |
| PTPRE          | 12.0748      | 25.8633     | 1.0388 |
| RCAN1          | 4.1065       | 9.4860      | 1.0381 |
| SOAT1          | 5.4732       | 12.2825     | 1.0370 |
| VNN2           | 0.7741       | 2.6402      | 1.0369 |
| TLR4           | 3.5043       | 8.2385      | 1.0363 |
| GLIPR2         | 11.0974      | 23.8005     | 1.0357 |
| PALD1          | 3.6122       | 8.4552      | 1.0356 |
| FTL            | 1829.0759    | 3750.1983   | 1.0354 |
| MLKL           | 4.1620       | 9.5688      | 1.0338 |
| TNFSF13        | 5.7512       | 12.8202     | 1.0336 |
| PCED1B         | 1.0469       | 3.1883      | 1.0329 |
| SAT2           | 16.0282      | 33.7160     | 1.0277 |
| TNFRSF10C      | 1.9256       | 4.9589      | 1.0263 |
| CARD16         | 3.5538       | 8.2638      | 1.0245 |
| CAMSAP2        | 0.6071       | 2.2666      | 1.0233 |
| SNX7           | 0.3556       | 1.7552      | 1.0232 |
| CSRP2          | 1.2756       | 3.6199      | 1.0216 |
| SCARB2         | 6.9595       | 15.1319     | 1.0192 |
| SEC61A2        | 2.4550       | 5.9940      | 1.0175 |
| DEXI           | 8.7215       | 18.6755     | 1.0172 |
| CXCL1          | 1.4863       | 4.0309      | 1.0168 |
| GALNT3         | 2.1910       | 5.4536      | 1.0161 |
| CCDC50         | 6.5588       | 14.2859     | 1.0160 |
| ELK3           | 9.3228       | 19.8586     | 1.0148 |
| BEST1          | 0.9281       | 2.8894      | 1.0124 |
| ANKRD44        | 7.8833       | 16.9187     | 1.0123 |
| CABYR          | 0.1485       | 1.3165      | 1.0121 |
| CPQ            | 6.4954       | 14.1140     | 1.0118 |
| CC2D2A         | 0.4487       | 1.9206      | 1.0115 |
| QKI            | 17.5279      | 36.3456     | 1.0112 |
| TRIM34         | 5.2261       | 11.5470     | 1.0109 |
| TMPRSS13       | 0.9302       | 2.8891      | 1.0107 |
| HLA-DRB3       | 0.0065       | 1.0266      | 1.0098 |
| KCNK13         | 0.0306       | 1.0748      | 1.0094 |
| GRAMD1B        | 0.3741       | 1.7630      | 1.0078 |
| SESN1          | 8.8287       | 18.7323     | 1.0055 |
| CLDND1         | 67.9722      | 137.2576    | 1.0033 |
| CD274          | 1.2197       | 3.4487      | 1.0030 |
| GHRL<br>TRC1D8 | 0.6540       | 2.3114      | 1.0015 |
| TBC1D8         | 3.5184       | 8.0431      | 1.0010 |
| PDCD1LG2       | 0.0065       | 1.0143      | 1.0010 |
| PIK3R5         | 9.1291       | 19.2654     | 1.0005 |

| PPBP         470.9270         18.6257         -4.5877           ITGB3         120.5848         4.2863         -4.5236           F2RL2         72.1927         2.3379         -4.4986           SELP         54.3543         1.7782         -4.3165           CMTMS         81.4454         3.5022         -4.1947           HBE1         160.6262         9.1677         -3.9906           MYLK         37.8432         1.4907         -3.9630           HBD         272.1830         17.2104         -3.9070           GP9         50.7529         2.9579         -3.7088           KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           GFIBB         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3788           DNAIC6         24.9718         1.                                                                         | RUNX1C+ specific |           |          |         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|----------|---------|--|
| PPBP         470.9270         18.6257         -4.5877           ITGB3         120.5848         4.2863         -4.5236           F2RL2         72.1927         2.2379         -4.4986           SELP         54.3543         1.7782         -4.3165           CMTMS         81.4454         3.5022         -4.1947           HBE1         160.6262         9.1677         -3.9906           MYLK         37.8432         1.4907         -3.9630           HBD         272.1830         17.2104         -3.9070           GP9         50.7529         2.9579         -3.7088           KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.6671           GLGALSL         28.0066         1.6347         -3.4607           GF1BB         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.                                                                         |                  |           |          | logFC   |  |
| ITGB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PF4              | 407.1894  | 12.6352  | -4.9038 |  |
| F2RL2         72.1927         2.2379         -4.4986           SELP         54.3543         1.7782         -4.3165           CMTMM5         81.4454         3.5022         -4.1947           HBE1         160.6262         9.1677         -3.9906           MYLK         37.8432         1.4907         -3.9630           MYLK         37.8432         1.4907         -3.9906           GPP         50.7529         2.9579         -3.708           KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           LGALSL         28.0066         1.6347         -3.4607           GF11B         65.5486         5.1370         -3.4388           GYPE         55.0826         41.868         -3.3438           GYPE         55.0826         41.868         -3.3438           MYL4         96.5687         8.9985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.4940         -3.2423           MYL4         96.5687         8.9985 </td <td>PPBP</td> <td>470.9270</td> <td>18.6257</td> <td>-4.5877</td>    | PPBP             | 470.9270  | 18.6257  | -4.5877 |  |
| SELP         54.3543         1.7782         -4.3165           CMTM5         81.4454         3.5022         -4.1947           HBE1         160.6262         9.1677         -3.9906           MYLK         37.8432         1.4907         -3.9630           HBD         272.1830         17.2104         -3.9070           GP9         50.7529         2.9579         -3.5030           GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           LGALSL         28.0066         1.6347         -3.4607           GF11B         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3718           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THB51         197.1660         19.9407         -3.2423           KEL         8.5983         0.107         -3.2423           KEL         8.5983         0.107                                                                                 | ITGB3            | 120.5848  | 4.2863   | -4.5236 |  |
| CMTMS         81.4454         3.5022         -4.1947           HBE1         160.6262         9.1677         -3.9906           MYLK         37.8432         1.4907         -3.9630           HBD         272.1830         17.2104         -3.9070           GP9         50.7529         2.9579         -3.7088           KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           LGALSL         28.0066         1.6347         -3.4607           GF11B         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9                                                                         | F2RL2            | 72.1927   | 2.2379   | -4.4986 |  |
| HBE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SELP             | 54.3543   | 1.7782   | -4.3165 |  |
| MYLK         37.8432         1.4907         -3.9630           HBD         272.1830         17.2104         -3.9070           GP9         50.7529         2.9579         -3.7088           KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           LGALSL         28.0066         1.6347         -3.4607           GF11B         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAIC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           MKL         8.5983         0.0150         -3.2121           HBA1         36.6793         3.0818                                                                         | CMTM5            | 81.4454   | 3.5022   | -4.1947 |  |
| HBD         272.1830         17.2104         -3.9070           GP9         50.7529         2.9579         -3.7088           KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.5908           LGALSL         28.0066         1.6347         -3.4607           GF11B         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4348           GYPE         55.0826         4.1868         -3.4379           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.443           KEL         8.5983         0.0150         -3.443           KEL         8.5983         0.0150         -3.443           KEL         8.5983         0.0150                                                                                    | HBE1             | 160.6262  | 9.1677   | -3.9906 |  |
| GP9         50.7529         2.9579         -3.7088           KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           LGALSI         28.0066         1.6347         -3.4608           GFI1B         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAUG6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.9833         0.0150         -3.2121           HBAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818<                                                                         | MYLK             | 37.8432   | 1.4907   | -3.9630 |  |
| KCNK17         27.2310         1.2755         -3.6330           GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           LGALSL         28.0066         1.6347         -3.4607           GF1B         65.5486         5.1370         3.4388           GYPE         55.0826         4.1868         3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.011           GMPR         57.3117         5.0067         3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.211           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229<                                                                         | HBD              | 272.1830  | 17.2104  | -3.9070 |  |
| GP1BA         32.5027         1.7115         -3.6271           CLEC1B         21.3150         0.8521         -3.5908           LGALSL         28.0066         1.6347         -3.4607           GF1IB         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.139                                                                         | GP9              | 50.7529   | 2.9579   | -3.7088 |  |
| CLEC1B         21.3150         0.8521         -3.5908           LGALSL         28.0066         1.6347         -3.4607           GFI1B         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAUG6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.4418           KEL         8.5983         0.0150         -3.2431           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.205           GYPB         108.1702         10.869         -3.1991           CD24         316.3218         34.1396 <td>KCNK17</td> <td>27.2310</td> <td>1.2755</td> <td>-3.6330</td>          | KCNK17           | 27.2310   | 1.2755   | -3.6330 |  |
| LGALSL         28.0066         1.6347         -3.4607           GFI1B         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2321           HBA1         36.6793         3.0818         -3.205           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.03                                                                         | GP1BA            | 32.5027   | 1.7115   | -3.6271 |  |
| GFI1B         65.5486         5.1370         -3.4388           GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2114           KBL         8.9883         3.0818         3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384 </td <td>CLEC1B</td> <td>21.3150</td> <td>0.8521</td> <td>-3.5908</td>    | CLEC1B           | 21.3150   | 0.8521   | -3.5908 |  |
| GYPE         55.0826         4.1868         -3.4346           HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2069           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.797                                                                         | LGALSL           | 28.0066   | 1.6347   | -3.4607 |  |
| HPSE         19.8414         1.0132         -3.3719           TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           GYPB         108.1702         10.8869         -3.1914           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31                                                                         | GFI1B            | 65.5486   | 5.1370   | -3.4388 |  |
| TUBB1         32.1975         2.2228         -3.3647           C2orf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1743           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1654           HBG1         781.7916         88.0384         -3.1654           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1                                                                         | GYPE             | 55.0826   | 4.1868   | -3.4346 |  |
| C20rf88         29.8940         2.0136         -3.3578           DNAJC6         24.9718         1.5856         -3.283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1                                                                         | HPSE             | 19.8414   | 1.0132   | -3.3719 |  |
| DNAJC6         24.9718         1.5856         -3.3283           MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1918           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.011           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.531                                                                         | TUBB1            | 32.1975   | 2.2228   | -3.3647 |  |
| MYL4         96.5687         8.8985         -3.3011           GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1631           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5                                                                         | C2orf88          | 29.8940   | 2.0136   | -3.3578 |  |
| GMPR         57.3117         5.0067         -3.2791           THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1718           KALRN         10.9174         0.3229         -3.1634           HBG1         781.7916         88.0384         -3.1361           HBG1         781.7916         88.0384         -3.1361           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1                                                                         | DNAJC6           | 24.9718   | 1.5856   | -3.3283 |  |
| THBS1         197.1660         19.9407         -3.2423           KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1661           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786                                                                                  | MYL4             | 96.5687   | 8.8985   | -3.3011 |  |
| KEL         8.5983         0.0150         -3.2413           RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.018           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786                                                                                  | GMPR             | 57.3117   | 5.0067   | -3.2791 |  |
| RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9673           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8225           SCGN         39.5320 <t< td=""><td>THBS1</td><td>197.1660</td><td>19.9407</td><td>-3.2423</td></t<> | THBS1            | 197.1660  | 19.9407  | -3.2423 |  |
| RHAG         87.6630         8.4345         -3.2323           DMTN         23.0298         1.5930         -3.2121           HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         <                                                                     | KEL              | 8.5983    | 0.0150   | -3.2413 |  |
| HBA1         36.6793         3.0818         -3.2065           GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.361           HBG1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.872           CKB         39.5320         4.5279         -2.8742           CKB         39.6798         4.                                                                         | RHAG             | 87.6630   | 8.4345   | -3.2323 |  |
| GYPB         108.1702         10.8869         -3.1991           CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9159           SKRS3         30.5602         3.2360         -2.8722           SCGN         39.5320         4.5279         -2.8742           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1                                                                         | DMTN             | 23.0298   | 1.5930   | -3.2121 |  |
| CD24         316.3218         34.1396         -3.1748           KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8742           CKB         39.5320         4.5279         -2.8742           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921 <t< td=""><td>HBA1</td><td>36.6793</td><td>3.0818</td><td>-3.2065</td></t<>    | HBA1             | 36.6793   | 3.0818   | -3.2065 |  |
| KALRN         10.9174         0.3229         -3.1713           LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269 <t< td=""><td>GYPB</td><td>108.1702</td><td>10.8869</td><td>-3.1991</td></t<>  | GYPB             | 108.1702  | 10.8869  | -3.1991 |  |
| LTBP1         41.1551         3.6986         -3.1654           HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         <                                                                     | CD24             | 316.3218  | 34.1396  | -3.1748 |  |
| HBG1         781.7916         88.0384         -3.1361           GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463                                                                             | KALRN            | 10.9174   | 0.3229   | -3.1713 |  |
| GATA1         89.2283         9.7970         -3.0630           ITGA2B         268.7705         31.3240         -3.0611           HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8872           SCGN         39.5320         4.5279         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         <                                                                     | LTBP1            | 41.1551   | 3.6986   | -3.1654 |  |
| ITGA2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HBG1             | 781.7916  | 88.0384  | -3.1361 |  |
| HBG2         1180.9603         142.5230         -3.0418           ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8722           SCGN         39.5320         4.5279         -2.8742           CKB         39.6798         4.5279         -2.8721           CKB         39.6798         4.5733         -2.8671           CKB         39.6798         4.5733         -2.8721           CKB         39.6798         4.5733         -2.8721           CKB         39.6798         4.5733         -2.8721           CKB         39.6798         4.5733         -2.8721           CKB         39.6798         4.5733         -2.8507           CD226         19.0269         1.7998                                                                               | GATA1            | 89.2283   | 9.7970   | -3.0630 |  |
| ESAM         35.4592         3.4701         -3.0279           BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8721           SCGN         39.5320         4.5279         -2.8742           PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382                                                                                  | ITGA2B           | 268.7705  | 31.3240  | -3.0611 |  |
| BEX1         18.8467         1.4485         -3.0189           GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583                                                                              | HBG2             | 1180.9603 | 142.5230 | -3.0418 |  |
| GAD1         11.2272         0.5312         -2.9973           TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD266         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           FAXDC2         15.7888                                                                           | ESAM             | 35.4592   | 3.4701   | -3.0279 |  |
| TMEM40         10.7668         0.5047         -2.9672           ABCC3         15.8833         1.1910         -2.9459           SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6810           MYCT1         7.6769                                                                             | BEX1             | 18.8467   | 1.4485   | -3.0189 |  |
| ABCC3 15.8833 1.1910 -2.9459 SERPINE2 44.1786 4.9758 -2.9184 NXF3 30.5602 3.2360 -2.8973 PRICKLE1 16.3624 1.3550 -2.8822 SCGN 39.5320 4.5279 -2.8742 PRKAR2B 31.9884 3.5060 -2.8721 CKB 39.6798 4.5733 -2.8677 GJA4 9.9921 0.5238 -2.8507 CD226 19.0269 1.7998 -2.8385 TIMP3 164.5715 22.3877 -2.8236 ELOVL7 13.8463 1.1494 -2.7881 LAT 151.9159 21.6256 -2.7567 MTURN 32.7398 4.0414 -2.7426 CLCN4 10.5382 0.7860 -2.6916 SLC40A1 130.2583 19.4343 -2.6833 SFRP5 8.4525 0.4728 -2.6821 FAXDC2 15.7888 1.6183 -2.6823 MYCT1 7.6769 0.3771 -2.6555 TUBA4A 42.5565 6.0037 -2.6367 MMRN1 71.9797 10.8743 -2.6197 ITGA6 18.4259 2.1926 -2.6052 CRYM 11.6427 1.0840 -2.6009 FREM1 20.3005 2.5231 -2.5960 PDZK1IP1 7.7884 0.4765 -2.5734 SNRPN 21.2454 2.7629 -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GAD1             | 11.2272   | 0.5312   | -2.9973 |  |
| SERPINE2         44.1786         4.9758         -2.9184           NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6832           FRP5         8.4525         0.4728         -2.6831           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565                                                                             | TMEM40           | 10.7668   | 0.5047   | -2.9672 |  |
| NXF3         30.5602         3.2360         -2.8973           PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6862           MWCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6197           ITGA6         18.4259         <                                                                     | ABCC3            | 15.8833   | 1.1910   | -2.9459 |  |
| PRICKLE1         16.3624         1.3550         -2.8822           SCGN         39.5320         4.5279         -2.8742           PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6813           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         <                                                                     | SERPINE2         | 44.1786   | 4.9758   | -2.9184 |  |
| SCGN         39.5320         4.5279         -2.8742           PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6556           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005                                                                                  | NXF3             | 30.5602   | 3.2360   | -2.8973 |  |
| PRKAR2B         31.9884         3.5060         -2.8721           CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6855           MYCT1         7.6769         0.3771         -2.6555           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           FREM         10.0083                                                                                  | PRICKLE1         | 16.3624   | 1.3550   | -2.8822 |  |
| CKB         39.6798         4.5733         -2.8677           GJA4         9.9921         0.5238         -2.8507           CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           FREM1         20.3005         2.5231         -2.5960           FREM         10.0083         0.                                                                         | SCGN             | 39.5320   | 4.5279   | -2.8742 |  |
| GJA4 9.9921 0.5238 -2.8507 CD226 19.0269 1.7998 -2.8385 TIMP3 164.5715 22.3877 -2.8236 ELOVL7 13.8463 1.1494 -2.7881 LAT 151.9159 21.6256 -2.7567 MTURN 32.7398 4.0414 -2.7426 CLCN4 10.5382 0.7860 -2.6916 SLC40A1 130.2583 19.4343 -2.6833 SFRP5 8.4525 0.4728 -2.6821 FAXDC2 15.7888 1.6183 -2.6808 MYCT1 7.6769 0.3771 -2.6555 TUBA4A 42.5565 6.0037 -2.6367 TUBA4A 42.5565 6.0037 -2.6367 TUBA4A 17.9797 10.8743 -2.6197 ITGA6 18.4259 2.1926 -2.6052 CRYM 11.6427 1.0840 -2.6009 FREM1 20.3005 2.5231 -2.5960 TEK 10.0083 0.8285 -2.5899 PDZK1IP1 7.7884 0.4765 -2.5734 SNRPN 21.2454 2.7629 -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRKAR2B          | 31.9884   | 3.5060   | -2.8721 |  |
| CD226         19.0269         1.7998         -2.8385           TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454                                                                              | СКВ              | 39.6798   | 4.5733   | -2.8677 |  |
| TIMP3         164.5715         22.3877         -2.8236           ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6005           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                              | GJA4             | 9.9921    | 0.5238   | -2.8507 |  |
| ELOVL7         13.8463         1.1494         -2.7881           LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6005           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                               | CD226            | 19.0269   | 1.7998   | -2.8385 |  |
| LAT         151.9159         21.6256         -2.7567           MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                               | TIMP3            | 164.5715  | 22.3877  | -2.8236 |  |
| MTURN         32.7398         4.0414         -2.7426           CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                              | ELOVL7           | 13.8463   | 1.1494   | -2.7881 |  |
| CLCN4         10.5382         0.7860         -2.6916           SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                             | LAT              | 151.9159  | 21.6256  | -2.7567 |  |
| SLC40A1         130.2583         19.4343         -2.6833           SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                            | MTURN            | 32.7398   | 4.0414   | -2.7426 |  |
| SFRP5         8.4525         0.4728         -2.6821           FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLCN4            | 10.5382   | 0.7860   | -2.6916 |  |
| FAXDC2         15.7888         1.6183         -2.6808           MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SLC40A1          | 130.2583  | 19.4343  | -2.6833 |  |
| MYCT1         7.6769         0.3771         -2.6555           TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SFRP5            | 8.4525    | 0.4728   | -2.6821 |  |
| TUBA4A         42.5565         6.0037         -2.6367           MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FAXDC2           | 15.7888   | 1.6183   | -2.6808 |  |
| MMRN1         71.9797         10.8743         -2.6197           ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MYCT1            | 7.6769    | 0.3771   | -2.6555 |  |
| ITGA6         18.4259         2.1926         -2.6052           CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TUBA4A           | 42.5565   | 6.0037   | -2.6367 |  |
| CRYM         11.6427         1.0840         -2.6009           FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MMRN1            | 71.9797   | 10.8743  | -2.6197 |  |
| FREM1         20.3005         2.5231         -2.5960           TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ITGA6            | 18.4259   | 2.1926   | -2.6052 |  |
| TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CRYM             | 11.6427   | 1.0840   | -2.6009 |  |
| TEK         10.0083         0.8285         -2.5899           PDZK1IP1         7.7884         0.4765         -2.5734           SNRPN         21.2454         2.7629         -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FREM1            | 20.3005   | 2.5231   | -2.5960 |  |
| PDZK1IP1 7.7884 0.4765 -2.5734<br>SNRPN 21.2454 2.7629 -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TEK              | 10.0083   | 0.8285   |         |  |
| SNRPN 21.2454 2.7629 -2.5636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |           |          | -2.5734 |  |
| HBA2 23.4130 3.1381 -2 5606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SNRPN            | 21.2454   | 2.7629   |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HBA2             | 23.4130   | 3.1381   | -2.5606 |  |

| GeneID   | RUNX1C+  | RUNX1C-      | logFC   |
|----------|----------|--------------|---------|
|          |          |              |         |
| F2R      | 115.3393 |              |         |
| PNCK     | 29.6455  |              | -2.5107 |
| NRGN     | 15.1577  |              |         |
| TJP2     | 12.9362  |              | -2.5003 |
| DLK1     | 22.9875  |              | -2.4916 |
| CXCL3    | 15.6606  | 1.9932       | -2.4767 |
| LCN2     | 5.7308   | 0.2161       | -2.4685 |
| ALAS2    | 28.6642  | 4.3736       | -2.4648 |
| SLC37A1  | 28.2145  | 4.3774       | -2.4417 |
| KLF1     | 13.1505  | 1.6105       | -2.4384 |
| PEAR1    | 17.1927  | 2.4326       | -2.4060 |
| MFSD2B   | 8.7463   | 0.8438       | -2.4022 |
| GRAP2    | 17.1399  | 2.4508       | -2.3942 |
| C1orf116 | 5.9604   | 0.3347       | -2.3827 |
| HGD      | 6.4788   | 0.4366       | -2.3802 |
| ICAM2    | 51.8714  |              | -2.3760 |
| LY6G6F   | 4.2518   |              | -2.3714 |
| OSBP2    | 8.9804   |              | -2.3642 |
| GFOD1    | 13.5125  |              | -2.3553 |
| AQP3     | 21.2932  |              |         |
| -        | +        |              | -2.3466 |
| GABRE    | 24.0055  |              |         |
| KDR      | 11.8388  |              | -2.3290 |
| PDLIM1   | 91.1233  |              |         |
| HBZ      | 13.0103  |              | -2.3155 |
| SEPT5    | 10.2704  |              |         |
| CCL5     | 8.1992   |              | -2.2957 |
| IGF2     | 17.6137  |              | -2.2931 |
| SLC6A8   | 64.8717  | 12.4979      | -2.2869 |
| ANK1     | 9.2659   | 1.1343       | -2.2660 |
| COL18A1  | 8.9271   | 1.0729       | -2.2597 |
| RAB27B   | 104.3083 | 21.3538      | -2.2360 |
| DEFA1B   | 13.3332  | 2.0625       | -2.2266 |
| PLEK     | 227.5691 | 48.4728      | -2.2079 |
| FAM171A1 | 28.0334  | 5.2869       | -2.2073 |
| CH25H    | 10.7326  | 1.5438       | -2.2055 |
| DEFA1    | 13.5161  | 2.1510       | -2.2038 |
| UBASH3B  | 23.2405  | 4.3767       | -2.1726 |
| CCDC173  | 11.9823  | 1.8810       | -2.1719 |
| DEFA3    | 16.0960  | 2.8025       | -2.1687 |
| ABCC4    | 162.9254 |              |         |
| EFS      | 6.2502   |              | -2.1336 |
| F2RL3    | 11.2052  |              |         |
| HEPH     | 24.1746  | <del> </del> | -2.1317 |
|          |          |              |         |
| SLC22A17 | 8.1689   |              | -2.1108 |
| PDE3A    | 6.5319   | 0.7459       | -2.1090 |
| BCL6B    | 12.1491  | 2.0576       | -2.1045 |
| EFHC2    | 14.3224  | 2.5711       | -2.1012 |
| EHD3     | 13.3034  | 2.3457       | -2.0960 |
| CXCL2    | 15.8236  | 3.0219       | -2.0645 |
| ASIC4    | 6.6721   | 0.8379       | -2.0616 |
| CD84     | 50.0329  | 11.2271      | -2.0613 |
| FUT1     | 6.7679   | 0.8972       | -2.0337 |
| PCYT1B   | 13.1163  | 2.4504       | -2.0325 |
| GLOD5    | 3.3972   | 0.0760       | -2.0309 |
| TREML1   | 4.1283   | 0.2775       | -2.0051 |
| LXN      | 76.7412  | 18.3989      | -2.0027 |
| HEMGN    | 12.2949  | 2.3259       | -1.9991 |
| TBPL1    | 49.9254  | 11.8272      | -1.9892 |
| OR1J2    | 10.4860  | 1.9066       | -1.9825 |
| TFR2     | 10.2430  | 1.8634       | -1.9732 |
| EXOC3L2  | 4.7701   | 0.4893       | -1.9540 |
|          | 1        | 2.0817       | -1.9441 |
| PCSK6    | 10.8581  |              |         |
| TRIM58   | 9.4129   | 1.7092       | -1.9424 |
| GYPA     | 10.5451  | 2.0240       | -1.9328 |
| ARHGAP6  | 15.7267  | 3.3838       | -1.9319 |
| CNST     | 37.3677  | 9.0655       | -1.9305 |

| GeneID  LRRC8B  SMIM1  TPM1  CDKN2D  TSC22D1  PBX1  BCL2L1  SSPDYC  KCNK5  PF4V1  CCND1  ARL15  DEFA4  SAMD14  ABCB6  NES  CD2  SLFN14  SLC35D3  LYVE1  GADD45A  TMEM98  ENDOD1  TOM1L1  PRKCQ  ICAM4  SYTL4  ADRA2A  RAB38  IGFBP3  ECE1  TSPAN32  KCNH2  TMEM163  KIFC3  LPARS | RUNX1C+ 23.7230 8.2543 33.4898 21.5082 64.8483 7.0490 56.1378 3.9043 14.5948 3.2822 8.1951 25.2003 7.4550 9.6652 12.4563 5.1994 7.7503 4.5390 2.8610 7.8263 38.1597 17.8026 6.8663 4.4779 28.5925 17.1494 26.9915                            | 5.5184 1.4596 8.2355 5.0396 16.7016 1.1866 14.5438 0.3377 3.2700 0.1780 1.5323 6.2459 1.3641 1.9956 2.7806 0.7436 1.4677 0.5622 0.0965 1.5115 10.1676 4.3820 1.2719 0.5884                                                  | -1.9233<br>-1.9117<br>-1.9009<br>-1.8979<br>-1.8953<br>-1.8801<br>-1.8743<br>-1.8688<br>-1.8620<br>-1.8604<br>-1.8543<br>-1.8336<br>-1.8300<br>-1.8262<br>-1.8262<br>-1.8260<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMIM1 TPM1 CDKN2D TSC22D1 PBX1 BCL2L1 SPDVC KCNKS PF4V1 CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                    | 8.2543 33.4898 21.5082 64.8483 7.0490 56.1378 3.9043 14.5948 3.2822 8.1951 25.2003 7.4550 9.6652 12.4563 5.1994 7.7503 4.5390 2.8610 7.8263 38.1597 17.8026 6.8663 4.4779 28.5925 17.1494                                                    | 1.4596 8.2355 5.0396 16.7016 1.1866 14.5438 0.3377 3.2700 0.1780 1.5323 6.2459 1.3641 1.9956 2.7806 0.7436 1.4677 0.5622 0.0965 1.5115 10.1676 4.3820 1.2719 0.5884                                                         | -1.9117<br>-1.9009<br>-1.8979<br>-1.8953<br>-1.8801<br>-1.8743<br>-1.8688<br>-1.8620<br>-1.8604<br>-1.8543<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8101<br>-1.8047                                  |
| TPM1 CDKN2D TSC22D1 PBX1 BCL2L1 SPDYC KCNK5 PF4V1 CCND1 ARL15 DEFA4 SSAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                         | 33.4898 21.5082 64.8483 7.0490 56.1378 3.9043 14.5948 3.2822 8.1951 25.2003 7.4550 9.6652 12.4563 5.1994 7.7503 4.5390 2.8610 7.8263 38.1597 17.8026 6.8663 4.4779 28.5925 17.1494                                                           | 8.2355<br>5.0396<br>16.7016<br>1.1866<br>14.5438<br>0.3377<br>3.2700<br>0.1780<br>1.5323<br>6.2459<br>1.3641<br>1.9956<br>2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719<br>0.5884 | -1.9009<br>-1.8979<br>-1.8953<br>-1.8801<br>-1.8781<br>-1.8688<br>-1.8620<br>-1.8604<br>-1.8543<br>-1.8326<br>-1.8326<br>-1.8326<br>-1.8262<br>-1.8262<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                             |
| CDKN2D TSC22D1 PBX1 BCL2L1 SPDYC KCNK5 PF4V1 CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                               | 21.5082<br>64.8483<br>7.0490<br>56.1378<br>3.9043<br>14.5948<br>3.2822<br>8.1951<br>25.2003<br>7.4550<br>9.6652<br>12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494 | 5.0396<br>16.7016<br>1.1866<br>14.5438<br>0.3377<br>3.2700<br>0.1780<br>1.5323<br>6.2459<br>1.3641<br>1.9956<br>2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719<br>0.5884           | -1.8979 -1.8953 -1.8801 -1.8781 -1.8743 -1.8688 -1.8620 -1.8604 -1.8543 -1.8320 -1.8320 -1.8262 -1.8262 -1.8260 -1.8161 -1.8133 -1.8101 -1.8047                                                                                                |
| TSC22D1 PBX1 BCL2L1 SPDYC KCNK5 PF4V1 CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                      | 64.8483<br>7.0490<br>56.1378<br>3.9043<br>14.5948<br>3.2822<br>8.1951<br>25.2003<br>7.4550<br>9.6652<br>12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494            | 16.7016<br>1.1866<br>14.5438<br>0.3377<br>3.2700<br>0.1780<br>1.5323<br>6.2459<br>1.3641<br>1.9956<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719                                         | -1.8953<br>-1.8801<br>-1.8781<br>-1.8743<br>-1.8688<br>-1.8620<br>-1.8604<br>-1.8543<br>-1.8320<br>-1.8320<br>-1.8360<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                        |
| PBX1 BCL2L1 SPDYC KCNK5 PF4V1 CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                              | 7.0490 56.1378 3.9043 14.5948 3.2822 8.1951 25.2003 7.4550 9.6652 12.4563 5.1994 7.7503 4.5390 2.8610 7.8263 38.1597 17.8026 6.8663 4.4779 28.5925 17.1494                                                                                   | 1.1866<br>14.5438<br>0.3377<br>3.2700<br>0.1780<br>1.5323<br>6.2459<br>1.3641<br>1.9956<br>2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719                                          | -1.8801<br>-1.8781<br>-1.8743<br>-1.8688<br>-1.8620<br>-1.8543<br>-1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                              |
| BCL2L1 SPDYC KCNKS PF4V1 CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                   | 56.1378 3.9043 14.5948 3.2822 8.1951 25.2003 7.4550 9.6652 12.4563 5.1994 7.7503 4.5390 2.8610 7.8263 38.1597 17.8026 6.8663 4.4779 28.5925 17.1494                                                                                          | 14.5438<br>0.3377<br>3.2700<br>0.1780<br>1.5323<br>6.2459<br>1.3641<br>1.9956<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719                                                              | -1.8781<br>-1.8743<br>-1.8688<br>-1.8620<br>-1.8543<br>-1.8385<br>-1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                         |
| SPDYC KCNKS PF4V1 CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LLYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                         | 3.9043<br>14.5948<br>3.2822<br>8.1951<br>25.2003<br>7.4550<br>9.6652<br>12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                            | 0.3377 3.2700 0.1780 1.5323 6.2459 1.3641 1.9956 2.7806 0.7436 1.4677 0.5622 0.0965 1.5115 10.1676 4.3820 1.2719 0.5884                                                                                                     | -1.8743<br>-1.8688<br>-1.8620<br>-1.8543<br>-1.8385<br>-1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                    |
| KCNKS PF4V1 CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                | 14.5948 3.2822 8.1951 25.2003 7.4550 9.6652 12.4563 5.1994 7.7503 4.5390 2.8610 7.8263 38.1597 17.8026 6.8663 4.4779 28.5925 17.1494                                                                                                         | 3.2700<br>0.1780<br>1.5323<br>6.2459<br>1.3641<br>1.9956<br>2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719                                                                         | -1.8688<br>-1.8620<br>-1.8543<br>-1.8385<br>-1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                               |
| PF4V1 CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                      | 3.2822<br>8.1951<br>25.2003<br>7.4550<br>9.6652<br>12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                 | 0.1780<br>1.5323<br>6.2459<br>1.3641<br>1.9956<br>2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719                                                                                   | -1.8620<br>-1.8604<br>-1.8543<br>-1.8385<br>-1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                    |
| CCND1 ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PPRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                           | 8.1951<br>25.2003<br>7.4550<br>9.6652<br>12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                           | 1.5323<br>6.2459<br>1.3641<br>1.9956<br>2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719                                                                                             | -1.8604<br>-1.8543<br>-1.8385<br>-1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                               |
| ARL15 DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PPRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                 | 25.2003<br>7.4550<br>9.6652<br>12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                     | 6.2459 1.3641 1.9956 2.7806 0.7436 1.4677 0.5622 0.0965 1.5115 10.1676 4.3820 1.2719 0.5884                                                                                                                                 | -1.8543<br>-1.8385<br>-1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                                          |
| DEFA4 SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                        | 7.4550<br>9.6652<br>12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                | 1.3641<br>1.9956<br>2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719                                                                                                                 | -1.8385<br>-1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                                                     |
| SAMD14 ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                              | 9.6652<br>12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                          | 1.9956<br>2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719<br>0.5884                                                                                                                 | -1.8320<br>-1.8316<br>-1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                                                                |
| ABCB6 NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                     | 12.4563<br>5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                                    | 2.7806<br>0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719<br>0.5884                                                                                                                           | -1.8316<br>-1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                                                                           |
| NES CD2 SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                           | 5.1994<br>7.7503<br>4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                                               | 0.7436<br>1.4677<br>0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719<br>0.5884                                                                                                                                     | -1.8300<br>-1.8262<br>-1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                                                                                      |
| SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                   | 4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                                                                   | 0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719<br>0.5884                                                                                                                                                         | -1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                                                                                                            |
| SLFN14 SLC35D3 LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                   | 4.5390<br>2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                                                                   | 0.5622<br>0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719<br>0.5884                                                                                                                                                         | -1.8260<br>-1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                                                                                                            |
| LYVE1 GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                  | 2.8610<br>7.8263<br>38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                                                                             | 0.0965<br>1.5115<br>10.1676<br>4.3820<br>1.2719<br>0.5884                                                                                                                                                                   | -1.8161<br>-1.8133<br>-1.8101<br>-1.8047                                                                                                                                                                                                       |
| GADD45A TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                        | 38.1597<br>17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                                                                                                 | 10.1676<br>4.3820<br>1.2719<br>0.5884                                                                                                                                                                                       | -1.8101<br>-1.8047                                                                                                                                                                                                                             |
| TMEM98 ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                | 17.8026<br>6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                                                                                                            | 4.3820<br>1.2719<br>0.5884                                                                                                                                                                                                  | -1.8047                                                                                                                                                                                                                                        |
| ENDOD1 TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                       | 6.8663<br>4.4779<br>28.5925<br>17.1494                                                                                                                                                                                                       | 1.2719<br>0.5884                                                                                                                                                                                                            |                                                                                                                                                                                                                                                |
| TOM1L1 PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                              | 4.4779<br>28.5925<br>17.1494                                                                                                                                                                                                                 | 0.5884                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                              |
| PRKCQ ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                                     | 28.5925<br>17.1494                                                                                                                                                                                                                           |                                                                                                                                                                                                                             | -1.7918                                                                                                                                                                                                                                        |
| ICAM4 SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                                           | 17.1494                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             | -1.7860                                                                                                                                                                                                                                        |
| SYTL4 ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              | 7.5811                                                                                                                                                                                                                      | -1.7860                                                                                                                                                                                                                                        |
| ADRA2A RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                                                       | 26.9915                                                                                                                                                                                                                                      | 4.2751                                                                                                                                                                                                                      | -1.7826                                                                                                                                                                                                                                        |
| RAB38 IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                              | 7.1727                                                                                                                                                                                                                      | -1.7761                                                                                                                                                                                                                                        |
| IGFBP3 ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                                                                    | 3.2528                                                                                                                                                                                                                                       | 0.2473                                                                                                                                                                                                                      | -1.7696                                                                                                                                                                                                                                        |
| ECE1 TSPAN32 KCNH2 TMEM163 KIFC3 LPAR5                                                                                                                                                                                                                                           | 19.0048                                                                                                                                                                                                                                      | 4.8802                                                                                                                                                                                                                      | -1.7664                                                                                                                                                                                                                                        |
| TSPAN32<br>KCNH2<br>TMEM163<br>KIFC3<br>LPAR5                                                                                                                                                                                                                                    | 6.1023                                                                                                                                                                                                                                       | 1.0944                                                                                                                                                                                                                      | -1.7617                                                                                                                                                                                                                                        |
| KCNH2<br>TMEM163<br>KIFC3<br>LPAR5                                                                                                                                                                                                                                               | 11.1720                                                                                                                                                                                                                                      | 2.6002                                                                                                                                                                                                                      | -1.7574                                                                                                                                                                                                                                        |
| TMEM163<br>KIFC3<br>LPAR5                                                                                                                                                                                                                                                        | 34.9946                                                                                                                                                                                                                                      | 9.6635                                                                                                                                                                                                                      | -1.7551                                                                                                                                                                                                                                        |
| KIFC3<br>LPAR5                                                                                                                                                                                                                                                                   | 27.2019                                                                                                                                                                                                                                      | 7.3650                                                                                                                                                                                                                      | -1.7534                                                                                                                                                                                                                                        |
| LPAR5                                                                                                                                                                                                                                                                            | 6.2128                                                                                                                                                                                                                                       | 1.1502                                                                                                                                                                                                                      | -1.7461                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                  | 8.8737                                                                                                                                                                                                                                       | 1.9464                                                                                                                                                                                                                      | -1.7447                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                  | 17.9532                                                                                                                                                                                                                                      | 4.6738                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |
| PDGFC                                                                                                                                                                                                                                                                            | 21.0323                                                                                                                                                                                                                                      | 5.6012                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |
| ZNF185                                                                                                                                                                                                                                                                           | 5.5951                                                                                                                                                                                                                                       | 0.9776                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                              |
| PKHD1L1                                                                                                                                                                                                                                                                          | 2.7125                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             | -1.7292                                                                                                                                                                                                                                        |
| MPL                                                                                                                                                                                                                                                                              | 10.9605                                                                                                                                                                                                                                      | 2.6083                                                                                                                                                                                                                      | -1.7289                                                                                                                                                                                                                                        |
| TSPAN9                                                                                                                                                                                                                                                                           | 5.8434                                                                                                                                                                                                                                       | 1.0652                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |
| TMSB15A                                                                                                                                                                                                                                                                          | 8.9346                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             | -1.7137                                                                                                                                                                                                                                        |
| ITGB5                                                                                                                                                                                                                                                                            | 10.5419                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             | -1.7108<br>-1.7084                                                                                                                                                                                                                             |
| ASAP2                                                                                                                                                                                                                                                                            | 5.9827<br>3.9778                                                                                                                                                                                                                             | 0.5235                                                                                                                                                                                                                      | -1.7084                                                                                                                                                                                                                                        |
| RAB6B                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                |
| SLC39A4<br>RAP1GAP                                                                                                                                                                                                                                                               | 3.5457<br>5.8253                                                                                                                                                                                                                             | 0.3914<br>1.1032                                                                                                                                                                                                            |                                                                                                                                                                                                                                                |
| SLC24A3                                                                                                                                                                                                                                                                          | 15.6967                                                                                                                                                                                                                                      | 4.1541                                                                                                                                                                                                                      | -1.6958                                                                                                                                                                                                                                        |
| RBM38                                                                                                                                                                                                                                                                            | 19.4085                                                                                                                                                                                                                                      | 5.3021                                                                                                                                                                                                                      | -1.6953                                                                                                                                                                                                                                        |
| STXBP5                                                                                                                                                                                                                                                                           | 96.4275                                                                                                                                                                                                                                      | 29.2885                                                                                                                                                                                                                     | -1.6856                                                                                                                                                                                                                                        |
| DNM3                                                                                                                                                                                                                                                                             | 4.0440                                                                                                                                                                                                                                       | 0.5692                                                                                                                                                                                                                      | -1.6846                                                                                                                                                                                                                                        |
| FHL2                                                                                                                                                                                                                                                                             | 29.1336                                                                                                                                                                                                                                      | 8.4121                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |
| SLC27A2                                                                                                                                                                                                                                                                          | 21.4914                                                                                                                                                                                                                                      | 6.0945                                                                                                                                                                                                                      | -1.6646                                                                                                                                                                                                                                        |
| TGFB1I1                                                                                                                                                                                                                                                                          | 7.7731                                                                                                                                                                                                                                       | 1.7714                                                                                                                                                                                                                      | -1.6625                                                                                                                                                                                                                                        |
| ATP2A3                                                                                                                                                                                                                                                                           | 66.7198                                                                                                                                                                                                                                      | 20.5638                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |
| RHCE                                                                                                                                                                                                                                                                             | 3.8043                                                                                                                                                                                                                                       | 0.5302                                                                                                                                                                                                                      | -1.6506                                                                                                                                                                                                                                        |
| GATA2                                                                                                                                                                                                                                                                            | 178.8254                                                                                                                                                                                                                                     | 56.2938                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                |
| CTDSPL                                                                                                                                                                                                                                                                           | 14.8864                                                                                                                                                                                                                                      | 4.0712                                                                                                                                                                                                                      | -1.6474                                                                                                                                                                                                                                        |
| LRRN2                                                                                                                                                                                                                                                                            | 3.1281                                                                                                                                                                                                                                       | 0.3186                                                                                                                                                                                                                      | -1.6464                                                                                                                                                                                                                                        |
| YPEL4                                                                                                                                                                                                                                                                            | 11.2945                                                                                                                                                                                                                                      | 2.9313                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |
| MEX3B                                                                                                                                                                                                                                                                            | 18.7037                                                                                                                                                                                                                                      | 5.3084                                                                                                                                                                                                                      | -1.6431                                                                                                                                                                                                                                        |
| HYAL3                                                                                                                                                                                                                                                                            | 12.2633                                                                                                                                                                                                                                      | 3.2759                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |
| PLA2G3                                                                                                                                                                                                                                                                           | 10.3088                                                                                                                                                                                                                                      | 2.6469                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |
| CCR4                                                                                                                                                                                                                                                                             | 10.5000                                                                                                                                                                                                                                      | 0.2226                                                                                                                                                                                                                      | -1.6325                                                                                                                                                                                                                                        |
| PTGDR2                                                                                                                                                                                                                                                                           | 2.7907                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                |
| C20orf203                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                              | 7.3501                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                |

| RUNX1C+ specific (continuation) |                               |         |                    |  |
|---------------------------------|-------------------------------|---------|--------------------|--|
| GeneID                          | RUNX1C+                       |         | logFC              |  |
| KCNQ4                           | 2.7807                        |         | -1.6267            |  |
| MAGIX                           | 3.8195                        | 0.5716  |                    |  |
| CD82                            | 49.8164                       |         | -1.6155            |  |
| HBB                             | 3.9749                        |         | -1.6154            |  |
| GCSAML                          | 122.5330                      | 39.3320 |                    |  |
| STRA6                           | 4.6049                        |         | -1.6132            |  |
| ZBTB16                          | 10.0033                       |         | -1.6112            |  |
| CXCL5                           | 3.0638                        | 0.3313  |                    |  |
| GYPC                            | 56.4666                       | 17.8475 |                    |  |
| SERPINE1                        | 3.5858                        |         | -1.6075            |  |
| EPDR1                           | 12.4639                       |         |                    |  |
|                                 |                               |         | 1.6053             |  |
| ITGB1BP2                        | 6.5100                        | 1.4725  |                    |  |
| PDE5A                           | 3.0462                        | 0.3373  |                    |  |
| MFSD6                           | 9.1879                        | 2.3703  |                    |  |
| STARD8                          | 15.7627                       | 4.5467  |                    |  |
| RASGRP3                         | 20.0224                       | 5.9674  |                    |  |
| OSBPL6                          | 5.2327                        |         | -1.5916            |  |
| PTGS1                           | 158.2573                      |         | -1.5902            |  |
| YOD1                            | 18.9514                       | 5.6279  | -1.5899            |  |
| GNG11                           | 55.6855                       |         | -1.5881            |  |
| FRRS1                           | 31.8031                       | 9.9505  | -1.5828            |  |
| RGS6                            | 3.9999                        | 0.6706  | -1.5816            |  |
| SORBS1                          | 6.8153                        | 1.6358  | -1.5681            |  |
| ID1                             | 4.6744                        | 0.9139  | -1.5679            |  |
| CD55                            | 55.7449                       | 18.1840 | -1.5646            |  |
| P2RY1                           | 17.7406                       | 5.3377  | -1.5641            |  |
| ACSM3                           | 8.5690                        | 2.2548  | -1.5558            |  |
| CRISP3                          | 16.9297                       | 5.1237  | -1.5499            |  |
| PBK                             | 9.6308                        | 2.6417  | -1.5456            |  |
| PIK3CB                          | 46.6277                       | 15.3206 |                    |  |
| SEC14L5                         | 2.4352                        | 0.1787  |                    |  |
| MYH10                           | 15.1623                       | 4.5552  |                    |  |
| TEAD2                           | 3.9934                        | 0.7180  |                    |  |
| ST6GALNAC1                      | 4.4379                        |         | -1.5369            |  |
| DBN1                            | 19.4734                       | 6.0620  |                    |  |
| SLAMF6                          | 8.5290                        | 2.2957  | -1.5317            |  |
| FKBP10                          | 22.9937                       | 7.3066  |                    |  |
| CCDC68                          | 3.2179                        |         | -1.5257            |  |
|                                 |                               | 0.4049  |                    |  |
| LRRC32                          | 2.5031                        |         |                    |  |
| OLFM2                           | 3.3001<br>5.6033              | 0.4982  |                    |  |
| EHD2                            |                               | 1.3012  |                    |  |
| NTRK1                           | 10.5071                       | 3.0168  |                    |  |
| MYL9                            | 50.1445                       |         |                    |  |
| CD3D                            | 16.6317                       | 5.1807  |                    |  |
| PRKCB                           | 35.2632                       | 11.7871 |                    |  |
| COL4A1                          | 5.0358                        |         | -1.4994            |  |
| TSPAN18                         | 2.8429                        | 0.3625  |                    |  |
| SEMA7A                          | 42.4014                       |         | -1.4919            |  |
| ACTN1                           | 57.3195                       | 19.7488 | -                  |  |
| CYP11A1                         | 9.2483                        | 2.6518  | -1.4887            |  |
| SELENBP1                        | 17.7062                       | 5.6677  | -1.4883            |  |
| SLC39A3                         | 27.0865                       | 9.0328  | -1.4852            |  |
| C6orf223                        | 37.9487                       | 12.9279 | -1.4836            |  |
| ETS1                            | 16.1891                       | 5.1495  | -1.4830            |  |
| IRX3                            | 1.9091                        | 0.0440  | -1.4785            |  |
| TNIK                            | 12.5452                       | 3.8705  | -1.4756            |  |
| TUBAL3                          | 2.3868                        | 0.2187  | -1.4745            |  |
| ZFPM2                           | 3.2158                        | 0.5174  |                    |  |
| FAM117A                         | 12.6843                       | 3.9285  |                    |  |
| CNRIP1                          | 27.6454                       | 9.3252  |                    |  |
| AQP1                            | 3.2877                        | 0.5456  | -1.4721            |  |
| GBP4                            | 3.1471                        | 0.4957  |                    |  |
|                                 |                               |         |                    |  |
| MYEOV                           | 2.0600                        | 0.1058  |                    |  |
| IVI1                            | 25 2562                       | 0 5774  |                    |  |
| LYL1                            | 25.3562                       | 8.5271  | -1.4680            |  |
| LYL1<br>ST8SIA6<br>FUT8         | 25.3562<br>23.8789<br>22.5738 | 8.0157  | -1.4640<br>-1.4640 |  |

| RUNX1C+ specific (continuation) |           |          |         |  |
|---------------------------------|-----------|----------|---------|--|
| GeneID                          | RUNX1C+   | RUNX1C-  | logFC   |  |
| GDPD1                           | 6.6347    | 1.7679   | -1.4638 |  |
| TESPA1                          | 27.8623   | 9.4940   | -1.4596 |  |
| ACKR2                           | 3.9366    | 0.8036   | -1.4526 |  |
| SLC45A3                         | 47.2568   | 16.7290  | -1.4446 |  |
| NT5M                            | 5.9160    | 1.5458   | -1.4418 |  |
| VANGL2                          | 9.7370    | 2.9550   | -1.4409 |  |
| LTC4S                           | 13.3708   | 4.2948   | -1.4405 |  |
| EGF                             | 3.0227    | 0.4841   |         |  |
| PLPP1                           | 66.0007   | 23.7449  | -1.4370 |  |
| SERPINI1                        | 6.9589    | 1.9416   | -1.4360 |  |
| TRPC6                           | 2.2756    | 0.2121   | -1.4343 |  |
| TCN1                            | 17.6329   | 5.8965   | -1.4339 |  |
| RUFY1                           | 53.3757   | 19.1266  | -1.4339 |  |
| STON2                           | 13.4989   | 4.4072   |         |  |
| WNT11                           | 2.9125    | 0.4598   |         |  |
| ARHGEF12                        | 14.0058   |          |         |  |
| PLCB4                           | 2.4816    | 0.3026   |         |  |
| FOXN2                           | 30.8825   | 10.9309  | -1.4181 |  |
| GJB5                            | 2.1468    | 0.1820   |         |  |
| STON1                           | 7.7402    | 2.2837   | -1.4123 |  |
| PDZD8                           | 19.4137   | 6.6837   |         |  |
| SKAP1                           | 26.0177   | 9.2340   | -1.4005 |  |
| LIMS1                           | 64.3620   | 23.7977  | -1.3982 |  |
| PRG2                            | 1793.3210 | 681.2815 | -1.3950 |  |
| CCN12                           | 9.4382    | 2.9708   | -1.3944 |  |
| CACNA2D3                        | 4.0290    | 0.9142   | -1.3935 |  |
| HDC                             | 259.8718  | 98.3455  | -1.3928 |  |
| AREG                            | 8.5163    | 2.6249   | -1.3925 |  |
| IL13                            | 11.0595   | 3.6072   | -1.3882 |  |
| SNCG                            | 7.7336    | 2.3395   | -1.3870 |  |
| SH2D2A                          | 11.9966   | 3.9806   | -1.3837 |  |
| UROS                            | 53.6602   | 19.9774  | -1.3817 |  |
| ABHD2                           | 34.4801   | 12.6279  | -1.3804 |  |
| DNAJC12                         | 11.7466   | 3.9192   | -1.3736 |  |
| MFAP3L                          | 1.6252    | 0.0150   | -1.3710 |  |
| TMOD1                           | 5.8293    | 1.6425   | -1.3698 |  |
| EFNB2                           | 2.4131    | 0.3206   | -1.3698 |  |
| SLC22A23                        | 4.6502    | 1.1865   | -1.3697 |  |
| MEIS2                           | 15.1025   | 5.2324   | -1.3694 |  |
| AKAP12                          | 24.5956   | 8.9315   | -1.3658 |  |
| ANGPT1                          | 57.5136   | 21.7617  | -1.3622 |  |
| UGT1A6                          | 8.5830    | 2.7311   | -1.3609 |  |
| ZFPM1                           | 2.4944    | 0.3617   | -1.3596 |  |
| NT5C3A                          | 36.6954   | 13.7013  | -1.3584 |  |
| NDFIP2                          | 13.8482   | 4.7970   | -1.3569 |  |
| CMAS                            | 66.1422   | 25.2885  | -1.3528 |  |
| SIGLEC8                         | 4.0249    | 0.9675   | -1.3527 |  |
| TMEM45A                         | 16.6755   | 5.9222   | -1.3524 |  |
| CASS4                           | 14.2230   | 4.9648   |         |  |
| GALNT10                         | 17.5857   | 6.2835   | -1.3515 |  |
| LRTM1                           | 1.5861    | 0.0150   |         |  |
| LIN28A                          | 2.0782    | 0.2083   | -1.3491 |  |
| IL2RB                           | 6.7770    | 2.0587   | -1.3463 |  |
| MARCKSL1                        | 50.5862   | 19.2977  | -1.3457 |  |
| CRYBA4                          | 1.8003    | 0.1053   |         |  |
| RNF144A                         | 33.9889   | 12.8229  |         |  |
| RILP                            | 1.5572    | 0.0150   | -1.3331 |  |
| AFAP1                           | 2.0553    | 0.2190   |         |  |
| CHST2                           | 4.9671    | 1.3823   | -1.3247 |  |
| UGT2B28                         | 2.9593    | 0.5812   | -1.3243 |  |
| SOCS1                           | 9.5729    | 3.2247   |         |  |
| CR1                             | 16.8989   | 6.1581   | -1.3222 |  |
| MRAP2                           | 2.1089    | 0.2444   |         |  |
| LIPG                            | 4.8416    | 1.3418   |         |  |
| STAR                            | 6.8775    | 2.1627   | -1.3166 |  |
| CD9                             | 28.0642   | 10.7065  | -1.3119 |  |
|                                 |           |          |         |  |

|               | IC+ specific |          |         |
|---------------|--------------|----------|---------|
| GeneID        | RUNX1C+      |          |         |
| MRC2          | 7.3981       | 2.3840   | -1.3113 |
| SPINK4        | 2.3993       | 0.3704   | -1.3106 |
| PIEZO2        | 5.5900       | 1.6587   | -1.3096 |
| MINPP1        | 20.4883      | 7.6808   | -1.3076 |
| EMILIN1       | 24.2800      | 9.2235   | -1.3061 |
| CLC           | 1747.7061    | 707.7230 | -1.3030 |
| SV2A          | 16.0350      | 5.9122   | -1.3013 |
| MYO1D         | 12.4836      | 4.4723   | -1.3010 |
| C19orf33      | 2.3556       | 0.3633   | -1.2995 |
| MS4A3         | 177.9294     |          |         |
| MRVI1         | 4.8497       |          | -1.2981 |
| OSM           | 12.1067      |          | -1.2977 |
| HIPK2         | 9.7784       |          | -1.2971 |
| GSE1          | 23.6500      |          | -1.2964 |
| CCND3         | 171.6093     |          |         |
| ICAM5         | 4.4148       |          | -1.2948 |
|               |              |          |         |
| AVPR1A        | 1.7384       |          | -1.2930 |
| FKBP1B        | 12.3982      | 4.4712   |         |
| MAP1A         | 9.4737       | 3.2940   |         |
| KIF21B        | 18.2344      |          | -1.2851 |
| PSRC1         | 28.9128      |          | -1.2844 |
| IL1RL1        | 107.5314     |          |         |
| DLC1          | 7.7022       |          | -1.2838 |
| PDLIM7        | 32.4029      | 12.7206  | -1.2836 |
| NLK           | 32.8073      |          | -1.2829 |
| MANSC1        | 3.8156       | 0.9800   | -1.2822 |
| BAMBI         | 8.9558       | 3.0977   | -1.2807 |
| DNAAF3        | 2.2594       | 0.3422   | -1.2800 |
| CLCNKB        | 1.6435       | 0.0905   | -1.2774 |
| UGT2B11       | 2.8226       | 0.5809   | -1.2738 |
| CTTN          | 3.7979       | 0.9870   | -1.2718 |
| GNAZ          | 1.7041       | 0.1213   | -1.2699 |
| GPRC5B        | 5.3874       | 1.6491   |         |
| AMHR2         | 4.1380       | 1.1319   | -1.2691 |
| MEIS3         | 3.7297       | 0.9662   |         |
| PTK2          | 18.4538      |          | -1.2652 |
| APOBEC3B      | 29.2050      |          | -1.2639 |
| ГТС7В         | 23.6508      |          | -1.2637 |
| RAB44         | 15.5699      |          | -1.2626 |
| ST3GAL4       | 47.3443      |          |         |
|               |              |          |         |
| S100A16       | 5.4133       |          | 1 2502  |
| SLC43A3       | 91.5514      |          |         |
| LRP12         | 20.2728      |          | -1.2584 |
| NEXN          | 1.7910       |          | -1.2578 |
| GPRC5C        | 45.5171      | 18.4561  |         |
| LIF           | 34.2605      | 13.7536  |         |
| SSX2IP        | 8.9730       | 3.1776   |         |
| SIGLEC12      | 29.1021      |          |         |
| GJA5          | 2.0334       | 0.2738   | -1.2518 |
| L9R           | 11.6481      | 4.3262   | -1.2477 |
| NET1          | 37.9138      | 15.3872  | -1.2477 |
| VCL           | 85.9621      | 35.8236  | -1.2398 |
| SH3BGRL2      | 2.3889       | 0.4359   | -1.2389 |
| ALOX12        | 4.5288       | 1.3436   | -1.2382 |
| WT1           | 7.1443       | 2.4593   | -1.2353 |
| CA2           | 8.7641       | 3.1549   |         |
| SPX           | 1.6921       | 0.1460   | -1.2321 |
| SYP           | 5.3341       | 1.6994   |         |
| GBP5          | 3.4852       |          |         |
| IGFBP4        | 12.5759      | 4.8028   | -1.2262 |
| CPA3          | 630.8627     | 269.1059 |         |
| C1 773        | 1.4079       | 0.0315   |         |
| LIPC          | 1.40/9       | 14.0331  | -1.2230 |
| LIPC<br>BASD1 | 34 0004      |          | -1.4449 |
| BASP1         | 34.0894      |          |         |
| BASP1<br>CMIP | 49.8152      | 20.8073  | -1.2204 |
| BASP1         |              | 20.8073  | -1.2204 |

| RUNX1C+ specific (continuation) |                        |         |         |  |  |
|---------------------------------|------------------------|---------|---------|--|--|
|                                 | GeneID RUNX1C+ RUNX1C- |         |         |  |  |
| CAMK1                           | 39.5861                |         | -1.2185 |  |  |
| RBPMS2                          | 1.8961                 | 0.2485  | -1.2139 |  |  |
| TGFB1                           | 60.3693                | 25.4741 |         |  |  |
|                                 |                        |         | -1.2129 |  |  |
| IL32                            | 18.5808                |         | -1.2119 |  |  |
| ABLIM1                          | 5.0806                 | 1.6251  | -1.2118 |  |  |
| NFATC1                          | 8.3043                 |         | -1.2096 |  |  |
| LINGO1                          | 2.1396                 | 0.3602  | -1.2068 |  |  |
| AKAP2                           | 23.9061                | 9.8015  | -1.2053 |  |  |
| PLCH1                           | 5.0644                 | 1.6332  | -1.2035 |  |  |
| ETV4                            | 4.1996                 | 1.2581  | -1.2033 |  |  |
| EPOR                            | 7.0360                 | 2.4911  |         |  |  |
| TREML2                          | 26.8227                | 11.0907 | -1.2024 |  |  |
| LNX1                            | 2.4814                 |         | -1.2018 |  |  |
| RGS18                           | 86.3322                |         | -1.1993 |  |  |
| SHC1                            | 58.6164                |         | -1.1968 |  |  |
| CLU                             | 19.8272                | 8.1149  | -1.1922 |  |  |
| CD8B                            | 7.0293                 | 2.5141  |         |  |  |
| ARL4A                           | 14.6465                | 5.8550  | -1.1906 |  |  |
| TFRC                            | 102.2147               |         | -1.1902 |  |  |
| LGALS12                         | 4.1895                 | 1.2777  | -1.1880 |  |  |
| SPN                             | 84.0086                | 36.3379 | -1.1870 |  |  |
| GUCD1                           | 23.6265                |         | -1.1852 |  |  |
| IL4                             | 7.4611                 | 2.7236  | -1.1841 |  |  |
| TXK                             | 4.2535                 | 1.3132  | -1.1834 |  |  |
| SEMA3F                          | 3.0560                 | 0.7899  | -1.1802 |  |  |
| IL5RA                           | 8.4519                 | 3.1720  | -1.1798 |  |  |
| STXBP6                          | 4.2690                 | 1.3268  | -1.1792 |  |  |
| FLNA                            | 98.3984                | 42.9354 | -1.1778 |  |  |
| SOX4                            | 24.9479                | 10.4704 | -1.1777 |  |  |
| CKAP4                           | 19.5152                | 8.0786  | -1.1762 |  |  |
| LDLRAD3                         | 7.5707                 | 2.7933  | -1.1760 |  |  |
| MED12L                          | 1.5982                 | 0.1503  | -1.1755 |  |  |
| ADORA2A                         | 3.4480                 | 0.9714  | -1.1740 |  |  |
| CMPK2                           | 24.7663                | 10.4461 | -1.1706 |  |  |
| C1orf61                         | 1.7569                 | 0.2252  | -1.1700 |  |  |
| MGAT3                           | 13.7830                | 5.5814  | -1.1675 |  |  |
| KRT79                           | 26.7759                | 11.3659 | -1.1675 |  |  |
| MLLT11                          | 53.9281                | 23.4734 | -1.1663 |  |  |
| ADGRG1                          | 15.7089                | 6.4462  | -1.1660 |  |  |
| TGFBR3                          | 4.4993                 | 1.4545  | -1.1638 |  |  |
| STRIP2                          | 4.5733                 | 1.4912  | -1.1617 |  |  |
| MPP7                            | 2.2158                 | 0.4375  | -1.1616 |  |  |
| AQP10                           | 2.7228                 | 0.6647  | -1.1611 |  |  |
| IL33                            | 1.8146                 | 0.2590  | -1.1607 |  |  |
| INO80C                          | 30.9180                |         | -1.1606 |  |  |
| BPI                             | 8.8096                 |         | -1.1584 |  |  |
| SLC2A14                         | 8.4821                 | 3.2563  | -1.1556 |  |  |
| ATP6V0A2                        | 34.5030                | 14.9501 | -1.1544 |  |  |
| PRF1                            | 6.7707                 | 2.4939  |         |  |  |
| LMO4                            | 46.2660                | 20.2613 | -1.1526 |  |  |
| S1PR1                           | 7.1161                 | 2.6550  | -1.1509 |  |  |
| EMID1                           | 4.8982                 | 1.6573  | -1.1503 |  |  |
| HRC                             | 5.6832                 | 2.0144  |         |  |  |
| CHRNE                           | 2.1760                 | 0.4351  | -1.1461 |  |  |
| FRY                             | 5.7756                 | 2.0670  | -1.1435 |  |  |
| RAMP1                           | 4.2615                 | 1.3890  | -1.1391 |  |  |
| ECSCR                           | 4.2013                 |         | -1.1384 |  |  |
| LUCIN                           | 4.1199                 | 1.3257  | -1.1364 |  |  |

| RUNX1C+ s  | pecific (con | tinuation) |         |
|------------|--------------|------------|---------|
| GeneID     | RUNX1C+      | RUNX1C-    | logFC   |
| CDH5       | 3.1790       | 0.9038     | -1.1343 |
| ARAP3      | 8.1675       | 3.1806     | -1.1328 |
| MICALL2    | 7.2190       | 2.7541     |         |
| HES6       | 9.3554       | 3.7333     |         |
| DLG5       | 1.2196       | 0.0150     |         |
| CCRL2      | 12.3866      | 5.1243     |         |
| LDOC1      | 5.2050       | 1.8391     |         |
| TMBIM1     | 83.0022      | 37.4763    |         |
| SERPINB9   | 8.6840       | 3.4420     |         |
| HES1       | 2.8261       | 0.7560     |         |
|            | 14.7141      |            |         |
| PHLDB1     |              | 6.2233     |         |
|            | 4.6703       | 1.6072     |         |
| RAB33A     | 53.6513      | 24.1668    |         |
| PRTN3      | 11.8724      | 4.9285     |         |
| ADGRF5     | 1.6669       |            | -1.1179 |
| TEC        | 18.9082      | 8.1747     | -1.1176 |
| KLHDC8B    | 7.0302       | 2.7012     |         |
| NEDD8-MDP1 | 1.2008       | 0.0150     |         |
| MAP1B      | 4.5019       | 1.5377     |         |
| UNC13D     | 45.3171      | 20.3954    | -1.1142 |
| SLC18A2    | 64.2029      | 29.1550    | -1.1125 |
| CSF2RB     | 96.5008      | 44.1193    | -1.1117 |
| YES1       | 19.3933      | 8.4422     | -1.1109 |
| SMYD3      | 61.5458      | 27.9645    | -1.1106 |
| MAPRE2     | 23.3334      | 10.2817    | -1.1090 |
| NBEAL2     | 35.1329      | 15.7853    | -1.1061 |
| APOBEC3D   | 8.9108       | 3.6058     | -1.1056 |
| VSIG2      | 1.3404       | 0.0881     | -1.1050 |
| NOSTRIN    | 2.1908       | 0.4845     | -1.1039 |
| ADARB1     | 5.0479       | 1.8147     | -1.1034 |
| ZNF683     | 2.8409       | 0.7888     |         |
| CLEC11A    | 78.9024      | 36.2921    |         |
| MPP1       | 86.5976      |            | -1.0980 |
| ARHGEF6    | 166.2099     | 77.1173    | -1.0979 |
| ACOT11     | 7.5226       | 2.9866     |         |
| GCKR       | 1.1678       | 0.0150     |         |
| FHOD1      | 24.8878      | 11.1223    |         |
| LAMB2      | 10.0479      | 4.1747     |         |
| OLFM4      | 2.6032       | 0.6891     |         |
| C10orf82   | 6.8247       |            | -1.0928 |
| PLXNA4     | 1.3336       | 0.0941     |         |
| GDF11      | 11.4233      | 4.8285     |         |
|            | 1.7795       | 0.3079     | -1.0318 |
| TMEM136    | 15.3257      |            |         |
| CCDC28B    |              | 6.6862     |         |
| FERMT3     | 93.1384      |            | -1.0868 |
| TPST2      | 48.4021      | 22.2642    |         |
| DAPK2      | 2.6416       | 0.7168     | -1.0849 |
| GNG8       | 1.9609       | 0.3970     | -1.0837 |
| EPAS1      | 14.9046      | 6.5048     | -1.0836 |
| SPTB       | 2.1009       | 0.4672     | -1.0796 |
| EFNA1      | 2.2685       | 0.5469     | -1.0792 |
| PPP1R15A   | 38.7695      | 17.8225    | -1.0792 |
| DAPK1      | 25.6077      | 11.6790    | -1.0694 |
| EGFL7      | 63.5077      | 29.8033    | -1.0664 |
| DAG1       | 8.8522       | 3.7047     | -1.0664 |
| SKI        | 12.5721      | 5.4839     | -1.0657 |
| CSGALNACT1 | 1.6899       | 0.2862     | -1.0644 |
|            |              |            |         |

| DUNNA    |             |          |         |
|----------|-------------|----------|---------|
|          | C+ specific |          |         |
| GeneID   |             | RUNX1C-  | logFC   |
| NRIP3    | 7.6018      | 3.1170   |         |
| PTX3     | 5.9018      |          | -1.0612 |
| TUBA8    | 1.7750      |          | -1.0604 |
| COL24A1  | 13.5044     | 5.9620   | -1.0589 |
| AZU1     | 7.0051      | 2.8515   | -1.0555 |
| EMB      | 13.5118     | 5.9834   | -1.0552 |
| SVIP     | 14.9244     | 6.6695   | -1.0540 |
| TUSC3    | 9.4122      | 4.0151   | -1.0539 |
| PLIN2    | 141.6868    | 67.7298  | -1.0538 |
| NFE2     | 92.6239     | 44.1391  | -1.0525 |
| C12orf57 | 17.3557     | 7.8554   | -1.0516 |
| SH3GL3   | 1.7352      | 0.3197   | -1.0515 |
| MYZAP    | 1.1471      | 0.0372   | -1.0497 |
| LCP2     | 82.7068     | 39.4442  | -1.0494 |
| DOCK6    | 3.0334      | 0.9491   | -1.0492 |
| NUDT4    | 29.3808     | 13.6989  | -1.0474 |
| LURAP1L  | 1.3260      | 0.1257   | -1.0470 |
| MYB      | 41.3491     | 19.4978  | -1.0469 |
| PRKAB1   | 30.2153     | 14.1101  | -1.0467 |
| NMT2     | 10.3018     | 4.4733   | -1.0461 |
| NFIB     | 1.3203      | 0.1241   | -1.0455 |
| PAPSS1   | 87.2055     | 41.7599  | -1.0446 |
| UBE2S    | 41.4885     | 19.6075  | -1.0439 |
| AKR1C1   | 4.1250      | 1.4926   | -1.0399 |
| NCKAP1   | 5.8468      | 2.3308   | -1.0396 |
| SCARF1   | 3.3785      | 1.1331   | -1.0375 |
| CEACAM1  | 1.7112      | 0.3225   | -1.0357 |
| FAM83A   | 2.3917      | 0.6561   | -1.0342 |
| SULT1A3  | 14.8904     | 6.7619   | -1.0337 |
| CORO6    | 4.3782      | 1.6311   | -1.0314 |
| MBOAT1   | 13.3406     | 6.0169   | -1.0312 |
| CYTL1    | 64.4705     | 31.0908  | -1.0287 |
| хк       | 3.1024      | 1.0163   | -1.0248 |
| MAX      | 97.8121     | 47.6550  | -1.0221 |
| TP53INP1 | 21.8238     | 10.2765  | -1.0172 |
| MAGI1    | 2.1334      | 0.5487   | -1.0166 |
| SIGLEC6  | 34.2205     | 16.4109  | -1.0164 |
| FGFR2    | 4.8079      | 1.8746   | -1.0146 |
| CDKN2C   | 4.8257      | 1.8867   | -1.0130 |
| PPIF     | 97.1352     | 47.6771  | -1.0115 |
| PPFIBP1  | 13.4868     | 6.2026   | -1.0082 |
| ZNF792   | 10.0144     | 4.4762   | -1.0081 |
| FAM20B   | 26.5721     | 12.7109  | -1.0079 |
| PLEKHA4  | 3.3046      | 1.1416   | -1.0072 |
| TCTEX1D1 | 4.4888      | 1.7317   | -1.0067 |
| CHML     | 9.3314      | 4.1439   | -1.0061 |
| SPRY1    | 4.7978      | 1.8868   | -1.0060 |
| SYNJ2    | 3.2068      | 1.0949   | -1.0059 |
| ВТК      | 227.7614    | 112.9251 | -1.0058 |
| SLC48A1  | 12.2376     | 5.5973   | -1.0047 |
| AGAP1    | 3.2975      | 1.1433   | -1.0036 |
| FAM102A  | 8.5986      | 3.7915   | -1.0024 |
| LIPE     | 2.1527      | 0.5749   | -1.0014 |
| LRRC8D   | 24.2424     | 11.6108  | -1.0012 |
|          |             |          |         |

# Supplementary Table 1: Gene expression levels and differential gene expression in the RUNX1C+ and RUNX1C+ cell populations

Tables including expression levels of the differentially expressed genes between RUNX1C- (blue) and RUNX1C+ (orange) specific genes (no Dox treatment), ranked by log2 fold (LogFC) of the FPKM +1 (fragments per kilobase of transcripts per million mapped reads) values of genes differentially expressed (two-fold change) in uninduced RUNX1C- and RUNX1C+ (CD45+ CD34+) populations.

| RUNX1C+     |               |             |               |             |               |
|-------------|---------------|-------------|---------------|-------------|---------------|
| 3 Dox 5 Dox |               | Dox         | 10 Dox        |             |               |
| Upregulated | Downregulated | Upregulated | Downregulated | Upregulated | Downregulated |
| CYP1A1      | ENPP3         | CYP1A1      | GAR1          | CYP1A1      | WT1           |
| SPINK4      | HPGD          | RUNX1T1     | HPGD          | RUNX1T1     | CNRIP1        |
| TMEM176A    | CEACAM4       | CLIP3       | GPR34         | PLD2        | TFRC          |
| TMEM176B    |               | GPR32       | IL4           | SMARCD3     | CTSG          |
| DPP4        |               | TMEM176A    | C8orf59       | PLA2G4C     | KIT           |
| •           | -             | PLD2        | CKS2          | NAAA        | ITGA4         |
|             |               | TMEM120A    | ITGB3BP       | PRAME       | S100A12       |
|             |               | SMARCD3     | PFDN4         | KREMEN1     | SULF2         |
|             |               | TNFSF12     | MSMO1         | GBP2        | C11orf21      |
|             |               | SIDT2       | CETN3         | ARMCX2      | SPN           |
|             |               | KLK13       | RIDA          | CLIP3       | LIF           |
|             |               | HLA-B       | MAD2L1        | IRF6        | NFE2          |
|             |               | RNF213      | AP1S2         | LEFTY2      | KRT1          |
|             |               | MAPK13      | GOLT1B        | SMARCA1     | PLA2G3        |
|             |               | COLQ        | CENPK         | PIK3IP1     | SLC43A3       |
|             |               | KREMEN1     | HMGCS1        | TMEM120A    | FABP5         |
|             |               | SPINT1      | AK6           | MAPK13      | LMO4          |
|             |               | PRAME       | KRT1          | ZG16B       | IL4           |
|             |               | SPTAN1      | CNIH1         | SLC35F3     | SLC48A1       |
|             |               | PLA2G4C     | G2E3          | KLK13       | SPIN4         |
|             |               | FLNB        | LMO4          | HLA-B       | PSMG1         |
|             |               | SLC44A2     | S100A12       | THRSP       | ODC1          |
|             |               | CLSTN1      | NDFIP2        | KIAA0040    | DNMT3B        |
|             |               | SLC26A11    | SEC61G        | GSTA4       | ADAMTS14      |
|             |               | AXL         | CENPH         | RAB3B       | PTAFR         |
|             |               | NLRP1       | FANCL         | TFPI2       | MYB           |
|             |               | ACTA2       | CYP1B1        | COLQ        | MYBL2         |
|             |               | TIMP2       | C3orf58       | FAM114A1    | CKS2          |
|             |               | VAT1        | SNRPG         | ASAP3       | RRS1          |
|             |               | PLSCR3      | FAM72C        | FMNL2       | ZFP36L2       |
|             |               | CDKN1A      | ITGA4         | RNASE4      | MAD2L1        |
|             |               | ZG16B       | PARPBP        | MTMR11      | ZNF730        |
|             |               | CTTN        | UGT1A6        | LURAP1      | CENPH         |
|             |               | ARSD        | TCTEX1D1      | ITGAV       | INSIG1        |
|             |               | SLC35F3     | RFXAP         | BCL6        | FADS1         |
|             |               | SYNPO       | SGO1          | NLRP1       | SLC27A2       |
|             |               | PIK3IP1     | HSPB11        | EPHX2       | TESC          |
|             |               | SPTBN1      | KIT           | P2RX4       | DUSP10        |
|             |               | KDELR1      | CENPQ         | CES4A       | GSE1          |
|             |               | EPHX1       | LRRCC1        | CDKN1A      | CHAC2         |
|             |               | IGLON5      | SNRPE         | SLC26A11    | SPINK2        |
|             |               | LRP1        | CDK1          | RASSF8      | FGR           |
|             |               | CYP2S1      | SPIN4         | AXL         | KCNK5         |

| 5           | RUN)          |             | 0 Dox    |
|-------------|---------------|-------------|----------|
|             |               |             |          |
| Upregulated | Downregulated | Upregulated |          |
| GBP2        | HMMR          | OPTN        | ECE2     |
| MARK4       | TGDS          | FBXL2       | FST      |
| ECM1        | METTL5        | IL1RAP      | OSM      |
| SERPINB9    | LSM5          | NABP1       | KCNK17   |
| P2RX4       | HSPE1         | CTTN        | MYH10    |
| GDF3        | NUF2          | PDE1B       | BIRC5    |
| KIAA0040    | DMC1          | ARRDC4      | NPM3     |
| NATD1       | CHAC2         | SOCS2       | RAP1GAP2 |
| TRIM16      | MND1          | PHC1        | CACNA2D3 |
| ARMCX2      | FAM72A        | LGALS3      | STAR     |
| TWIST1      | ASPM          | DNAJB5      | SLA      |
| PLEKHG2     | RPA3          | TSPAN7      | CAMK1    |
| CPT1C       | FAM72B        | FBLIM1      | MYC      |
| CD99        | SULF2         | FAM166B     | NKG7     |
| PLCD1       | TNFSF10       | PLIN5       | STEAP3   |
| ITGA5       | C3orf14       | GSTM3       | SPR      |
| CASS4       | ERH           | SERPINB9    | MFSD2B   |
| CES4A       | MS4A2         | ARSD        | AQP3     |
| PDE1B       | YEATS4        | TESK2       | NME1     |
|             |               |             |          |
| MX1         | LIF           | FMNL3       | CYP1B1   |
| VAMP5       | HMGB1         | PPP2R5B     | MARVELD1 |
| C19orf38    | EXOSC8        | C1orf115    | MCEMP1   |
| LEFTY2      | GAPT          | SPINT1      | SLC7A1   |
| COL1A2      | DUSP10        | TDRP        | DHRS9    |
| PLIN5       | HPGDS         | H6PD        | RNASEH2A |
| FGD5        | CTSG          | SPTAN1      | SELPLG   |
| BMF         | KIF20B        | IGLON5      | ANK1     |
| LDOC1       | TIMM17A       | BEX2        | ADCY7    |
| SMARCA1     | ZNF302        | RGS9        | PRELID1  |
| OAS3        | SKA2          | TCEA3       | GCSAML   |
| TBC1D16     | ZNF85         | VNN2        | MRTO4    |
| IGF2R       | COMMD8        | SYNPO       | GATM     |
| SERPING1    | NFYB          | TRAK2       | PRPS2    |
| FBLIM1      | CCNA2         | TRIM16      | TYMS     |
|             | SGO2          |             | <u> </u> |
| LGALS3      |               | CMYA5       | GMPR     |
| DPP4        | ZNF107        | GSTM2       | MBP      |
| TUBB6       | DEPDC1        | CCDC85A     | MTHFD1L  |
| PINK1       | ZNF138        | CTC1        | S100A8   |
| ASAP3       | UGGT2         | CPT1C       | PCNA     |
| ST5         | GGH           | FRMD6       | DUT      |
| MAPK3       | WT1           | HFE         | HSPE1    |
| GPR153      | SPC25         | IRF9        | HPGD     |
| RELB        | ACTR6         | PLEKHB1     | PFAS     |
| PLCD3       | CCDC58        | STAG3       | TREML2   |
| MTMR11      | ZNHIT6        | ERMN        | OGG1     |
| SHF         | SMC4          | DDX17       | CCNI2    |
| TMEM176B    | CEP70         | ICOS        | SLC50A1  |
| SGSH        | C20orf203     | EGR1        | VAV1     |
| CREB3L1     | FAM72D        | VAMP5       | GFI1B    |
| SLC9A1      | TDRD9         | RGPD5       | ADGRG5   |
|             | +             |             |          |
| MMRN2       | TFRC          | TJP2        | SNRPF    |
| HIP1R       | PTPN22        | CALCOCO1    | DSCC1    |
| DOCK6       | ZNF92         | GJA5        | ABCB6    |
| LRRC8A      | ZNF730        | ST5         | PLCB2    |
| SPINK4      | CYCS          | RGPD6       | FEN1     |
| SNX15       | CCDC18        | IL11        | OPN3     |
| LGALS3BP    | RHEBL1        | TMEM45B     | ITGAM    |
| TESK2       | PSMG1         | IGF2R       | LAT2     |

| RUNX1C+                   |          |             |               |  |  |  |  |
|---------------------------|----------|-------------|---------------|--|--|--|--|
| 5 Dox 10 Dox              |          |             |               |  |  |  |  |
| Upregulated Downregulated |          | Upregulated | Downregulated |  |  |  |  |
| MAP4                      | C4orf46  | AHR         | MCM4          |  |  |  |  |
| TSPAN7                    | GLMN     | FSTL1       | CDKN2D        |  |  |  |  |
| WFDC1                     | GPR65    | RCAN2       | DMTN          |  |  |  |  |
| BRSK1                     | CKLF     | TMEM178A    | ELOVL6        |  |  |  |  |
| MRAP2                     | CKAP2    | SHF         | C4orf46       |  |  |  |  |
| NECAP2                    | CALB2    | NPHP3       | ID2           |  |  |  |  |
| DNAJB5                    | CENPE    | BEX3        | MYL4          |  |  |  |  |
| TJP2                      | PPM1K    | CCDC71L     | TRIP13        |  |  |  |  |
| NCK2                      | DEK      | ECHDC2      | FAM216A       |  |  |  |  |
| LRG1                      | RPS18    | PCYOX1      | MYCN          |  |  |  |  |
| PLEKHB1                   | GCSAML   | DNALI1      | ADORA2B       |  |  |  |  |
| OPTN                      | CNRIP1   | TMEM176A    | CCNA2         |  |  |  |  |
| TAGLN                     | PLA2G4A  | SGK1        | S100A9        |  |  |  |  |
| ACSF2                     | SLF1     | WSB1        | IGFBP7        |  |  |  |  |
| IFI6                      | DBF4     | OAS3        | TMTC4         |  |  |  |  |
| PLCG1                     | ACYP1    | APOD        | RAB37         |  |  |  |  |
| RNASE4                    | KNTC1    | ACTA2       | ELF4          |  |  |  |  |
| ICAM1                     | XRCC4    | CD99        | WDR12         |  |  |  |  |
| EHD2                      | FAM102B  | FNDC3A      | C20orf203     |  |  |  |  |
| APOD                      | MPHOSPH6 | CLIP4       | ALDH1B1       |  |  |  |  |
| CDC42BPB                  | MS4A3    | TNFRSF9     | ADGRE2        |  |  |  |  |
| BEX3                      | DSCC1    | IFI16       | NRARP         |  |  |  |  |
| TBC1D8                    | ATAD5    | ENPP4       | LST1          |  |  |  |  |
| NFKB2                     | DLGAP5   | TWIST1      | STK10         |  |  |  |  |
| PPP2R5B                   | SMIM10   | NATD1       | PTPN22        |  |  |  |  |
| FMNL2                     | ZFP36L2  | ULBP2       | FAM72C        |  |  |  |  |
| NDRG1                     | NAE1     | SIDT2       | AURKB         |  |  |  |  |
| THRSP                     | LSM3     | GDF3        | WNT5B         |  |  |  |  |
| MYO7A                     | PBK      | FGD5        | HBB           |  |  |  |  |
| PLTP                      | OIP5     | DPP4        | CDC45         |  |  |  |  |
| RASSF8                    | H2AFZ    | PHF1        | SMIM10        |  |  |  |  |
| MARCKSL1                  | ZNF680   | EPHX1       | MAGEF1        |  |  |  |  |
| UCHL1                     | GYPA     | PLAU        | CHAF1A        |  |  |  |  |
| MINK1                     | SLCO4C1  | KLK6        | RUVBL1        |  |  |  |  |
| PTPRF                     | IL13     | MAGED2      | GMNN          |  |  |  |  |
| CPAMD8                    | HMGB3    | ABAT        | PARVG         |  |  |  |  |
| GAD1                      | DIAPH3   | SMIM10L2A   | BNIP3         |  |  |  |  |
| FZD7                      | EEF1E1   | FLNB        | RNASEH2B      |  |  |  |  |
| ACADVL                    | LPXN     | LAMC1       | CD2           |  |  |  |  |
| EGR1                      | MRPS18C  | SPTBN1      | LRRCC1        |  |  |  |  |
| HLA-E                     | INSIG2   | FABP3       | SLC8A3        |  |  |  |  |
| DAPK1                     | ZNF273   | NRBP2       | HMBS          |  |  |  |  |
| DCHS1                     | CENPA    | MRAP2       | CALB2         |  |  |  |  |
| BCAM                      | JCHAIN   | CD79B       | CDCA5         |  |  |  |  |
| GJA5                      | HPF1     | COL1A2      | HMGB3         |  |  |  |  |
| TCEA3                     | OSM      | RCAN3       | DHFR          |  |  |  |  |
| PCED1B                    | S100A8   | TBC1D16     | UGT1A6        |  |  |  |  |
| FCGR1A                    | FST      | LRP1        | EXOSC8        |  |  |  |  |
| CETP                      | LST1     | LRG1        | METTL1        |  |  |  |  |
| SASH1                     | PMS1     | CLDND1      | MRPL3         |  |  |  |  |
| SOCS2                     | PFDN6    | RGPD8       | MCM7          |  |  |  |  |
| ZFP36                     | TOP2A    | SERPINB4    | GGH           |  |  |  |  |
| AMIGO2                    | HIST1H4C | CLSTN1      | F2RL3         |  |  |  |  |
| CSTB                      | KRT72    | RETSAT      | CENPK         |  |  |  |  |
| TNNT1                     | CDKN3    | MAP4K3      | HJURP         |  |  |  |  |
| LURAP1                    | CCNI2    | TNFSF12     | SIGLEC10      |  |  |  |  |
| SLC25A23                  | ECT2     | HIP1R       | SLC25A15      |  |  |  |  |
| TGFBR2                    | PCNA     | GRAMD1C     | TNFAIP8L2     |  |  |  |  |
| <b>————</b>               |          |             | •             |  |  |  |  |

|             | Dox           |             | 0 Dox         |
|-------------|---------------|-------------|---------------|
|             |               |             |               |
| Upregulated | Downregulated | Upregulated | Downregulated |
| CD109       | MCEMP1        | AMIGO2      | SLA2          |
| RHBDD2      | STAR          | MX1         | BUB1          |
| IL27RA      | HAT1          | UNC13B      | MCM2          |
| PXDN        | GEN1          | IFI6        | CST7          |
| PTPRU       | CD52          | ECM1        | RMI2          |
| HIF3A       | IMMP1L        | SLC44A2     | NINJ2         |
| AEBP1       | MTBP          | ATP6V1B2    | ACAT2         |
| NRBP2       | DDIAS         | CREBRF      | C6orf223      |
| COL6A2      | CEP55         | KLF8        | ST8SIA6       |
| MAP4K2      | GATM          | SUN1        | CDKN3         |
| CLDN7       | NDC1          | ACAD11      | MS4A3         |
| BCL6        | PRIM1         | TWSG1       | OIP5          |
| MAGED2      | TPRKB         | IRF8        | FADS2         |
| RHOC        | HIST1H1B      | FZD7        | POLR3K        |
| AHR         | NKG7          | GCH1        | EFHC2         |
| CD79B       | TTC32         | ADAMTS9     | SGO1          |
| PCDHGB7     | RNASEH2B      | CA13        | ARRB2         |
| ISG20       | ZBED5         | NEO1        | RRM2          |
| NOTCH3      | ARHGAP11A     | CETP        | DMC1          |
| BAIAP3      | MORN2         | TUFT1       | ORC1          |
| MYOF        | KIF14         | CXCL10      | CHI3L1        |
| RRAS        | RFC3          | GNG7        | PADI4         |
| TFPI2       | FBXO43        | YPEL5       | SH2B3         |
|             | ENPP3         | SBF2        | CENPF         |
| UNC13B      | + -           |             | -             |
| PLVAP       | ZNF804A       | JAM3        | SLC43A1       |
| CCDC85A     | RMI1          | UCHL1       | ABCE1         |
| FAM131A     | PLK4          | TUBB6       | CDC20         |
| DLGAP4      | NCAPG         | UBE2H       | PROK2         |
| PLEKHA4     | ACAT2         | TAGLN       | CD244         |
| FLT4        | HMGN5         | SASH1       | HMMR          |
| SEMA6C      | DHRS9         | ARMC9       | H2AFZ         |
| TMEM45B     | CDC7          | PLCD1       | IL1B          |
| ZNF581      | MGST1         | NECAP2      | TMEM97        |
| LRP4        | PLAC8         | BSDC1       | TMEM246       |
| HOMER3      | KIF11         | CBLN3       | HK3           |
| GRIK5       | SPINK2        | BRSK1       | PLEKHA2       |
| MVB12A      | ESCO2         | WFDC1       | CENPU         |
| DENND1C     | COQ3          | F2RL1       | FAAP24        |
| IFI35       | ADCYAP1       | ZFYVE16     | ZNF367        |
| ST6GAL1     | NDUFA5        | CD109       | FAM72A        |
| BCL6B       | OMA1          | CPAMD8      | HSPD1         |
| RCAN3       | C11orf21      | CECR2       | FAM102B       |
| MFGE8       | ZNF683        | KLHL6       | CBFA2T3       |
| C1orf115    | RAD51AP1      | KIF13B      | CYTH4         |
| RBPMS       | HIST1H2BO     | NDRG1       | HMGN5         |
| IFIT3       | ID2           | SAT2        | RNF125        |
| MYO1C       | ZWINT         | P2RX7       | POLD2         |
|             | +             |             | SLC40A1       |
| RSPH9       | RFESD         | TUSC3       |               |
| JUN         | UQCRB         | CYTH3       | SPC25         |
| CTNNA1      | CENPU         | NFKB2       | PLAC8         |
| NEO1        | CARHSP1       | IFIT3       | ASF1B         |
| SGK1        | GDPD1         | B3GNT9      | PRF1          |
| ICAM2       | TMEM156       | IFI35       | OAF           |
| BEX2        | CENPI         | TMEM65      | NOD2          |
| LPIN3       | CCDC15        | PLSCR3      | POP5          |
| FABP3       | HBB           | SERPINB3    | CDCA7         |
| ZSWIM4      | ZNF675        | PINK1       | RFC3          |
| CD83        | NDC80         | CBX7        | IL13          |

| RUNX1C+     |                           |          |               |  |  |  |  |  |
|-------------|---------------------------|----------|---------------|--|--|--|--|--|
| 5           | Dox                       | 10 Dox   |               |  |  |  |  |  |
| Upregulated | Jpregulated Downregulated |          | Downregulated |  |  |  |  |  |
| PCDHGB6     | PRIM2                     | SEPT10   | C3orf58       |  |  |  |  |  |
| RASIP1      | SMC2                      | EZH1     | MTFR2         |  |  |  |  |  |
| ITGA9       | HIST1H2AJ                 | AP1S1    | PRKDC         |  |  |  |  |  |
| P2RX7       | TMSB15A                   | PLEKHH2  | ITGAL         |  |  |  |  |  |
| RGS12       | C5orf34                   | PLCG1    | NUP210        |  |  |  |  |  |
| COL27A1     | DEPDC1B                   | SLC37A3  | APOBEC3B      |  |  |  |  |  |
| RCAN2       | CENPW                     | PDE4DIP  | CCND3         |  |  |  |  |  |
| PROCR       | B3GNT5                    | QPCT     | CENPW         |  |  |  |  |  |
| CD81        | C12orf60                  | SSBP2    | SLC11A1       |  |  |  |  |  |
| KLC2        | TTK                       | PCDHGB7  | KNTC1         |  |  |  |  |  |
| PTPRS       | BNIP3                     | ANXA2    | PPIF          |  |  |  |  |  |
| HSPB8       | CENPF                     | TM4SF1   | AARS          |  |  |  |  |  |
| ADAMTS9     | AIF1                      | RBFOX2   | MTHFD1        |  |  |  |  |  |
| DNALI1      | FRA10AC1                  | SPOCD1   | CCNF          |  |  |  |  |  |
| IFI16       | CRLS1                     | MAP4     | TDRD9         |  |  |  |  |  |
| ATN1        | CATSPER1                  | HAP1     | PUM3          |  |  |  |  |  |
| ACVRL1      | KIF18A                    | ACADVL   | AIF1          |  |  |  |  |  |
| GRASP       | ITGAM                     | LIFR     | FHL2          |  |  |  |  |  |
| OAS1        | RMI2                      | S100Z    | ANGPT1        |  |  |  |  |  |
| NECTIN2     | RACGAP1                   | IL27RA   | CAPN11        |  |  |  |  |  |
| GRTP1       | FABP5                     | TBC1D8   | FKBP4         |  |  |  |  |  |
| C2orf66     | MNS1                      | GNG12    | RCL1          |  |  |  |  |  |
| MFAP2       | DSN1                      | SETD7    | IL9R          |  |  |  |  |  |
| SLC5A10     | IL18RAP                   | CADM4    | ENO3          |  |  |  |  |  |
| COL6A1      | EMB                       | ARMCX3   | CENPA         |  |  |  |  |  |
| CACNA1H     | HIST1H2BH                 | ZNF251   | ZWINT         |  |  |  |  |  |
| CERS4       | HIST1H4A                  | SERINC1  | MND1          |  |  |  |  |  |
| IFI27       | IL9R                      | KIAA0895 | LAPTM5        |  |  |  |  |  |
| PLOD1       | CDC25C                    | GPR32    | NCAPH         |  |  |  |  |  |
| ID3         | PRG2                      | CASP7    | MS4A2         |  |  |  |  |  |
| SHE         | RFC4                      | ABCB4    | CCNB1         |  |  |  |  |  |
| HELZ2       | DEPDC4                    | ноок1    | PDGFRB        |  |  |  |  |  |
| SLC7A10     | JAZF1                     | MYOF     | GINS1         |  |  |  |  |  |
| ATP9A       | PTTG1                     | SWT1     | PLCH1         |  |  |  |  |  |
| TM4SF1      | DNA2                      | TAGLN3   | PSAT1         |  |  |  |  |  |
| PML         | HELLS                     | KCTD21   | SH3BP2        |  |  |  |  |  |
| CTSC        | BUB1                      | LDOC1    | DCTPP1        |  |  |  |  |  |
| CAPN12      | BUB1B                     | H1F0     | PCYT1B        |  |  |  |  |  |
| SFN         | SLA                       | HIF1A    | PASK          |  |  |  |  |  |
| GLDC        | IGFBP5                    | RELB     | HIRIP3        |  |  |  |  |  |
| KCTD17      | HIST1H4E                  | PRKCZ    | SNX20         |  |  |  |  |  |
| PPP1R14A    | IGFBP7                    | MAML2    | MLC1          |  |  |  |  |  |
| KREMEN2     | LMNB1                     | ZNF608   | FCN1          |  |  |  |  |  |
| KRT18       | NEIL3                     | SNX33    | NUDT1         |  |  |  |  |  |
| PRKAR1B     | MEIOB                     | PLEKHG2  | PLEKHG3       |  |  |  |  |  |
| SPOCD1      | GZMB                      | CLDN7    | BCOR          |  |  |  |  |  |
| CADM4       | PRF1                      | COX6B2   | NCR3LG1       |  |  |  |  |  |
| OASL        | DCLRE1A                   | B2M      | GNA15         |  |  |  |  |  |
| PHLDB1      | OPN3                      | IKZF4    | GYPE          |  |  |  |  |  |
| NPTX1       | S100A9                    | VAT1     | RCOR2         |  |  |  |  |  |
| EBI3        | APOC2                     | IFIT1    | GALNT6        |  |  |  |  |  |
| GPX4        | MAGOHB                    | MALT1    | KIF18B        |  |  |  |  |  |
| NACAD       | FAM200B                   | TMC7     | CCNB2         |  |  |  |  |  |
| IFIT1       | GPR85                     | SLC35B4  | UBE2C         |  |  |  |  |  |
| TMIGD2      | ADAMTS3                   | NRN1     | HMGB1         |  |  |  |  |  |
| CD37        | ANKRD18B                  | UBE2L6   | FAM72B        |  |  |  |  |  |
| TUBB3       | RGS5                      | SLC17A5  | PA2G4         |  |  |  |  |  |
| RSPO4       | SFR1                      | CDKN2B   | HMGCS1        |  |  |  |  |  |
| 1.01.04     | OI 111                    | CDINIACD | 11.110001     |  |  |  |  |  |

|             | RUN           | (1C+         |               |             | RUNX          | 1C+      |               |
|-------------|---------------|--------------|---------------|-------------|---------------|----------|---------------|
|             | Dox           | 10 Dox 5 Dox |               |             | 10 Dox        |          |               |
| Upregulated | Downregulated | Upregulated  | Downregulated | Upregulated | Downregulated |          | Downregulated |
| MAML2       | ZNF90         | PCED1B       | PIM2          | CEACAM1     | RAD54L        | HID1     | RNF24         |
| ITGAV       | MED31         | SOAT1        | MGST1         | TRIM22      | CCDC169       | EGR2     | RFC4          |
| NUMA1       | MPC1          | AR           | RPA3          | FAM89B      | AQP3          | CTSC     | THBD          |
| FCGR1B      | CCDC136       | LY96         | TMEM163       | ACTG1       | ADCY7         | AIFM2    | KIF21B        |
| LRP10       | MCM8          | LTA4H        | CMSS1         | JUP         | CKAP2L        | PLEKHA4  | DIS3L         |
| CDC34       | CLEC11A       | DOCK6        | FANCA         | SEMA4B      | CLECL1        | FAM131A  | ASIC4         |
| FAM222B     | GPAT3         | BBS1         | TPM1          | NR4A1       | RRM2          | PCMTD1   | FAM72D        |
| MSRA        | DHFR          | GPX3         | TAGLN2        | TMEM115     | CXorf21       | HSPB8    | NDC1          |
| MVP         | IDI1          | JUN          | ORC6          | FOXP4       | CYP11A1       | FNDC4    | CMTM5         |
| SAT2        | SKA3          | EIF1         | UGGT2         | GRINA       | HIST1H2BI     | CTNNA1   | RNASE3        |
| VPS9D1      | CPA3          | ARRDC3       | LCP1          | FLT1        | FANCI         | C19orf38 | HEMGN         |
| MED25       | SLCO5A1       | SLC41A1      | SIGLEC8       | PALM        | ZNF563        | GIMAP6   | GNL3          |
| ATP6V0C     | SKA1          | PDGFD        | PNP           | SHISA5      | CAMK1         | CAMSAP2  | XRCC2         |
| GIMAP4      | HIST1H2BM     | KIAA1671     | HSPA4L        | YPEL3       | HP            | CD53     | ADGRG1        |
| ERG         | MTFR2         | CDH24        | MCM10         | TSTD1       | HIST1H1D      | FCGR1A   | NDFIP2        |
| GIMAP8      | EAF2          | ACSF2        | HP            | LIN7B       | PTX3          | LPIN3    | NANP          |
| NRN1        | RNASE2        | CC2D2A       | CPXM1         | TRIOBP      | RFX8          | SGSH     | BUB1B         |
| TAGLN3      | XRCC2         | BTN2A2       | RCC1          | GSN         | ZNF93         | RGS17    | SLC38A5       |
| ZYX         | ZDHHC13       | EIF4A2       | CACNA2D4      | SH3D21      | ZNF239        | YPEL2    | FANCG         |
| CTSB        | FBXO4         | PPFIBP1      | MARS2         | ECHDC3      | AURKA         | SNX18    | SKA3          |
| ARHGEF15    | ZGRF1         | CASP4        | BIN2          | LMF1        | ATP10D        | FLT1     | CTSW          |
| TMEM74B     | CLC           | EPS8         | PGAM5         | HIST1H1C    | CMC1          | TRIM22   | TOP2B         |
| AP1B1       | ZBED8         | B3GLCT       | ADAMTS1       | ANXA2       | CD200R1L      | TULP3    | HBD           |
| EGR2        | POLQ          | ITGA5        | BAG2          | KLHDC8B     | PSAT1         | CD83     | BRIX1         |
| SERTAD1     | PPIH          | ADD3         | POLA2         | DDX58       | CCNE2         | AMOTL1   | FAM57A        |
| SOX7        | FANCB         | TGFBR2       | CR1           | AES         | ASNS          | C11orf95 | GYPA          |
| TAX1BP3     | RPL22L1       | GIMAP4       | CCND1         | NOS3        | APOBEC3B      | PCMTD2   | SIGLEC9       |
| RNASEK      | MYB           | PHTF2        | CDC6          | LAMB2       | MS4A6A        | PLCD3    | PTPRE         |
| CXCL10      | DNAH14        | IL13RA1      | SLCO4C1       | SYNGR1      | BRCA1         | EVI2B    | DCLRE1B       |
| KLHL3       | HSPA4L        | CLIP1        | CPT1A         | APOE        | CD38          | XPR1     | GTF3A         |
| MIIP        | PLA2G3        | CTTNBP2NL    | CKAP2         | IGSF8       | HIST1H2AH     | DDX58    | CSF1R         |
| RPS2        | COMMD7        | MYO9A        | CHEK2         | SLC27A1     | POC1B-GALNT4  | ZFP36    | CMIP          |
| CACFD1      | SMIM11B       | GPR153       | RAD54L        | UBXN6       | CHEK1         | ANKRD12  | TOR3A         |
| C8orf58     | SLC48A1       | EPB41L1      | SLC7A5        | VASN        | TPM1          | SPACA6   | CSE1L         |
| TMEM178A    | BLM           | TVP23C       | CXXC5         | FAM171A2    | HEMGN         | SCG5     | TIMP3         |
| SPARC       | GYPE          | HIF3A        | LGALS12       | HYAL2       | POLE2         | FBLN5    | LMNB1         |
| LTBR        | CCNA1         | SPINK4       | NT5M          | MGRN1       | TCN1          | BAIAP3   | ADCYAP1       |
| EVC         | RNASE3        | GPR50        | ULK3          | SNAPC2      | DEFA4         | CASP9    | SHMT1         |
| ULBP2       | CR1           | HLA-E        | CCDC169       | LYPLA2      | EXO1          | ING4     | GINS4         |
| PLXNA3      | KIF15         | SERINC3      | PARPBP        | RGL1        | HGF           | CYSTM1   | PRG2          |
| TEAD2       | GINS4         | RBPMS        | RPS6KA1       | ACVR1B      | E2F8          | FERMT2   | DTL           |
| COL9A2      | METTL21A      | PARP14       | HAUS8         | DPYSL4      | LGALS12       | GALT     | CATSPER1      |
| VGF         | ALOX5AP       | ZDBF2        | ZNF804A       | ZNF593      | PIGW          | CCL28    | GYPB          |
| SHANK3      | UBE2T         | FBXO21       | SNRNP25       | TUSC3       | L2HGDH        | WDR45    | RANBP1        |
| HSF1        | WDHD1         | C1R          | MCM5          | BCL7C       | HIST1H1E      | TP53INP2 | IARS          |
| QPCT        | RBPJ          | LZTS3        | GINS2         | DLK1        | MYL4          | USP27X   | GPAT3         |
| TUBB4A      | LYZ           | NCOA3        | CDC25A        | AP2A2       | SLC31A2       | CAPN12   | IGLL1         |
| NUCB1       | SUGT1         | DTX3         | TIMM21        | TNFAIP8L3   | CAPG          | HLA-DRB5 | IMP4          |
| CH25H       | BORA          | TMX3         | MKI67         | NPDC1       | CD300A        | LRP4     | FBL           |
| VIM         | HCST          | NTAN1        | SLC1A4        | FAM69B      | HDC           | ZNF827   | MIPEP         |
| MAP1LC3A    | CEP152        | SHE          | MUC1          | TYMP        | ZNF69         | FAM49A   | ESPL1         |
| PDGFRA      | CDC45         | CNPY4        | DDIAS         | TMEM8A      | ZNF695        | SPARC    | PRR11         |
| SEMA6B      | NUSAP1        | CREM         | CCDC15        | MAP1S       | CST7          | SULT1C4  | KIF22         |
| CRYM        | GYPB          | RSPH9        | TTC27         | ZNF358      | UQCRHL        | CAST     | ERVMER34-1    |
| PKN1        | EFHC2         | ICAM1        | ISOC1         | MAP2K2      | CXCL2         | TFPI     | ANKLE1        |
| EPS8        | SASS6         | GLDC         | мсм3          | TSR3        | HIST1H4B      | PARP9    | GBGT1         |
| TGFB1I1     | AP5M1         | IFIT2        | TOMM40        | PLD3        | PLA2G4B       | ST6GAL1  | RNASE2        |
| IFIT2       | HBD           | ISG20        | RHEBL1        | ZNF219      | HIST1H3F      | IL2RG    | E2F1          |

|               | RUNX          | (1C+               |               |  |  |  |
|---------------|---------------|--------------------|---------------|--|--|--|
| 5             | Dox           | 10 Dox             |               |  |  |  |
| Upregulated   | Downregulated | Upregulated        | Downregulated |  |  |  |
| HIST1H2BK     | HBG1          | TMEM74B            | RRM1          |  |  |  |
| EEF2          | C1orf162      | TMEM176B           | ALYREF        |  |  |  |
| FCGRT         | CXCL3         | CCDC173            | PLA2G2A       |  |  |  |
| GRN           | OTULIN        | LGMN               | MYLK          |  |  |  |
| TEK           | SPP1          | IFI27              | ARHGAP22      |  |  |  |
| PHLDA1        | TUBA4A        | OASL               | MAP1A         |  |  |  |
| PGLS          |               | BTN2A1             | TEC           |  |  |  |
| SPATA2L       |               | MYO1E              | SMC2          |  |  |  |
| PITPNM1       |               | C19orf66           | GAL           |  |  |  |
| DBN1          |               | OAS1               | TNFSF10       |  |  |  |
| PIM3          |               | ATP9A              | AP1S2         |  |  |  |
| OAS2          |               | SNX15              | NUF2          |  |  |  |
| ARVCF         |               | C2orf66            | FAM178B       |  |  |  |
| TRPM4         |               | SNX16              | SLC27A5       |  |  |  |
| IRF2BP1       |               | CXCL8              | SCFD2         |  |  |  |
| FOSL2         |               | TSLP               | ATP2B4        |  |  |  |
| HLX           |               | PATJ               | FOXM1         |  |  |  |
| GAA           |               | LGALS3BP           | SSRP1         |  |  |  |
| CLPP          |               | TOB2               | CENPP         |  |  |  |
| PRR12         |               | JAK1               | GPT2          |  |  |  |
| ASMTL         |               | FAM89A             | CD300C        |  |  |  |
| CCL3L1        |               | CEACAM1            | S100A4        |  |  |  |
| LRRN3         |               | GIMAP8             | HPDL          |  |  |  |
| TMEM134       |               | DDX60L             | ENPP3         |  |  |  |
| IRF7          |               | KLHL3              | AHSP          |  |  |  |
| AKAP12        |               | SOX8               | C1QBP         |  |  |  |
| NUDT16L1      |               | TCEAL9             | TUBA4A        |  |  |  |
| SHC2          |               | CSTB               | KIF2C         |  |  |  |
| HIST1H2AC     |               | PCNX2              | EXO1          |  |  |  |
| DMPK          |               | LPAR6              | DLGAP5        |  |  |  |
| AP2A1         |               | STAT4              | MNS1          |  |  |  |
| PNPLA2        |               | COL6A2             | ICOSLG        |  |  |  |
| ENC1          |               | SAMD9L             | S100A2        |  |  |  |
| REXO1         |               | GRASP              | NCAPD2        |  |  |  |
| ATG2A         |               | CCNG1              | JADE1         |  |  |  |
| TMEM234       |               | RGS12              | TK1           |  |  |  |
| ATF5          |               | TMEM98             | PRIM1         |  |  |  |
| GNG12         |               | BCAM               | PSMC3IP       |  |  |  |
| CPTP          |               | PLK2               | MTURN         |  |  |  |
| KDM6B         |               | GSDMB<br>CD110     | SPAG5         |  |  |  |
| ULK1          |               | SP110              | CENPV         |  |  |  |
| ASPG<br>CNC11 |               | MAP3K12            | PTX3          |  |  |  |
| GNG11<br>TJP1 |               | PGAP1              | LRR1<br>PHKA1 |  |  |  |
| RFNG          |               | DHRS1<br>IFT81     | IL18RAP       |  |  |  |
| MXRA8         |               | SLC35G2            | NOP16         |  |  |  |
| MED16         |               | SLC35G2<br>SLC16A4 | KIF15         |  |  |  |
| HSPB1         |               | STX12              | TPX2          |  |  |  |
| UBALD1        |               | APOL2              | DHRS11        |  |  |  |
| LUZP6         |               | FCHSD1             | ASNS          |  |  |  |
| SPATS2L       |               | MLF1               | MEIOB         |  |  |  |
| HMG20B        |               | DDX60              | POLQ          |  |  |  |
| RAB5C         |               | L1TD1              | HPGDS         |  |  |  |
| HIST1H2BD     |               | PHLDA1             | PHGDH         |  |  |  |
| RGN           |               | LRRC70             | UBE2T         |  |  |  |
| GNB2          |               | MAPK3              | CDC7          |  |  |  |
| BAD           |               | CREBL2             | PTGIR         |  |  |  |
| MEGF8         |               | INTS6L             | FUCA2         |  |  |  |
| -             | !             |                    |               |  |  |  |

|             | RUNX1C+     |               |
|-------------|-------------|---------------|
| 5 Dox       | 10 [        | Oox           |
| Upregulated | Upregulated | Downregulated |
| HLA-C       | SCARB2      | MFSD3         |
| MXD4        | NFKBIZ      | SH3BGRL3      |
| APBA3       | GRTP1       | BRI3BP        |
| MAP3K11     | HECW2       | TRIM58        |
| PPDPF       | ABCD4       | DNAJC6        |
| NBL1        | COL27A1     | HYAL3         |
| LLGL1       | SGPL1       | ST3GAL4       |
| SYS1-DBNDD2 | FCGR1B      | TOP2A         |
| CCL3L3      | SYP         | CD55          |
| PIP5K1C     | ICAM2       | SRM           |
| NCKAP5L     | PTPRU       | KCTD15        |
| UCKL1       | AEBP1       | PRPS1         |
| WDR13       | PDGFRA      | ZNF683        |
| PAFAH1B3    | CFH         | TALDO1        |
| CCDC106     | PTPRF       | TUBG1         |
| GUK1        | GABARAPL2   | EHD3          |
| MEGF6       | ARHGEF15    | BOLA3         |
| AHRR        | NOTCH3      | IL21R         |
| MDK         | IFIT5       | IMPA2         |
| GADD45GIP1  | GABARAP     | SUSD1         |
| AGPAT2      | IFIH1       | CHAF1B        |
| GADD45G     | PTPRS       | RMND5B        |
| ZNF580      | DAPK1       | PLEK          |
| ISG15       | FAM171B     | PLK1          |
| KLHL23      | MDFIC       | PTTG1         |
| RAB35       | SEMA6C      | PLK4          |
| ALKBH7      | RSPO4       | CPNE7         |
| OGFR        | CLEC2B      | CDC25C        |
| C3orf18     | COL6A1      | ITGB7         |
| ARHGDIA     | ITPKC       | CHKA          |
| NOTCH1      | PDK4        | MYO19         |
| STUB1       | HBP1        | PMS1          |
| SPSB3       | BLVRA       | GPR85         |
| STMN3       | STAP2       | MCM6          |
| FKBP8       | PCDHGB6     | SNTB1         |
| BIRC7       | KCTD17      | RFC5          |
| NR1H2       | CH25H       | ZNF273        |
| TNRC18      | DSEL        | WDR76         |
| MAPK8IP3    | CUL7        | CYP11A1       |
| RAVER1      | AHCYL2      | ACOT11        |
| UBTD1       | CACNA1H     | CDK1          |
| HSPG2       | MAP2K4      | ADA           |
| SOD2        | DTX3L       | ARHGAP11A     |
| PLXNB2      | SLC5A12     | ANKRD18B      |
| HIST2H2AA3  | DYNLT3      | PUS7          |
| STRN4       | NPTX1       | RAB11FIP5     |
| CORO1B      | DAB2        | YOD1          |
| GIPC1       | C5orf15     | ENOSF1        |
| CIC         | TRIM34      | CPA3          |
| EPN1        | PROS1       | FANCI         |
|             | GJA1        | DEPDC1        |
|             | HIST1H1C    | C15orf39      |
|             | FHL1        | E2F2          |
|             | TLR7        | SKA1          |
|             | LMBR1L      | GCAT          |
|             | LBH         | PRKCQ         |
|             | CD70        | SYCE2         |
|             | SAT1        | NCAPG2        |

| RUNX1               | IC+ 10 Dox      | RUNX         | IC+ 10 Dox      | RUNX1       | IC+ 10 Dox      | RUNX        | (1C+ 10 Dox      |
|---------------------|-----------------|--------------|-----------------|-------------|-----------------|-------------|------------------|
| Upregulated         | Downregulated   | Upregulated  | Downregulated   | Upregulated | Downregulated   | Upregulated | Downregulate     |
| PDCD4               | GYPC            | OAS2         | HIST1H1B        | TCF7L2      | TFAP4           | RAMP2       | CXCL3            |
| SEMA3A              | MSRB1           | GPR137B      | ZBTB16          | AKAP12      | MRM1            | GIMAP5      | ARHGEF39         |
| TSPAN6              | ANGPT2          | CALD1        | METTL21A        | ZNF581      | CHEK1           | MVP         | AURKA            |
| FSBP                | RRP9            | CA2          | CKLF            | HIST1H2BD   | NEIL3           | PLXNA3      | TLCD1            |
| SIPA1L1             | PIK3R6          | BST2         | ANPEP           | KLHDC8B     | SYTL3           | NCAM2       | SUSD3            |
| EML2                | EME1            | TNFRSF10D    | CD84            | C22orf31    | SCGN            | KIF12       | S100B            |
| BATF2               | BRCA1           | IL6ST        | SDF2L1          | INHBA       | JCHAIN          | MXRA8       | GAB3             |
| ENC1                | CYCS            | C1S          | DEFA4           | A2M         | PPM1M           | IFI44L      | CCNE2            |
| CBLB                | LAT             | MAPK11       | IGFBP5          | SERPINB8    | DNA2            | TMEM243     | TTF2             |
| TBC1D15             | NLRC3           | APBB1        | UBASH3B         | CACFD1      | EAF2            | MIIP        | LAGE3            |
| MYO6                | KIF11           | DDX5         | ZNF239          | STIM2       | SLC39A3         | LIN7B       | TTK              |
| RBMS2               | PDLIM1          | GNG11        | P2RY2           | ALS2CL      | HCST            | ARVCF       | RXRA             |
| RNASE1              | KLF1            | MOB3B        | SPX             | UNC119      | CBX5            | C11orf52    | GPR65            |
| SLC22A4             | GP1BA           | MERTK        | RASGRP2         |             | ITGB3           |             |                  |
|                     |                 |              |                 | PHLDB1      |                 | TYMP        | KIF23            |
| RHBDD2              | PDIA5           | LIMS4        | CDKN2C          | PROCR       | GLA             | TEK         | TSPOAP1          |
| NNT1                | KCNH2           | GIMAP2       | CDCA8           | MAP1LC3A    | RABEPK          | IFI27L2     | NR2C2AP          |
| POL3                | SRPRB           | ST8SIA4      | RAB27B          | FOS         | CYC1            | TMEM234     | TIPIN            |
| /IPZL1              | NDUFV3          | LIPH         | ZNF90           | HOXB7       | HIST1H4C        | SLC2A3      | NRROS            |
| IFAT5               | PHF19           | MMP1         | ABCC3           | SALL2       | UBASH3A         | SOX7        | POC1B-GALN       |
| //FAP2              | DEPDC1B         | XAF1         | SS18L2          | EHD2        | ERCC6L          | TUBB2B      | SELP             |
| PAPSS2              | SFRP5           | ANG          | THBS1           | CXCL11      | PDP2            | INPP5E      | MELK             |
| REB3L1              | HSPH1           | LYSMD1       | OXCT1           | VPS9D1      | ZNF485          | C3orf18     | GRAP2            |
| C1orf54             | SLC4A8          | FADS3        | PQLC2           | ACVRL1      | POLE2           | PRKAR1B     | FANCB            |
| RAB13               | CD82            | KIAA1191     | RAB24           | CRHBP       | SPNS3           | AP2A2       | APOC2            |
| BCL6B               | DENND2D         | HRC          | LSS             | GNG2        | GPR174          | ANKRD37     | FCER1A           |
| CAB39L              | MGAT3           | C1orf61      | ESCO2           | SLC5A10     | UHRF1           | BIRC7       | CEP152           |
| IQO1                | TIMELESS        | AP1AR        | NCAPG           | GPRIN3      | S100A6          | HOXB2       | GPR132           |
| LC4                 | PRIM2           | CLK1         | KRT72           | CRYBG3      | C2orf88         | KREMEN2     | ADAM15           |
| SAP43               | HDC             | RAB40B       | WDHD1           | CTSB        | LEF1            | DMPK        | MTSS1L           |
| ATP6V0A4            | ALAS2           | PLIN2        | GATA2           | SPATS2L     | ANLN            | LOX         | SLC35D3          |
| MRN2                | RAD51AP1        | TJP1         | AGAP2           | HIST1H3E    | KCNQ4           | KLHL23      | GTSE1            |
| ACOLN3              | CLC             | KRT18        | LY6G6F          | NISCH       | RELT            | IRF7        | GATA1            |
|                     |                 |              |                 |             |                 |             | +                |
| ASPHD1              | GSR             | SERINC5      | CLSPN           | PRUNE2      | MPC1            | IGSF8       | RETN             |
| STAT1               | E2F8            | SERPINH1     | CCNA1           | SERTAD1     | CCR1            | TMEFF1      | WNT11            |
| ONMBP               | NETO2           | SFN          | MRPS26          | SEMA6B      | NAGLU           | AKR1C3      | PIM1             |
| RGL1                | DENND4B         | NACAD        | CLEC11A         | CAP2        | DTYMK           | SHROOM4     | CYBB             |
| DC42EP3             | RAD51           | ARC          | HIST1H2BH       | TMIGD2      | HIST1H2BM       | NR4A1       | HELLS            |
| SAMSN1              | ALB             | WDR19        | SLC9A3R1        | COL9A2      | PYCR1           | TRPM4       | FAM53B           |
| BI3                 | FANCD2          | HAPLN3       | KCNQ5           | NINL        | GJB5            | ENDOV       | HES6             |
| RG                  | NFKBIA          | RBM24        | NCAPD3          | PNRC1       | MZB1            | KLF6        | CD320            |
| RPGRIP1             | C21orf58        | ARMCX6       | CXCL2           | HERC6       | KRT79           | BAIAP2      | CRLS1            |
| HDAC9               | TMC8            | TAX1BP3      | FLOT2           | CDRT4       | PSD4            | GADD45G     | TRAIP            |
| OXL2                | ADAMTS3         | MCL1         | ANGPTL6         | ZSWIM4      | CENPI           | CA9         | CKAP2L           |
| DAM9                | PIF1            | APOE         | MANSC1          | ABCA9       | KIF18A          | CDC42EP5    | PIGW             |
| RRAS                | PPIH            | KLC2         | ITGA6           | CDR2L       | BIN1            | SNAPC2      | HAUS7            |
| RRN3                | TUBB1           | RALA         | NDC80           | TNFAIP8L3   | C19orf48        | EMC10       | TCN1             |
| AD1                 | CD300A          | SOD2         | PKM             | ASPG        | ATAD2           | PALM        | SH2D3C           |
| SLFN12L             | SLC6A9          | GDF2         | LTBP1           | DPYSL4      | PTPN6           | HCFC1R1     | PRAM1            |
|                     |                 | PLVAP        | CDCA2           | PVRIG       | +               | SHC2        | SPDYC            |
| IOMER3              | ZNF93           |              |                 |             | NUP35           | TUBB3       |                  |
| NPP                 | BRIP1           | CACHD1       | LYZ             | HELZ2       | KIF4A           |             | GRK6             |
| ALCRL               | PDSS1           | SLC7A10      | LFNG            | ABTB1       | MICAL2          | UCKL1       | HSH2D            |
| CVR1B               | LRRC8D          | AKT3         | EIF4EBP1        | SHISA5      | RAC2            | GRN         | HBG2             |
| .15                 | PIK3CB          | TCP11L2      | NRGN            | LIMCH1      | TFR2            | MST1        | PRICKLE1         |
| SRNP2               | HS6ST1          | OLAH         | SLC25A45        | HIST1H2AC   | GJA4            | WDR13       | PTGES2           |
| LC25A42             | LCN2            | VIM          | TICRR           | GFRA3       | SERPINE2        | RFNG        | CENPM            |
| GD6                 | ORAI3           | PDE4B        | MPP7            | NPR2        | GINS3           | LIMS3       | WDR62            |
| H3D21               | ACOT7           | FAM222B      | BLM             | FSTL3       | POC1A           | MEGF6       | CCDC86           |
| PHA4                | FAM83D          | SUMO1        | PCK2            | TSTD1       | MAGIX           |             | RFESD            |
|                     | SH2D2A          | TEAD2        | GFI1            | SULF1       | PF4             |             | CBSL             |
| PST1                |                 | ,            |                 |             |                 |             |                  |
|                     | VRK1            | I PP         | VOPP1           | GPX4        | I WI DRA        |             | LOSBPL 6         |
| PST1<br>RGN<br>JGCG | VRK1<br>TSPAN32 | LPP<br>TXNIP | VOPP1<br>FCER1G | GPX4<br>VGF | WDR4<br>C5orf34 |             | OSBPL6<br>SH3BP1 |

|          | RUNX1C+ 10 Dox Downregulated |          |          |         |  |  |  |  |  |
|----------|------------------------------|----------|----------|---------|--|--|--|--|--|
| DOK2     | RCCD1                        | DERL3    | SLC25A10 | PKMYT1  |  |  |  |  |  |
| LGALSL   | HGD                          | SAPCD2   | HBA1     | TREML1  |  |  |  |  |  |
| MAGOHB   | ADGRG3                       | APOBR    | SLC2A6   | RUVBL2  |  |  |  |  |  |
| ZNF69    | ITGA2B                       | RELL2    | EXOSC5   | YDJC    |  |  |  |  |  |
| TNFAIP2  | MPO                          | ZNF695   | NCF4     | EGLN3   |  |  |  |  |  |
| LTC4S    | SEPT1                        | CRYBA4   | KATNB1   | SLC17A9 |  |  |  |  |  |
| RECQL4   | FBXO41                       | CAPG     | ITGB1BP2 | NINJ1   |  |  |  |  |  |
| SPC24    | FARSB                        | PTPN18   | NME2     | SYTL1   |  |  |  |  |  |
| CD200R1L | DNAH14                       | GP9      | HIST1H4B | FERMT3  |  |  |  |  |  |
| IL1RN    | SLC6A8                       | LSM4     | GNG8     | CDT1    |  |  |  |  |  |
| MEX3B    | CD34                         | C1orf162 | HBZ      | EMID1   |  |  |  |  |  |
| RAC3     | MYEOV                        | CEP128   | SLC16A3  | PIGY    |  |  |  |  |  |
| CENPN    | CBS                          | SLC19A1  | PDE5A    | GPR35   |  |  |  |  |  |
| ECI1     | HGF                          | AGTRAP   | CCDC78   | CARD9   |  |  |  |  |  |
| XK       | DZIP1                        | VPS53    | LSP1     | ICAM4   |  |  |  |  |  |
| IFRD2    | CLCN4                        | QTRT1    | ISOC2    | FLNA    |  |  |  |  |  |
| DAPP1    | TYROBP                       | HERC2    | ATP2A3   | OBSL1   |  |  |  |  |  |
| CD38     | DEAF1                        | TSPAN33  | SOCS1    | INF2    |  |  |  |  |  |
| COMMD7   | NHP2                         | F13A1    | PRTN3    | PPBP    |  |  |  |  |  |
| ITGB2    | NT5DC3                       | NBEAL2   | FASN     | SPP1    |  |  |  |  |  |
| HBE1     | CEBPE                        | VARS     | DDIT4    | BCAT1   |  |  |  |  |  |
| HBG1     | C5AR1                        | TGFB1    | EMILIN1  | ABCA7   |  |  |  |  |  |
| SFXN2    | JDP2                         | GALNT14  | SLCO5A1  | TPSB2   |  |  |  |  |  |
|          |                              |          |          | SPATC1L |  |  |  |  |  |

|             | RUNX1C-        |                |               |                |               |  |  |  |  |  |
|-------------|----------------|----------------|---------------|----------------|---------------|--|--|--|--|--|
| 3           | Dox            |                | 5 Dox         | 10             | 0 Dox         |  |  |  |  |  |
| Upregulated | Downregulated  | Upregulated    | Downregulated | Upregulated    | Downregulated |  |  |  |  |  |
| CYP1A1      | ENPP3          | CYP1A1         | CLEC4A        | CYP1A1         | TIFAB         |  |  |  |  |  |
| SPINK4      | HPGD           | RUNX1T1        | LPAR6         | RUNX1T1        | MYL4          |  |  |  |  |  |
| RUNX1T1     | CEACAM4        | EHD2           | HPGD          | SLC35F3        | IL10RA        |  |  |  |  |  |
| GAD1        | GE/ (G/ (IVI ) | SLC35F3        | СЕВРА         | GLDC           | HPGD          |  |  |  |  |  |
| SLC35F3     |                | DOCK6          | CD200R1       | TM4SF1         | CAMK1         |  |  |  |  |  |
| 3203313     | J              | SPINK4         | GPR34         | DOCK6          | CLEC4A        |  |  |  |  |  |
|             |                | MARCKSL1       | RNASE6        | ZG16B          | CD1E          |  |  |  |  |  |
|             |                | GLDC           | LST1          | ARMCX2         | -             |  |  |  |  |  |
|             |                |                |               |                | CD200R1       |  |  |  |  |  |
|             |                | CLIP3<br>ZG16B | ENPP3         | PRAME<br>TFPI2 | ITGAL<br>LST1 |  |  |  |  |  |
|             |                |                | CYBRD1        |                | -             |  |  |  |  |  |
|             |                | GPR153         | LPXN          | GBP2           | ADCY7         |  |  |  |  |  |
|             |                | ID1            | HPGDS         | SPINK4         | LAT2          |  |  |  |  |  |
|             |                | AEBP1          | CD36          | EHD2           | NCF2          |  |  |  |  |  |
|             |                | FLNB           | CD1E          | IL11           | CTSG          |  |  |  |  |  |
|             |                | FLT4           | ADAMDEC1      | TJP2           | SNX20         |  |  |  |  |  |
|             |                | PTPRS          | RAP2A         | FLNB           | IL1R1         |  |  |  |  |  |
|             |                | TRIM16         | CXorf21       | TRIM16         | DCANP1        |  |  |  |  |  |
|             |                | PRAF2          | LRRK2         | DNALI1         | BLNK          |  |  |  |  |  |
|             |                | PRAME          | NHLRC3        | CLIP3          | CLEC4F        |  |  |  |  |  |
|             |                | EGR1           | CLEC4F        | SALL2          | SLA           |  |  |  |  |  |
|             |                | VGF            | CAMK1         | EGR1           | LPXN          |  |  |  |  |  |
|             |                | TJP2           | PTPRO         | FSTL1          | CD300LB       |  |  |  |  |  |
|             |                | TRIB3          | HFE           | PLIN5          | PPM1M         |  |  |  |  |  |
|             |                | PLIN5          | CD1B          | JAM3           | TSPAN33       |  |  |  |  |  |
|             |                | PXDN           | NCF2          | RAB38          | ADAMDEC1      |  |  |  |  |  |
|             |                | PLEKHA4        | TIFAB         | THRSP          | RAP1GAP2      |  |  |  |  |  |
|             |                | CREB3L1        | NDRG2         | PTPRS          | TMPRSS13      |  |  |  |  |  |
|             |                | PTPRF          | CLCN5         | KREMEN1        | NOD2          |  |  |  |  |  |
|             |                | PCSK6          | TMEM144       | PPFIBP1        | LIF           |  |  |  |  |  |
|             |                | GPR32          | C8orf59       | LURAP1         | ASGR2         |  |  |  |  |  |
|             |                | FGD5           | ZNF780A       | MTMR11         | HRH2          |  |  |  |  |  |
|             |                | CCDC8          | SERPINF1      | KLK13          | MBP           |  |  |  |  |  |
|             |                | NFIC           | CKLF          | FGD5           | FGD2          |  |  |  |  |  |
|             |                | SMARCD3        | AP1S2         | PCSK6          | ENPP3         |  |  |  |  |  |
|             |                | LDOC1          | KRT1          | ENPP4          | S100B         |  |  |  |  |  |
|             |                | SPTBN1         | GPAT3         | COLQ           | WNT5B         |  |  |  |  |  |
|             |                | HIF3A          | C9orf72       | CPAMD8         | TESC          |  |  |  |  |  |
|             |                | FKBP10         | LYPLAL1       | PLEKHA4        | VOPP1         |  |  |  |  |  |
|             |                | CA4            | GPR82         | TUSC3          | GPAT3         |  |  |  |  |  |
|             |                | FGFRL1         | MARCH1        | HRC            | PIM2          |  |  |  |  |  |
|             |                | ARMCX2         | HMGB3         | CCDC8          | FST           |  |  |  |  |  |
|             |                | BCL6B          | LY86          | MAGED2         | FGL2          |  |  |  |  |  |
|             |                | SYNPO          | GCNT1         | TMEM45B        | IL18RAP       |  |  |  |  |  |
|             |                | GAD1           | IL10          | HIF3A          | LRRK2         |  |  |  |  |  |
|             |                | TM4SF1         | AGR2          | ASAP3          | KIT           |  |  |  |  |  |
|             |                | PRKAR1B        | PKIB          | LGALS3         | CHI3L1        |  |  |  |  |  |
|             |                | LGALS3         | CD1C          | PLEKHB1        | NFE2          |  |  |  |  |  |
|             |                | KLK13          | HLA-DMB       | CD109          | LY86          |  |  |  |  |  |
|             |                | CH25H          | HBD           | SMARCD3        | CLEC10A       |  |  |  |  |  |
|             |                |                |               |                |               |  |  |  |  |  |
|             |                | MPL            | MSMO1         | RSPO4          | SULF2         |  |  |  |  |  |

|             | RUNX          | (1C-      |               |             | RUN           | IX1C-       |               |
|-------------|---------------|-----------|---------------|-------------|---------------|-------------|---------------|
|             | 5 Dox         |           | ) Dox         |             | 5 Dox         |             | Dox           |
| Upregulated | Downregulated |           | Downregulated | Upregulated | Downregulated | Upregulated | Downregulated |
| KREMEN1     | IL1R1         | BCL6B     | HLA-DMB       | NES         | LACC1         | TRAK2       | FGL1          |
| KHSRP       | LMO4          | C1orf115  | HPGDS         | ITGA5       | CCR6          | SV2A        | HLA-DMA       |
| CPAMD8      | DHRS9         | UCHL1     | PILRA         | P3H4        | HCST          | PXDN        | RAB32         |
| MFAP2       | CASP1         | CA13      | GLIPR2        | DUSP2       | HLA-DQB1      | SERPINB9    | NCF1          |
| GBP2        | JCHAIN        | AEBP1     | BIN2          | CASS4       | PARM1         | FSD1        | SH3BP2        |
| CTTN        | GLIPR1        | KIAA0040  | FCN1          | TEAD2       | IL13RA1       | SYNPO       | OGG1          |
| СКВ         | DCANP1        | SOCS2     | SYTL3         | TWIST1      | ALOX5AP       | TEAD2       | SCN4B         |
| KANK2       | MS4A2         | CH25H     | CCR6          | UBALD1      | TMEM71        | SLC41A1     | ADAMTS14      |
| SHANK3      | GATM          | CA4       | CD1C          | SRM         | DAPP1         | TCEAL9      | CSF1R         |
| COLQ        | HLA-DPA1      | FLT4      | S100A9        | SOX8        | FCER1A        | CCDC173     | HTRA3         |
| UCHL1       | HSPB11        | CTTN      | IL18R1        | SERPINB9    | CTSG          | FAM166B     | TSC22D3       |
| COL6A2      | S100A8        | TUFT1     | PRKCD         | GRWD1       | APOC2         | SULT1C4     | CNRIP1        |
| DOK4        | PTGER3        | SLC2A10   | KRT1          | TCEA3       | ZNF366        | ITGAV       | RWDD2A        |
| COL1A2      | CYP1B1        | KANK2     | DHRS9         | MDK         | ADCYAP1       | GNG11       | S100A12       |
| RSPO4       | GPR65         | MPL       | SIGLEC6       | RAB5C       | PLBD1         | C11orf95    | CIITA         |
| MRPL12      | LIF           | SMIM10L2A | CD48          | KREMEN2     | IL18R1        | RCAN3       | PTPRO         |
| ZNF593      | ZNF720        | TFPI      | HBG1          | CLPTM1      | MYL4          | HIP1R       | SLCO3A1       |
| GRIK5       | MYCL          | MCOLN3    | JAML          | LAPTM4B     | GK            | COL1A2      | CSF2RA        |
| SLC25A23    | S100A12       | TSPAN9    | NDRG2         | SLC9A1      | MILR1         | STON1       | PLCB2         |
| ARAP3       | CD207         | TDRP      | AGR2          | B4GALT2     | HLA-DRA       | CETP        | NLRC3         |
| DLK1        | AIF1          | CD79B     | TNFRSF1B      | CBX2        | SYTL3         | IFIT2       | LYZ           |
| DBN1        | FST           | DNAJB5    | CD1B          | GPX4        | LYZ           | COX6B2      | KCNE5         |
| FBLN1       | FGL2          | GSTM3     | IRF8          | HMGA1       | CPA3          | RCAN2       | CATSPER1      |
| TFPI2       | IL10RA        | PLCG1     | HLA-DPA1      | IRF2BP1     | SFXN3         | C16orf45    | IL10          |
| SALL2       | CD300LB       | LPIN3     | GATM          | HRC         | GAPT          | F2R         | SNAP25        |
| CD79B       | S100A4        | GPR153    | MAGEF1        | KEL         | FAM102B       | ATXN7L2     | MARCH1        |
| DNAAF5      | IL18RAP       | GJA5      | PARM1         | REXO1       | TNFSF13B      | ANXA2       | SIGLEC10      |
| PPRC1       | FGL1          | ULBP2     | HMGB3         | COL6A1      | TLR6          | DOK4        | CACNA2D4      |
| LGALS3BP    | CLEC2D        | CMYA5     | TRAF1         | MCAM        | TSPAN33       | PFKM        | PTGER3        |
| ADGRL1      | TMEM236       | PTPRF     | MYCL          | BRSK1       | FAM198B       | MAGED4B     | CD300LF       |
| MMRN2       | CD48          | QPCT      | FHDC1         | OLFM2       | S100A9        | IL1RAP      | CYP1B1        |
| THRSP       | KIT           | CPT1C     | CD244         | SPTAN1      | CD1A          | CEACAM1     | DUSP10        |
| SPINT1      | SEC61G        | RAB3B     | SLC40A1       | PLVAP       | CHI3L1        | BEX3        | RNASE2        |
| TMEM45B     | NLRC4         | KLK6      | CLEC2D        | MARK4       | KDM7A         | LAPTM4B     | OLFML2B       |
| BAIAP3      | BLNK          | UNC13B    | HBD           | CACNA1H     | CLDN12        | PTK2        | CLCN5         |
| HIP1R       | MARCKS        | MARCKSL1  | CPA3          | MYBBP1A     | FCER1G        | APBB1       | JAG1          |
| LAMB2       | LAMP5         | HAP1      | PDGFB         | RELB        | CCDC170       | VAMP5       | APCDD1        |
| MAGED2      | CCNA1         | LDOC1     | CYTH4         | C16orf74    | GALNT3        | CYTL1       | IGFBP7        |
| VAT1        | HBG1          | CADM4     | MPEG1         | LPIN3       | CD300LF       | SPINT1      | HLA-DPB1      |
| ZNHIT2      | CSRP2         | TSPAN7    | PTAFR         | NCDN        | ACTR6         | TWIST1      | FPR1          |
| MTMR11      | MS4A14        | OPTN      | FCER1A        | FSTL1       | JAZF1         | TRIB3       | RPS6KA1       |
| NPDC1       | SNAP25        | GNG12     | EPB41L3       | PHLDB1      | OGFRL1        | CDH24       | FAM198B       |
| CNFN        | HLA-DMA       | FRMD6     | SELPLG        | LRG1        | KL            | KIAA0895    | HP            |
| FAM69B      | SLA           | SPTBN1    | PLB1          | TUSC3       | MNDA          | COL6A2      | SLC25A45      |
| PEX10       | KCNMA1        | SMARCA1   | DAPP1         | ECM1        | CLNK          | NPTX1       | IGFBP5        |
| LOXL1       | VOPP1         | TCEA3     | S100A8        | PPFIBP1     | CD300E        | CREB3L1     | LAMP5         |
| PLCG1       | SLF1          | MFAP2     | NLRP3         | TMIGD2      | IGSF6         | BAIAP3      | PARVG         |
| ASAP3       | FPR1          | RGS9      | FGR           | TTLL12      | LY96          | LEFTY2      | PLEKHG3       |
| RRP12       | P2RY14        | AMOTL1    | CXorf21       | PPP1R14B    | SIGLEC6       | GAD1        | LAPTM5        |
| CPT1C       | TMEM60        | CCL5      | STAB1         | ALS2CL      | ADAM28        | ALS2CL      | MS4A2         |
| CD99        | CATSPER1      | SEMA6C    | HDC           | BCAM        | CYP11A1       | TMEM98      | GALNT3        |
| SFN         | CSF2RA        | EPHX2     | IRF4          | NAB2        | ANXA5         | GCH1        | CCR2          |
| LURAP1      | MEIKIN        | FKBP10    | RNASE6        | RPS2        | GLIPR2        | GPR50       | SORL1         |
| DAPK1       | S100B         | ENAH      | SLC1A4        | CCDC86      | BNIP3         | HSPB8       | RNF125        |
| TSPAN9      | NDFIP2        | NEO1      | GPR68         | CRTC1       | FAM170A       | FBLIM1      | CLNK          |
| NPTX1       | FPGT          | CASP7     | TMEM236       | C1orf115    | GLRX          | DPPA4       | CEACAM4       |
|             | RWDD2A        | BEX2      | SLC43A3       | GRASP       | GPR68         | NES         | ACPP          |

|             | RUNX          | (1C-         |               |             | RUN           | IX1C-       |               |
|-------------|---------------|--------------|---------------|-------------|---------------|-------------|---------------|
|             | 5 Dox         |              | ) Dox         |             | 5 Dox         |             | Dox           |
| Upregulated | Downregulated | Upregulated  | Downregulated | Upregulated | Downregulated | Upregulated | Downregulated |
| DNAJB5      | TLR1          | PRKCZ        | ST8SIA6       | GAMT        | SLC37A2       | AMIGO2      | IGSF6         |
| BCL7C       | IL7R          | RASSF8       | CD300C        | CCDC173     | RNASE3        | PTPRG       | CTTNBP2       |
| GALNT2      | TRIM36        | JUN          | GCNT1         | GET4        | NMRK1         | LIPG        | HLA-DRB5      |
| PMPCA       | HIST1H4E      | AHR          | GPR82         | LRRC8A      | GPNMB         | AIF1L       | HVCN1         |
| GJA5        | RGS5          | KDELR3       | TNFAIP8L2     | BEX2        | TLR8          | ERG         | C11orf21      |
| FBLIM1      | MYOM1         | LAMB2        | NLRC4         | CLPP        | MS4A3         | MLF1        | HBG2          |
| VAMP5       | FUCA1         | CALD1        | IL9R          | ARC         | IL13          | COL6A1      | MILR1         |
| SMARCA4     | ADCY7         | VGF          | MEFV          | MFGE8       | RNASE2        | IFIT3       | FAM102B       |
| CHERP       | SULF2         | NPR2         | ADCYAP1       | RAVER1      | SORL1         | NRBP2       | GPR65         |
| PUSL1       | DUSP10        | TESK2        | ZNF366        | TNNT1       | MCEMP1        | SHE         | DTNA          |
| SLC25A10    | TFEC          | MBOAT2       | CCNA1         | PPDPF       | HDC           | CXCL10      | OGFRL1        |
| PPP1R14A    | TRNT1         | ECM1         | ITGB7         | EEF2        | OLIG1         | PTPRU       | TMEM173       |
| PLK3        | KLHL2         | LRRC70       | OLIG1         | CCDC85B     | NPL           | MAGED4      | IL1RN         |
| HOMER3      | CCR5          | KCNA6        | MYOM1         | ATP6V0E2    | IL4           | SERPINB4    | SLC27A2       |
| UNC13B      | MAF           | IKZF4        | IL21R         | HCFC1       | JAG1          | DTX3        | HCST          |
| PRMT1       | INSIG2        | ARHGEF12     | ELF4          | ASPG        | CASP5         | GFRA3       | MUC1          |
| GRTP1       | CLEC7A        | SPARC        | NKG7          | DHX37       | DDIT4L        | CD3D        | CD1A          |
| SETD1A      | FGR           | TMEM74B      | PIK3R5        | THOP1       | PILRA         | PRKAR1B     | DOK2          |
| ZNF598      | PTPN22        | LOXHD1       | JCHAIN        | NME4        | MRC1          | SCG5        | INSIG1        |
| POP7        | ABCG2         | CLIP4        | CD300E        | FOXP4       | FAM72B        | IL11RA      | P2RY6         |
| CLUH        | CETN3         | SFN          | ATP2B4        | KLC2        | CENPK         | PDE4DIP     | CBFA2T3       |
| MICAL3      | SOX2          | CNFN         | TMEM144       | TUBB3       | ENPP2         | LGALS3BP    | MEIKIN        |
| INPP5J      | CALB2         | TAGLN3       | AOAH          | HELZ2       | FAM219B       | AKAP6       | LACC1         |
| TSTD1       | PLA2G7        | PLEKHH1      | PLAUR         | TMEM120A    | FHDC1         | SHF         | ITGAM         |
| RTKN        | KLRF1         | MRAP2        | CCDC170       | DDX54       | OLFML2B       | TM4SF18     | P2RY14        |
| JUN         | FGD2          | LIFR         | VDR           | ISYNA1      | HMMR          | APOD        | SFXN3         |
| IL11RA      | TGDS          | PCDHGB6      | GNGT2         | IGFBP2      | SLC18A2       | CAPN12      | BNIP3         |
| RRAS        | CCR2          | GRTP1        | PRDM1         | RNF126      | HRH1          | B3GLCT      | CLU           |
| NOTCH3      | FCN1          | RALA         | PRF1          | HYAL2       | FAM72D        | LRP4        | ZFP36L2       |
| GDF3        | CLECL1        | CRYM         | MS4A3         | TRIM28      | NUF2          | CALCRL      | INPP5F        |
| MRAP2       | ARL4C         | ZNF286A      | TNFSF13B      | KLHDC8B     | A2M           | ID1         | TREML2        |
| NPW         | GNGT2         | ZNF608       | GLIPR1        | ATAD3B      | RASSF4        | ICAM2       | C9orf72       |
| ARVCF       | STAMBPL1      | LRG1         | CES1          | PEMT        | GPR183        | PLIN2       | CST3          |
| RPTOR       | CENPE         | PHLDB1       | CMTM5         | FARSA       | FAM72A        | GPR32       | DNMT3B        |
| ICAM2       | PDK4          | RBFOX2       | RASSF4        | CRYM        | MS4A6A        | F2RL1       | TICAM2        |
| WFDC1       | C1orf162      | GRIK5        | HCK           | ALKBH7      | NME8          | MXRA8       | JAZF1         |
| ULBP2       | MPEG1         | BATF2        | ADGRG5        | HSPB1       | PPBP          | FERMT2      | GFRA2         |
| SOX18       | TLR10         | SLC37A3      | ARL4C         | LOXL2       | ZBED8         | WFDC1       | MRC1          |
| NOC4L       | IRF4          | FHL1         | LILRB3        | SPATA2L     | SGO2          | PCDHGB7     | NFIL3         |
| C8orf82     | IFNGR1        | DAPK1        | CD207         | JAG2        | UGT1A6        | SHANK3      | CYP11A1       |
| PLPPR3      | INPP5F        | PROS1        | NRG1          | KATNB1      | NKG7          | ATP6V0A4    | ARHGAP6       |
| FSD1        | CLEC10A       | LOX          | PROK2         | MEGF6       | ADAMTS3       | INPP5J      | GK            |
| NEO1        | KAT2B         | SOX8         | IRF5          | C19orf24    | IL17RB        | NACAD       | PLAC8         |
| COL9A2      | RPS18         | ETS1         | IL1RL1        | GFRA3       | AOAH          | CDKN2B      | SLC7A8        |
| SLC27A4     | GPR171        | ITGA5        | PKIB          | LEFTY2      | RRM2B         | TMIGD2      | BANK1         |
| TUBB6       | BANK1         | TRO          | RASSF5        | PLIN2       | MAP3K8        | SLC35G2     | GFI1B         |
| IFRD2       | ZBED5         | RGPD5        | C1orf162      | DOT1L       | TCN1          | ASPG        | FUT7          |
| CITED4      | CDK1          | CACNA1H      | ALOX5AP       | CETP        | STEAP4        | PDGFD       | GSE1          |
| FGFR4       | MAOA          | BOK<br>TN467 | SIRPB2        | TM7SF2      | C5orf34       | GDF3        | TRIM36        |
| MYC         | NRG1          | TMC7         | SEMA4A        | GTF2IRD1    | HLA-DRB1      | ZNF521      | STK17B        |
| STUB1       | TPM1          | TMEM136      | PTPN22        | FAM171A2    | P3H2          | ADAMTS9     | C5AR1         |
| DNLZ        | SDC2          | L1TD1        | CST7          | XYLT2       | ZNF33A        | SSBP2       | CALB2         |
| PLSCR3      | TNFSF18       | KLHDC8B      | IL13          | CD248       | VCAN          | CIB2        | CD180         |
| ATP6V0C     | PTAFR         | KEL          | HLA-DRA       | CEACAM1     | EGLN3         | NFAT5       | MNDA          |
| SLC9A3R2    | PLAC8         | SPTAN1       | KCNMA1        | GUCD1       | CR1           | C1orf54     | AIF1          |
| TFAP4       | B3GNT5        | PLS3         | CENPF         | SEMA6B      | GYPE          | GNB4        | MS4A14        |
| DGCR6       | CARD16        | FLT1         | RAB37         | HSPB8       | ZNF680        | FABP3       | PADI2         |
| PALM        | TICAM2        | BRSK1        | KLF13         | PKN1        | TNFSF10       | AKAP12      | CENPW         |

|                | RUN           | (1C-             | RUNX1C-       |              |                 |                 |
|----------------|---------------|------------------|---------------|--------------|-----------------|-----------------|
|                | 5 Dox 10 Dox  |                  |               | 5 Dox 10 Dox |                 |                 |
| Upregulated    | Downregulated | Upregulated      | Downregulated | Upregulated  | Downregulated   | Downregulated   |
| NCLN           | PRCP          | FAM171B          | KL            | ATG2A        | CAPG            | B3GNT5          |
| SNAPC2         | PGM3          | AKR1C3           | FAM170A       | CCDC106      | BLOC1S2         | PLEK            |
| PAK4           | SLC4A8        | PLVAP            | ITGA4         | LMF1         | CD163L1         | RTN1            |
| CDC34          | SLC16A10      | DBN1             | RAB31         | DVL1         | FOLR2           | PPBP            |
| POLRMT         | ATP1B1        | TSPAN6           | VCAN          | LAMA5        | RNASE1          | KCNH2           |
| PNPLA2         | AHSP          | TSTD1            | RNASE3        | TSR3         | NRP1            | GLRX            |
| MICALL2        | SLAMF8        | BLVRA            | GAS6          | EMC10        | ATP6V1G2-DDX39B | HGF             |
| MTA1           | GRAP2         | SASH1            | CCR5          | FCHO1        | SUGT1           | JDP2            |
| HSPG2          | ITGB7         | TNNT1            | MPO           | HPDL         | LRRC8C          | ALDH3B1         |
| SREBF1         | ITGAM         | RELB             | MAF           | SHF          |                 | LRRC25          |
| DLG5           | CD27          | RRAS             | CLC           | RPS19BP1     |                 | GPR183          |
| RAD23A         | CCNI2         | AS3MT            | FUCA1         | NACC1        |                 | TYROBP          |
| APOE           | HIST1H4A      | COL9A2           | CLEC7A        | DNPH1        |                 | ADGRE2          |
| RPL8           | RGS2          | NOTCH3           | SETBP1        | SLC25A22     |                 | ENPP2           |
| CD81           | IGFBP5        | TXNIP            | GPR34         | SYNGR1       |                 | PLP2            |
| GADD45GIP1     | CRLF2         | SLC22A17         | GYPE          | CAPN15       |                 | IL7R            |
| TAGLN3         | KYNU          | ENC1             | IGLL1         | NR4A1        |                 | GCSAML          |
|                |               |                  |               |              |                 |                 |
| TGFB1I1<br>WIZ | FCGR3B<br>CLC | MECOM<br>SLC16A4 | AHSP          | MOSPD3       |                 | APBB3<br>MICAL2 |
| ZNF581         |               |                  | NDFIP2        | FAM207A      |                 |                 |
|                | C11orf21      | ARC              | TNFAIP2       | BEX1         |                 | APOC2           |
| LRWD1          | HBG2          | BCAM             | FCER1G        | FBXL19       |                 | RASD1           |
| GIPC1          | ZFP62         | PLSCR3           | CD300A        | NDUFAF3      |                 | PLA2G7          |
| ACAP3          | PIGP          | NAB2             | CCND3         | AGRN         |                 | TNFSF10         |
| PRR12          | MMP12         | APOE             | ANXA5         | SSBP4        |                 | TDRD9           |
| RAB40C         | PLN           | СКВ              | TCN1          | EHD1         |                 | GNA15           |
| MRPS2          | CENPQ         | XPR1             | SDC2          | PLXNA3       |                 | MCEMP1          |
| FSCN1          | CCL13         | IFIT1            | SLC37A2       | SGTA         |                 | C6orf223        |
| MRPS34         | MS4A7         | AP1AR            | TXNDC5        | LYL1         |                 | RXRA            |
| RHBDD2         | CD80          | RAMP2            | POU2F2        | EIF4EBP1     |                 | GPR132          |
| SLC22A17       | ZNF641        | MMP1             | ВМР6          | MAP4K2       |                 | PIK3R6          |
| BIRC7          | HP            | HOMER3           | NME8          | ARHGAP23     |                 | СҮВВ            |
| SOX7           | CLDN4         | OLAH             | SOX2          | CIB2         |                 | CCN12           |
| SARS2          | ACP5          | KCTD17           | SIGLEC9       | MLLT1        |                 | GATA2           |
| MED16          | CMKLR1        | AKT3             | HMOX1         | LRP3         |                 | ACP5            |
| SURF6          | CCL24         | ARRDC3           | RMND5B        | STRN4        |                 | ITGB3           |
| ATAD3A         | TGFBI         | TRPV3            | MPZL3         | INPP5E       |                 | EGLN3           |
| MATK           | RGL1          | IFI6             | RHOB          | IGSF8        |                 | SASH3           |
| ZNF276         | MS4A4A        | KCTD14           | TSPOAP1       | HSF1         |                 | TNFSF18         |
| GPSM1          | GYPB          | GUCD1            | PTPRJ         | LONP1        |                 | A2M             |
| DUS3L          | IL1R2         | BIRC7            | OSM           | LRP1         |                 | LAT             |
| NOC2L          | C1QA          | PPP2R5B          | SPINK2        | ASMTL        |                 | ID2             |
| MCRIP2         | F13A1         | NPDC1            | PADI4         | PGLS         |                 | WT1             |
| ID3            | KRT79         | C12orf57         | CCR1          | MRPL4        |                 | PSTPIP1         |
| JUP            | GOLGA8H       | GZMM             | F2RL3         | FUOM         |                 | LTBP1           |
| NRBP2          | SSR3          | SOX7             | SLC45A4       | AKAP12       |                 | TFEC            |
| WDR18          | MTUS1         | CACFD1           | BTLA          | EPN1         |                 | PLEKHG5         |
| EBI3           | CD274         | SVOPL            | CR1           | PKD1         |                 | PAQR5           |
| SLC2A4RG       | ITGB3         | LRP1             | HRH1          | SLC25A6      |                 | LGALS12         |
| MRPL38         | CST7          | PALM             | GAB3          | H2AFX        |                 | ABI3            |
| MAP1S          | HIST1H4H      | MTPN             | IL4           | CERCAM       |                 | PTGDR2          |
| SNTA1          | HBE1          | NLGN2            | TLR8          | CD320        |                 | C15orf39        |
| PUF60          | SLCO5A1       | IGSF8            | IL17RB        | FBXW5        |                 | TUBB1           |
| PIAS4          | PGPEP1        | ISYNA1           | SLC11A1       | PKMYT1       |                 | FHL2            |
| COMT           | KCNE3         | NR4A1            | MGAT3         | TPRN         |                 | ANPEP           |

|                 |          |             | RUNX1C-       |               |               |            |
|-----------------|----------|-------------|---------------|---------------|---------------|------------|
|                 | 5 Dox    | Upregulated |               | 10            | Dox Downregul | ated       |
| CAPN12          | VASN     | FAAP20      | RBM38         | CHDH          | SLC4A8        | ATP1B1     |
| TMEM201         | TNRC18   | RBM42       | MZT2B         | HBE1          | CD14          | TNFRSF18   |
| HAGHL           | SAMD1    | MBD3        | RPL18A        | MAP3K8        | FAM178B       | ADAM8      |
| MFSD12          | NELFA    | ARRDC1      | MLST8         | KRT79         | UGT1A6        | CMKLR1     |
| SLC52A2         | EXOSC4   | MGRN1       | RNH1          | LGMN          | CPT1A         | LTC4S      |
| CACFD1          | DDX49    | GZMM        | PITPNM1       | FPR2          | НК3           | MZB1       |
| MIIP            | AP2A1    | RPS15       | LMF2          | VENTX         | ADAMTS3       | SLCO2B1    |
| ZNF358          | SCRIB    | PACS2       | MEGF8         | GRAP2         | RAC2          | PRAM1      |
| AURKAIP1        | CROCC    | APBA3       | RAB11B        | GPR171        | RETN          | TNP1       |
| PIGQ            | CDT1     | FLYWCH1     | TMEM259       | PTPRE         | F13A1         | IGFLR1     |
| BSG             | TCF3     | ADRM1       | C19orf25      | CLECL1        | SOCS1         | MTUS1      |
| FASN            | MFSD10   | THEM6       | SPSB3         | CNN2          | SIGLEC1       | C1QB       |
| FAM234A         | TMEM161A | HIST2H2AA4  | BAD           | TUBA4A        | LFNG          | COMMD7     |
| R3HDM4          | STK11    | СРТР        | CIC           | CEBPA         | CTSW          | RUNX3      |
| RPLP2           | MKNK2    | TRMT2A      | FBLN2         | DMTN          | MMP12         | GOLGA8H    |
| STMN3           | AHDC1    | WDR24       | ISG15         | CD82          | HBA2          | LSP1       |
| ATF5            | GNB1L    | GNB2        | SLC19A1       | NFATC2        | S100A6        | MS4A7      |
| FAAP100         | SART1    | COX8A       | GALK1         | CD74          | ITGA2B        | ALOX15     |
| FAM173A         | ZDHHC8   | HIST2H2AA3  | ZGPAT         | CLDN4         | TNFRSF25      | PSAT1      |
| HMG20B          | LRRC61   | FKBP8       | H1FX          | SRGN          | RELT          | GPR35      |
| C12orf57        | ISOC2    | SNCG        | ZNF524        | SLC24A3       | TSPAN32       | BPI        |
| ZSWIM4          | RPUSD1   | BTBD2       | OGFR          | MICAL1        | SORBS3        | KCNE3      |
| MAP2K2          | NCKAP5L  | LTBP4       | RGS19         | BHLHE40       | MYO1G         | CCL13      |
| POLD1           | RFX1     | CEP131      | JUND          | GGT5          | MMP9          | APOBR      |
| HSPBP1          | PIP5K1C  | RAI1        | RPLP1         | P3H2          | SH2D3C        | FES        |
| LLGL1           | TBL3     | TRIP6       | SCARF1        | CCR7          | SLC38A1       | CD163L1    |
| LIN7B           | UBXN6    | INTS1       | MIB2          | SERPINB10     | ITGB2         | HS6ST1     |
| C9orf16         | CSNK1G2  | ZNF414      | TIMM13        | MS4A6A        | SUSD3         | NRP1       |
| CTU2            | PTOV1    | MAP3K11     | EGLN2         | UNC93B1       | OXER1         | CD274      |
| PAFAH1B3        | PKD1P1   | DGCR6L      | NDUFS7        | HPR           | IL1R2         | RGS2       |
| EGFL7           | E4F1     | RHOT2       | PTPRCAP       | HDAC5         | SH3BP1        | EFHD2      |
| NECAB3          | TMEM134  | A1BG        | CFD           | TLR10         | SLC16A10      | CAPG       |
| NT5C            | ARMC5    | NUBP2       | TSSC4         | C1QC          | HBA1          | PRTN3      |
| SPNS1           | ILVBL    | APRT        | UQCC3         | C1QA          | PRG2          | SLC7A5     |
| RUVBL2          | LRFN4    | PFKL        | TRPM4         | DDIT4L        | THBS1         | KYNU       |
| TSPO            | CACTIN   | PDLIM7      | SBF1          | SECTM1        | ADAMTS10      | ASNS       |
| ARHGDIA         | ALDH16A1 | C1orf159    | MIF           | CRLF2         | RGL1          | SYTL1      |
| DECR2           | SLC1A5   | MCRIP1      | TSPAN4        | TGFBI         | CD80          | TPSAB1     |
|                 | ZYX      | DPP7        | -             |               | PF4           | PLAT       |
| C7orf50<br>LY6E | FBXL14   | RPS6KA4     | FBRS<br>NTHL1 | SPNS3<br>GYPB | CCL24         | HLA-DRB1   |
|                 | +        |             |               | GIFB          | CCL24         | TILA-DIGIT |
| MRPL41          | PIEZO1   | BCAR1       | TSC22D4       |               |               |            |
| SHC2            | PCNX3    | NR1H2       | SRSF2         |               |               |            |
| BOP1            | RFNG     | GSTP1       | MRPL28        |               |               |            |
| GTPBP6          | ORAI1    | MVB12A      | BRAT1         |               |               |            |
| SF3A2           | TELO2    | JUNB        | 4             |               |               |            |
| VPS37B          | AGPAT2   | WDR13       | 4             |               |               |            |
| UBE2S           | GPS1     | CCDC124     | -             |               |               |            |
| FLYWCH2         | TMEM8A   | CPSF1       | 4             |               |               |            |
| PIM3            | RAC3     | NME3        |               |               |               |            |
| VPS51           | THAP7    | SLC39A4     |               |               |               |            |

# Supplementary Table 2: Differentially expressed genes upon RUNX1-ETO induction (3, 5 or 10 ng/ml Dox) in RUNX1C+ and RUNX1C- cell populations

Upregulated (green) and downregulated (red) genes upon 24h treatment with 3, 5 and 10 ng/ml Doxvin RUNX1C+ (white top panels) and RUNX1C- (blue bottom panels) cell populations.

| Cluster 1 |          |           |           |           |          |         |
|-----------|----------|-----------|-----------|-----------|----------|---------|
| A2M       | BAIAP3   | CD70      | DNMBP     | GAP43     | HSPB8    | LGALS3  |
| ABAT      | BATF2    | CD79B     | DOCK6     | GATS      | ICAM1    | LGMN    |
| ABCA9     | BBS1     | CD83      | DPYSL4    | GBP2      | ICAM2    | LIMCH1  |
| ABCB4     | BCL6     | CD99      | DTX3L     | GCH1      | ICOS     | LIMS4   |
| ABCD4     | BEX2     | CDC42EP3  | EBI3      | GDF2      | IFI16    | LIPH    |
| ABTB1     | BEX3     | CDC42EP5  | EGR1      | GDF3      | IFI27    | LMBR1L  |
| ACADVL    | BIRC7    | CDH24     | EGR2      | GIMAP4    | IFI27L2  | LOX     |
| ACSF2     | BLVRA    | CDKN1A    | EIF1      | GIMAP5    | IFI35    | LOXL2   |
| ACVR1B    | BRSK1    | CDKN2B    | ENC1      | GIMAP6    | IFI6     | LPIN3   |
| ADAMTS9   | BSDC1    | CDR2L     | ENDOV     | GIMAP8    | IFIH1    | LRG1    |
| ADD3      | BST2     | CEACAM1   | EPHA4     | GJA5      | IFIT1    | LRP4    |
| AHCYL2    | BTN2A1   | CECR2     | EPHX2     | GLDC      | IFIT2    | LRRN3   |
| AHR       | BTN2A2   | CES4A     | EPS8      | GNG11     | IFIT3    | LTA4H   |
| AIFM2     | C10orf10 | CETP      | ERMN      | GNG12     | IFIT5    | LURAP1  |
| AKAP12    | C11orf52 | CFH       | EVI2B     | GNG2      | IGF2R    | LZTS3   |
| AKR1C3    | C11orf95 | CH25H     | EZH1      | GNG7      | IGLON5   | MAGED2  |
| AKT3      | C19orf66 | CLDN7     | F2RL1     | GPR137B   | IKZF4    | MALT1   |
| ALS2CL    | C1R      | CLIP1     | FABP3     | GPR153    | IL11     | MAML2   |
| AMIGO2    | C1S      | CLIP3     | FAM114A1  | GPRIN3    | IL13RA1  | MAP2K4  |
| AMOTL1    | C1orf115 | CMYA5     | FAM131A   | GRAMD1C   | IL1RAP   | MAP3K12 |
| ANG       | C1orf61  | COL1A2    | FAM166B   | GRASP     | IL27RA   | MAP4    |
| ANXA2     | CA13     | COL27A1   | FAM171B   | GRTP1     | IL2RG    | MAPK11  |
| AP1S1     | CA2      | COL6A1    | FAM49A    | GSTA4     | IL6ST    | MAPK13  |
| APOD      | CA9      | COL6A2    | FAM89A    | GSTM2     | IRF6     | MFAP2   |
| APOE      | CAB39L   | COLQ      | FBLIM1    | GSTM3     | IRF8     | MMP1    |
| APOL2     | CACHD1   | COX6B2    | FBLN5     | GUCY1A3   | IRF9     | мовзв   |
| APOL3     | CADM4    | CPAMD8    | FBXL2     | H1F0      | ISG20    | MPZL1   |
| APP       | CALCOCO1 | CPT1C     | FBXO21    | H6PD      | ITGAV    | MRAP2   |
| AR        | CALCRL   | CRHBP     | FCGR1A    | HAP1      | JAK1     | MST1    |
| ARC       | CALD1    | CSRNP2    | FCGR1B    | HDAC9     | JAM3     | MTMR11  |
| ARHGEF15  | CAMSAP2  | CTC1      | FCHSD1    | HECW2     | JUN      | MX1     |
| ARMCX2    | CAPN12   | CTNNA1    | FERMT2    | HFE       | KCTD17   | MXRA8   |
| ARMCX6    | CASP4    | CTSC      | FGD5      | HID1      | KCTD21   | MYO1E   |
| ARRDC3    | CASP7    | CTTN      | FGD6      | HIF1A     | KIAA0040 | MYO9A   |
| ARRDC4    | CASP9    | CTTNBP2NL | FHL1      | HIF3A     | KIAA1671 | MYOF    |
| ARSD      | CAST     | CXCL10    | FLT1      | HIP1R     | KIF13B   | NAAA    |
| ASAP3     | CBLB     | CXCL8     | FMNL2     | HIST1H1C  | KLC4     | NATD1   |
| ASPG      | CBLN3    | CYP1A1    | FMNL3     | HIST1H2AC | KLF6     | NCOA3   |
| ASPHD1    | CC2D2A   | CYSTM1    | FNDC3A    | HIST1H2BD | KLHDC8B  | NDRG1   |
| ATP6V0A4  | CCDC173  | DAB2      | FSTL1     | HLA-B     | KLHL3    | NECAP2  |
| ATP6V1B2  | CCDC71L  | DDX58     | FSTL3     | HLA-DRB5  | KLK13    | NFAT5   |
| ATP9A     | CCDC85A  | DDX60     | FZD7      | HLA-E     | KREMEN1  | NFKB2   |
| AXL       | CCL28    | DHRS1     | GABARAP   | HOXB2     | LAMC1    | NFKBIZ  |
| B3GLCT    | CD109    | DNAJB5    | GABARAPL2 | НОХВ7     | LBH      | NINL    |
| B3GNT9    | CD53     | DNALI1    | GALT      | HRC       | LEFTY2   | NISCH   |

|         | Cluster 1 (continued) |          |           |          |           |  |  |  |  |  |
|---------|-----------------------|----------|-----------|----------|-----------|--|--|--|--|--|
| NLRP1   | PIK3IP1               | RCAN3    | SGK1      | SSFA2    | ТМЕМ98    |  |  |  |  |  |
| NPTX1   | PINK1                 | RETSAT   | SGPL1     | ST5      | TNFAIP8L3 |  |  |  |  |  |
| NQO1    | PLA2G4C               | RGL1     | SH3D21    | ST6GAL1  | TNFRSF9   |  |  |  |  |  |
| NRBP2   | PLAU                  | RGN      | SHE       | STAG3    | TOB2      |  |  |  |  |  |
| NRN1    | PLCG1                 | RGS12    | SHF       | STAT1    | TP53INP2  |  |  |  |  |  |
| NTAN1   | PLD2                  | RGS9     | SHROOM4   | STIM2    | TRAK2     |  |  |  |  |  |
| OAS1    | PLEKHA4               | RNASE1   | SIPA1L1   | STX12    | TRIM16    |  |  |  |  |  |
| OAS3    | PLEKHB1               | RNASE4   | SLC22A4   | SULF1    | TRIM22    |  |  |  |  |  |
| OASL    | PLIN2                 | RPGRIP1  | SLC25A42  | SUN1     | TSPAN7    |  |  |  |  |  |
| OLAH    | PLIN5                 | RSPH9    | SLC26A11  | SYNPO    | TULP3     |  |  |  |  |  |
| OPTN    | PLK2                  | RSPO4    | SLC2A3    | TAGLN    | TUSC3     |  |  |  |  |  |
| P2RX4   | PNRC1                 | RUNX1T1  | SLC35B4   | TAGLN3   | TWIST1    |  |  |  |  |  |
| P2RX7   | PPFIBP1               | S100Z    | SLC35D2   | TAX1BP3  | TXNIP     |  |  |  |  |  |
| PAPSS2  | PPP2R5B               | SALL2    | SLC35F3   | TBC1D8   | UBE2H     |  |  |  |  |  |
| PARP14  | PRAME                 | SAMD9L   | SLC37A3   | TCEA3    | UBE2L6    |  |  |  |  |  |
| PARP9   | PRKCZ                 | SAMSN1   | SLFN12L   | TCF7L2   | UCHL1     |  |  |  |  |  |
| PATJ    | PROS1                 | SASH1    | SMARCA1   | TESK2    | ULBP2     |  |  |  |  |  |
| PCDHGB6 | PTPRS                 | SAT2     | SMARCD3   | TFPI2    | UNC13B    |  |  |  |  |  |
| PCDHGB7 | QPCT                  | SBF2     | SMIM10L2A | TGFBR2   | USP27X    |  |  |  |  |  |
| PCED1B  | RAB13                 | SCARB2   | SNX18     | THRSP    | VAMP5     |  |  |  |  |  |
| PCMTD2  | RAB3B                 | SCG5     | SNX33     | TJP2     | VIM       |  |  |  |  |  |
| PCNX2   | RAB40B                | SEMA3A   | SOCS2     | TLR7     | VNN2      |  |  |  |  |  |
| PDE1B   | RAI14                 | SEMA6C   | SOX8      | TM4SF1   | WDR19     |  |  |  |  |  |
| PDE4B   | RALA                  | SERINC5  | SPACA6    | TMEM120A | WFDC1     |  |  |  |  |  |
| PDE4DIP | RAMP2                 | SERPINB3 | SPARC     | TMEM178A | XAF1      |  |  |  |  |  |
| PDGFD   | RASSF8                | SERPINB4 | SPATS2L   | TMEM2    | YPEL2     |  |  |  |  |  |
| PDGFRA  | RBFOX2                | SERPINB8 | SPINT1    | TMEM234  | ZG16B     |  |  |  |  |  |
| PHC1    | RBM24                 | SERPINB9 | SPOCD1    | TMEM243  | ZNF251    |  |  |  |  |  |
| PHF1    | RBPMS                 | SERPINH1 | SPTAN1    | TMEM45B  | ZNF608    |  |  |  |  |  |
| PHLDA1  | RCAN2                 | SETD7    | SSBP2     | TMEM74B  | ZNF827    |  |  |  |  |  |

|          |          |            | Cluster 2 |        |          |         |
|----------|----------|------------|-----------|--------|----------|---------|
| AARS     | C5AR1    | CLCN4      | FADS1     | GYPE   | LCN2     | MYLK    |
| ABCE1    | C6orf223 | CLSPN      | FAM102B   | H2AFZ  | LCP1     | MYO19   |
| ACAT2    | CACNA2D3 | CMSS1      | FAM105A   | HAUS8  | LEF1     | MZB1    |
| ADAMTS1  | CACNA2D4 | CNRIP1     | FAM178B   | НВВ    | LFNG     | NANP    |
| ADAMTS14 | CAMK1    | CPA3       | FAM212B   | HBD    | LGALS12  | NCAPD3  |
| ADCY7    | CAPN11   | CPT1A      | FAM216A   | HBE1   | LGALSL   | NCAPG2  |
| ADGRE2   | CATSPER1 | CR1        | FAM46C    | HBG1   | LIF      | NCAPH   |
| ADGRG3   | CBX5     | CRYBA4     | FAM57A    | HBG2   | LMNB1    | NCR3LG1 |
| ADGRG5   | CCDC169  | CSE1L      | FAM83D    | HCST   | LMO4     | NDC1    |
| ADORA2B  | CCDC78   | CTSG       | FANCA     | HDC    | LRR1     | NDUFV3  |
| AGAP2    | CCNA1    | CXCL2      | FANCD2    | HEMGN  | LRRC8D   | NETO2   |
| AHSP     | CCNA2    | CXCL3      | FANCG     | HGD    | LST1     | NFE2    |
| AIF1     | CCNB1    | CYP11A1    | FANCI     | HIRIP3 | LTC4S    | NINJ2   |
| ALB      | CCNB2    | DAPP1      | FARSB     | HJURP  | LY6G6F   | NKG7    |
| ALDH1B1  | CCND1    | DCLRE1B    | FBL       | HMGB3  | MAGEF1   | NLRC3   |
| ANGPT1   | CCNE2    | DDIAS      | FCER1A    | HMGN5  | MAGIX    | NME1    |
| ANKLE1   | CCNI2    | DDIT4      | FCER1G    | HSH2D  | MANSC1   | NME2    |
| ANKRD18B | CD2      | DENND2D    | FEN1      | HSPA4L | MBP      | NOD2    |
| ANLN     | CD244    | DERL3      | FGR       | HSPD1  | MCM10    | NOP16   |
| APOBEC3B | CD300A   | DHFR       | FKBP4     | HSPE1  | мсм3     | NPM3    |
| APOBR    | CD300C   | DHRS11     | FST       | HSPH1  | MCM4     | NR2C2AP |
| AQP3     | CD84     | DHRS9      | FUCA2     | IARS   | MCM6     | NRARP   |
| ARHGEF39 | CDC25A   | DIS3L      | GAB3      | ID2    | MEIOB    | NT5DC3  |
| ASIC4    | CDC45    | DNAJC6     | GALNT14   | IGFBP7 | METTL1   | NUDT1   |
| ASNS     | CDC6     | DNMT3B     | GALNT6    | IL13   | METTL21A | ODC1    |
| ATAD2    | CDCA2    | DSCC1      | GATM      | IL9R   | MEX3B    | OIP5    |
| ATP2B4   | CDCA7    | DTL        | GCSAML    | INSIG1 | MFSD3    | OPN3    |
| ATP5G1   | CDCA8    | DUT        | GGH       | ISOC1  | MGST1    | ORAI3   |
| AURKA    | CDKN2C   | DZIP1      | GINS1     | ITGA4  | MIPEP    | ORC1    |
| AURKB    | CDKN2D   | E2F2       | GINS2     | ITGA6  | MKI67    | ORC6    |
| BAG2     | CDKN3    | E2F8       | GINS3     | ITGAL  | MNS1     | OSBPL6  |
| BIRC5    | CENPF    | EFHC2      | GINS4     | ITGAM  | MPP7     | OSM     |
| BLM      | CENPH    | ELOVL6     | GJB5      | ITGB3  | MRM1     | OXCT1   |
| BNIP3    | CENPN    | EME1       | GLA       | JADE1  | MRPL3    | PA2G4   |
| BOLA3    | CENPP    | ENO3       | GMNN      | KCNK17 | MRTO4    | PADI4   |
| BRCA1    | CENPU    | ENOSF1     | GNG8      | KCNK5  | MS4A3    | PARVG   |
| BRIP1    | CENPV    | ERCC6L     | GNL3      | KCNQ5  | MTFR2    | PASK    |
| BRIX1    | CENPW    | ERVMER34-1 | GPAT3     | KIF15  | MTHFD1   | PCNA    |
| BUB1     | CEP128   | ESPL1      | GPR132    | KIF18B | MTHFD1L  | PCYT1B  |
| BUB1B    | CHAC2    | EXO1       | GPT2      | KIF2C  | MTURN    | PDE5A   |
| C11orf21 | CHAF1B   | EXOSC5     | GRAP2     | KIF4A  | MUC1     | PDIA5   |
| C1orf162 | CHEK1    | F13A1      | GSE1      | KIT    | MYB      | PDSS1   |
| C21orf58 | CHEK2    | F2RL3      | GSR       | KNTC1  | MYCN     | PHF10   |
| C2orf88  | CHKA     | FAAP24     | GTF3A     | KRT79  | MYEOV    | PHGDH   |
| C4orf46  | CLC      | FABP5      | GYPB      | LAT2   | MYL4     | PHKA1   |

| Cluster 2 (continued) |          |          |          |         |           |         |  |
|-----------------------|----------|----------|----------|---------|-----------|---------|--|
| PIF1                  | PRKCQ    | RCCD1    | SIGLEC8  | SPAG5   | THBD      | UBASH3B |  |
| PIK3CB                | PRKDC    | RCL1     | SIGLEC9  | SPC24   | TICRR     | UBE2C   |  |
| PIK3R6                | PRPS1    | RFC3     | SKA1     | SPC25   | TIMELESS  | UBE2T   |  |
|                       | PRPS2    | RFC4     | SKA3     | SPDYC   | TIMM21    | VOPP1   |  |
| PIM1                  |          |          |          |         |           | 1.0     |  |
| PLA2G3                | PSAT1    | RFC5     | SLA      | SPIN4   | TIPIN     | VRK1    |  |
| PLAC8                 | PSMC3IP  | RMI2     | SLC11A1  | SPINK2  | TLCD1     | WDHD1   |  |
| PLCB2                 | PSMG1    | RMND5B   | SLC1A4   | SPN     | TMEM163   | WDR12   |  |
| PLCH1                 | PTAFR    | RNASEH2B | SLC25A15 | SPR     | TMEM246   | WDR4    |  |
| PLEK                  | PTGIR    | RNF125   | SLC27A2  | SPX     | TMEM97    | WDR76   |  |
| PLEKHA2               | PTPN18   | RRM1     | SLC27A5  | SRPRB   | TMTC4     | WNT5B   |  |
| PNP                   | PTPN22   | RRM2     | SLC35D3  | SS18L2  | TNFAIP8L2 | WT1     |  |
| POC1A                 | PTPRE    | RRS1     | SLC38A5  | SSRP1   | TOP2B     | XK      |  |
| POC1B-GALNT4          | PTTG1    | RUVBL1   | SLC40A1  | ST3GAL4 | TOR3A     | XRCC2   |  |
| POLA2                 | PTX3     | RXRA     | SLC43A3  | ST8SIA6 | TPM1      | YOD1    |  |
| POLE2                 | PUM3     | S100A12  | SLC48A1  | STAR    | TPX2      | ZFP36L2 |  |
| POLQ                  | PUS7     | S100A2   | SLC4A8   | STEAP3  | TRAIP     | ZNF239  |  |
| POLR3K                | RAB24    | S100A4   | SLC50A1  | SULF2   | TREML1    | ZNF367  |  |
| POP5                  | RAB27B   | S100A6   | SLC6A9   | SUSD1   | TREML2    | ZNF485  |  |
| PPBP                  | RAB37    | SCFD2    | SLC8A3   | SYCE2   | TRIM58    | ZNF69   |  |
| PPIF                  | RABEPK   | SELP     | SMC2     | SYTL3   | TRIP13    | ZNF730  |  |
| PPIH                  | RAD51    | SELPLG   | SMIM10   | TAGLN2  | TTC27     | ZNF804A |  |
| PPM1M                 | RAD54L   | SEPT1    | SNRNP25  | TCN1    | TTF2      | ZNF93   |  |
| PRF1                  | RAP1GAP2 | SERPINE2 | SNRPF    | TDRD9   | TUBA4A    | ZWINT   |  |
| PRG2                  | RAVER2   | SFXN2    | SNTB1    | TEC     | TYMS      |         |  |
| PRICKLE1              | RCC1     | SHMT1    | SNX20    | TFRC    | UBASH3A   | ]       |  |

|          | Cluster 3 |        |          |           |          |          |  |  |
|----------|-----------|--------|----------|-----------|----------|----------|--|--|
| ABCA7    | CDC20     | FLOT2  | JDP2     | NHP2      | RASGRP2  | SPNS3    |  |  |
| ABCB6    | CDCA5     | FOXM1  | KATNB1   | NINJ1     | RCOR2    | SRM      |  |  |
| ABCC3    | CDT1      | GAL    | KCNH2    | NRGN      | RECQL4   | STK10    |  |  |
| ACOT11   | CEBPE     | GATA1  | KCNQ4    | NRROS     | RELL2    | SUSD3    |  |  |
| ACOT7    | CENPM     | GATA2  | KCTD15   | NT5M      | RELT     | SYTL1    |  |  |
| ADA      | CHAF1A    | GBGT1  | KIF21B   | NUP210    | RNASEH2A | TALDO1   |  |  |
| ADAM15   | CMIP      | GCAT   | KIF22    | OAF       | RNF24    | TESC     |  |  |
| ADGRG1   | CMTM5     | GFI1   | KLF1     | OBSL1     | RPS6KA1  | TFAP4    |  |  |
| AGTRAP   | CPNE7     | GFI1B  | LAGE3    | OGG1      | RRP9     | TFR2     |  |  |
| ALAS2    | CPXM1     | GJA4   | LAPTM5   | PCK2      | RUVBL2   | TGFB1    |  |  |
| ALYREF   | CSF1R     | GMPR   | LAT      | PDGFRB    | SAPCD2   | THBS1    |  |  |
| ANGPTL6  | CTSW      | GNA15  | LSM4     | PDLIM1    | SCGN     | TIMP3    |  |  |
| ANK1     | CXXC5     | GP1BA  | LSP1     | PF4       | SDF2L1   | TK1      |  |  |
| ANPEP    | CYC1      | GP9    | LSS      | PFAS      | SFRP5    | TMC8     |  |  |
| ARHGAP22 | CYTH4     | GPR35  | LTBP1    | PGAM5     | SH2B3    | TNFAIP2  |  |  |
| ARRB2    | DCTPP1    | GRK6   | MAP1A    | PHF19     | SH2D2A   | TNFRSF1B |  |  |
| ASF1B    | DEAF1     | GTSE1  | MARS2    | PIGY      | SH2D3C   | TOMM40   |  |  |
| ATP2A3   | DENND4B   | GYPC   | MARVELD1 | PIM2      | SH3BGRL3 | TPSB2    |  |  |
| BCOR     | DMTN      | HAUS7  | MCM2     | PKM       | SH3BP1   | TSPAN32  |  |  |
| BIN1     | DOK2      | HBA1   | MCM5     | PKMYT1    | SH3BP2   | TSPAN33  |  |  |
| BIN2     | DTYMK     | HBZ    | MCM7     | PLEKHG3   | SIGLEC10 | TUBB1    |  |  |
| BRI3BP   | E2F1      | HERC2  | MFSD2B   | PLK1      | SLA2     | TUBG1    |  |  |
| BYSL     | ECE2      | HES6   | MGAT3    | POLD2     | SLC16A3  | TYROBP   |  |  |
| C15orf39 | ECI1      | HMBS   | MICAL2   | PQLC2     | SLC17A9  | UHRF1    |  |  |
| C19orf48 | EHD3      | HPDL   | MLC1     | PRAM1     | SLC19A1  | ULK3     |  |  |
| C1QBP    | EIF4EBP1  | HS6ST1 | MPO      | PRELID1   | SLC1A5   | VARS     |  |  |
| C1orf116 | ELF4      | HYAL3  | MRPS26   | PRTN3     | SLC25A10 | VAV1     |  |  |
| CARD9    | EMID1     | ICAM4  | MSRB1    | PSD4      | SLC25A45 | WDR62    |  |  |
| CBFA2T3  | EMILIN1   | ICOSLG | MTSS1L   | PTGES2    | SLC2A6   | WNT11    |  |  |
| CBS      | FADS2     | IFRD2  | MYBL2    | PTPN6     | SLC39A3  | YDJC     |  |  |
| CBSL     | FAM53B    | IL21R  | MYC      | PYCR1     | SLC43A1  | ZBTB16   |  |  |
| CCDC86   | FASN      | IMP4   | MYH10    | QTRT1     | SLC6A8   |          |  |  |
| CCND3    | FBXO41    | IMPA2  | NAGLU    | RAB11FIP5 | SLC7A1   | ]        |  |  |
| CCNF     | FERMT3    | INF2   | NBEAL2   | RAC2      | SLC7A5   | ]        |  |  |
| CD320    | FHL2      | ISOC2  | NCAPD2   | RAC3      | SLC9A3R1 | ]        |  |  |
| CD34     | FKBP1B    | ITGA2B | NCF4     | RANBP1    | SOCS1    | ]        |  |  |
| CD82     | FLNA      | ITGB2  | NFKBIA   | RASA3     | SPATC1L  | ]        |  |  |

|         | Cluster 4  |            |          |          |             |         |  |  |
|---------|------------|------------|----------|----------|-------------|---------|--|--|
| ACTG1   | CORO1B     | GIPC1      | LAMB2    | NBL1     | PPDPF       | TMEM115 |  |  |
| AGPAT2  | CPTP       | GNB2       | LRP10    | NCK2     | PPP1R14A    | TMEM134 |  |  |
| AHRR    | CYP2S1     | GPR32      | LRRC8A   | NCKAP5L  | PRR12       | TMEM8A  |  |  |
| ALKBH7  | DBN1       | GPX1       | LTBR     | NECTIN2  | RAB35       | TNRC18  |  |  |
| AP1B1   | DCHS1      | GRINA      | MAP1S    | NOS3     | RAB5C       | TRIOBP  |  |  |
| AP2A1   | DENND1C    | GSN        | MAP2K2   | NOTCH1   | RAVER1      | TSR3    |  |  |
| APBA3   | DLK1       | GUK1       | MAP3K11  | NPDC1    | REXO1       | TUBB3   |  |  |
| ARHGDIA | EEF2       | HIST2H2AA3 | MAP4K2   | NR1H2    | RNASEK      | TUBB4A  |  |  |
| ASMTL   | EHD2       | HLA-C      | MAPK8IP3 | NUCB1    | RPS2        | UBALD1  |  |  |
| ATG2A   | EVC        | HLX        | MARCKSL1 | OGFR     | SERPING1    | UBTD1   |  |  |
| ATN1    | FAM171A2   | HMG20B     | MARK4    | PAFAH1B3 | SHANK3      | UBXN6   |  |  |
| ATP6V0C | FAM69B     | HSF1       | MDK      | PALM     | SLC25A23    | ULK1    |  |  |
| BCL7C   | FAM89B     | HSPB1      | MED16    | PGLS     | SLC9A1      | VASN    |  |  |
| BSG     | FCGRT      | HSPG2      | MEGF8    | PIM3     | SPATA2L     | YPEL3   |  |  |
| C8orf58 | FKBP8      | HYAL2      | MGRN1    | PIP5K1C  | SPSB3       | ZNF219  |  |  |
| CASS4   | FLT4       | ID3        | MSRA     | PKN1     | STMN3       | ZNF358  |  |  |
| CD81    | FOSL2      | IRF2BP1    | MVB12A   | PLOD1    | STRN4       | ZNF580  |  |  |
| CDC34   | FOXP4      | JUP        | MXD4     | PLXNB2   | STUB1       | ZNF593  |  |  |
| CIC     | GAA        | KDM6B      | MYO1C    | PML      | SYS1-DBNDD2 | ZYX     |  |  |
| CLPP    | GADD45GIP1 | KREMEN2    | MYO7A    | PNPLA2   | TGFB1I1     |         |  |  |

|         | Cluster 5 |          |           |          |          |         |  |  |  |
|---------|-----------|----------|-----------|----------|----------|---------|--|--|--|
| ACYP1   | CENPK     | EEF1E1   | HIST1H2BO | МСМ8     | PLK4     | TIMM17A |  |  |  |
| ALOX5AP | CENPQ     | EMB      | HIST1H4E  | METTL5   | PMS1     | TNFSF10 |  |  |  |
| AP1S2   | CEP152    | EXOSC8   | HMGB1     | MND1     | PPM1K    | TOP2A   |  |  |  |
| APOC2   | CKAP2     | FAM72A   | HMGCS1    | MPHOSPH6 | PRIM1    | TPRKB   |  |  |  |
| ASPM    | CKAP2L    | FAM72B   | HMMR      | MRPS18C  | RAD51AP1 | TTK     |  |  |  |
| ATAD5   | CKLF      | FAM72C   | HPF1      | MS4A6A   | RFESD    | UGGT2   |  |  |  |
| ATP10D  | CKS2      | FAM72D   | HPGDS     | MTBP     | RFXAP    | UGT1A6  |  |  |  |
| B3GNT5  | CLEC11A   | FANCB    | ITGB3BP   | NAE1     | RGS5     | UQCRHL  |  |  |  |
| BORA    | COQ3      | FBXO4    | JAZF1     | NCAPG    | RMI1     | XRCC4   |  |  |  |
| C3orf14 | CRLS1     | FBXO43   | JCHAIN    | NDFIP2   | RPA3     | ZBED5   |  |  |  |
| C3orf58 | CXorf21   | FRA10AC1 | KIF14     | NFYB     | RPL22L1  | ZDHHC13 |  |  |  |
| CARHSP1 | CYCS      | GAPT     | KIF18A    | NUF2     | SASS6    | ZNF107  |  |  |  |
| CCDC18  | DBF4      | GAR1     | KIF20B    | NUP35    | SFR1     | ZNF138  |  |  |  |
| CCDC58  | DCLRE1A   | GDPD1    | L2HGDH    | NUSAP1   | SGO2     | ZNF273  |  |  |  |
| CD38    | DEK       | GEN1     | LPXN      | OMA1     | SKA2     | ZNF563  |  |  |  |
| CD52    | DEPDC1    | GPR65    | LRRCC1    | PARPBP   | SLCO4C1  | ZNF675  |  |  |  |
| CDC7    | DEPDC1B   | GYPA     | LSM3      | PBK      | SLF1     | ZNF85   |  |  |  |
| CDK1    | DNAH14    | HAT1     | LSM5      | PFDN6    | SMC4     | ZNF90   |  |  |  |
| CENPE   | DSN1      | HELLS    | MAD2L1    | PLA2G4A  | SNRPE    |         |  |  |  |
| CENPI   | ECT2      | HGF      | MAGOHB    | PLA2G4B  | TCTEX1D1 | ]       |  |  |  |

|          | Cluster 6 |          |        |         |         |         |  |  |  |
|----------|-----------|----------|--------|---------|---------|---------|--|--|--|
| ACAD11   | CNPY4     | GJA1     | LPP    | PHTF2   | ST8SIA4 | TSLP    |  |  |  |
| ADAM9    | CREBL2    | GSDMB    | LRRC70 | PLEKHH2 | STAT4   | TSPAN6  |  |  |  |
| ANKRD12  | CREBRF    | HBP1     | LY96   | RGPD5   | SULT1C4 | TVP23C  |  |  |  |
| ANKRD37  | CREM      | HCFC1R1  | LYSMD1 | RGPD6   | SUMO1   | TWSG1   |  |  |  |
| AP1AR    | CRYBG3    | HOOK1    | MAP4K3 | RGPD8   | SWT1    | UGCG    |  |  |  |
| ARMCX3   | CXCL11    | IFT81    | MCL1   | RGS17   | SYP     | WSB1    |  |  |  |
| B2M      | DDX17     | IL15     | MCOLN3 | SAT1    | TBC1D15 | XPR1    |  |  |  |
| C1orf54  | DDX5      | ING4     | MLF1   | SERINC1 | TCEAL9  | YPEL5   |  |  |  |
| C22orf31 | DDX60L    | INHBA    | MYO6   | SERINC3 | TCP11L2 | ZDBF2   |  |  |  |
| C5orf15  | DYNLT3    | INTS6L   | NABP1  | SLC16A4 | TDRP    | ZFYVE16 |  |  |  |
| CBX7     | ECHDC2    | KIAA0895 | NPHP3  | SLC17A5 | TFPI    |         |  |  |  |
| CCNG1    | EIF4A2    | KLF8     | PCMTD1 | SLC35G2 | TMC7    |         |  |  |  |
| CLDND1   | ENPP4     | KLHL6    | PCYOX1 | SLC5A12 | TMEFF1  |         |  |  |  |
| CLEC2B   | FRMD6     | L1TD1    | PDCD4  | SNX16   | TMEM65  | ]       |  |  |  |
| CLIP4    | FSBP      | LIFR     | PDK4   | SOAT1   | TMX3    |         |  |  |  |
| CLK1     | GIMAP2    | LPAR6    | PGAP1  | SP110   | TRIM34  |         |  |  |  |

|          | Cluster 7 |          |          |         |         |         |  |  |
|----------|-----------|----------|----------|---------|---------|---------|--|--|
| AEBP1    | CERS4     | GRIK5    | LIMS3    | NR4A1   | PXDN    | SNAPC2  |  |  |
| APBB1    | CLSTN1    | GRN      | LLGL1    | NUMA1   | RASIP1  | SNX15   |  |  |
| ARVCF    | CREB3L1   | HELZ2    | LMF1     | PHLDB1  | RELB    | TBC1D16 |  |  |
| ATF5     | CSTB      | IGSF8    | LYPLA2   | PITPNM1 | RFNG    | TRPM4   |  |  |
| BAD      | CUL7      | IRF7     | MAP1LC3A | PLCD1   | RHBDD2  | TUBB6   |  |  |
| BAIAP2   | DLGAP4    | ISG15    | MAPK3    | PLCD3   | SEMA4B  | UNC119  |  |  |
| BCAM     | DMPK      | ITPKC    | MED25    | PLD3    | SERTAD1 | VGF     |  |  |
| CACFD1   | EMC10     | KDELR1   | MFGE8    | PLEKHG2 | SFN     | VPS9D1  |  |  |
| CACNA1H  | FADS3     | KLC2     | MVP      | PLSCR3  | SHC2    | WDR13   |  |  |
| CCDC106  | FLNB      | KRT18    | NACAD    | PLTP    | SHISA5  | WDR45   |  |  |
| CD37     | GFRA3     | LDOC1    | NOTCH3   | PRKAR1B | SLC27A1 | ZFP36   |  |  |
| CDC42BPB | GPX4      | LGALS3BP | NPR2     | PTPRU   | SLC44A2 | ZSWIM4  |  |  |

|           | Cluster 8 |           |           |          |         |        |  |  |
|-----------|-----------|-----------|-----------|----------|---------|--------|--|--|
| ADAMTS3   | CD55      | DUSP10    | HIST1H2AJ | ITGB1BP2 | PDP2    | VPS53  |  |  |
| ADCYAP1   | CDC25C    | EAF2      | HIST1H2BH | ITGB7    | PIGW    | ZGRF1  |  |  |
| ANGPT2    | CENPA     | ENPP3     | HIST1H2BI | KIF11    | PRIM2   | ZNF683 |  |  |
| AP5M1     | CEP55     | ESCO2     | HIST1H2BM | KIF23    | PRR11   | ZNF695 |  |  |
| ARHGAP11A | CLECL1    | GPR174    | HIST1H3F  | KRT1     | RACGAP1 |        |  |  |
| C5orf34   | COMMD7    | GPR85     | HIST1H4B  | KRT72    | RFX8    |        |  |  |
| CALB2     | CYP1B1    | GZMB      | HIST1H4C  | MELK     | RHEBL1  |        |  |  |
| CAPG      | DIAPH3    | HIST1H1B  | HPGD      | MPC1     | SG01    | ]      |  |  |
| CCDC136   | DLGAP5    | HIST1H1D  | IGFBP5    | MS4A2    | SLC31A2 | ]      |  |  |
| CCDC15    | DMC1      | HIST1H1E  | IL18RAP   | NDC80    | SLCO5A1 | ]      |  |  |
| CD200R1L  | DNA2      | HIST1H2AH | IL4       | NEIL3    | SPP1    |        |  |  |

|          | Cluster 9 |           |          |         |          |        |  |  |  |
|----------|-----------|-----------|----------|---------|----------|--------|--|--|--|
| ACTA2    | CCL3L3    | FAM222B   | LUZP6    | PTPRF   | SPINK4   | TNNT1  |  |  |  |
| ACVRL1   | COL9A2    | GAD1      | MDFIC    | RHOC    | SPTBN1   | TSTD1  |  |  |  |
| AES      | CRYM      | GADD45G   | MEGF6    | RNF213  | SYNGR1   | TUBB2B |  |  |  |
| AP2A2    | CTSB      | HIST1H2BK | MIIP     | RRAS    | TEAD2    | TYMP   |  |  |  |
| BCL6B    | DAPK1     | HOMER3    | MINK1    | SEMA6B  | TEK      | UCKL1  |  |  |  |
| BMF      | DPP4      | ITGA5     | MMRN2    | SGSH    | TIMP2    | VAT1   |  |  |  |
| C19orf38 | ECHDC3    | ITGA9     | NUDT16L1 | SIDT2   | TMEM176A | ZNF581 |  |  |  |
| C2orf66  | ECM1      | KLHL23    | PLVAP    | SLC5A10 | TMEM176B |        |  |  |  |
| C3orf18  | EPHX1     | LIN7B     | PLXNA3   | SLC7A10 | TMIGD2   | ]      |  |  |  |
| CCL3L1   | ERG       | LRP1      | PROCR    | SOX7    | TNFSF12  |        |  |  |  |

| Cluster 10 |         |  |  |  |
|------------|---------|--|--|--|
| ACTR6      | MORN2   |  |  |  |
| AK6        | MSMO1   |  |  |  |
| C12orf60   | NDUFA5  |  |  |  |
| C8orf59    | OTULIN  |  |  |  |
| CEP70      | PFDN4   |  |  |  |
| CETN3      | RBPJ    |  |  |  |
| CMC1       | RIDA    |  |  |  |
| CNIH1      | RPS18   |  |  |  |
| COMMD8     | SEC61G  |  |  |  |
| DEPDC4     | SMIM11B |  |  |  |
| ERH        | SNRPG   |  |  |  |
| FAM200B    | SUGT1   |  |  |  |
| FANCL      | TGDS    |  |  |  |
| G2E3       | TMEM156 |  |  |  |
| GLMN       | TMSB15A |  |  |  |
| GOLT1B     | TTC32   |  |  |  |
| GPR34      | UQCRB   |  |  |  |
| HIST1H4A   | YEATS4  |  |  |  |
| HSPB11     | ZBED8   |  |  |  |
| IDI1       | ZNF302  |  |  |  |
| IMMP1L     | ZNF680  |  |  |  |
| INSIG2     | ZNF92   |  |  |  |
| MED31      | ZNHIT6  |  |  |  |

| Cluster 11 |          |  |  |  |  |
|------------|----------|--|--|--|--|
| ARMC9      | KIAA1191 |  |  |  |  |
| CAP2       | KIF12    |  |  |  |  |
| CDRT4      | KLK6     |  |  |  |  |
| CYTH3      | MERTK    |  |  |  |  |
| DSEL       | NCAM2    |  |  |  |  |
| DTX3       | NEO1     |  |  |  |  |
| EML2       | OAS2     |  |  |  |  |
| EPB41L1    | PRUNE2   |  |  |  |  |
| FNDC4      | RBMS2    |  |  |  |  |
| FOS        | SLC41A1  |  |  |  |  |
| GPR50      | SOD2     |  |  |  |  |
| GPX3       | STAP2    |  |  |  |  |
| HAPLN3     | TJP1     |  |  |  |  |
| HIST1H3E   | TPST1    |  |  |  |  |
| IFI44L     | TUFT1    |  |  |  |  |
| INPP5E     |          |  |  |  |  |

| Cluster 12 |
|------------|
| BCAT1      |
| CCR1       |
| CHI3L1     |
| CST7       |
| CYBB       |
| DEFA4      |
| EGLN3      |
| FCN1       |
| нкз        |
| HP         |
| IGLL1      |
| IL1B       |
| IL1RN      |
| LYZ        |
| MCEMP1     |
| P2RY2      |
| PLA2G2A    |
| PROK2      |
| RETN       |
| RNASE2     |
| RNASE3     |
| S100A8     |
| S100A9     |
| S100B      |
| TSPOAP1    |
|            |

# Supplementary Table 3: List of genes included within each cluster of differential response to RUNX1-ETO induction levels

Clusters (1-12) including genes showing differential gene expression response to the level of RUNX1-ETO induction. Clusters have been generated upon co-variance analysis of gene expression RNA-Seq data by Z-score from CD45+ CD34+ RUNX1C+ sorted progenitor cells upon RUNX1-ETO induction with 3, 5 or 10 ng/ml Dox for 24h. Green: upregulated gene expression trend. Red: downregulated gene expression trend. Genes are organized in columns by alphabetical order.

### **RUNX1-ETO** targets

|          |             | Т           | UpRegu      | 1         |             | Г        |             |
|----------|-------------|-------------|-------------|-----------|-------------|----------|-------------|
| GeneID   | logFC       | GeneID      | logFC       | GeneID    | logFC       | GeneID   | logFC       |
| CYP1A1   | 5.951725858 | GUK1        | 1.420799672 |           | 1.226079791 | GADD45G  | 1.098848135 |
| RUNX1T1  | 5.555791735 | AEBP1       | 1.411054756 | FAM171A2  | 1.222317039 |          | 1.096179037 |
| MX1      | 2.862784233 | NATD1       | 1.406899611 | TNFAIP8L3 | 1.21733847  | GSN      | 1.095454856 |
| CDKN1A   | 2.556758886 | SMARCD3     | 1.404390304 | LRRC8A    | 1.215708042 | C8orf58  | 1.093003166 |
| BAIAP3   | 2.499115224 | SLC5A10     | 1.403879003 | P2RX4     | 1.215094413 | NUDT16L1 | 1.09026539  |
| CTTN     | 2.124154609 | PKN1        | 1.395888507 | NDRG1     | 1.212642804 | MDK      | 1.082515095 |
| HELZ2    | 2.066890578 | TMEM120A    | 1.390949366 | NCK2      | 1.209427906 | TBC1D16  | 1.081061611 |
| PPDPF    | 2.06608069  | DBN1        | 1.384426949 | EGR2      | 1.209167178 | KDELR1   | 1.079943534 |
| NPDC1    | 2.033081835 | TESK2       | 1.379969454 | LRP10     | 1.205598519 | HLX      | 1.078953137 |
| SPTAN1   | 2.028619022 | SIDT2       | 1.377603987 | DAPK1     | 1.191618887 | PXDN     | 1.078408438 |
| SGSH     | 2.006978866 | VAT1        | 1.36244068  | CDC34     | 1.185804324 | CDC42BPB | 1.076848268 |
| SPTBN1   | 1.996253582 | NFKB2       | 1.35314645  | PIM3      | 1.185001926 | DLGAP4   | 1.075584878 |
| COL9A2   | 1.976270399 | MAP3K11     | 1.352158567 | LIN7B     | 1.184471016 | GRINA    | 1.07504328  |
| NR4A1    | 1.948063562 | TUBB6       | 1.350501656 | TNRC18    | 1.1755315   | FOXP4    | 1.07300497  |
| TUBB3    | 1.918033424 | BCL6        | 1.348895606 | GNB2      | 1.175189835 | EPS8     | 1.0632467   |
| KIAA0040 | 1.888957867 | PLEKHB1     | 1.348872046 | KLC2      | 1.173985349 | MYO1C    | 1.061902813 |
| FCGR1A   | 1.880275656 | FCGR1B      | 1.34844142  | PIP5K1C   | 1.170291559 | MAP2K2   | 1.060263217 |
| COL6A1   | 1.860041763 |             | 1.344361494 |           | 1.16965579  |          | 1.059409644 |
| MFAP2    | 1.842681216 |             | 1.341173805 |           | 1.169089753 |          | 1.055167646 |
| KLHL23   | 1.810665553 |             | 1.338580397 |           | 1.168327693 |          | 1.054441523 |
|          |             |             | 1.33603067  |           |             |          |             |
| SMARCA1  |             | SYS1-DBNDD2 | 1.327108263 |           | 1.167416739 |          | 1.053758741 |
| CES4A    | 1.759872787 |             |             |           | 1.160198859 |          | 1.047532708 |
| SOX7     | 1.74552543  |             | 1.326661616 |           | 1.157810629 |          | 1.045376716 |
| HSPB1    | 1.726998825 |             | 1.323704768 |           | 1.156839705 |          | 1.043464894 |
| IGSF8    | 1.72411602  |             | 1.323525532 |           | 1.15645644  |          | 1.043437519 |
| JUN      | 1.710342413 |             | 1.322930985 |           | 1.151650417 |          | 1.042850625 |
| RASSF8   | 1.706647838 |             | 1.315358309 |           | 1.147647299 |          | 1.039184001 |
| YPEL3    | 1.663849163 |             | 1.312206755 |           | 1.146332227 |          | 1.038298534 |
| JUP      | 1.61458624  |             | 1.311089202 |           | 1.138398242 |          | 1.034809922 |
| FAM69B   | 1.605126253 |             | 1.307052989 |           | 1.135843453 |          | 1.028582478 |
| CREB3L1  | 1.595539023 |             | 1.306088981 |           | 1.135251071 |          | 1.027771219 |
| ICAM1    | 1.592096977 |             | 1.297930703 |           | 1.134220773 |          | 1.025715899 |
| PITPNM1  | 1.587745114 |             | 1.29755722  |           | 1.13343259  |          | 1.02126552  |
| ALKBH7   | 1.55913892  |             | 1.296609508 |           | 1.130867511 |          | 1.018206442 |
| SHF      | 1.553913453 |             | 1.295066827 |           | 1.129554663 |          | 1.017744417 |
| MAP1LC3A | 1.536893704 | CACFD1      | 1.293164597 |           | 1.128865219 |          | 1.017619719 |
| GPX1     | 1.498244857 | RASIP1      | 1.291106767 | PLCG1     | 1.127526622 | HMG20B   | 1.016987919 |
| SHISA5   | 1.486476949 | ZFP36       | 1.286247275 | IRF2BP1   | 1.126392376 | LTBR     | 1.016093726 |
| AP2A2    | 1.479498181 | NLRP1       | 1.281815333 | MAPK8IP3  | 1.122611127 |          | 1.014822805 |
| AGPAT2   | 1.477118334 | NRN1        | 1.28168554  | UCKL1     | 1.121534623 | ACTG1    | 1.012181475 |
| SFN      | 1.475818208 | MAP4K2      | 1.281059349 | CSTB      | 1.121031004 | EVC      | 1.011003321 |
| GLDC     | 1.475400943 | ZNF580      | 1.281008265 | SLC25A23  | 1.120800351 | PLTP     | 1.010276511 |
| TMEM8A   | 1.474912283 | SLC7A10     | 1.279593232 | FAM131A   | 1.120645153 | GIPC1    | 1.008012407 |
| FMNL2    | 1.464932295 | P2RX7       | 1.27667298  | PHLDA1    | 1.119977061 | MED25    | 1.007248945 |
| CORO1B   | 1.463913139 | RGS12       | 1.261735389 | SEMA4B    | 1.119615119 | C3orf18  | 1.005922391 |
| TMEM134  | 1.458610969 | PDGFRA      | 1.255738835 | SLC27A1   | 1.118379336 | REXO1    | 1.003098981 |
| HSPG2    | 1.451910386 |             | 1.25292865  |           | 1.118202042 |          | 1.000567005 |
| TMEM45B  | 1.436214193 |             | 1.248501598 |           | 1.11638032  |          |             |
| GPX4     | 1.429308857 |             | 1.24411836  |           | 1.115952939 |          |             |
| EGR1     | 1.428364787 |             | 1.239764508 |           | 1.112144808 | 1        |             |
| NPTX1    | 1.424410212 |             | 1.238224808 |           | 1.110876074 | 1        |             |
| UBALD1   | 1.424212899 |             | 1.230958928 |           | 1.108939138 | 1        |             |
| CAPN12   | 1.423624419 |             | 1.230938928 |           | 1.107076584 |          |             |
| CHLINTS  | 1.423024419 | IVIIOI      | 1.230003704 | IVI/\C4   | 1.10/0/0364 | l        |             |

### **RUNX1-ETO** targets

|          |              | Dowr     | Regulated    |          |              |
|----------|--------------|----------|--------------|----------|--------------|
| GeneID   | logFC        | GeneID   | logFC        | GeneID   | logFC        |
| FST      | -2.086354497 | AQP3     | -1.231362584 | CEP55    | -1.06885002  |
| DNAH14   | -2.073301035 | CYCS     | -1.231357879 |          | -1.067477982 |
| IDI1     | -1.852603127 | G2E3     | -1.220094206 |          | -1.066138258 |
| SULF2    | -1.830877188 |          | -1.218765664 |          | -1.065452688 |
| PLAC8    | -1.767964549 |          | -1.216071616 |          | -1.065237656 |
| OSM      | -1.763192097 | HELLS    | -1.206673128 |          | -1.064427901 |
| CYP1B1   | -1.755781734 |          | -1.203334673 |          | -1.063645198 |
| SUGT1    | -1.634667892 |          | -1.199823608 |          | -1.063208073 |
| LIF      | -1.618916388 |          | -1.199147789 |          | -1.062288648 |
| MSMO1    | -1.610800559 | GGH      | -1.193535731 |          | -1.056657029 |
| TNFSF10  | -1.592391827 | CXCL2    |              | NAE1     | -1.054326538 |
| AP1S2    | -1.529774115 | ITGAM    | -1.187308987 |          | -1.054237593 |
|          |              |          |              |          |              |
| ITGA4    | -1.517856284 |          | -1.186825081 |          | -1.053913702 |
| HMGB3    | -1.513139138 |          | -1.186515961 |          | -1.051203035 |
| PARPBP   | -1.483249951 |          | -1.176630622 |          | -1.04415946  |
| SNRPG    | -1.466455855 |          | -1.17304011  |          | -1.042815997 |
| UGGT2    | -1.4574321   |          | -1.172842811 |          | -1.039798596 |
| RNASE2   | -1.447742408 | NDC1     | -1.171955647 |          | -1.038832663 |
| C8orf59  | -1.439501888 | TUBA4A   | -1.169962432 | SFR1     | -1.035870595 |
| DSCC1    | -1.439049906 | ECT2     | -1.166986889 | E2F8     | -1.033542012 |
| ESCO2    | -1.434348728 | FRA10AC1 | -1.166809379 | CMC1     | -1.033454447 |
| CLEC11A  | -1.415450491 | OMA1     | -1.16607659  | CD300A   | -1.033113471 |
| CDC7     | -1.410825774 | MNS1     | -1.160442768 | SLA      | -1.032549129 |
| HIST1H4E | -1.406089437 | OPN3     | -1.155233148 | CNIH1    | -1.02936023  |
| CKLF     | -1.398634456 | HPF1     | -1.150132593 | ZNF302   | -1.029274117 |
| SGO2     | -1.392522444 | PRF1     | -1.145375445 | CNRIP1   | -1.02721622  |
| C5orf34  | -1.391136958 | MED31    | -1.140429146 | HIST1H4A | -1.027099939 |
| FAM102B  | -1.3842082   | RFXAP    | -1.132553976 | FABP5    | -1.025482679 |
| POLE2    | -1.382974418 | GDPD1    | -1.127607633 | LMNB1    | -1.025390551 |
| RFESD    | -1.376131831 | DHFR     | -1.126119307 | FBXO4    | -1.024120058 |
| PRIM1    | -1.368756725 | DUSP10   | -1.124821254 | TIMM17A  | -1.023766199 |
| PSAT1    | -1.358748341 | AP5M1    | -1.122670129 |          | -1.023729058 |
| SLCO4C1  | -1.339789584 |          | -1.121212651 |          | -1.023339964 |
| SPIN4    | -1.323836822 |          | -1.119517743 |          | -1.021997661 |
| TFRC     | -1.323736706 |          | -1.114136797 |          | -1.019885611 |
| PSMG1    | -1.322986141 |          | -1.113354372 |          | -1.016450296 |
| CRLS1    | -1.316239976 |          | -1.107575871 |          | -1.016215695 |
| TGDS     | -1.311379005 |          | -1.102713369 |          | -1.016203222 |
| ZWINT    |              | ACTR6    | -1.102483039 |          | -1.011381303 |
| ID2      | -1.301742341 |          | -1.101834827 |          | -1.011361363 |
| FANCB    | -1.29736489  | CKAP2    | -1.01834827  |          | -1.008380087 |
|          |              |          |              |          |              |
| MRPS18C  | -1.293683693 |          | -1.098823493 |          | -1.007429257 |
| KIT      |              | MPHOSPH6 | -1.095260081 |          | -1.006874585 |
| PTX3     | -1.283840419 |          | -1.093785627 |          | -1.006756914 |
| ZFP36L2  |              |          | -1.091670636 |          | -1.006401936 |
| PIGW     |              |          | -1.09143749  |          | -1.005606419 |
| RPL22L1  | -1.247445525 | ADCY7    | -1.088430618 |          | -1.00520292  |
| CKS2     |              | BNIP3    | -1.081421543 |          | -1.005014763 |
| NFYB     |              | KIF11    | -1.079207699 | CCDC15   | -1.004355179 |
| ASNS     | -1.233598398 |          | -1.078052854 | GATM     | -1.004024923 |
| NEIL3    | -1.233314553 |          | -1.074853492 |          |              |
| RNASEH2B | -1.231698578 | CCDC169  | -1.071992026 |          |              |

|                |                           |          |                            |          |                              | _       |                          |              |                              |
|----------------|---------------------------|----------|----------------------------|----------|------------------------------|---------|--------------------------|--------------|------------------------------|
|                | UpReg                     |          | 1                          |          | 1                            |         | nRegulated               |              | 1                            |
| GeneID         | logFC                     | GeneID   | logFC                      | GeneID   | logFC                        | GeneID  | logFC                    | GeneID       | logFC                        |
| RRAS           | 2.665569152               |          | 1.265398725                | FST      | -2.086354497                 |         |                          | MPHOSPH6     | -1.095260082                 |
| CDKN1A         | 2.556758886               |          | 1.261735389                |          | -2.073301035                 | 1       | -1.2783923               |              | -1.093785627                 |
| RELB           | 2.184489588               |          | 1.25292865                 |          | -1.852603127                 |         | -1.253976                |              | -1.088430618                 |
| CTTN           | 2.124154609               |          | 1.246275496                |          | -1.845156748                 |         | -1.2474455               |              | -1.081421543                 |
| HELZ2<br>PPDPF | 2.066890578               |          |                            |          | -1.830877188                 | 1       | -1.2407035               |              | -1.081387614                 |
| SPTAN1         | 2.06608069<br>2.028619022 |          | 1.238224808<br>1.228334417 | CYP1B1   | -1.767964549<br>-1.755781734 |         | -1.2398952<br>-1.2371477 | DEPDC1B      | -1.079207699<br>-1.074853492 |
| SGSH           | 2.028619022               |          | 1.226509788                |          | -1.700995172                 | 1       | -1.2371477               |              | -1.074853492                 |
| COL9A2         | 1.976270399               |          | 1.226079791                |          | -1.682262367                 |         | -1.2333140               |              | -1.06885002                  |
| FCGR1A         | 1.880275656               |          | 1.21733847                 |          | -1.672770084                 |         | -1.2313379               |              | -1.068477982                 |
| TYMP           | 1.856571315               |          | 1.21733847                 |          | -1.655835311                 | 1       | -1.2251798               |              | -1.066691287                 |
| SOX7           | 1.74552543                |          | 1.215094413                |          | -1.644321821                 |         | -1.2200942               |              | -1.066138258                 |
| HSPB1          | 1.726998825               |          | 1.212642804                |          | -1.634667892                 |         | -1.2187813               |              | -1.065452688                 |
| YPEL3          | 1.663849163               |          | 1.205598519                |          | -1.620249478                 |         | -1.2187657               |              | -1.065237656                 |
| GAA            | 1.654162363               |          | 1.203819648                |          | -1.610800559                 |         | -1.2160716               |              | -1.064930401                 |
| FKBP8          | 1.642916748               |          | 1.192897621                |          | -1.592391827                 | 1       | -1.2066731               |              | -1.064427901                 |
| SERPINB9       | 1.640697223               |          | 1.185804324                |          | -1.529774115                 | 1       | -1.2033347               |              | -1.063645198                 |
| JUP            | 1.61458624                |          | 1.185001926                |          | -1.522190002                 |         | -1.1998236               |              | -1.062288648                 |
| SASH1          | 1.597652518               |          | 1.1755315                  |          | -1.517856284                 |         | -1.1991478               |              | -1.056657029                 |
| ICAM1          | 1.592096977               |          | 1.175189835                |          | -1.513139138                 |         | -1.1935357               |              | -1.054326538                 |
| VPS9D1         | 1.565921122               |          | 1.169089753                |          | -1.4833186                   |         | -1.1889392               |              | -1.053913702                 |
| ALKBH7         | 1.55913892                |          | 1.167416739                |          | -1.483249951                 |         | -1.187309                |              | -1.051086218                 |
| SHF            | 1.553913453               |          | 1.158419082                |          | -1.480386531                 |         | -1.1868251               |              | -1.031080218                 |
| MAP1LC3A       | 1.536893704               |          | 1.157810629                |          | -1.466455855                 |         | -1.1808231               |              | -1.043901968                 |
| SNAPC2         | 1.515293352               |          | 1.156839705                |          | -1.4574321                   | 1       | -1.1751376               |              | -1.042815997                 |
| GPX1           |                           | NUMA1    | 1.15645644                 |          | -1.447742408                 | -       | -1.1746436               |              | -1.039798596                 |
| AHR            | 1.494081523               |          | 1.147647299                |          | -1.439501888                 |         | -1.1730401               |              | -1.038628751                 |
| SHISA5         | 1.486476949               |          | 1.141030616                |          | -1.434348728                 | 1       | -1.1728428               |              | -1.035870595                 |
| AP2A2          | 1.479498181               |          | 1.138398242                |          | -1.433251619                 |         | -1.170856                |              | -1.035415384                 |
| SFN            | 1.475818208               |          | 1.135843453                |          | -1.415450491                 |         | -1.1669869               |              | -1.035180778                 |
| GLDC           | 1.475400943               |          | 1.129554663                |          | -1.406089437                 | 1       | -1.1660766               |              | -1.033542012                 |
| TMEM8A         | 1.474912283               |          | 1.128865219                |          | -1.405448113                 |         | -1.1604428               |              | -1.033113471                 |
| CORO1B         | 1.463913139               |          | 1.122611127                |          | -1.394243348                 | 1       | -1.1581797               |              | -1.032549129                 |
| TMEM134        | 1.458610969               |          | 1.120800351                |          | -1.392522444                 |         | -1.1565439               |              | -1.03046314                  |
| GPX4           | 1.429308857               |          | 1.119977061                |          | -1.391598606                 |         | -1.1552331               |              | -1.02936023                  |
| EGR1           | 1.428364787               |          | 1.118379336                |          | -1.391136958                 |         | -1.1518212               |              | -1.029274117                 |
| FCGRT          | 1.427084156               | FOSL2    | 1.11638032                 |          | -1.3842082                   | 1       | -1.1501326               | HIST1H4A     | -1.027099939                 |
| NPTX1          | 1.424410212               |          | 1.115952939                |          | -1.376131831                 | 1       |                          | HIST1H2AH    | -1.026856976                 |
| GUK1           | 1.420799672               | ACADVL   | 1.110876074                | KIF20B   | -1.365799701                 | C4orf46 | -1.1445468               | LMNB1        | -1.025390551                 |
| NATD1          | 1.406899611               | SNX15    | 1.109192157                | PSAT1    | -1.358748341                 | NDUFA5  | -1.1435585               | FBXO4        | -1.024120058                 |
| DBN1           | 1.384426949               | MAP4     | 1.107076584                | SLCO4C1  | -1.339789584                 | MED31   | -1.1404291               | TIMM17A      | -1.023766199                 |
| TESK2          | 1.379969454               | RAB5C    | 1.102651425                | LMO4     | -1.332401179                 | GDPD1   | -1.1276076               | CKAP2L       | -1.023729058                 |
| SPATA2L        | 1.365090881               | MGRN1    | 1.099711127                | EXOSC8   | -1.331834958                 | DHFR    | -1.1261193               | PTTG1        | -1.023339964                 |
| NFKB2          | 1.35314645                | TIMP2    | 1.096179037                | SPIN4    | -1.323836822                 | DUSP10  | -1.1248213               | TTC32        | -1.019885611                 |
| BCL6           | 1.348895606               |          | 1.095454856                | TFRC     | -1.323736706                 |         |                          | POC1B-GALNT4 | -1.019719209                 |
| PLEKHB1        | 1.348872046               | NUDT16L1 | 1.09026539                 | PSMG1    | -1.322986141                 | PCNA    | -1.1206343               | METTL21A     | -1.016450296                 |
| BCL6B          | 1.344361494               | CDC42BPB | 1.076848268                | CRLS1    | -1.316239976                 | GINS4   | -1.1195177               | GCSAML       | -1.016215695                 |
| SERTAD1        | 1.341173805               | DLGAP4   | 1.075584878                | RIDA     | -1.313873085                 | SASS6   | -1.1141368               | DEK          | -1.016203222                 |
| EEF2           | 1.328735823               | SH3D21   | 1.068085154                | CENPI    | -1.313817272                 | RGS5    | -1.1133544               | BUB1B        | -1.013346952                 |
| ARHGDIA        | 1.327108263               |          |                            | HIST1H4B | -1.306038075                 | 1       | -1.1075759               | XRCC2        | -1.011381303                 |
| CTSC           | 1.326661616               |          | 1.062608813                |          | -1.301764134                 |         | -1.1055041               |              | -1.006401936                 |
| SGK1           | 1.323704768               |          | 1.062467765                |          | -1.301742341                 | 1       | -1.1027134               |              | -1.005606419                 |
| ID3            | 1.323525532               | MAP2K2   | 1.060263217                | FANCB    | -1.29736489                  | ACTR6   | -1.102483                | RBPJ         | -1.00520292                  |
| CIC            | 1.312206755               | MSRA     | 1.058137964                | MRPS18C  | -1.293683693                 | FBXO43  | -1.1018348               | TPM1         | -1.005014763                 |
| FLT1           | 1.311089202               | RAB35    | 1.053758741                |          | -1.288564658                 | SLC48A1 | -1.101574                |              | -1.004710698                 |
| ULK1           | 1.307052989               | TMEM115  | 1.053375473                | KIT      | -1.284722786                 | CKAP2   | -1.0997021               | CCDC15       | -1.004355179                 |
| NECTIN2        | 1.306088981               | MEGF8    | 1.047532708                | PTX3     | -1.283840419                 | CENPF   | -1.0993086               |              |                              |
| SOCS2          | 1.300813534               |          | 1.046361952                |          | -1.280506669                 |         | -1.0988235               |              |                              |
| FAM222B        | 1.297930703               |          | 1.042850625                |          |                              |         |                          | •            |                              |
| ATP6V0C        | 1.29755722                |          | 1.017744417                |          |                              |         |                          |              |                              |
| MVB12A         | 1.295066827               |          | 1.016987919                |          |                              |         |                          |              |                              |
| CACFD1         | 1.293164597               |          | 1.014822805                |          |                              |         |                          |              |                              |
| HYAL2          | 1.292691649               |          | 1.012181475                |          |                              |         |                          |              |                              |
| RASIP1         | 1.291106767               |          | 1.010276511                |          |                              |         |                          |              |                              |
| ZFP36          | 1.286247275               | MED25    | 1.007248945                |          |                              |         |                          |              |                              |
| NRN1           | 1.28168554                | REXO1    | 1.003098981                |          |                              |         |                          |              |                              |
| SLC7A10        | 1.279593232               | SOD2     | 1.000567005                |          |                              |         |                          |              |                              |
| ZNF219         | 1.268526853               |          |                            | -        |                              |         |                          |              |                              |

#### **RUNX1 - 5 Dox targets**

### Genes that have lost RUNX1 binding and gained RUNX1-ETO binding

| UpRegulated |             |  |  |  |  |
|-------------|-------------|--|--|--|--|
| GeneID      | logFC       |  |  |  |  |
| RRAS        | 2.665569152 |  |  |  |  |
| CTTN        | 2.124154609 |  |  |  |  |
| SASH1       | 1.597652518 |  |  |  |  |
| ICAM1       | 1.592096977 |  |  |  |  |
| SNAPC2      | 1.515293352 |  |  |  |  |
| AP2A2       | 1.479498181 |  |  |  |  |
| NPTX1       | 1.424410212 |  |  |  |  |
| GUK1        | 1.420799672 |  |  |  |  |
| NFKB2       | 1.35314645  |  |  |  |  |
| PLCD1       | 1.239764508 |  |  |  |  |
| TNFAIP8L3   | 1.21733847  |  |  |  |  |
| GNB2        | 1.175189835 |  |  |  |  |
| BMF         | 1.169089753 |  |  |  |  |
| IGF2R       | 1.072567068 |  |  |  |  |
| EPS8        | 1.0632467   |  |  |  |  |
| MAP2K2      | 1.060263217 |  |  |  |  |
| TMEM115     | 1.053375473 |  |  |  |  |

| DownRegulated |              |  |  |  |
|---------------|--------------|--|--|--|
| GeneID        | logFC        |  |  |  |
| IDI1          | -1.852603127 |  |  |  |
| PTPN22        | -1.845156748 |  |  |  |
| MSMO1         | -1.610800559 |  |  |  |
| TNFSF10       | -1.592391827 |  |  |  |
| AP1S2         | -1.529774115 |  |  |  |
| HMGCS1        | -1.433251619 |  |  |  |
| CLEC11A       | -1.415450491 |  |  |  |
| TFRC          | -1.323736706 |  |  |  |
| MRPS18C       | -1.293683693 |  |  |  |
| GGH           | -1.193535731 |  |  |  |
| FAM200B       | -1.17464365  |  |  |  |
| RGS5          | -1.113354372 |  |  |  |
| CKAP2         | -1.09970209  |  |  |  |
| MPHOSPH6      | -1.095260081 |  |  |  |
| HCST          | -1.093785627 |  |  |  |
| ADCY7         | -1.088430618 |  |  |  |
| BNIP3         | -1.081421543 |  |  |  |
| CNIH1         | -1.02936023  |  |  |  |
| ZNF302        | -1.029274117 |  |  |  |
| TIMM17A       | -1.023766199 |  |  |  |
| RBPJ          | -1.00520292  |  |  |  |

|          | UpRe      | gulated  |             |          | Down      | Regulated |            |
|----------|-----------|----------|-------------|----------|-----------|-----------|------------|
| GeneID   | logFC     | GeneID   | logFC       | GeneID   | logFC     | GeneID    | logFC      |
| CDKN1A   | 2.5567589 | RGS12    | 1.261735389 | FST      | -2.086354 | HPF1      | -1.1501326 |
| HELZ2    | 2.0668906 | CLSTN1   | 1.25292865  | DNAH14   | -2.073301 | PRF1      | -1.1453754 |
| PPDPF    | 2.0660807 | KCTD17   | 1.238224808 | SULF2    | -1.830877 | MED31     | -1.1404291 |
| SPTAN1   | 2.028619  | BSG      | 1.228334417 | PLAC8    | -1.767965 | GDPD1     | -1.1276076 |
| SGSH     | 2.0069789 | ATG2A    | 1.226079791 | CYP1B1   | -1.755782 | DHFR      | -1.1261193 |
| COL9A2   | 1.9762704 | LRRC8A   | 1.215708042 | SUGT1    | -1.634668 | DUSP10    | -1.1248213 |
| FCGR1A   | 1.8802757 | P2RX4    | 1.215094413 | ITGA4    | -1.517856 | ZNF239    | -1.1212127 |
| SOX7     | 1.7455254 | NDRG1    | 1.212642804 | HMGB3    | -1.513139 | GINS4     | -1.1195177 |
| HSPB1    | 1.7269988 | LRP10    | 1.205598519 | PARPBP   | -1.48325  | SASS6     | -1.1141368 |
| YPEL3    | 1.6638492 | CDC34    | 1.185804324 | SNRPG    | -1.466456 | HMGB1     | -1.1075759 |
| JUP      | 1.6145862 | PIM3     | 1.185001926 | UGGT2    | -1.457432 | INSIG2    | -1.1027134 |
| ALKBH7   | 1.5591389 | TNRC18   | 1.1755315   | RNASE2   | -1.447742 | ACTR6     | -1.102483  |
| SHF      | 1.5539135 | CD83     | 1.167416739 | C8orf59  | -1.439502 | FBXO43    | -1.1018348 |
| MAP1LC3A | 1.5368937 | KDM6B    | 1.157810629 | ESCO2    | -1.434349 | HSPA4L    | -1.0988235 |
| GPX1     | 1.4982449 | SLC9A1   | 1.156839705 | HIST1H4E | -1.406089 | KIF11     | -1.0792077 |
| SHISA5   | 1.4864769 |          | 1.15645644  | SG02     | -1.392522 |           | -1.0748535 |
| SFN      | 1.4758182 |          | 1.147647299 |          | -1.391137 |           | -1.06885   |
| GLDC     | 1.4754009 |          | 1.138398242 |          | -1.384208 |           | -1.067478  |
| TMEM8A   | 1.4749123 |          | 1.135843453 |          | -1.376132 |           | -1.0661383 |
| CORO1B   | 1.4639131 |          | 1.129554663 |          | -1.358748 |           | -1.0654527 |
| TMEM134  | 1.458611  |          | 1.128865219 |          | -1.33979  |           | -1.0652377 |
| GPX4     |           | MAPK8IP3 | 1.122611127 | SPIN4    | -1.323837 |           | -1.0644279 |
| EGR1     | 1.4283648 |          | 1.120800351 |          | -1.323837 |           | -1.0636452 |
| NATD1    | 1.4263646 |          | 1.119977061 |          |           | SLC31A2   | -1.0630432 |
| DBN1     | 1.3844269 |          | 1.118379336 |          | -1.31024  |           | -1.056657  |
| TESK2    | 1.3799695 |          | 1.11638032  |          | -1.301742 |           | -1.0543265 |
| BCL6     | 1.3488956 |          | 1.115952939 |          | -1.284723 |           | -1.0539137 |
| PLEKHB1  | 1.348872  |          | 1.110876074 |          | -1.28384  |           | -1.0339137 |
| BCL6B    | 1.3443615 |          | 1.10876074  |          |           | ANKRD18B  | -1.0441393 |
| SERTAD1  | 1.3411738 |          | 1.099711127 | RPL22L1  | -1.247446 |           | -1.042816  |
| ARHGDIA  | 1.3271083 |          | 1.096179037 | NEIL3    | -1.233315 |           | -1.0357580 |
| CTSC     | 1.3266616 |          | 1.095454856 |          | -1.233313 |           | -1.0338700 |
| SGK1     |           | NUDT16L1 | 1.09026539  |          | -1.231338 |           | -1.033342  |
| ID3      |           | CDC42BPB | 1.076848268 |          | -1.220094 |           | -1.033113  |
| CIC      | 1.3122068 |          | 1.075584878 |          | -1.216072 |           | -1.0323491 |
| FLT1     | 1.3122008 |          | 1.053758741 |          | -1.210072 |           | -1.027033  |
| ULK1     | 1.307053  |          | 1.047532708 |          | -1.203335 |           | -1.0233300 |
| NECTIN2  | 1.306089  |          | 1.047332708 |          | -1.199824 |           | -1.0241201 |
| FAM222B  | 1.2979307 |          | 1.042830023 |          | -1.199824 |           | -1.0237231 |
| ATP6V0C  | 1.2975572 |          | 1.016987919 |          | -1.133148 |           | -1.02332   |
|          |           |          |             |          |           |           |            |
| MVB12A   | 1.2950668 |          | 1.014822805 |          |           | METTL21A  | -1.0164503 |
| CACFD1   | 1.2931646 |          | 1.012181475 |          | -1.186825 |           | -1.0162157 |
| RASIP1   | 1.2911068 |          | 1.010276511 |          | -1.17304  |           | -1.0162032 |
| ZFP36    | 1.2862473 |          | 1.007248945 |          | -1.172843 |           | -1.0113813 |
| NRN1     | 1.2816855 |          | 1.003098981 |          | -1.166987 |           | -1.0064019 |
| SLC7A10  | 1.2795932 | SUDZ     | 1.000567005 |          | -1.166077 |           | -1.0056064 |
|          |           |          |             | MNS1     | -1.160443 |           | -1.0050148 |
|          |           |          |             | OPN3     | -1.155233 | CCDC15    | -1.0043552 |

### Supplementary Table 4: Up and downregulated RUNX1-ETO and RUNX1 target genes

Tables of dysregulated RUNX1-ETO and RUNX1 target genes in RUNX1C+ cells (0 and 5 ng/ml Dox), including gene name (GeneID) and ranked by log2 fold (LogFC) of the FPKM +1. RUNX1-ETO targets that lose RUNX1 binding are also listed.

#### Cell cycle regulated genes

| G2-M phase |         |  |  |  |
|------------|---------|--|--|--|
| HMGB2      | HJURP   |  |  |  |
| CDK1       | CDCA3   |  |  |  |
| NUSAP1     | HN1     |  |  |  |
| UBE2C      | CDC20   |  |  |  |
| BIRC5      | TTK     |  |  |  |
| TPX2       | CDC25C  |  |  |  |
| TOP2A      | KIF2C   |  |  |  |
| NDC80      | RANGAP1 |  |  |  |
| CKS2       | NCAPD2  |  |  |  |
| NUF2       | DLGAP5  |  |  |  |
| CKS1B      | CDCA2   |  |  |  |
| MKI67      | CDCA8   |  |  |  |
| TMPO       | ECT2    |  |  |  |
| CENPF      | KIF23   |  |  |  |
| TACC3      | HMMR    |  |  |  |
| FAM64A     | AURKA   |  |  |  |
| SMC4       | PSRC1   |  |  |  |
| CCNB2      | ANLN    |  |  |  |
| CKAP2L     | LBR     |  |  |  |
| CKAP2      | CKAP5   |  |  |  |
| AURKB      | CENPE   |  |  |  |
| BUB1       | CTCF    |  |  |  |
| KIF11      | NEK2    |  |  |  |
| ANP32E     | G2E3    |  |  |  |
| TUBB4B     | GAS2L3  |  |  |  |
| GTSE1      | CBX5    |  |  |  |
| KIF20B     | CENPA   |  |  |  |

| S phase  |          |  |  |  |
|----------|----------|--|--|--|
| MCM5     | SLBP     |  |  |  |
| PCNA     | CCNE2    |  |  |  |
| TYMS     | UBR7     |  |  |  |
| FEN1     | POLD3    |  |  |  |
| MCM2     | MSH2     |  |  |  |
| MCM4     | ATAD2    |  |  |  |
| RRM1     | RAD51    |  |  |  |
| UNG      | RRM2     |  |  |  |
| GINS2    | CDC45    |  |  |  |
| MCM6     | CDC6     |  |  |  |
| CDCA7    | EXO1     |  |  |  |
| DTL      | TIPIN    |  |  |  |
| PRIM1    | DSCC1    |  |  |  |
| UHRF1    | BLM      |  |  |  |
| MLF1IP   | CASP8AP2 |  |  |  |
| HELLS    | USP1     |  |  |  |
| RFC2     | CLSPN    |  |  |  |
| RPA2     | POLA1    |  |  |  |
| NASP     | CHAF1B   |  |  |  |
| RAD51AP1 | BRIP1    |  |  |  |
| GMNN     | E2F8     |  |  |  |
| WDR76    |          |  |  |  |

## Supplementary Table 5: Cell cycle regulated genes used to infer cell cycle state of single cells from the scRNA-Seq derived clusters

Lists of genes regulated during G2-M and S phase of the cell cycle used to infer the cell cycle stage for each single cell of the scRNA-Seq datasets. Gene lists are provided by the CellCycleScoring function of the Seurat software.

#### Supplementary Dataset 1: Nafria et al., 2019

Supplementary datasets and excel files corresponding to the Supplementary tables are accessible in our paper submission to BioRxiv (doi: <a href="https://doi.org/10.1101/748921">https://doi.org/10.1101/748921</a>). BioarXiv will make available a link to the corresponding journal upon final publication.

Raw data from our sequencing experiments has been deposited on Gene expression Omnibus (GEO) number: GSE137673.

### 7 REFERENCES

Ackermann, M., Liebhaber, S., Klusmann, J., and Lachmann, N. (2015). Lost in translation: pluripotent stem cell-derived hematopoiesis. EMBO Mol Med 7, 1388–1402.

Adelman, K., and Lis, J.T. (2012). Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. *13*, 720–731.

Adolfsson, J., Borge, O.J., Bryder, D., Theilgaard-Mönch, K., Åstrand-Grundström, I., Sitnicka, E., Sasaki, Y., and Jacobsen, S.E.. (2001). Upregulation of Flt3 Expression within the Bone Marrow Lin-Sca1+c-kit+ Stem Cell Compartment Is Accompanied by Loss of Self-Renewal Capacity. Immunity *15*, 659–669.

Adolfsson, J., Månsson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C.T., Bryder, D., Yang, L., Borge, O.-J., Thoren, L.A.M., et al. (2005). Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell *121*, 295–306.

Agrawal, M., Schwarz, P., Giaimo, B.D., Bedzhov, I., Corbacioglu, A., Weber, D., Gaidzik, V.I., Jahn, N., Rücker, F.G., Schroeder, T., et al. (2019). Functional and clinical characterization of the alternatively spliced isoform AML1-ETO9a in adult patients with translocation t(8;21)(q22;q22.1) acute myeloid leukemia (AML). Leukemia 1–5.

Ahn, E.-Y., Yan, M., Malakhova, O.A., Lo, M.-C., Boyapati, A., Ommen, H.B., Hines, R., Hokland, P., and Zhang, D.-E. (2008). Disruption of the NHR4 domain structure in AML1-ETO abrogates SON binding and promotes leukemogenesis. Proc. Natl. Acad. Sci. *105*, 17103–17108.

Akashi, K., Traver, D., Miyamoto, T., and Weissman, I.L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature *404*, 193–197.

Albig, W., and Doenecke, D. (1997). The human histone gene cluster at the D6S105 locus. Hum. Genet. 101, 284–294.

Alcalay, M., Meani, N., Gelmetti, V., Fantozzi, A., Fagioli, M., Orleth, A., Riganelli, D., Sebastiani, C., Cappelli, E., Casciari, C., et al. (2003). Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J. Clin. Invest. *112*, 1751–1761.

Aldinucci, D., and Colombatti, A. (2014). The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm. *2014*, 292376.

Alexander, R.D., Innocente, S.A., Barrass, J.D., and Beggs, J.D. (2010). Splicing-Dependent RNA Polymerase Pausing in Yeast. Mol. Cell *40*, 582–593.

Alhashem, Y.N., Vinjamur, D.S., Basu, M., Klingmüller, U., Gaensler, K.M.L., and Lloyd, J. a. (2011). Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal β-globin genes through direct promoter binding. J. Biol. Chem. 286, 24819–24827.

Allan, J., Hartman, P.G., Crane-Robinson, C., and Aviles, F.X. (1980). The structure of histone H1 and its location in chromatin. Nature 288, 675–679.

Allen, B.L., and Taatjes, D.J. (2015). The Mediator complex: a central integrator of transcription. Nat. Publ. Gr. *16*, 155–166.

Amann, J.M., Nip, J., Strom, D.K., Lutterbach, B., Harada, H., Lenny, N., Downing, J.R., Meyers, S., and Hiebert, S.W. (2001). ETO, a Target of t(8;21) in Acute Leukemia, Makes Distinct Contacts with Multiple Histone Deacetylases and Binds mSin3A through Its Oligomerization Domain. Mol. Cell. Biol. 21, 6470–6483.

Anderson, G., Mackay, N., Gilroy, K., Hay, J., Borland, G., McDonald, A., Bell, M., Hassanudin, S.A., Cameron, E., Neil, J.C., et al. (2018). RUNX-mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins. J. Cell. Biochem. *119*, 2750–2762.

Araten, D.J., Krejci, O., DiTata, K., Wunderlich, M., Sanders, K.J., Zamechek, L., and Mulloy, J.C.

(2013). The rate of spontaneous mutations in human myeloid cells. Mutat. Res. Mol. Mech. Mutagen. 749, 49–57.

Argiropoulos, B., and Humphries, R.K. (2007). Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766–6776.

Aronson, B.D., Fisher, a L., Blechman, K., Caudy, M., and Gergen, J.P. (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell. Biol. *17*, 5581–5587.

Assi, S.A., Imperato, M.R., Coleman, D.J.L., Pickin, A., Potluri, S., Ptasinska, A., Chin, P.S., Blair, H., Cauchy, P., James, S.R., et al. (2019). Subtype-specific regulatory network rewiring in acute myeloid leukemia. Nat. Genet. *51*, 151–162.

Avellino, R., Havermans, M., Erpelinck, C., Sanders, M.A., Hoogenboezem, R., van de Werken, H.J.G., Rombouts, E., van Lom, K., van Strien, P.M.H., Gebhard, C., et al. (2016). An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood *127*, 2991–3003.

Azcoitia, V., Aracil, M., Martínez-A, C., and Torres, M. (2005). The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev. Biol. *280*, 307–320.

Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jørgensen, H.F., John, R.M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., et al. (2006). Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. *8*, 532–538.

Bacon, C.W., and D'Orso, I. (2019). CDK9: a signaling hub for transcriptional control. Transcription *10*, 57–75.

Banaszynski, L.A., Chen, L., Maynard-Smith, L.A., Lisa Ooi, A.G., and Wandless, T.J. (2006). A Rapid, Reversible, and Tunable Method to Regulate Protein Function in Living Cells Using Synthetic Small Molecules. Cell *126*, 995–1004.

Bannister, A.J., and Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature *384*, 641–643.

Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature *410*, 120–124.

Barboric, M., Lenasi, T., Chen, H., Johansen, E.B., Guo, S., and Peterlin, B.M. (2009). 7SK snRNP / P-TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. Proc. Natl. Acad. Sci. U. S. A. *106*, 1–6.

Barrett, N.A., Malouf, C., Kapeni, C., Bacon, W.A., Giotopoulos, G., Jacobsen, S.E.W., Huntly, B.J., and Ottersbach, K. (2016). Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Rep. *16*, 1039–1054.

Barseguian, K., Lutterbach, B., Hiebert, S.W., Nickerson, J., Lian, J.B., Stein, J.L., Wijnen, A.J. van, and Stein, G.S. (2002). Multiple subnuclear targeting signals of the leukemia-related AML1/ETO and ETO repressor proteins. Proc. Natl. Acad. Sci. 99, 15434–15439.

Becker, P.B., and Workman, J.L. (2013). Nucleosome remodeling and epigenetics. Cold Spring Harb. Perspect. Biol. *5*, a017905.

Bee, T., Ashley, E.L.K., Bickley, S.R.B., Jarratt, A., Li, P.-S., Sloane-Stanley, J., Göttgens, B., and de Bruijn, M.F.T.R. (2009). The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters. Blood *113*, 5121–5124.

Bee, T., Swiers, G., Muroi, S., Pozner, A., Nottingham, W., Santos, A.C., Li, P., Taniuchi, I., and Bruijn, M.F.T.R. De (2010). Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood *115*, 3042–3051.

Begay, V., Smink, J., and Leutz, A. (2004). Essential Requirement of CCAAT / Enhancer Binding Proteins in Embryogenesis. Mol. Cell. Biol. 24, 9744–9751.

- Bell, A.C., and Felsenfeld, G. (2000). Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485.
- Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., Lotem, J., Tanay, A., and Groner, Y. (2013). Addiction of t(8;21) and inv(16) Acute Myeloid Leukemia to Native RUNX1. Cell Rep. 4, 1131–1143.
- Benci, J.L., Xu, B., Qiu, Y., Wu, T.J., Dada, H., Twyman-Saint Victor, C., Cucolo, L., Lee, D.S.M., Pauken, K.E., Huang, A.C., et al. (2016). Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell *167*, 1540–1554.e12.
- Bennett, J.M., Catovsky, D., Daniel, M.T., Flandrin, G., Galton, D.A.G., Gralnick, H.R., And Sultan, C. (1985). Proposed Revised Criteria for the Classification of Acute Myeloid Leukemia. Ann. Intern. Med. 103, 620.
- Berg, T., Fliegauf, M., Burger, J., Staege, M.S., Liu, S., Martinez, N., Heidenreich, O., Burdach, S., Haferlach, T., Werner, M.H., et al. (2008). Transcriptional upregulation of p21/WAF/Cip1 in myeloid leukemic blasts expressing AML1-ETO. Haematologica 93, 1728–1733.
- Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell *125*, 315–326.
- Bertrand, J.Y., Chi, N.C., Santoso, B., Teng, S., Stainier, D.Y.R., and Traver, D. (2010). Haematopoietic stem cells derive directly from aortic endothelium during development. Nature *464*, 108–111.
- Bickmore, W.A., and van Steensel, B. (2013). Genome architecture: domain organization of interphase chromosomes. Cell *152*, 1270–1284.
- Biggs, J.R., Peterson, L.F., Zhang, Y., Kraft, A.S., and Zhang, D.-E. (2006). AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol. Cell. Biol. 26, 7420–7429.
- Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.-H., Pagès, F., Trajanoski, Z., and Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics *25*, 1091–1093.
- Bird, A., Taggart, M., Frommer, M., Miller, O.J., and Macleod, D. (1985). A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell *40*, 91–99.
- Blackledge, N.P., Zhou, J.C., Tolstorukov, M.Y., Farcas, A.M., Park, P.J., and Klose, R.J. (2010). CpG Islands Recruit a Histone H3 Lysine 36 Demethylase. Mol. Cell 38, 179–190.
- Blake, M.C., Jambou, R.C., Swick, A.G., Kahn, J.W., and Azizkhan, J.C. (1990). Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol. Cell. Biol. *10*, 6632–6641.
- Bloom, K., and Joglekar, A. (2010). Towards building a chromosome segregation machine. Nature 463, 446–456.
- Bloom, W., and Bartelmez, G.W. (1940). Hematopoiesis in young human embryos. Am. J. Anat. 67, 21–53.
- de Boer, B., Prick, J., Pruis, M.G., Keane, P., Imperato, M.R., Jaques, J., Brouwers-Vos, A.Z., Hogeling, S.M., Woolthuis, C.M., Nijk, M.T., et al. (2018). Prospective Isolation and Characterization of Genetically and Functionally Distinct AML Subclones. Cancer Cell *34*, 674–689.e8.
- Boisset, J.-C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., and Robin, C. (2010). In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature *464*, 116–120.
- Boitano, A.E., Wang, J., Romeo, R., Bouchez, L.C., Parker, A.E., Sutton, S.E., Walker, J.R., Flaveny, C.A., Perdew, G.H., Denison, M.S., et al. (2010). Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science *329*, 1345–1348.

- Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics *30*, 2114–2120.
- Bomken, S., Buechler, L., Rehe, K., Ponthan, F., Elder, A., Blair, H., Bacon, C.M., Vormoor, J., and Heidenreich, O. (2013). Lentiviral marking of patient-derived acute lymphoblastic leukaemic cells allows in vivo tracking of disease progression. Leukemia *27*, 1792.
- Bonifer, C., and Bowen, D.T. (2010). Epigenetic mechanisms regulating normal and malignant haematopoiesis: new therapeutic targets for clinical medicine. Expert Rev. Mol. Med. 12, e6.
- Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737.
- Bonora, G., Plath, K., and Denholtz, M. (2014). A mechanistic link between gene regulation and genome architecture in mammalian development. Curr. Opin. Genet. Dev. 27, 92–101.
- Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature *441*, 349–353.
- Boyer, S.W., Schroeder, A. V, Smith-Berdan, S., and Forsberg, E.C. (2011). All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell 9, 64–73.
- Breig, O., Bras, S., Martinez Soria, N., Osman, D., Heidenreich, O., Haenlin, M., and Waltzer, L. (2014). Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia 28, 1–9.
- Bröske, A.-M., Vockentanz, L., Kharazi, S., Huska, M.R., Mancini, E., Scheller, M., Kuhl, C., Enns, A., Prinz, M., Jaenisch, R., et al. (2009). DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. *41*, 1207–1215.
- Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., and Allis, C.D. (1996). Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation. Cell *84*, 843–851.
- de Bruijn, M.F., Speck, N. a, Peeters, M.C., and Dzierzak, E. (2000). Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474.
- De Bruijn, M.F.T.R., Ma, X., Robin, C., Ottersbach, K., Sanchez, M., and Dzierzak, E. (2002). Haematopoietic Stem Cells Localize to the Endothelial Cell Layer in the Midgestation Mouse Aorta. Immunity *16*, 673–683.
- Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: A method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 2015, 21.29.1-21.29.9.
- Bullinger, L., Rücker, F.G., Kurz, S., Du, J., Scholl, C., Sander, S., Corbacioglu, A., Lottaz, C., Krauter, J., Fröhling, S., et al. (2007). Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood *110*, 1291–1300.
- Burda, P., Curik, N., Kokavec, J., Basova, P., Mikulenkova, D., Skoultchi, A.I., Zavadil, J., and Stopka, T. (2009). PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation. Mol. Cancer Res. 7, 1693–1703.
- Burel, S.A., Harakawa, N., Zhou, L., Pabst, T., Tenen, D.G., and Zhang, D.E. (2001). Dichotomy of AML1-ETO functions: growth arrest versus block of differentiation. Mol. Cell. Biol. *21*, 5577–5590.
- Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. *36*, 411–420.
- Buza-Vidas, N., Woll, P., Hultquist, A., Duarte, S., Lutteropp, M., Bouriez-Jones, T., Ferry, H., Luc, S., and Jacobsen, S.E.W. (2011). FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells. Blood *118*, 1544–1548.
- Byrd, J.C., Mrózek, K., Dodge, R.K., Carroll, A.J., Edwards, C.G., Arthur, D.C., Pettenati, M.J., Patil, S.R., Rao, K.W., Watson, M.S., et al. (2002). Pretreatment cytogenetic abnormalities are predictive of

- induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood *100*, 4325–4336.
- Cabezas-Wallscheid, N., Eichwald, V., de Graaf, J., Löwer, M., Lehr, H.-A., Kreft, A., Eshkind, L., Hildebrandt, A., Abassi, Y., Heck, R., et al. (2013). Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model. EMBO Mol. Med. *5*, 1804–1820.
- Cai, Z., de Bruijn, M., Ma, X., Dortland, B., Luteijn, T., Downing, R.J., and Dzierzak, E. (2000). Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity *13*, 423–431.
- Caligiuri, M.A., Schichman, S.A., Strout, M.P., Mrózek, K., Baer, M.R., Frankel, S.R., Barcos, M., Herzig, G.P., Croce, C.M., and Bloomfield, C.D. (1994). Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. Cancer Res. *54*, 370–373.
- Caligiuri, M.A., Strout, M.P., Lawrence, D., Arthur, D.C., Baer, M.R., Yu, F., Knuutila, S., Mrózek, K., Oberkircher, A.R., Marcucci, G., et al. (1998). Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res. *58*, 55–59.
- Capron, C., Lécluse, Y., Kaushik, A.L., Foudi, A., Lacout, C., Sekkai, D., Godin, I., Albagli, O., Poullion, I., Svinartchouk, F., et al. (2006). The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood *107*, 4678–4686.
- Cazzola, M., Della Porta, M.G., and Malcovati, L. (2013). The genetic basis of myelodysplasia and its clinical relevance. Blood *122*, 4021–4034.
- Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood *102*, 906–915.
- Chanda, B., Ditadi, A., Iscove, N.N., and Keller, G. (2013). Retinoic Acid Signaling Is Essential for Embryonic Hematopoietic Stem Cell Development. Cell *155*, 215–227.
- Chen, J.D., and Evans, R.M. (1995). A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature *377*, 454–457.
- Chen, L.T., and Weiss, L.P. (1975). The development of vertebral bone marrow of human fetuses. Blood *46*, 389–408.
- Chen, T., and Dent, S.Y.R. (2014). Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15, 93–106.
- Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W., Stallcup, M.R., Wong, J., Tempst, P., et al. (1999). Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177.
- Chen, J., Kao, Y.-R., Sun, D., Todorova, T.I., Reynolds, D., Narayanagari, S.-R., Montagna, C., Will, B., Verma, A., and Steidl, U. (2019). Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat. Med. *25*, 103–110.
- Chen, M.J., Yokomizo, T., Zeigler, B.M., Dzierzak, E., and Speck, N. a (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891.
- Chen, M.J., Li, Y., De Obaldia, M.E., Yang, Q., Yzaguirre, A.D., Yamada-Inagawa, T., Vink, C.S., Bhandoola, A., Dzierzak, E., and Speck, N. a. (2011). Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 9, 541–552.
- Chen, Y., Bates, D.L., Dey, R., Chen, P.-H., Machado, A.C.D., Laird-Offringa, I.A., Rohs, R., and Chen, L. (2012). DNA Binding by GATA Transcription Factor Suggests Mechanisms of DNA Looping and Long-Range Gene Regulation. Cell Rep. 2, 1197–1206.
- Chen-Wichmann, L., Shvartsman, M., Preiss, C., Hockings, C., Windisch, R., Redondo Monte, E.,

- Leubolt, G., Spiekermann, K., Lausen, J., Brendel, C., et al. (2019). Compatibility of RUNX1/ETO fusion protein modules driving CD34+ human progenitor cell expansion. Oncogene 38, 261–272.
- Cheng, C.K., Li, L., Cheng, S.H., Lau, K.M., Chan, N.P.H., Wong, R.S.M., Shing, M.M.K., Li, C.K., and Ng, M.H.L. (2008). Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia. Blood *112*, 3391–3402.
- Cheng, C.K., Li, L., Cheng, S.H., Ng, K., Chan, N.P.H., Ip, R.K.L., Wong, R.S.M., Shing, M.M.K., Li, C.K., and Ng, M.H.L. (2011). Secreted-frizzled related protein 1 is a transcriptional repression target of the t(8;21) fusion protein in acute myeloid leukemia. Blood *118*, 6638–6648.
- Cheng, K., Sportoletti, P., Ito, K., Clohessy, J.G., Teruya-Feldstein, J., Kutok, J.L., and Pandolfi, P.P. (2010). The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood *115*, 3341–3345.
- Cheng, T., Rodrigues, N., Shen, H., Yang, Y., Dombkowski, D., Sykes, M., and Scadden, D.T. (2000). Hematopoietic Stem Cell Quiescence Maintained by p21cip1/waf1. Science (80-.). 287, 1804–1808.
- Choi, Y., Elagib, K.E., Delehanty, L.L., and Goldfarb, A.N. (2006). Erythroid Inhibition by the Leukemic Fusion AML1-ETO Is Associated with Impaired Acetylation of the Major Erythroid Transcription Factor GATA-1. Cancer Res. *66*, 2990–2996.
- Chou, F.-S., Wunderlich, M., Griesinger, A., and Mulloy, J.C. (2011a). N-Ras(G12D) induces features of stepwise transformation in preleukemic human umbilical cord blood cultures expressing the AML1-ETO fusion gene. Blood *117*, 2237–2240.
- Chou, F.-S., Griesinger, A., Wunderlich, M., Lin, S., Link, K.A., Shrestha, M., Goyama, S., Mizukawa, B., Shen, S., Marcucci, G., et al. (2012). The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO. Blood *120*, 709–719.
- Chou, W.-C., Chou, S.-C., Liu, C.-Y., Chen, C.-Y., Hou, H.-A., Kuo, Y.-Y., Lee, M.-C., Ko, B.-S., Tang, J.-L., Yao, M., et al. (2011b). TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood *118*, 3803–3810.
- Clarke, R.L., Yzaguirre, A.D., Yashiro-Ohtani, Y., Bondue, A., Blanpain, C., Pear, W.S., Speck, N. a, and Keller, G. (2013). The expression of Sox17 identifies and regulates haemogenic endothelium. Nat. Cell Biol. *15*, 502–510.
- Clements, A., Poux, A.N., Lo, W.-S., Pillus, L., Berger, S.L., and Marmorstein, R. (2003). Structural Basis for Histone and Phosphohistone Binding by the GCN5 Histone Acetyltransferase. Mol. Cell *12*, 461–473.
- Cockerill, P.N. (2011). Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J. 278, 2182–2210.
- Corces, M.R., Buenrostro, J.D., Wu, B., Greenside, P.G., Chan, S.M., Koenig, J.L., Snyder, M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W.J., et al. (2016). Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. *48*, 1193–1203.
- Core, L.J., Waterfall, J.J., and Lis, J.T. (2008). Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848.
- Core, L.J., Waterfall, J.J., Gilchrist, D.A., Fargo, D.C., Kwak, H., Adelman, K., and Lis, J.T. (2012). Defining the Status of RNA Polymerase at Promoters. Cell Rep. 2, 1025–1035.
- Cosgrove, M.S., Boeke, J.D., and Wolberger, C. (2004). Regulated nucleosome mobility and the histone code. Nat. Struct. Mol. Biol. 11, 1037–1043.
- Cozzio, A., Passegué, E., Ayton, P.M., Karsunky, H., Cleary, M.L., and Weissman, I.L. (2003). Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035.
- Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., and Carey, B.W. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. U. S. A. 107, 21931–21936.

Crisan, M., and Dzierzak, E. (2016). The many faces of hematopoietic stem cell heterogeneity. Development *143*, 4571–4581.

Cumano, A., Dieterlen-Lievre, F., and Godin, I. (1996). Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell *86*, 907–916.

Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3 Methyltransferase Activity that Marks Chromosomal Polycomb Sites. Cell *111*, 185–196.

D'Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., and Baetge, E.E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541.

D'Souza, S.L., Elefanty, A.G., Keller, G., and Dc, W. (2005). SCL / Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development SCL / Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood *105*, 3862–3870.

Daga, A., Tighe, J., and Calabi, F. (1992). Leukaemia/Drosophila homology. Nature 356, 484-484.

Dash, A., and Gilliland, D.G. (2001). Molecular genetics of acute myeloid leukaemia. Best Pract. Res. Clin. Haematol. *14*, 49–64.

Davis, J.N., McGhee, L., and Meyers, S. (2003). The ETO (MTG8) gene family. Gene 303, 1–10.

Davis, R.P., Ng, E.S., Costa, M., Mossman, A.K., Sourris, K., Elefanty, A.G., and Stanley, E.G. (2008). Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood *111*, 1876–1884.

Dawson, M.A., and Kouzarides, T. (2012). Cancer Epigenetics: From Mechanism to Therapy. Cell 150, 12–27.

Dekker, J., and Misteli, T. (2015). Long-Range Chromatin Interactions. Cold Spring Harb. Perspect. Biol. 7, a019356.

Deschamps, J., and van Nes, J. (2005). Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development *132*, 2931–2942.

Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., Zhou, M.-M., and Zhou, M.-M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496.

Di-Poï, N., Koch, U., Radtke, F., and Duboule, D. (2010). Additive and global functions of HoxA cluster genes in mesoderm derivatives. Dev. Biol. *341*, 488–498.

Ditadi, A., and Sturgeon, C.M. (2016). Directed differentiation of definitive hemogenic endothelium and hematopoietic progenitors from human pluripotent stem cells. Methods *101*, 65–72.

Ditadi, A., Sturgeon, C.M., and Keller, G. (2016). A view of human haematopoietic development from the Petri dish. Nat. Rev. Mol. Cell Biol. *18*.

Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380.

Döhner, H., Weisdorf, D.J., and Bloomfield, C.D. (2015). Acute Myeloid Leukemia. N. Engl. J. Med. 373, 1136–1152.

Dou, D.R., Calvanese, V., Sierra, M.I., Nguyen, A.T., Minasian, A., Saarikoski, P., Sasidharan, R., Ramirez, C.M., Zack, J.A., Crooks, G.M., et al. (2016). Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat. Cell Biol. *18*, 595–606.

Doulatov, S., Notta, F., Eppert, K., Nguyen, L.T., Ohashi, P.S., and Dick, J.E. (2010). Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol. *11*, 585–593.

Dowdy, C.R., Xie, R., Frederick, D., Hussain, S., Zaidi, S.K., Vradii, D., Javed, A., Li, X., Jones, S.N., Lian, J.B., et al. (2010). Definitive hematopoiesis requires Runx1 C-terminal-mediated subnuclear

- targeting and transactivation. Hum. Mol. Genet. 19, 1048–1057.
- Drew, E., Merzaban, J.S., Seo, W., Ziltener, H.J., and McNagny, K.M. (2005). CD34 and CD43 Inhibit Mast Cell Adhesion and Are Required for Optimal Mast Cell Reconstitution. Immunity 22, 43–57.
- Drissen, R., Thongjuea, S., Theilgaard-Mönch, K., and Nerlov, C. (2019). Identification of two distinct pathways of human myelopoiesis. Sci. Immunol. 4, eaau7148.
- Duffy, J.B., and Gergen, J.P. (1991). The Drosophila segmentation gene runt acts as a position-specific numerator element necessary for the uniform expression of the sex-determining gene Sex-lethal. Genes Dev. 5, 2176–2187.
- Dunne, J., Cullmann, C., Ritter, M., Soria, N.M., Drescher, B., Debernardi, S., Skoulakis, S., Hartmann, O., Krause, M., Krauter, J., et al. (2006). siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene *25*, 6067–6078.
- Eilken, H.M., Nishikawa, S.-I., and Schroeder, T. (2009). Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature *457*, 896–900.
- Elagib, K.E., Racke, F.K., Mogass, M., Khetawat, R., Delehanty, L.L., and Goldfarb, A.N. (2003). RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood *101*, 4333–4341.
- Elias, S., Yamin, R., Golomb, L., Tsukerman, P., Stanietsky-Kaynan, N., Ben-Yehuda, D., and Mandelboim, O. (2014). Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood *123*, 1535–1543.
- Emmrich, S., Katsman-Kuipers, J.E., Henke, K., Khatib, M.E., Jammal, R., Engeland, F., Dasci, F., Zwaan, C.M., den Boer, M.L., Verboon, L., et al. (2014). miR-9 is a tumor suppressor in pediatric AML with t(8;21). Leukemia 28, 1022–1032.
- Eppert, K., Takenaka, K., Lechman, E.R., Waldron, L., Nilsson, B., van Galen, P., Metzeler, K.H., Poeppl, A., Ling, V., Beyene, J., et al. (2011). Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. *17*, 1086–1093.
- Erickson, P., Gao, J., Chang, K.S., Look, T., Whisenant, E., Raimondi, S., Lasher, R., Trujillo, J., Rowley, J., and Drabkin, H. (1992). Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood *80*, 1825–1831.
- Erickson, P., Dessev, G., Lasher, R., Philips, G., Robinson, M., and Drabkin, H. (1996). ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood 88.
- Escribano-Díaz, C., Orthwein, A., Fradet-Turcotte, A., Xing, M., Young, J.T.F., Tkáč, J., Cook, M.A., Rosebrock, A.P., Munro, M., Canny, M.D., et al. (2013). A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice. Mol. Cell *49*, 872–883.
- Esposito, M.T., Zhao, L., Fung, T.K., Rane, J.K., Wilson, A., Martin, N., Gil, J., Leung, A.Y., Ashworth, A., and Eric So, C.W. (2015). Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat. Med. *21*, 1481–1490.
- Falini, B., Bolli, N., Shan, J., Martelli, M.P., Liso, A., Pucciarini, A., Bigerna, B., Pasqualucci, L., Mannucci, R., Rosati, R., et al. (2006). Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood *107*, 4514–4523.
- Falini, B., Nicoletti, I., Martelli, M.F., and Mecucci, C. (2007). Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood *109*, 874–885.
- Faure, A.J., Schmidt, D., Watt, S., Schwalie, P.C., Wilson, M.D., Xu, H., Ramsay, R.G., Odom, D.T., and Flicek, P. (2012). Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-

- regulatory modules. Genome Res. 22, 2163-2175.
- Fazi, F., Racanicchi, S., Zardo, G., Starnes, L.M., Mancini, M., Travaglini, L., Diverio, D., Ammatuna, E., Cimino, G., Lo-Coco, F., et al. (2007). Epigenetic Silencing of the Myelopoiesis Regulator microRNA-223 by the AML1/ETO Oncoprotein. Cancer Cell *12*, 457–466.
- Feinstein, P.G., Kornfeld, K., Hogness, D.S., and Mann, R.S. (1995). Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics *140*, 573–586.
- Fishburn, J., Mohibullah, N., and Hahn, S. (2005). Function of a Eukaryotic Transcription Activator during the Transcription Cycle. Mol. Cell *18*, 369–378.
- Forster, V.J., Nahari, M.H., Martinez-Soria, N., Bradburn, A.K., Ptasinska, A., Assi, S.A., Fordham, S.E., McNeil, H., Bonifer, C., Heidenreich, O., et al. (2016). The leukemia-associated RUNX1/ETO oncoprotein confers a mutator phenotype. Leukemia *30*, 251–254.
- Frankenberger, M., Hofer, T.P.J., Marei, A., Dayyani, F., Schewe, S., Strasser, C., Aldraihim, A., Stanzel, F., Lang, R., Hoffmann, R., et al. (2012). Transcript profiling of CD16-positive monocytes reveals a unique molecular fingerprint. Eur. J. Immunol. *42*, 957–974.
- Fu, L., Huang, W., Jing, Y., Jiang, M., Zhao, Y., Shi, J., Huang, S., Xue, X., Zhang, Q., Tang, J., et al. (2014). AML1-ETO triggers epigenetic activation of early growth response gene I, inducing apoptosis in t(8;21) acute myeloid leukemia. FEBS J. 281, 1123–1131.
- Fuchs, G., Voichek, Y., Benjamin, S., Gilad, S., Amit, I., and Oren, M. (2014). 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15, 1–10.
- Fujita, Y., Nishimura, M., Taniwaki, M., Abe, T., and Okuda, T. (2001). Identification of an Alternatively Spliced Form of the Mouse AML1/RUNX1 Gene Transcript AML1c and Its Expression in Early Hematopoietic Development. Biochem. Biophys. Res. Commun. 281, 1248–1255.
- Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C., and Orkin, S.H. (1996). Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci. U. S. A. 93, 12355–12358.
- Gaidzik, V., and Döhner, K. (2008). Prognostic implications of gene mutations in acute myeloid leukemia with normal cytogenetics. Semin. Oncol. *35*, 346–355.
- Galy, A., Travis, M., Cen, D., and Chen, B. (1995). Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity *3*, 459–473.
- Gao, J., Erickson, P., Gardiner, K., Le Beau, M.M., Diaz, M.O., Patterson, D., Rowley, J.D., and Drabkin, H.A. (1991). Isolation of a yeast artificial chromosome spanning the 8;21 translocation breakpoint t(8;21)(q22;q22.3) in acute myelogenous leukemia. Proc. Natl. Acad. Sci. U. S. A. 88, 4882–4886.
- Gardini, A., Cesaroni, M., Luzi, L., Okumura, A.J., Biggs, J.R., Minardi, S.P., Venturini, E., Zhang, D.-E., Pelicci, P.G., and Alcalay, M. (2008). AML1/ETO Oncoprotein Is Directed to AML1 Binding Regions and Co-Localizes with AML1 and HEB on Its Targets. PLoS Genet. *4*, e1000275.
- Gardini, A., Baillat, D., Cesaroni, M., Hu, D., Marinis, J.M., Wagner, E.J., Lazar, M.A., Shilatifard, A., and Shiekhattar, R. (2014). Integrator Regulates Transcriptional Initiation and Pause Release following Activation. Mol. Cell *56*, 128–139.
- Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P.G., and Lazar, M.A. (1998). Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell. Biol. *18*, 7185–7191.
- Di Genua, C., Norfo, R., Rodriguez-Meira, A., Wen, W.X., Drissen, R., Booth, C.A.G., Povinelli, B., Repapi, E., Gray, N., Carrelha, J., et al. (2019). Cell-intrinsic depletion of Aml1-ETO-expressing preleukemic hematopoietic stem cells by K-Ras activating mutation. Haematologica haematol.2018.205351.
- Gershenzon, N.I., and Ioshikhes, I.P. (2005). Synergy of human Pol II core promoter elements

revealed by statistical sequence analysis. Bioinformatics 21, 1295–1300.

Gertow, K., Hirst, C.E., Yu, Q.C., Ng, E.S., Pereira, L.A., Davis, R.P., Stanley, E.G., and Elefanty, A.G. (2013). WNT3A Promotes Hematopoietic or Mesenchymal Differentiation from hESCs Depending on the Time of Exposure. Stem Cell Reports *1*, 53–65.

Gifford, C.A., Ziller, M.J., Gu, H., Trapnell, C., Donaghey, J., Tsankov, A., Shalek, A.K., Kelley, D.R., Shishkin, A.A., Issner, R., et al. (2013). Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells. Cell *153*, 1149–1163.

Gilchrist, D.A., Santos, G. Dos, Fargo, D.C., Xie, B., Gao, Y., Li, L., and Adelman, K. (2010). Pausing of RNA Polymerase II Disrupts DNA-Specified Nucleosome Organization to Enable Precise Gene Regulation. Cell *143*, 540–551.

Gilliland, D.G., and Tallman, M.S. (2002). Focus on acute leukemias. Cancer Cell 1, 417–420.

Gilmour, J., Assi, S. a, Jaegle, U., Kulu, D., van de Werken, H., Clarke, D., Westhead, D.R., Philipsen, S., and Bonifer, C. (2014). A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of hematopoietic specification. Development *141*, 2391–2401.

Goardon, N., Marchi, E., Atzberger, A., Quek, L., Schuh, A., Soneji, S., Woll, P., Mead, A., Alford, K.A., Rout, R., et al. (2011). Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell *19*, 138–152.

Godin, I., Dieterlen-Lièvre, F., and Cumano, a (1995). Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc. Natl. Acad. Sci. U. S. A. 92, 773–777.

Gomes, A.M., Kurochkin, I., Chang, B., Daniel, M., Law, K., Satija, N., Lachmann, A., Wang, Z., Ferreira, L., Ma'ayan, A., et al. (2018). Cooperative Transcription Factor Induction Mediates Hemogenic Reprogramming. Cell Rep. 25, 2821–2835.e7.

Goode, D.K., Obier, N., Vijayabaskar, M.S., Lie-A-Ling, M., Lilly, A.J., Hannah, R., Lichtinger, M., Batta, K., Florkowska, M., Patel, R., et al. (2016). Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation. Dev. Cell.

Görgens, A., Radtke, S., Möllmann, M., Cross, M., Dürig, J., Horn, P.A., and Giebel, B. (2013a). Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep. 3, 1539–1552.

Görgens, A., Radtke, S., Horn, P.A., and Giebel, B. (2013b). New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells. Cell Cycle *12*, 3478–3482.

Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., Olsson, A., Wunderlich, M., Link, K.A., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J. Clin. Invest. *123*, 3876–3888.

Goyama, S., Huang, G., Kurokawa, M., and Mulloy, J.C. (2015). Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene *34*, 3483–3492.

Goyama, S., Schibler, J., Gasilina, A., Shrestha, M., Lin, S., Link, K.A., Chen, J., Whitman, S.P., Bloomfield, C.D., Nicolet, D., et al. (2016). UBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETO. Leukemia *30*, 728–739.

Grass, J.A., Boyer, M.E., Pal, S., Wu, J., Weiss, M.J., and Bresnick, E.H. (2003). GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl. Acad. Sci. *100*, 8811–8816.

Gratzner, H.G., and Leif, R.C. (1981). An immunofluorescence method for monitoring DNA synthesis by flow cytometry. Cytometry *1*, 385–389.

Grimwade, D., Hills, R.K., Moorman, a V, Walker, H., Chatters, S., Goldstone, a H., Wheatley, K., Harrison, C.J., and Burnett, a K. (2010). Refinement of cytogenetic classification in acute myeloid leukaemia: Determination of prognostic significance of rarer recurring chromosomal abnormalities amongst 5,876 younger adult patients treated in the UK Medical Research Council trials. Br. J.

- Haematol. Conference, 17.
- Growney, J.D., Shigematsu, H., Li, Z., Lee, B.H., Adelsperger, J., Rowan, R., Curley, D.P., Kutok, J.L., Akashi, K., Williams, I.R., et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood *106*, 494–505.
- Grünberg, S., and Hahn, S. (2013). Structural insights into transcription initiation by RNA polymerase II. Trends Biochem. Sci. 38, 603–611.
- Guan, D., Zhang, W., Zhang, W., Liu, G., and Belmonte, J.C.I. (2013). Switching cell fate, ncRNAs coming to play. Cell Death Dis. 4, e464-6.
- Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., and Young, R.A. (2007). A Chromatin Landmark and Transcription Initiation at Most Promoters in Human Cells. Cell *130*, 77–88.
- Guo, C., Hu, Q., Yan, C., and Zhang, J. (2009). Multivalent binding of the ETO corepressor to E proteins facilitates dual repression controls targeting chromatin and the basal transcription machinery. Mol. Cell. Biol. 29, 2644–2657.
- de Guzman, C.G., Warren, A.J., Zhang, Z., Gartland, L., Erickson, P., Drabkin, H., Hiebert, S.W., and Klug, C.A. (2002). Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol. Cell. Biol. 22, 5506–5517.
- Haddad, R., Guimiot, F., Six, E., Jourquin, F., Setterblad, N., Kahn, E., Yagello, M., Schiffer, C., Andre-Schmutz, I., Cavazzana-Calvo, M., et al. (2006). Dynamics of thymus-colonizing cells during human development. Immunity *24*, 217–230.
- Haferlach, C., Dicker, F., Herholz, H., Schnittger, S., Kern, W., and Haferlach, T. (2008). Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia 22, 1539–1541.
- Hahn, S. (2004). Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11, 394–403.
- Handoko, L., Xu, H., Li, G., Ngan, C.Y., Chew, E., Schnapp, M., Lee, C.W.H., Ye, C., Ping, J.L.H., Mulawadi, F., et al. (2011). CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet. *43*, 630–638.
- Hao, Q.L., Zhu, J., Price, M.A., Payne, K.J., Barsky, L.W., and Crooks, G.M. (2001). Identification of a novel, human multilymphoid progenitor in cord blood. Blood 97, 3683–3690.
- Harris, M.B., Mostecki, J., and Rothman, P.B. (2005). Repression of an interleukin-4-responsive promoter requires cooperative BCL-6 function. J. Biol. Chem. 280, 13114–13121.
- Hatlen, M. a., Wang, L., and Nimer, S.D. (2012). AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front. Med. 6, 248–262.
- He, N., Chan, C.K., Sobhian, B., Chou, S., Xue, Y., Liu, M., and Alber, T. (2011a). Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin. Proc. Natl. Acad. Sci. U. S. A. *108*, E636-45.
- He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. (2011b). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307.
- Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol. Cell 38, 576–589.
- Henikoff, S., and Smith, M.M. (2015). Histone Variants and Epigenetics. Cold Spring Harb. Perspect. Biol. 7, a019364.
- Henriques, T., Scruggs, B.S., Inouye, M.O., Muse, G.W., Williams, L.H., Burkholder, A.B., Lavender, C.A., Fargo, D.C., and Adelman, K. (2018). Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 32, 26–41.

Heo, K., Kim, H., Choi, S.H., Choi, J., Kim, K., Gu, J., Lieber, M.R., Yang, A.S., and An, W. (2008). FACT-Mediated Exchange of Histone Variant H2AX Regulated by Phosphorylation of H2AX and ADP-Ribosylation of Spt16. Mol. Cell *30*, 86–97.

Higuchi, M., O' Brien, D., Kumaravelu, P., Lenny, N., Yeoh, E.J., and Downing, J.R. (2002). Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell *1*, 63–74.

Hildebrand, D., Tiefenbach, J., Heinzel, T., Grez, M., and Maurer, A.B. (2001). Multiple Regions of ETO Cooperate in Transcriptional Repression. J. Biol. Chem. 276, 9889–9895.

Hodge, D., Coghill, E., Keys, J., Maguire, T., Hartmann, B., McDowall, A., Weiss, M., Grimmond, S., and Perkins, A. (2006). A global role for EKLF in definitive and primitive erythropoiesis. Blood *107*, 3359–3370.

Hoebeke, I., De Smedt, M., Stolz, F., Pike-Overzet, K., Staal, F.J.T., Plum, J., and Leclercq, G. (2007). T-, B- and NK-lymphoid, but not myeloid cells arise from human CD34(+)CD38(-)CD7(+) common lymphoid progenitors expressing lymphoid-specific genes. Leukemia *21*, 311–319.

Hoogenkamp, M., Krysinska, H., Ingram, R., Huang, G., Barlow, R., Clarke, D., Ebralidze, A., Zhang, P., Tagoh, H., Cockerill, P.N., et al. (2007). The Pu.1 locus is differentially regulated at the level of chromatin structure and noncoding transcription by alternate mechanisms at distinct developmental stages of hematopoiesis. Mol. Cell. Biol. 27, 7425–7438.

Hoogenkamp, M., Lichtinger, M., Krysinska, H., Lancrin, C., Clarke, D., Williamson, A., Mazzarella, L., Ingram, R., Jorgensen, H., Fisher, A., et al. (2009). Early chromatin unfolding by RUNX1: A molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood *114*, 299–309.

Hotchkiss, R.D. (1948). The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. *175*, 315–332.

Hsieh, C.L. (1999). In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol. Cell. Biol. 19, 8211–8218.

Huang, G., Shigesada, K., Ito, K., Wee, H., Yokomizo, T., and Ito, Y. (2001). Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J. *20*, 723–733.

Huang, G., Zhang, P., Hirai, H., Elf, S., Yan, X., Chen, Z., Koschmieder, S., Okuno, Y., Dayaram, T., Growney, J.D., et al. (2008). PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat. Genet. *40*, 51–60.

Ichikawa, M., Asai, T., Saito, T., Seo, S., Yamazaki, I., Yamagata, T., Mitani, K., Chiba, S., Ogawa, S., Kurokawa, M., et al. (2004). AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat. Med. 10, 299–304.

Ichikawa, M., Goyama, S., Asai, T., Kawazu, M., Nakagawa, M., Takeshita, M., Chiba, S., Ogawa, S., and Kurokawa, M. (2008). AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J. Immunol. *180*, 4402–4408.

Ikonomi, P., Rivera, C.E., Riordan, M., Washington, G., Schechter, A.N., and Noguchi, C.T. (2000). Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation. Exp. Hematol. 28, 1423–1431.

Imai, Y., Kurokawa, M., Tanaka, K., Friedman, A.D., Ogawa, S., Mitani, K., Yazaki, Y., and Hirai, H. (1998). TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem. Biophys. Res. Commun. *252*, 582–589.

Imai, Y., Kurokawa, M., Yamaguchi, Y., Izutsu, K., Nitta, E., Mitani, K., Satake, M., Noda, T., Ito, Y., and Hirai, H. (2004). The Corepressor mSin3A Regulates Phosphorylation-Induced Activation, Intranuclear Location, and Stability of AML1. Mol. Cell. Biol. 24, 1033–1043.

Ivanovs, A., Rybtsov, S., Welch, L., Anderson, R.A., Turner, M.L., and Medvinsky, A. (2011). Highly

- potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J. Exp. Med. 208, 2417–2427.
- Ivanovs, A., Rybtsov, S., Anderson, R.A., Turner, M.L., and Medvinsky, A. (2014). Identification of the Niche and Phenotype of the First Human Hematopoietic Stem Cells. Stem Cell Reports 2, 449–456.
- Ivanovs, A., Rybtsov, S., Ng, E.S., Stanley, E.G., Elefanty, A.G., and Medvinsky, A. (2017). Human haematopoietic stem cell development: from the embryo to the dish. Development *144*, 2323–2337.
- Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D., and Wandless, T.J. (2010). A general chemical method to regulate protein stability in the mammalian central nervous system. Chem. Biol. *17*, 981–988.
- Jaffredo, T., Gautier, R., Eichmann, A., and Dieterlen-Lièvre, F. (1998). Intraaortic Hemopoietic Cells are Derived from Endothelial Cells During Ontogeny. Development *125*, 4575–4583.
- Jaffredo, T., Bollerot, K., Sugiyama, D., Gautier, R., and Drevon, C. (2005). Tracing the hemangioblast during embryogenesis: Developmental relationships between endothelial and hematopoietic cells. Int. J. Dev. Biol. *49*, 269–277.
- Ji, H., Ehrlich, L.I.R., Seita, J., Murakami, P., Doi, A., Lindau, P., Lee, H., Aryee, M.J., Irizarry, R.A., Kim, K., et al. (2010). Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature *467*, 338–342.
- Jiang, W., Shi, Y., Zhao, D., Chen, S., Yong, J., Zhang, J., Qing, T., Sun, X., Zhang, P., Ding, M., et al. (2007). In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. *17*, 333–344.
- Jonkers, I., and Lis, J.T. (2015). Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. *16*, 11–13.
- Jonkers, I., Kwak, H., and Lis, J.T. (2014). Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. Elife 3, 1–25.
- Kania, M.A., Bonner, A.S., Duffy, J.B., and Gergen, J.P. (1990). The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes Dev. 4, 1701–1713.
- Kanno, T., Kanno, Y., Chen, L.F., Ogawa, E., Kim, W.Y., and Ito, Y. (1998). Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor alpha subunit revealed in the presence of the beta subunit. Mol. Cell. Biol. 18, 2444–2454.
- Kao, T., Labonne, T., Niclis, J.C., Chaurasia, R., Lokmic, Z., Qian, E., Bruveris, F.F., Howden, S.E., Motazedian, A., Schiesser, J. V., et al. (2016). GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives. Stem Cell Reports 7, 518–526.
- Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D., and Kent, W.J. (2004). The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, 493D–496.
- Kaufman, D.S., Hanson, E.T., Lewis, R.L., Auerbach, R., and Thomson, J.A. (2001). Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 98, 10716–10721.
- Kauts, M.-L., Vink, C.S., and Dzierzak, E. (2016). Hematopoietic (stem) cell development how divergent are the roads taken? FEBS Lett. *590*, 3975–3986.
- Kawamoto, H., Ohmura, K., Fujimoto, S., and Katsura, Y. (1999). Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J. Immunol. *162*, 2725–2731.
- Kawamoto, H., Ikawa, T., Masuda, K., Wada, H., and Katsura, Y. (2010). A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol. Rev. 238, 23–36.
- Kayser, S., Schlenk, R.F., Londono, M.C., Breitenbuecher, F., Wittke, K., Du, J., Groner, S., Späth, D., Krauter, J., Ganser, A., et al. (2009). Insertion of FLT3 internal tandem duplication in the tyrosine

kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 114, 2386–2392.

Keller, G.M. (1995). In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7, 862–869.

Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V (1993). Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. *13*, 473–486.

Kelly, L.M., and Gilliland, D.G. (2002). Genetics of myeloid leukemias. Annu. Rev. Genomics Hum. Genet. 3, 179–198.

Kelly, L.M., Liu, Q., Kutok, J.L., Williams, I.R., Boulton, C.L., and Gilliland, D.G. (2002). FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood *99*, 310–318.

Kennedy, M., Awong, G., Sturgeon, C.M., Ditadi, A., LaMotte-Mohs, R., Zúñiga-Pflücker, J.C., and Keller, G. (2012). T Lymphocyte Potential Marks the Emergence of Definitive Hematopoietic Progenitors in Human Pluripotent Stem Cell Differentiation Cultures. Cell Rep. 2, 1722–1735.

Kim, A.D., Stachura, D.L., and Traver, D. (2014a). Cell signaling pathways involved in hematopoietic stem cell specification. Exp. Cell Res. 329, 227–233.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360.

Kim, I., Saunders, T.L., and Morrison, S.J. (2007). Sox17 Dependence Distinguishes the Transcriptional Regulation of Fetal from Adult Hematopoietic Stem Cells. Cell *130*, 470–483.

Kim, J., Guermah, M., and Roeder, R.G. (2010). The Human PAF1 Complex Acts in Chromatin Transcription Elongation Both Independently and Cooperatively with SII/TFIIS. Cell *140*, 491–503.

Kim, W., Klarmann, K.D., Keller, J.R., Yu, C., Smith, K.A., Mueller, B.U., Narravula, S., Torbett, B.E., Orkin, S.H., and Tenen, D.G. (2014b). Gfi-1 regulates the erythroid transcription factor network through Id2 repression in murine hematopoietic progenitor cells. Blood *124*, 1586–1596.

Kimelman, D. (2006). Mesoderm induction: from caps to chips. Nat. Rev. Genet. 7, 360–372.

Kimura, H., and Shiota, K. (2003). Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J. Biol. Chem. 278, 4806–4812.

Kissa, K., and Herbomel, P. (2010). Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature *464*, 112–115.

Kitabayashi, I., Yokoyama, A., Shimizu, K., and Ohki, M. (1998). Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J. 17, 2994–3004.

Klampfer, L., Zhang, J., Zelenetz, A.O., Uchida, H., and Nimer, S.D. (1996). The AML1/ETO fusion protein activates transcription of BCL-2. Proc. Natl. Acad. Sci. U. S. A. 93, 14059–14064.

Koenderman, L., Buurman, W., and Daha, M.R. (2014). The innate immune response. Immunol. Lett. *162*, 95–102.

Kondo, M., Weissman, I.L., and Akashi, K. (1997). Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell *91*, 661–672.

Kornberg, R.D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871.

Kornberg, R.D., and Lorch, Y. (1999). Twenty-Five Years of the Nucleosome, Fundamental Particle of the Eukaryote Chromosome. Cell *98*, 285–294.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705.

Kozu, T., Fukuyama, T., Yamami, T., Akagi, K., and Kaneko, Y. (2005). MYND-less splice variants of AML1-MTG8 (RUNX1-CBFA2T1) are expressed in leukemia with t(8;21). Genes, Chromosom. Cancer 43, 45–53.

- Krämer, O.H., Müller, S., Buchwald, M., Reichardt, S., and Heinzel, T. (2008). Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARa. FASEB J. 22, 1369–1379.
- Krauth, M.-T., Eder, C., Alpermann, T., Bacher, U., Nadarajah, N., Kern, W., Haferlach, C., Haferlach, T., and Schnittger, S. (2014). High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia *28*, 1449–1458.
- Krejci, O., Wunderlich, M., Geiger, H., Chou, F.S., Schleimer, D., Jansen, M., Andreassen, P.R., and Mulloy, J.C. (2008). P53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood *111*, 2190–2199.
- Krüger, I., Vollmer, M., Simmons, D., Elsässer, H.P., Philipsen, S., and Suske, G. (2007). Sp1/Sp3 compound heterozygous mice are not viable: Impaired erythropoiesis and severe placental defects. Dev. Dyn. 236, 2235–2244.
- Kruse, E. a, Loughran, S.J., Baldwin, T.M., Josefsson, E.C., Ellis, S., Watson, D.K., Nurden, P., Metcalf, D., Hilton, D.J., Alexander, W.S., et al. (2009). Dual requirement for the ETS transcription factors Fli-1 and Erg in hematopoietic stem cells and the megakaryocyte lineage. Proc. Natl. Acad. Sci. U. S. A. *106*, 13814–13819.
- Kuchenbauer, F., Feuring-Buske, M., and Buske, C. (2005). AML1-ETO needs a partner: new insights into the pathogenesis of t(8;21) leukemia. Cell Cycle 4, 1716–1718.
- Kuchenbauer, F., Schnittger, S., Look, T., Gilliland, G., Tenen, D., Haferlach, T., Hiddemann, W., Buske, C., and Schoch, C. (2006). Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t(8;21)/AML1-ETO. Br. J. Haematol. *134*, 616–619.
- Kurokawa, M., Tanaka, T., Tanaka, K., Ogawa, S., Mitani, K., Yazaki, Y., and Hirai, H. (1996). Overexpression of the AML1 proto-oncoprotein in NIH3T3 cells leads to neoplastic transformation depending on the DNA-binding and transactivational potencies. Oncogene *12*, 883–892.
- Kurotaki, D., Osato, N., Nishiyama, A., Yamamoto, M., Ban, T., Sato, H., Nakabayashi, J., Umehara, M., Miyake, N., Matsumoto, N., et al. (2013). Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation. Blood *121*, 1839–1849.
- Kwak, H., Fuda, N.J., Core, L.J., and Lis, J.T. (2013). Precise Maps of RNA Polymerase Reveal How Promoters Direct Initiation and Pausing. Science (80-. ). 339, 950–953.
- Kwok, C., Zeisig, B.B., Qiu, J., Dong, S., and So, C.W.E. (2009). Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc. Natl. Acad. Sci. U. S. A. *106*, 2853–2858.
- de la Serna, I.L., Ohkawa, Y., Berkes, C.A., Bergstrom, D.A., Dacwag, C.S., Tapscott, S.J., and Imbalzano, A.N. (2005). MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol. Cell. Biol. 25, 3997–4009.
- Lachner, M., O'Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature *410*, 116–120.
- Lam, K., and Zhang, D.-E. (2012). RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front. Biosci. (Landmark Ed. 17, 1120–1139.
- Lam, E.Y.N., Hall, C.J., Crosier, P.S., Crosier, K.E., and Flores, M.V. (2010). Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood *116*, 909–914.
- Lamandé, S.R., Yuan, Y., Gresshoff, I.L., Rowley, L., Belluoccio, D., Kaluarachchi, K., Little, C.B., Botzenhart, E., Zerres, K., Amor, D.J., et al. (2011). Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat. Genet. *43*, 1142–1146.
- Lamartina, S., Sporeno, E., Fattori, E., and Toniatti, C. (2000). Characteristics of the adeno-associated virus preintegration site in human chromosome 19: open chromatin conformation and transcription-competent environment. J. Virol. 74, 7671–7677.
- Lancrin, C., Sroczynska, P., Stephenson, C., Allen, T., Kouskoff, V., and Lacaud, G. (2009). The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature

457, 892-895.

Lancrin, C., Mazan, M., Stefanska, M., Patel, R., Lichtinger, M., Costa, G., Vargel, Ö., Wilson, N.K., Möröy, T., Bonifer, C., et al. (2012). GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood *120*, 314–322.

Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics *24*, 719–720.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.

Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature *367*, 645–648.

Larsen, F., Gundersen, G., Lopez, R., and Prydz, H. (1992). CpG islands as gene markers in the human genome. Genomics 13, 1095–1107.

Lausen, J., Cho, S., Liu, S., and Werner, M.H. (2004). The nuclear receptor co-repressor (N-CoR) utilizes repression domains I and III for interaction and co-repression with ETO. J. Biol. Chem. 279, 49281–49288.

Lawson, N.D., Scheer, N., Pham, V.N., Kim, C.H., Chitnis, A.B., Campos-Ortega, J.A., and Weinstein, B.M. (2001). Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development *128*, 3675–3683.

Lebert-Ghali, C.-E., Fournier, M., Dickson, G.J., Thompson, A., Sauvageau, G., and Bijl, J.J. (2010). HoxA cluster is haploinsufficient for activity of hematopoietic stem and progenitor cells. Exp. Hematol. 38, 1074–1086.e5.

Lechman, E.R., Gentner, B., van Galen, P., Giustacchini, A., Saini, M., Boccalatte, F.E., Hiramatsu, H., Restuccia, U., Bachi, A., Voisin, V., et al. (2012). Attenuation of miR-126 Activity Expands HSC In Vivo without Exhaustion. Cell Stem Cell *11*, 799–811.

Lechman, E.R., Gentner, B., Ng, S.W.K., Schoof, E.M., van Galen, P., Kennedy, J.A., Nucera, S., Ciceri, F., Kaufmann, K.B., Takayama, N., et al. (2016). miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell *29*, 214–228.

Leddin, M., Perrod, C., Hoogenkamp, M., Ghani, S., Assi, S., Heinz, S., Wilson, N.K., Follows, G., Schönheit, J., Vockentanz, L., et al. (2011). Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood *117*, 2827–2838.

Lee, T.I., and Young, R.A. (2000). Transcription of Eukaryotic Protein-Coding Genes. Annu. Rev. Genet. *34*, 77–137.

Lee, D.Y., Hayes, J.J., Pruss, D., and Wolffe, A.P. (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell *72*, 73–84.

van Leeuwen, F., Gafken, P.R., and Gottschling, D.E. (2002). Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell *109*, 745–756.

Legrier, M.-E., Bièche, I., Gaston, J., Beurdeley, A., Yvonnet, V., Déas, O., Thuleau, A., Château-Joubert, S., Servely, J.-L., Vacher, S., et al. (2016). Activation of IFN/STAT1 signalling predicts response to chemotherapy in oestrogen receptor-negative breast cancer. Br. J. Cancer *114*, 177–187.

Lekstrom-Himes, J. a (2001). The role of C/EBP(epsilon) in the terminal stages of granulocyte differentiation. Stem Cells 19, 125–133.

Lenhard, B., Sandelin, A., and Carninci, P. (2012). Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 13, 233–245.

Levanon, D., Goldstein, R.E., Bernstein, Y., Tang, H., Goldenberg, D., Stifani, S., Paroush, Z., and Groner, Y. (1998). Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl. Acad. Sci. U. S. A. 95, 11590–11595.

- Levantini, E., Lee, S., Radomska, H.S., Hetherington, C.J., Alberich-Jorda, M., Amabile, G., Zhang, P., Gonzalez, D. a, Zhang, J., Basseres, D.S., et al. (2011). RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO J. 30, 4059–4070.
- Li, J., and Gilmour, D.S. (2013). Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. EMBO J. 32, 1829–1841.
- Li, Y., Gao, L., Luo, X., Wang, L., Gao, X., Wang, W., Sun, J., Dou, L., Li, J., Xu, C., et al. (2013). Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood *121*, 499–509.
- Li, Y., Wang, H., Wang, X., Jin, W., Tan, Y., Fang, H., Chen, S., Chen, Z., and Wang, K. (2016). Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood *127*, 233–242.
- Li, Z., Chen, P., Su, R., Li, Y., Hu, C., Wang, Y., Arnovitz, S., He, M., Gurbuxani, S., Zuo, Z., et al. (2015). Overexpression and knockout of miR-126 both promote leukemogenesis. Blood *126*, 2005–2015.
- Lichtinger, M., Hoogenkamp, M., Krysinska, H., Ingram, R., and Bonifer, C. (2010). Chromatin regulation by RUNX1. Blood Cells, Mol. Dis. 44, 287–290.
- Lichtinger, M., Ingram, R., Hannah, R., Müller, D., Clarke, D., Assi, S. a, Lie-A-Ling, M., Noailles, L., Vijayabaskar, M.S., Wu, M., et al. (2012). RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. EMBO J. *31*, 4318–4333.
- Liddiard, K., Hills, R., Burnett, A.K., Darley, R.L., and Tonks, A. (2010). OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene 29, 2005–2012.
- Lin, S., Mulloy, J.C., and Goyama, S. (2017a). RUNX1-ETO Leukemia. In RUNX Proteins in Development and Cancer, Advances in Experimental Medicine and Biology VOL 952, (Springer Nature Singapore Pte Ltd.), pp. 151–173.
- Lin, S., Ptasinska, A., Chen, X., Shrestha, M., Assi, S.A., Chin, P.S., Imperato, M.R., Aronow, B.J., Zhang, J., Weirauch, M.T., et al. (2017b). A FOXO1-induced oncogenic network defines the AML1-ETO preleukemic program. Blood *130*, 1213–1222.
- Lin, X., Taube, R., Fujinaga, K., and Peterlin, B.M. (2002). P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA. J. Biol. Chem. 277, 16873–16878.
- Lindsley, R.C., Mar, B.G., Mazzola, E., Grauman, P. V, Shareef, S., Allen, S.L., Pigneux, A., Wetzler, M., Stuart, R.K., Erba, H.P., et al. (2015). Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood *125*, 1367–1376.
- Linggi, B., Müller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., Berdel, W.E., van der Reijden, B., Quelle, D.E., Rowley, J.D., et al. (2002). The t(8;21) fusion protein, AML1–ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia. Nat. Med. 8, 743–750.
- Link, K.A., Lin, S., Shrestha, M., Bowman, M., Wunderlich, M., Bloomfield, C.D., Huang, G., and Mulloy, J.C. (2016). Supraphysiologic levels of the AML1-ETO isoform AE9a are essential for transformation. Proc. Natl. Acad. Sci. U. S. A. *113*, 9075–9080.
- Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature *462*, 315–322.
- Liu, F., Walmsley, M., Rodaway, A., and Patient, R. (2008). Fli1 Acts at the Top of the Transcriptional Network Driving Blood and Endothelial Development. Curr. Biol. *18*, 1234–1240.
- Liu, S., Shen, T., Huynh, L., Klisovic, M.I., Rush, L.J., Ford, J.L., Yu, J., Becknell, B., Li, Y., Liu, C., et al. (2005). Interplay of RUNX1/MTG8 and DNA Methyltransferase 1 in Acute Myeloid Leukemia. Cancer Res. 65, 1277–1284.
- Liu, X., Zhang, Q., Zhang, D.-E., Zhou, C., Xing, H., Tian, Z., Rao, Q., Wang, M., and Wang, J. (2009).

- Overexpression of an isoform of AML1 in acute leukemia and its potential role in leukemogenesis. Leukemia 23, 739–745.
- Liu, X., Gao, Q., Li, P., Zhao, Q., Zhang, J., Li, J., Koseki, H., and Wong, J. (2013). UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat. Commun. *4*, 1563.
- Liu, Y., Cheney, M.D., Gaudet, J.J., Chruszcz, M., Lukasik, S.M., Sugiyama, D., Lary, J., Cole, J., Dauter, Z., Minor, W., et al. (2006). The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell 9, 249–260.
- Lo, M.-C., Peterson, L.F., Yan, M., Cong, X., Jin, F., Shia, W.-J., Matsuura, S., Ahn, E.-Y., Komeno, Y., Ly, M., et al. (2012). Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood *120*, 1473–1484.
- Loke, J., Assi, S.A., Imperato, M.R., Ptasinska, A., Cauchy, P., Grabovska, Y., Soria, N.M., Raghavan, M., Delwel, H.R., Cockerill, P.N., et al. (2017). RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML. Cell Rep. 19, 1654–1668.
- Lombardo, A., Cesana, D., Genovese, P., Di Stefano, B., Provasi, E., Colombo, D.F., Neri, M., Magnani, Z., Cantore, A., Lo Riso, P., et al. (2011). Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat. Methods *8*, 861–869.
- Loughran, S.J., Kruse, E. a, Hacking, D.F., de Graaf, C. a, Hyland, C.D., Willson, T. a, Henley, K.J., Ellis, S., Voss, A.K., Metcalf, D., et al. (2008). The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat. Immunol. 9, 810–819.
- Luckett, W.P. (1978). Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152, 59–97.
- Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260.
- Lugthart, S., Gröschel, S., Beverloo, H.B., Kayser, S., Valk, P.J.M., van Zelderen-Bhola, S.L., Jan Ossenkoppele, G., Vellenga, E., van den Berg-de Ruiter, E., Schanz, U., et al. (2010). Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J. Clin. Oncol. 28, 3890–3898.
- Lutterbach, B., Westendorf, J.J., Linggi, B., Patten, A., Moniwa, M., Davie, J.R., Huynh, K.D., Bardwell, V.J., Lavinsky, R.M., Rosenfeld, M.G., et al. (1998a). ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell. Biol. 18, 7176–7184.
- Lutterbach, B., Sun, D., Schuetz, J., and Hiebert, S.W. (1998b). The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol. Cell. Biol. *18*, 3604–3611.
- Madan, V., Han, L., Hattori, N., Teoh, W.W., Mayakonda, A., Sun, Q.-Y., Ding, L.-W., Binte Mohd Nordin, H., Lim, S.L., Shyamsunder, P., et al. (2018). ASXL2 regulates hematopoiesis in mice and its deficiency promotes myeloid expansion. Haematologica haematol.2018.189928.
- Maiques-Diaz, A., Chou, F.S., Wunderlich, M., Gómez-López, G., Jacinto, F. V., Rodriguez-Perales, S., Larrayoz, M.J., Calasanz, M.J., Mulloy, J.C., Cigudosa, J.C., et al. (2012). Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs. Leukemia 26, 1329–1337.
- Mandoli, A., Singh, A.A., Prange, K.H.M., Tijchon, E., Oerlemans, M., Dirks, R., Ter Huurne, M., Wierenga, A.T.J., Janssen-Megens, E.M., Berentsen, K., et al. (2016). The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs. Cell Rep. *17*, 2087–2100.
- Månsson, R., Hultquist, A., Luc, S., Yang, L., Anderson, K., Kharazi, S., Al-Hashmi, S., Liuba, K., Thorén, L., Adolfsson, J., et al. (2007). Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity *26*, 407–419.
- Manz, M.G., Miyamoto, T., Akashi, K., and Weissman, I.L. (2002). Prospective isolation of human

clonogenic common myeloid progenitors. Proc. Natl. Acad. Sci. U. S. A. 99, 11872–11877.

Marcucci, G., Maharry, K., Wu, Y.-Z., Radmacher, M.D., Mrózek, K., Margeson, D., Holland, K.B., Whitman, S.P., Becker, H., Schwind, S., et al. (2010). IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28, 2348–2355.

Marcucci, G., Haferlach, T., and Döhner, H. (2011). Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J. Clin. Oncol. 29, 475–486.

Marcucci, G., Metzeler, K.H., Schwind, S., Becker, H., Maharry, K., Mrózek, K., Radmacher, M.D., Kohlschmidt, J., Nicolet, D., Whitman, S.P., et al. (2012). Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J. Clin. Oncol. *30*, 742–750.

Marinić, M., Aktas, T., Ruf, S., and Spitz, F. (2013). An Integrated Holo-Enhancer Unit Defines Tissue and Gene Specificity of the Fgf8 Regulatory Landscape. Dev. Cell *24*, 530–542.

Marneth, A.E., Botezatu, L., Hönes, J.M., Israël, J.C.L., Schütte, J., Vassen, L., Lams, R.F., Bergevoet, S.M., Groothuis, L., Mandoli, A., et al. (2018). GFI1 is required for RUNX1/ETO positive acute myeloid leukemia. Haematologica *103*, e395–e399.

Marshall, C.J., Moore, R.L., Thorogood, P., Brickell, P.M., Kinnon, C., and Thrasher, A.J. (1999). Detailed characterization of the human aorta-gonad-mesonephros region reveals morphological polarity resembling a hematopoietic stromal layer. Dev. Dyn. *215*, 139–147.

Marshall, C.J., Kinnon, C., and Thrasher, A.J. (2000). Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. Blood *96*.

Marshall, C.J., Sinclair, J.C., Thrasher, A.J., and Kinnon, C. (2007). Bone morphogenetic protein 4 modulates c-Kit expression and differentiation potential in murine embryonic aorta-gonad-mesonephros haematopoiesis in vitro. Br. J. Haematol. *139*, 321–330.

Martens, J.H. a., Mandoli, a., Simmer, F., Wierenga, B.-J., Saeed, S., Singh, a. a., Altucci, L., Vellenga, E., and Stunnenberg, H.G. (2012). ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood *120*, 4038–4048.

Martinez, N., Drescher, B., Riehle, H., Cullmann, C., Vornlocher, H.-P., Ganser, A., Heil, G., Nordheim, A., Krauter, J., and Heidenreich, O. (2004). The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells. BMC Cancer *4*, 44.

Martinez-Soria, N., McKenzie, L., Draper, J., Ptasinska, A., Issa, H., Potluri, S., Blair, H.J., Pickin, A., Isa, A., Chin, P.S., et al. (2019). The Oncogenic Transcription Factor RUNX1/ETO Corrupts Cell Cycle Regulation to Drive Leukemic Transformation. Cancer Cell *35*, 705.

Martinez Soria, N., Tussiwand, R., Ziegler, P., Manz, M.G., and Heidenreich, O. (2009). Transient depletion of RUNX1/RUNX1T1 by RNA interference delays tumour formation in vivo. Leuk. Off. J. Leuk. Soc. Am. Leuk. Res. Fund, U.K 23, 188–190.

Maston, G.A., Evans, S.K., and Green, M.R. (2006). Transcriptional Regulatory Elements in the Human Genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59.

Mathas, S., Hinz, M., Anagnostopoulos, I., Krappmann, D., Lietz, A., Jundt, F., Bommert, K., Mechta-Grigoriou, F., Stein, H., Dörken, B., et al. (2002). Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappaB. EMBO J. *21*, 4104–4113.

Matsuura, S., Yan, M., Lo, M.-C., Ahn, E.-Y., Weng, S., Dangoor, D., Matin, M., Higashi, T., Feng, G.-S., and Zhang, D.-E. (2012). Negative effects of GM-CSF signaling in a murine model of t(8;21)-induced leukemia. Blood *119*, 3155–3163.

McGinnis, W., and Krumlauf, R. (1992). Homeobox genes and axial patterning. Cell 68, 283-302.

McGrath, K.E., Frame, J.M., Fegan, K.H., Bowen, J.R., Conway, S.J., Catherman, S.C., Kingsley,

P.D., Koniski, A.D., and Palis, J. (2015). Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. *11*, 1892–1904.

McKercher, S.R., Torbett, B.E., Anderson, K.L., Henkel, G.W., Vestal, D.J., Baribault, H., Klemsz, M., Feeney, a J., Wu, G.E., Paige, C.J., et al. (1996). Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. *15*, 5647–5658.

Medvinsky, A., and Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell *86*, 897–906.

Medvinsky, A., Rybtsov, S., and Taoudi, S. (2011). Embryonic origin of the adult hematopoietic system: advances and questions. Development *138*, 1017–1031.

Medvinsky, A.L., Samoylina, N.L., Müller, A.M., and Dzierzak, E.A. (1993). An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature *364*, 64–67.

Meehan, R.R., Lewis, J.D., McKay, S., Kleiner, E.L., and Bird, A.P. (1989). Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell *58*, 499–507.

Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature *454*, 766–771.

Melgar, K., Walker, M.M., Jones, L.M., Bolanos, L.C., Hueneman, K., Wunderlich, M., Jiang, J.-K., Wilson, K.M., Zhang, X., Sutter, P., et al. (2019). Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci. Transl. Med. *11*, eaaw8828.

Merika, M., and Thanos, D. (2001). Enhanceosomes. Curr. Opin. Genet. Dev. 11, 205-208.

Meshorer, E., Yellajoshula, D., George, E., Scambler, P.J., Brown, D.T., and Misteli, T. (2006). Hyperdynamic Plasticity of Chromatin Proteins in Pluripotent Embryonic Stem Cells. Dev. Cell *10*, 105–116.

Mestas, J., and Hughes, C.C.W. (2004). Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738.

Metzeler, K.H., Becker, H., Maharry, K., Radmacher, M.D., Kohlschmidt, J., Mrózek, K., Nicolet, D., Whitman, S.P., Wu, Y.-Z., Schwind, S., et al. (2011). ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood *118*, 6920–6929.

Meyer, C., Schneider, B., Jakob, S., Strehl, S., Attarbaschi, A., Schnittger, S., Schoch, C., Jansen, M.W.J.C., van Dongen, J.J.M., den Boer, M.L., et al. (2006). The MLL recombinome of acute leukemias. Leukemia 20, 777–784.

Meyers, S., Downing, J.R., and Hiebert, S.W. (1993). Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol. Cell. Biol. *13*, 6336–6345.

Meyers, S., Lenny, N., and Hiebert, S.W. (1995). The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol. Cell. Biol. *15*, 1974–1982.

Micol, J.-B., Duployez, N., Boissel, N., Petit, A., Geffroy, S., Nibourel, O., Lacombe, C., Lapillonne, H., Etancelin, P., Figeac, M., et al. (2014). Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood *124*, 1445–1449.

Mifsud, B., Tavares-Cadete, F., Young, A.N., Sugar, R., Schoenfelder, S., Ferreira, L., Wingett, S.W., Andrews, S., Grey, W., Ewels, P.A., et al. (2015). Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. *47*, 598–606.

Migliaccio, G., Migliaccio, A.R., Petti, S., Mavilio, F., Russo, G., Lazzaro, D., Testa, U., Marinucci, M., and Peschle, C. (1986). Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac----liver transition. J. Clin. Invest. 78, 51–60.

Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T., Koche, R.P., et al. (2007). Genome-wide maps of chromatin state in pluripotent and

lineage-committed cells. Nature 448, 553–562.

Miller, M.E., Rosten, P., Lemieux, M.E., Lai, C., and Humphries, R.K. (2016). Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion. PLoS One 11.

Milne, T.A., Briggs, S.D., Brock, H.W., Martin, M.E., Gibbs, D., Allis, C.D., and Hess, J.L. (2002). MLL Targets SET Domain Methyltransferase Activity to Hox Gene Promoters. Mol. Cell *10*, 1107–1117.

Min, I.M., Pietramaggiori, G., Kim, F.S., Passegué, E., Stevenson, K.E., and Wagers, A.J. (2008). The Transcription Factor EGR1 Controls Both the Proliferation and Localization of Hematopoietic Stem Cells. Cell Stem Cell 2, 380–391.

Minucci, S., Maccarana, M., Cioce, M., De Luca, P., Gelmetti, V., Segalla, S., Di Croce, L., Giavara, S., Matteucci, C., Gobbi, A., et al. (2000). Oligomerization of RAR and AML1 Transcription Factors as a Novel Mechanism of Oncogenic Activation. Mol. Cell *5*, 811–820.

Miyamoto, T., Weissman, I.L., and Akashi, K. (2000). AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl. Acad. Sci. U. S. A. 97, 7521–7526.

Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., and Ohki, M. (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. U. S. A. 88, 10431–10434.

Miyoshi, H., Kozu, T., Shimizu, K., Enomoto, K., Maseki, N., Kaneko, Y., Kamada, N., and Ohki, M. (1993). The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. *12*, 2715–2721.

Miyoshi, H., Ohira, M., Shimizu, K., Mitani, K., Hirai, H., Imai, T., Yokoyama, K., Soceda, E., and Ohkl, M. (1995). Alternative splicing and genomic structure of the *AML1* gene involved in acute myeloid leukemia. Nucleic Acids Res. *23*, 2762–2769.

Mizzen, C.A., Yang, X.-J., Kokubo, T., Brownell, J.E., Bannister, A.J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S.L., Kouzarides, T., et al. (1996). The TAFII250 Subunit of TFIID Has Histone Acetyltransferase Activity. Cell *87*, 1261–1270.

Molloy, E.L., Adams, A., Moore, J.B., Masterson, J.C., Madrigal-Estebas, L., Mahon, B.P., and O'Dea, S. (2008). BMP4 induces an epithelial–mesenchymal transition-like response in adult airway epithelial cells. Growth Factors *26*, 12–22.

Morris, J.R., Petrov, D.A., Lee, A.M., and Wu, C.-T. (2004). Enhancer choice in cis and in trans in Drosophila melanogaster: role of the promoter. Genetics *167*, 1739–1747.

Morrison, S., Wandycz, A., Hemmati, H., Wright, D., and Weissman, I. (1997). Identification of a lineage of multipotent hematopoietic progenitors. Development *124*, 1929–1939.

Mrózek, K., Marcucci, G., Paschka, P., Whitman, S.P., and Bloomfield, C.D. (2007). Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood *109*, 431–448.

Mucenski, M.L., McLain, K., Kier, a B., Swerdlow, S.H., Schreiner, C.M., Miller, T. a, Pietryga, D.W., Scott, W.J., and Potter, S.S. (1991). A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell *65*, 677–689.

Müller, A.M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzakt, E. (1994). Development of hematopoietic stem cell activity in the mouse embryo. Immunity *1*, 291–301.

Müller-Tidow, C., Steffen, B., Cauvet, T., Tickenbrock, L., Ji, P., Diederichs, S., Sargin, B., Köhler, G., Stelljes, M., Puccetti, E., et al. (2004). Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol. Cell. Biol. *24*, 2890–2904.

Mulloy, J.C., Cammenga, J., MacKenzie, K.L., Berguido, F.J., Moore, M.A., and Nimer, S.D. (2002). The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 99, 15–23.

- Mulloy, J.C., Cammenga, J., Berguido, F.J., Wu, K., Zhou, P., Comenzo, R.L., Jhanwar, S., Moore, M. a. S., and Nimer, S.D. (2003). Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood *102*, 4369.
- Mulloy, J.C., Jankovic, V., Wunderlich, M., Delwel, R., Cammenga, J., Krejci, O., Zhao, H., Valk, P.J.M., Lowenberg, B., and Nimer, S.D. (2005). AML1-ETO fusion protein up-regulates TRKA mRNA expression in human CD34+ cells, allowing nerve growth factor-induced expansion. Proc. Natl. Acad. Sci. *102*, 4016–4021.
- Muse, G.W., Gilchrist, D.A., Nechaev, S., Shah, R., Parker, J.S., Grissom, S.F., Zeitlinger, J., and Adelman, K. (2007). RNA polymerase is poised for activation across the genome. Nat. Genet. 39, 1507–1511.
- Nakagawa, M., Shimabe, M., Watanabe-Okochi, N., Arai, S., Yoshimi, A., Shinohara, A., Nishimoto, N., Kataoka, K., Sato, T., Kumano, K., et al. (2011). AML1/RUNX1 functions as a cytoplasmic attenuator of NF-κB signaling in the repression of myeloid tumors. Blood *118*, 6626–6637.
- Nakajima-Takagi, Y., Osawa, M., Oshima, M., Takagi, H., Miyagi, S., Endoh, M., Endo, T. a, Takayama, N., Eto, K., Toyoda, T., et al. (2013). Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood *121*, 447–458.
- Nan, X., Ng, H.-H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N., and Bird, A. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.
- Navarro-Montero, O., Ayllon, V., Lamolda, M., López-Onieva, L., Montes, R., Bueno, C., Ng, E., Guerrero-Carreno, X., Romero, T., Romero-Moya, D., et al. (2017). *RUNX1c* Regulates Hematopoietic Differentiation of Human Pluripotent Stem Cells Possibly in Cooperation with Proinflammatory Signaling. Stem Cells *35*, 2253–2266.
- Ng, A.P., Loughran, S.J., Metcalf, D., Hyland, C.D., de Graaf, C.A., Hu, Y., Smyth, G.K., Hilton, D.J., Kile, B.T., and Alexander, W.S. (2011). Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice. Blood *118*, 2454–2461.
- Ng, C.E.L., Yokomizo, T., Yamashita, N., Cirovic, B., Jin, H., Wen, Z., Ito, Y., and Osato, M. (2010). A Runx1 Intronic Enhancer Marks Hemogenic Endothelial Cells and Hematopoietic Stem Cells. Stem Cells 28, 1869–1881.
- Ng, E.S., Davis, R.P., Azzola, L., Stanley, E.G., and Elefanty, A.G. (2005). Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood *106*, 1601–1603.
- Ng, E.S., Davis, R., Stanley, E.G., and Elefanty, A.G. (2008). A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat. Protoc. *3*, 768–776.
- Ng, E.S., Azzola, L., Bruveris, F.F., Calvanese, V., Phipson, B., Vlahos, K., Hirst, C., Jokubaitis, V.J., Yu, Q.C., Maksimovic, J., et al. (2016). Differentiation of human embryonic stem cells to HOXA+hemogenic vasculature that resembles the aorta-gonad-mesonephros. Nat. Biotechnol. *34*, 1168–1179.
- Nick, H.J., Kim, H.-G., Chang, C.-W., Harris, K.W., Reddy, V., and Klug, C.A. (2012). Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1-ETO-associated acute myeloid leukemia. Blood *119*, 1522–1531.
- Nisson, P.E., Watkins, P.C., and Sacchi, N. (1992). Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genet. Cytogenet. 63, 81–88.
- Nobuhisa, I., Osawa, M., Uemura, M., Kishikawa, Y., Anani, M., Harada, K., Takagi, H., Saito, K., Kanai-Azuma, M., Kanai, Y., et al. (2014). Sox17-mediated maintenance of fetal intra-aortic hematopoietic cell clusters. Mol. Cell. Biol. *34*, 1976–1990.
- North, T., Gu, T.L., Stacy, T., Wang, Q., Howard, L., Binder, M., Marín-Padilla, M., and Speck, N. a (1999). Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development *126*,

2563-2575.

- North, T.E., De Bruijn, M.F.T.R., Stacy, T., Talebian, L., Lind, E., Robin, C., Binder, M., Dzierzak, E., and Speck, N. a. (2002). Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity *16*, 661–672.
- North, T.E., Stacy, T., Matheny, C.J., Speck, N.A., and De Bruijn, M.F.T.R. (2004). Runx1 Is Expressed in Adult Mouse Hematopoietic Stem Cells and Differentiating Myeloid and Lymphoid Cells, But Not in Maturing Erythroid Cells. Stem Cells 22, 158–168.
- Nostro, M.C., Cheng, X., Keller, G.M., and Gadue, P. (2008). Wnt, Activin, and BMP Signaling Regulate Distinct Stages in the Developmental Pathway from Embryonic Stem Cells to Blood. Cell Stem Cell 2, 60–71.
- Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O.I., Wilson, G., Kaufmann, K.B., McLeod, J., Laurenti, E., Dunant, C.F., et al. (2015). Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science aab2116.
- Nottingham, W.T., Jarratt, A., Burgess, M., Speck, C.L., Cheng, J., Prabhakar, S., Rubin, E.M., Li, P., Sloane-stanley, J., Kong-a-san, J., et al. (2007). Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata / Ets / SCL-regulated enhancer. Regulation *110*, 4188–4197.
- Novershtern, N., Subramanian, A., Lawton, L.N., Mak, R.H., Haining, W.N., McConkey, M.E., Habib, N., Yosef, N., Chang, C.Y., Shay, T., et al. (2011). Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis. Cell *144*, 296–309.
- O'Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., et al. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. *44*, D733–D745.
- Oberlin, E., Tavian, M., Blazsek, I., and Péault, B. (2002). Blood-forming potential of vascular endothelium in the human embryo. Development 129, 4147–4157.
- Obier, N., Cauchy, P., Assi, S.A., Gilmour, J., Lie-A-Ling, M., Lichtinger, M., Hoogenkamp, M., Noailles, L., Cockerill, P.N., Lacaud, G., et al. (2016). Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Development *143*, 4324–4340.
- Odaka, Y., Mally, A., Elliott, L.T., and Meyers, S. (2000). Nuclear import and subnuclear localization of the proto-oncoprotein ETO (MTG8). Oncogene *19*, 3584–3597.
- Ogata, T., Kozuka, T., and Kanda, T. (2003). Identification of an insulator in AAVS1, a preferred region for integration of adeno-associated virus DNA. J. Virol. 77, 9000–9007.
- Ogawa, M., Nishikawa, S., Yoshinaga, K., Hayashi, S., Kunisada, T., Nakao, J., Kina, T., Sudo, T., Kodama, H., and Nishikawa, S. (1993). Expression and function of c-Kit in fetal hemopoietic progenitor cells: transition from the early c-Kit-independent to the late c-Kit-dependent wave of hemopoiesis in the murine embryo. Development *117*, 1089–1098.
- Ogryzko, V. V, Schiltz, R.L., Russanova, V., Howard, B.H., and Nakatani, Y. (1996). The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases. Cell *87*, 953–959.
- Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development. Cell 99, 247–257.
- Okuda, T., Van Deursen, J., Hiebert, S.W., Grosveld, G., and Downing, J.R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell *84*, 321–330.
- Okuda, T., Cai, Z., Yang, S., Lenny, N., Lyu, C.J., van Deursen, J.M., Harada, H., and Downing, J.R. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood *91*, 3134–3143.
- Okumura, A.J., Peterson, L.F., Okumura, F., Boyapati, A., and Zhang, D.-E. (2008). t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially

- regulate gene expression. Blood 112, 1392-1401.
- Org, T., Duan, D., Ferrari, R., Montel-hagen, A., Handel, B. Van, Marc, A., Sasidharan, R., Rubbi, L., Fujiwara, Y., Pellegrini, M., et al. (2015). Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO J. *34*, 759–777.
- Orlic, D., Anderson, S., Biesecker, L.G., Sorrentino, B.P., and Bodine, D.M. (1995). Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fms and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Proc. Natl. Acad. Sci. U. S. A. 92, 4601–4605.
- Oudet, P., Gross-Bellard, M., and Chambon, P. (1975). Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell *4*, 281–300.
- Pabst, T., Mueller, B.U., Harakawa, N., Schoch, C., Haferlach, T., Behre, G., Hiddemann, W., Zhang, D.-E., and Tenen, D.G. (2001). AML1–ETO downregulates the granulocytic differentiation factor C/EBPα in t(8;21) myeloid leukemia. Nat. Med. *7*, 444–451.
- Palis, J., Robertson, S., Kennedy, M., Wall, C., and Keller, G. (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development *126*, 5073–5084.
- Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., Jonsdottir, G.A., Stewart, R., and Thomson, J.A. (2007). Whole-Genome Analysis of Histone H3 Lysine 4 and Lysine 27 Methylation in Human Embryonic Stem Cells. Cell Stem Cell *1*, 299–312.
- Pang, C.J., Lemsaddek, W., Alhashem, Y.N., Bondzi, C., Redmond, L.C., Ah-Son, N., Dumur, C.I., Archer, K.J., Haar, J.L., Lloyd, J. a., et al. (2012). Kruppel-Like Factor 1 (KLF1), KLF2, and Myc Control a Regulatory Network Essential for Embryonic Erythropoiesis. Mol. Cell. Biol. 32, 2628–2644.
- Park, S., Chen, W., Cierpicki, T., Tonelli, M., Cai, X., Speck, N.A., and Bushweller, J.H. (2009). Structure of the AML1-ETO eTAFH domain-HEB peptide complex and its contribution to AML1-ETO activity. Blood *113*, 3558–3567.
- Paschka, P., Marcucci, G., Ruppert, A.S., Mrózek, K., Chen, H., Kittles, R.A., Vukosavljevic, T., Perrotti, D., Vardiman, J.W., Carroll, A.J., et al. (2006). Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J. Clin. Oncol. *24*, 3904–3911.
- Patel, J.P., Gönen, M., Figueroa, M.E., Fernandez, H., Sun, Z., Racevskis, J., Van Vlierberghe, P., Dolgalev, I., Thomas, S., Aminova, O., et al. (2012). Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. *366*, 1079–1089.
- De Pater, E., Kaimakis, P., Vink, C.S., Yokomizo, T., Yamada-Inagawa, T., van der Linden, R., Kartalaei, P.S., Camper, S. a, Speck, N., and Dzierzak, E. (2013). Gata2 is required for HSC generation and survival. J. Exp. Med. *210*, 2843–2850.
- Pauler, F.M., Sloane, M.A., Huang, R., Regha, K., Koerner, M. V, Tamir, I., Sommer, A., Aszodi, A., Jenuwein, T., and Barlow, D.P. (2009). H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res. 19, 221–233.
- Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295.
- Peterlin, B.M., and Price, D.H. (2006). Controlling the Elongation Phase of Transcription with P-TEFb. Mol. Cell 23, 297–305.
- Peterson, L.F., and Zhang, D.-E. (2004). The 8;21 translocation in leukemogenesis. Oncogene 23, 4255–4262.
- Peterson, L.F., Boyapati, A., Ahn, E., Biggs, J.R., Okumura, A.J., Lo, M., and Yan, M. (2007). Acute myeloid leukemia with the 8q22; 21q22 translocation: secondary mutational events and alternative t (8; 21) transcripts. Blood *110*, 799–805.
- Petrykowska, H.M., Vockley, C.M., and Elnitski, L. (2008). Detection and characterization of silencers

and enhancer-blockers in the greater CFTR locus. Genome Res. 18, 1238–1246.

Pevny, L., Simon, M.C., Robertson, E., Klein, W.H., Tsai, S.F., D'Agati, V., Orkin, S.H., and Costantini, F. (1991). Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature *349*, 257–260.

Pick, M., Azzola, L., Mossman, A., Stanley, E.G., and Elefanty, A.G. (2007). Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 25, 2206–2214.

Pilon, A.M., Ajay, S.S., Kumar, S.A., Steiner, L. a., Cherukuri, P.F., Wincovitch, S., Anderson, S.M., Mullikin, J.C., Gallagher, P.G., Hardison, R.C., et al. (2011). Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. Blood *118*, 139–149.

Popescu, D.-M., Botting, R.A., Stephenson, E., Green, K., Jardine, L., Calderbank, E.F., Efremova, M., Acres, M., Maunder, D., Vegh, P., et al. (2019). Decoding the development of the blood and immune systems during human fetal liver haematopoiesis. bioRxiv 654210.

Pozner, A., Lotem, J., Xiao, C., Goldenberg, D., Brenner, O., Negreanu, V., Levanon, D., and Groner, Y. (2007). Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis. BMC Dev. Biol. *7*, 84.

Pradhan, S., Bacolla, A., Wells, R.D., and Roberts, R.J. (1999). Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. *274*, 33002–33010.

Privalsky, M.L. (2004). The Role of Corepressors in Transcriptional Regulation by Nuclear Hormone Receptors. Annu. Rev. Physiol. *66*, 315–360.

Ptasinska, A., Assi, S.A., Mannari, D., James, S.R., Williamson, D., Dunne, J., Hoogenkamp, M., Wu, M., Care, M., McNeill, H., et al. (2012). Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia *26*, 1829–1841.

Ptasinska, A., Assi, S.A., Martinez-Soria, N., Imperato, M.R., Piper, J., Cauchy, P., Pickin, A., James, S.R., Hoogenkamp, M., Williamson, D., et al. (2014). Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep. 8, 1974–1988.

Ptasinska, A., Pickin, A., Assi, S.A., Chin, P.S., Ames, L., Avellino, R., Gröschel, S., Delwel, R., Cockerill, P.N., Osborne, C.S., et al. (2019). RUNX1-ETO Depletion in t(8;21) AML Leads to C/EBPα-and AP-1-Mediated Alterations in Enhancer-Promoter Interaction. Cell Rep. 28, 3022–3031.e7.

Pulikkan, J. a., Madera, D., Xue, L., Bradley, P., Landrette, S.F., Kuo, Y.-H., Abbas, S., Zhu, L.J., Valk, P., and Castilla, L.H. (2012). Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling. Blood *120*, 868–879.

Qian, K., Huang, C.T.-L., Huang, C.-L., Chen, H., Blackbourn, L.W., Chen, Y., Cao, J., Yao, L., Sauvey, C., Du, Z., et al. (2014). A simple and efficient system for regulating gene expression in human pluripotent stem cells and derivatives. Stem Cells 32, 1230–1238.

Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C. (2017). Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods *14*, 979–982.

Rada-iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., Flynn, R.A., and Wysocka, J. (2011). A unique chromatin signature uncovers early developmental enhancers in humans. Nature *470*, 279–283.

Rahl, P.B., Lin, C.Y., Seila, A.C., Flynn, R.A., Mccuine, S., Burge, C.B., Sharp, P.A., and Young, R.A. (2010). c-Myc Regulates Transcriptional Pause Release. Cell *141*, 432–445.

Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., and Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. *44*, W160–W165.

Razin, A., and Riggs, A.D. (1980). DNA methylation and gene function. Science 210, 604-610.

Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B.D., Sun, Z.-W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature *406*, 593–599.

Recillas-Targa, F., Pikaart, M.J., Burgess-Beusse, B., Bell, A.C., Litt, M.D., West, A.G., Gaszner, M., and Felsenfeld, G. (2002). Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc. Natl. Acad. Sci. U. S. A. 99, 6883–6888.

Regha, K., Assi, S. a., Tsoulaki, O., Gilmour, J., Lacaud, G., and Bonifer, C. (2015). Developmental-stage-dependent transcriptional response to leukaemic oncogene expression. Nat. Commun. *6*, 7203.

Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature *414*, 105–111.

Rhoades, K.L., Hetherington, C.J., Harakawa, N., Yergeau, D. a, Zhou, L., Liu, L.Q., Little, M.T., Tenen, D.G., and Zhang, D.E. (2000). Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood *96*, 2108–2115.

Rieger, M.A., and Schroeder, T. (2012). Hematopoiesis. Cold Spring Harb Perspect Biol 4, 1–18.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. *43*, e47–e47.

Robb, L., Lyons, I., Li, R., Hartley, L., Köntgen, F., Harvey, R.P., Metcalf, D., and Begley, C.G. (1995). Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. U. S. A. 92, 7075–7079.

Robertson, A.L., Avagyan, S., Gansner, J.M., and Zon, L.I. (2016). Understanding the regulation of vertebrate hematopoiesis and blood disorders - big lessons from a small fish. FEBS Lett. *590*, 4016–4033.

Rosenbauer, F., Owens, B.M., Yu, L., Tumang, J.R., Steidl, U., Kutok, J.L., Clayton, L.K., Wagner, K., Scheller, M., Iwasaki, H., et al. (2006). Lymphoid cell growth and transformation are suppressed by a key regulatory element of the gene encoding PU.1. Nat. Genet. 38, 27–37.

Rossi, D.J., Bryder, D., Seita, J., Nussenzweig, A., Hoeijmakers, J., and Weissman, I.L. (2007). Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729.

Rothkamm, K., Krüger, I., Thompson, L.H., and Löbrich, M. (2003). Pathways of DNA Double-Strand Break Repair during the Mammalian Cell Cycle. Mol. Cell. Biol. 23, 5706–5715.

Roudaia, L., Cheney, M.D., Manuylova, E., Chen, W., Morrow, M., Park, S., Lee, C.T., Kaur, P., Williams, O., Bushweller, J.H., et al. (2009). CBFbeta is critical for AML1-ETO and TEL-AML1 activity. Blood *113*, 3070–3079.

Rowley, J.D. (1973). Identification of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Génétique 16, 109–112.

Rowley, J.D. (1984). Biological Implications of Consistent Chromosome Rearrangements in Leukemia and Lymphoma. Cancer Res. 44, 3159–3168.

Rubin, C.M., Larson, R.A., Anastasi, J., Winter, J.N., Thangavelu, M., Vardiman, J.W., Rowley, J.D., and Le Beau, M.M. (1990). t(3;21)(q26;q22): a recurring chromosomal abnormality in therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood *76*, 2594–2598.

Ruffell, D., Mourkioti, F., Gambardella, A., Kirstetter, P., Lopez, R.G., Rosenthal, N., and Nerlov, C. (2009). A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. U. S. A. 106, 17475–17480.

Rybtsov, S., Sobiesiak, M., Taoudi, S., Souilhol, C., Senserrich, J., Liakhovitskaia, A., Ivanovs, A., Frampton, J., Zhao, S., and Medvinsky, A. (2011). Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J. Exp. Med. 208, 1305–1315.

- Rybtsov, S., Batsivari, A., Bilotkach, K., Paruzina, D., Senserrich, J., Nerushev, O., and Medvinsky, A. (2014). Tracing the Origin of the HSC Hierarchy Reveals an SCF-Dependent, IL-3-Independent CD43- Embryonic Precursor. Stem Cell Reports 3, 489–501.
- Rybtsov, S., Ivanovs, A., Zhao, S., and Medvinsky, A. (2016). Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development *143*, 1284–1289.
- Saeed, S., Logie, C., Francoijs, K.-J., Frige, G., Romanenghi, M., Nielsen, F.G., Raats, L., Shahhoseini, M., Huynen, M., Altucci, L., et al. (2012). Chromatin accessibility, p300, and histone acetylation define PML-RAR and AML1-ETO binding sites in acute myeloid leukemia. Blood *120*, 3058–3068.
- Sainsbury, S., Bernecky, C., and Cramer, P. (2015). Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. *16*, 129–143.
- Saldanha, A.J. (2004). Java Treeview--extensible visualization of microarray data. Bioinformatics 20, 3246–3248.
- Sande, S., and Privalsky, M.L. (1996). Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol. Endocrinol. *10*, 813–825.
- Schessl, C., Rawat, V.P.S., Cusan, M., Deshpande, A., Kohl, T.M., Rosten, P.M., Spiekermann, K., Humphries, R.K., Schnittger, S., Kern, W., et al. (2005). The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J. Clin. Invest. *115*, 2159–2168.
- Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A., and Benvenisty, N. (2000). Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 97, 11307–11312.
- Scott, E., Simon, M., Anastasi, J., and Singh, H. (1994). Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science (80-.). 265, 1573–1577.
- Scott, E.W., Fisher, R.C., Olson, M.C., Kehrli, E.W., Simon, M.C., and Singh, H. (1997). PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity *6*, 437–447.
- Sen, S., Block, K.F., Pasini, A., Baylin, S.B., and Easwaran, H. (2016). Genome-wide positioning of bivalent mononucleosomes. BMC Med. Genomics 9, 60.
- Setoguchi, R., Tachibana, M., Naoe, Y., Muroi, S., Akiyama, K., Tezuka, C., Okuda, T., and Taniuchi, I. (2008). Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science (80-. ). 319, 822–825.
- Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. *13*, 2498–2504.
- Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. Cell *119*, 941–953.
- Shia, W.-J., Okumura, A.J., Yan, M., Sarkeshik, A., Lo, M.-C., Matsuura, S., Komeno, Y., Zhao, X., Nimer, S.D., Yates, J.R., et al. (2012). PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood *119*, 4953–4962.
- Shima, T., Miyamoto, T., Kikushige, Y., Yuda, J., Tochigi, T., Yoshimoto, G., Kato, K., Takenaka, K., Iwasaki, H., Mizuno, S., et al. (2014). The ordered acquisition of Class II and Class I mutations directs formation of human t (8; 21) acute myelogenous leukemia stem cell. Exp. Hematol. 42, 955–965.e5.
- Shimada, H., Ichikawa, H., Nakamura, S., Katsu, R., Iwasa, M., Kitabayashi, I., and Ohki, M. (2000). Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. Blood *96*, 655–663.
- Shivdasani, R. a (1996). The role of transcription factor NF-E2 in megakaryocyte maturation and

platelet production. Stem Cells 14, 112–115.

Shlush, L.I., Zandi, S., Mitchell, A., Chen, W.C., Brandwein, J.M., Gupta, V., Kennedy, J.A., Schimmer, A.D., Schuh, A.C., Yee, K.W., et al. (2014). Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature *506*, 328–333.

Shultz, L.D., Brehm, M.A., Garcia-Martinez, J.V., and Greiner, D.L. (2012). Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. *12*, 786–798.

Simon, M.C., Pevny, L., Wiles, M. V, Keller, G., Costantini, F., and Orkin, S.H. (1992). Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat. Genet. 1, 92–98.

Sinenko, S.A., Hung, T., Moroz, T., Tran, Q.-M., Sidhu, S., Cheney, M.D., Speck, N.A., and Banerjee, U. (2010). Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood *116*, 4612–4620.

Six, E.M., Bonhomme, D., Monteiro, M., Beldjord, K., Jurkowska, M., Cordier-Garcia, C., Garrigue, A., Dal Cortivo, L., Rocha, B., Fischer, A., et al. (2007). A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J. Exp. Med. *204*, 3085–3093.

Skene, P.J., and Henikoff, S. (2013). Histone variants in pluripotency and disease. Development *140*, 2513–2524.

Smale, S.T., and Kadonaga, J.T. (2003). The RNA Polymerase II Core Promoter. Annu. Rev. Biochem. 72, 449–479.

Smith, Z.D., and Meissner, A. (2013). DNA methylation: roles in mammalian development. Nat. Rev. Genet. *14*, 204–220.

Smith, E., Lin, C., and Shilatifard, A. (2011). The super elongation complex ( SEC ) and MLL in development and disease. Genes Dev. 25, 661–672.

Song, W.J., Sullivan, M.G., Legare, R.D., Hutchings, S., Tan, X., Kufrin, D., Ratajczak, J., Resende, I.C., Haworth, C., Hock, R., et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166–175

Souilhol, C., Gonneau, C., Lendinez, J.G., Batsivari, A., Rybtsov, S., Wilson, H., Morgado-Palacin, L., Hills, D., Taoudi, S., Antonchuk, J., et al. (2016). Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells. Nat. Commun. 7, 10784.

Souroullas, G.P., Salmon, J.M., Sablitzky, F., Curtis, D.J., and Goodell, M.A. (2009). Adult Hematopoietic Stem and Progenitor Cells Require Either Lyl1 or Scl for Survival. Cell Stem Cell *4*, 180–186.

Speck, N. a, and Gilliland, D.G. (2002). Core-binding factors in haematopoiesis and leukaemia. Nat. Rev. Cancer 2, 502–513.

Spitz, F., and Furlong, E.E.M. (2012). Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. *13*, 613–626.

Spyropoulos, D.D., Pharr, P.N., Lavenburg, K.R., Jackers, P., Papas, T.S., Ogawa, M., and Watson, D.K. (2000). Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol. Cell. Biol. 20, 5643–5652.

Srinivasan, L., and Atchison, M.L. (2004). YY1 DNA binding and PcG recruitment requires CtBP. Genes Dev. 18, 2596–2601.

Sripathy, S.P., Stevens, J., and Schultz, D.C. (2006). The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol. Cell. Biol. *26*, 8623–8638.

Sroczynska, P., Lancrin, C., Kouskoff, V., and Lacaud, G. (2009). The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood *114*, 5279–5289.

- Staber, P.B., Zhang, P., Ye, M., Welner, R.S., Nombela-Arrieta, C., Bach, C., Kerenyi, M., Bartholdy, B. a., Zhang, H., Alberich-Jordà, M., et al. (2013). Sustained PU.1 Levels Balance Cell-Cycle Regulators to Prevent Exhaustion of Adult Hematopoietic Stem Cells. Mol. Cell *49*, 934–946.
- Stalder, J., Larsen, A., Engel, J.D., Dolan, M., Groudine, M., and Weintraub, H. (1980). Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I. Cell *20*, 451–460.
- Steffen, B., Knop, M., Bergholz, U., Vakhrusheva, O., Rode, M., Köhler, G., Henrichs, M.-P., Bulk, E., Hehn, S., Stehling, M., et al. (2011). AML1/ETO induces self-renewal in hematopoietic progenitor cells via the Groucho-related amino-terminal AES protein. Blood *117*, 4328–4337.
- Steger, D.J., Lefterova, M.I., Ying, L., Stonestrom, A.J., Schupp, M., Zhuo, D., Vakoc, A.L., Kim, J.-E., Chen, J., Lazar, M.A., et al. (2008). DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28, 2825–2839.
- Sturgeon, C.M., Ditadi, A., Awong, G., Kennedy, M., and Keller, G. (2014). Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat. Biotechnol. 32, 554–561.
- Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. *102*, 15545–15550.
- Sun, X.-J., Wang, Z., Wang, L., Jiang, Y., Kost, N., Soong, T.D., Chen, W.-Y., Tang, Z., Nakadai, T., Elemento, O., et al. (2013). A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis. Nature *500*, 93–97.
- Swiers, G., Baumann, C., O'Rourke, J., Giannoulatou, E., Taylor, S., Joshi, A., Moignard, V., Pina, C., Bee, T., Kokkaliaris, K.D., et al. (2013). Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nat. Commun. 4.
- Tachibana, M., Sugimoto, K., Fukushima, T., and Shinkai, Y. (2001). Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317.
- Tachibana, M., Tezuka, C., Muroi, S., Nishimoto, S., Katsumoto, T., Nakajima, A., Kitabayashi, I., and Taniuchi, I. (2008). Phosphorylation of Runx1 at Ser249, Ser266, and Ser276 is dispensable for bone marrow hematopoiesis and thymocyte differentiation. Biochem. Biophys. Res. Commun. *368*, 536–542.
- Tagoh, H., Ingram, R., Wilson, N., Salvagiotto, G., Warren, A.J., Clarke, D., Busslinger, M., and Bonifer, C. (2006). The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO J. 25, 1070–1080.
- Takahashi, H., Parmely, T.J., Sato, S., Tomomori-sato, C., Banks, C.A.S., Kong, S.E., Szutorisz, H., Swanson, S.K., Martin-brown, S., Washburn, M.P., et al. (2011). Human Mediator Subunit MED26 Functions as a Docking Site for Transcription Elongation Factors. Cell *146*, 92–104.
- Takata, M., Sasaki, M.S., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., Yamaguchi-lwai, Y., Shinohara, A., and Takeda, S. (1998). Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. *17*, 5497–5508.
- Tallack, M.R., Whitington, T., Yuen, W.S., Wainwright, E.N., Keys, J.R., Gardiner, B.B., Nourbakhsh, E., Cloonan, N., Grimmond, S.M., Bailey, T.L., et al. (2010). A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res. *20*, 1052–1063.
- Tanaka, T., Tanaka, K., Ogawa, S., Kurokawa, M., Mitani, K., Nishida, J., Shibata, Y., Yazaki, Y., and Hirai, H. (1995). An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J. 14, 341–350.
- Tanaka, T., Kurokawa, M., Ueki, K., Tanaka, K., Imai, Y., Mitani, K., Okazaki, K., Sagata, N., Yazaki, Y., Shibata, Y., et al. (1996). The extracellular signal-regulated kinase pathway phosphorylates AML1,

- an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol. Cell. Biol. 16, 3967–3979.
- Tang, J.-L., Hou, H.-A., Chen, C.-Y., Liu, C.-Y., Chou, W.-C., Tseng, M.-H., Huang, C.-F., Lee, F.-Y., Liu, M.-C., Yao, M., et al. (2009). AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood *114*, 5352–5361.
- Tang, Z., Luo, O.J., Li, X., Zheng, M., Zhu, J.J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., et al. (2015). CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell *163*, 1611–1627.
- Taoudi, S., Gonneau, C., Moore, K., Sheridan, J.M., Blackburn, C.C., Taylor, E., and Medvinsky, A. (2008). Extensive Hematopoietic Stem Cell Generation in the AGM Region via Maturation of VE-Cadherin+CD45+ Pre-Definitive HSCs. Cell Stem Cell *3*, 99–108.
- Taunton, J., Hassig, C.A., and Schreiber, S.L. (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411.
- Tavian, M., Coulombel, L., Luton, D., Clemente, H., Dieterlen-Lievre, F., and Peault, B. (1996). Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 87.
- Tavian, M., Hallais, M.F., and Peault, B. (1999). Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development *126*.
- Tavian, M., Robin, C., Coulombel, L., and Péault, B. (2001). The Human Embryo, but Not Its Yolk Sac, Generates Lympho-Myeloid Stem Cells: Mapping Multipotent Hematopoietic Cell Fate in Intraembryonic Mesoderm. Immunity *15*, 487–495.
- Tay, L.S., Krishnan, V., Sankar, H., Chong, Y.L., Chuang, L.S.H., Tan, T.Z., Kolinjivadi, A.M., Kappei, D., and Ito, Y. (2018). RUNX Poly(ADP-Ribosyl)ation and BLM Interaction Facilitate the Fanconi Anemia Pathway of DNA Repair. Cell Rep. *24*, 1747–1755.
- Telfer, J.C., and Rothenberg, E. V. (2001). Expression and Function of a Stem Cell Promoter for the Murine CBF $\alpha$ 2 Gene: Distinct Roles and Regulation in Natural Killer and T Cell Development. Dev. Biol. 229, 363–382.
- Thambyrajah, R., Mazan, M., Patel, R., Moignard, V., Stefanska, M., Marinopoulou, E., Li, Y., Lancrin, C., Clapes, T., Möröy, T., et al. (2015). GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nat. Cell Biol. *18*, 21–32.
- The Cancer Genome Atlas Research Network (2013). Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. N. Engl. J. Med. 368, 2059–2074.
- Thota, S., Viny, A.D., Makishima, H., Spitzer, B., Radivoyevitch, T., Przychodzen, B., Sekeres, M.A., Levine, R.L., and Maciejewski, J.P. (2014). Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood *124*, 1790–1798.
- Tighe, J.E., and Calabi, F. (1995). t(8;21) breakpoints are clustered between alternatively spliced exons of MTG8. Clin. Sci. (Lond). 89, 215–218.
- Tighe, J.E., Daga, A., and Calabi, F. (1993). Translocation breakpoints are clustered on both chromosome 8 and chromosome 21 in the t(8;21) of acute myeloid leukemia. Blood *81*, 592–596.
- Tober, J., Koniski, A., McGrath, K.E., Vemishetti, R., Emerson, R., De Mesy-Bentley, K.K.L., Waugh, R., and Palis, J. (2007). The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood *109*, 1433–1441.
- Tonks, A., Pearn, L., Musson, M., Gilkes, A., Mills, K.I., Burnett, A.K., and Darley, R.L. (2007). Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia *21*, 2495–2505.
- Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. *32*, 381–386.

Trombly, D.J., Whitfield, T.W., Padmanabhan, S., Gordon, J.A., Lian, J.B., van Wijnen, A.J., Zaidi, S.K., Stein, J.L., and Stein, G.S. (2015a). Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics *16*, 309.

Tropberger, P., and Schneider, R. (2013). Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat. Struct. Mol. Biol. 20, 657–661.

Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., and Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. *13*, 3822–3831.

Tsien, R.Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544.

Tsuzuki, S., Hong, D., Gupta, R., Matsuo, K., Seto, M., and Enver, T. (2007). Isoform-Specific Potentiation of Stem and Progenitor Cell Engraftment by AML1/RUNX1. PLoS Med. 4, e172.

Ugarte, G.D., Vargas, M.F., Medina, M.A., León, P., Necuñir, D., Elorza, A.A., Gutiérrez, S.E., Moon, R.T., Loyola, A., and De Ferrari, G. V (2015). Wnt signaling induces transcription, spatial proximity and translocation of fusion gene partners in human hematopoietic cells. Blood *126*, 1785–1790.

Vairapandi, M., Balliet, A.G., Hoffman, B., and Liebermann, D.A. (2002). GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J. Cell. Physiol. 192, 327–338.

Vangala, R.K., Heiss-Neumann, M.S., Rangatia, J.S., Singh, S.M., Schoch, C., Tenen, D.G., Hiddemann, W., and Behre, G. (2003). The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood *101*, 270–277.

Vardiman, J.W., Thiele, J., Arber, D.A., Brunning, R.D., Borowitz, M.J., Porwit, A., Harris, N.L., Le Beau, M.M., Hellström-Lindberg, E., Tefferi, A., et al. (2009). The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood *114*, 937–951.

Veloso, A., Kirkconnell, K.S., Magnuson, B., Biewen, B., Paulsen, M.T., Wilson, T.E., and Ljungman, M. (2014). Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications. Genome Res. 24, 896–905.

Vettese-Dadey, M., Grant, P.A., Hebbes, T.R., Crane-Robinson, C., Allis, C.D., and Workman, J.L. (1996). Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. *15*, 2508–2518.

Viale, A., De Franco, F., Orleth, A., Cambiaghi, V., Giuliani, V., Bossi, D., Ronchini, C., Ronzoni, S., Muradore, I., Monestiroli, S., et al. (2009). Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature *457*, 51–56.

de Villiers, J., and Schaffner, W. (1981). A small segment of polyoma virus DNA enhances the expression of a cloned  $\beta$ -globin gene over a distance of 1400 base pairs. Nucleic Acids Res. 9, 6251–6264.

Vinjamur, D.S., Wade, K.J., Mohamad, S.F., Haar, J.L., Sawyer, S.T., and Lloyd, J. a. (2014). Kruppel-like transcription factors KLF1 and KLF2 have unique and coordinate roles in regulating embryonic erythroid precursor maturation. Haematologica 99, 1565–1573.

Vodyanik, M.A., Bork, J.A., Thomson, J.A., and Slukvin, I.I. (2005). Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood *105*, 617–626.

Voigt, P., LeRoy, G., Drury, W.J., Zee, B.M., Son, J., Beck, D.B., Young, N.L., Garcia, B.A., and Reinberg, D. (2012). Asymmetrically Modified Nucleosomes. Cell *151*, 181–193.

Wada, T., Takagi, T., Yamaguchi, Y., Ferdous, A., Imai, T., Hirose, S., Sugimoto, S., Yano, K., Hartzog, G.A., Winston, F., et al. (1998). DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. *12*, 343–356.

Wahlster, L., and Daley, G.Q. (2016). Progress towards generation of human haematopoietic stem

- cells. Nat. Cell Biol. 18, 1111–1117.
- Walrad, P.B., Hang, S., Joseph, G.S., Salas, J., and Gerge, J.P. (2010). Distinct Contributions of Conserved Modules to Runt Transcription Factor Activity. Mol. Biol. Cell *21*, 2315–2316.
- Wamstad, J.A., Alexander, J.M., Truty, R.M., Shrikumar, A., Li, F., Eilertson, K.E., Ding, H., Wylie, J.N., Pico, A.R., Capra, J.A., et al. (2012). Dynamic and Coordinated Epigenetic Regulation of Developmental Transitions in the Cardiac Lineage. Cell *151*, 206–220.
- Wang, Y., and Nakayama, N. (2009). WNT and BMP signaling are both required for hematopoietic cell development from human ES cells. Stem Cell Res. *3*, 113–125.
- Wang, H., Huang, Z.Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B.D., Briggs, S.D., Allis, C.D., Wong, J., Tempst, P., et al. (2001). Methylation of Histone H4 at Arginine 3 Facilitating Transcriptional Activation by Nuclear Hormone Receptor. Science (80-.). 293, 853–857.
- Wang, J., Hoshino, T., Redner, R.L., Kajigaya, S., and Liu, J.M. (1998). ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl. Acad. Sci. U. S. A. 95, 10860–10865.
- Wang, L., Gural, A., Sun, X.-J., Zhao, X., Perna, F., Huang, G., Hatlen, M. a, Vu, L., Liu, F., Xu, H., et al. (2011a). The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 333, 765–769.
- Wang, L., Man, N., Sun, X.-J., Tan, Y., García-Cao, M., Cao, M.G., Liu, F., Hatlen, M., Xu, H., Huang, G., et al. (2015). Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression. Blood *126*, 640–650.
- Wang, M., Wang, H., Wen, Y., Chen, X., Liu, X., Gao, J., Su, P., Xu, Y., Zhou, W., Shi, L., et al. (2018). MEIS2 regulates endothelial to hematopoietic transition of human embryonic stem cells by targeting TAL1. Stem Cell Res. Ther. 9, 340.
- Wang, Q., Stacy, T., Miller, J.D., Lewis, a F., Gu, T.L., Huang, X., Bushweller, J.H., Bories, J.C., Alt, F.W., Ryan, G., et al. (1996). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87, 697–708.
- Wang, W., Schwemmers, S., Hexner, E.O., and Pahl, H.L. (2010). AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood *116*, 254–266.
- Wang, Y.-Y., Zhou, G.-B., Yin, T., Chen, B., Shi, J.-Y., Liang, W.-X., Jin, X.-L., You, J.-H., Yang, G., Shen, Z.-X., et al. (2005). AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc. Natl. Acad. Sci. U. S. A. *102*, 1104–1109.
- Wang, Y.-Y., Zhao, L.-J., Wu, C.-F., Liu, P., Shi, L., Liang, Y., Xiong, S.-M., Mi, J.-Q., Chen, Z., Ren, R., et al. (2011b). C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. Proc. Natl. Acad. Sci. *108*, 2450–2455.
- Warren, A.J., Colledge, W.H., Carlton, M.B.L., Evans, M.J., Smith, A.J.H., and Rabbitts, T.H. (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell *78*, 45–57.
- Wasylyk, B., and Chambon, P. (1979). Transcription by Eukaryotic RNA Polymerases A and B of Chromatin Assembled in vitro. Eur. J. Biochem. 98, 317–327.
- Watson, P.J., Fairall, L., and Schwabe, J.W.R. (2012). Nuclear hormone receptor co-repressors: structure and function. Mol. Cell. Endocrinol. *348*, 440–449.
- Weber, C.M., Ramachandran, S., and Henikoff, S. (2014). Nucleosomes Are Context-Specific, H2A.Z-Modulated Barriers to RNA Polymerase. Mol. Cell *53*, 819–830.
- Wei, Y., Liu, S., Lausen, J., Woodrell, C., Cho, S., Biris, N., Kobayashi, N., Wei, Y., Yokoyama, S., and Werner, M.H. (2007). A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nat. Struct. Mol. Biol. *14*, 653–661.

- Weiss, M.J., Keller, G., and Orkin, S.H. (1994). Novel insights into erythroid development revealed through in vitro differentiation of GATA-1- embryonic stem cells. Genes Dev. 8, 1184–1197.
- Welner, R.S., Pelayo, R., and Kincade, P.W. (2008). Evolving views on the genealogy of B cells. Nat. Rev. Immunol. *8*, 95–106.
- Wen, B., Wu, H., Shinkai, Y., Irizarry, R.A., and Feinberg, A.P. (2009). Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat. Genet. *41*, 246–250.
- Westendorf, J.J., Yamamoto, C.M., Lenny, N., Downing, J.R., Selsted, M.E., and Hiebert, S.W. (1998). The t(8;21) Fusion Product, AML-1–ETO, Associates with C/EBP-α, Inhibits C/EBP-α-Dependent Transcription, and Blocks Granulocytic Differentiation. Mol. Cell. Biol. *18*, 322–333.
- Whitmarsh, A.J., and Davis, R.J. (1996). Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. (Berl). 74, 589–607.
- Wichmann, C., Quagliano-Lo Coco, I., Yildiz, Ö., Chen-Wichmann, L., Weber, H., Syzonenko, T., Döring, C., Brendel, C., Ponnusamy, K., Kinner, A., et al. (2015). Activating c-KIT mutations confer oncogenic cooperativity and rescue RUNX1/ETO-induced DNA damage and apoptosis in human primary CD34+ hematopoietic progenitors. Leukemia 29, 279–289.
- Wiemels, J.L., Xiao, Z., Buffler, P. a, Maia, A.T., Ma, X., Dicks, B.M., Martyn, T., Zhang, L., Feusner, J., Wiencke, J., et al. (2010). In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. 99, 3801–3805.
- Wier, A.D., Mayekar, M.K., Héroux, A., Arndt, K.M., and Vandemark, A.P. (2013). Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Proc. Natl. Acad. Sci. U. S. A. *110*, 17290–17295.
- Wilkinson, R.N., Pouget, C., Gering, M., Russell, A.J., Davies, S.G., Kimelman, D., and Patient, R. (2009). Hedgehog and Bmp Polarize Hematopoietic Stem Cell Emergence in the Zebrafish Dorsal Aorta. Dev. Cell *16*, 909–916.
- Wiznerowicz, M., Jakobsson, J., Szulc, J., Liao, S., Quazzola, A., Beermann, F., Aebischer, P., and Trono, D. (2007). The Kruppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis. J. Biol. Chem. 282, 34535–34541.
- Woll, P.S., Morris, J.K., Painschab, M.S., Marcus, R.K., Kohn, A.D., Biechele, T.L., Moon, R.T., and Kaufman, D.S. (2008). Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood *111*, 122–131.
- Wolyniec, K., Wotton, S., Kilbey, A., Jenkins, A., Terry, A., Peters, G., Stocking, C., Cameron, E., and Neil, J.C. (2009). RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene 28, 2502–2512.
- Xiao, Z., Greaves, M.F., Buffler, P., Smith, M.T., Segal, M.R., Dicks, B.M., Wiencke, J.K., and Wiemels, J.L. (2001). Molecular characterization of genomic AML1-ETO fusions in childhood leukemia. Leukemia *15*, 1906–1913.
- Xie, W., Schultz, M.D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J.W., Tian, S., Hawkins, R.D., Leung, D., et al. (2013). Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells. Cell *153*, 1134–1148.
- Yamada, Y., Warren, a J., Dobson, C., Forster, a, Pannell, R., and Rabbitts, T.H. (1998). The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 95, 3890–3895.
- Yamaguchi, Y., Takagi, T., Wada, T., Yano, K., Furuya, A., Sugimoto, S., Hasegawa, J., and Handa, H. (1999). NELF, a Multisubunit Complex Containing RD, Cooperates with DSIF to Repress RNA Polymerase II Elongation. Cell *97*, 41–51.
- Yamaguchi, Y., Inukai, N., Narita, T., Wada, T., and Handa, H. (2002). Evidence that Negative Elongation Factor Represses Transcription Elongation through Binding to a DRB Sensitivity-Inducing Factor / RNA Polymerase II Complex and RNA. Mol. Cell. Biol. 22, 2918–2927.

- Yamanaka, R., Barlow, C., Lekstrom-Himes, J., Castilla, L.H., Liu, P.P., Eckhaus, M., Decker, T., Wynshaw-Boris, a, and Xanthopoulos, K.G. (1997). Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 94, 13187–13192.
- Yan, M., Burel, S.A., Peterson, L.F., Kanbe, E., Iwasaki, H., Boyapati, A., Hines, R., Akashi, K., and Zhang, D.E. (2004). Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci U S A *101*, 17186–17191.
- Yan, M., Kanbe, E., Peterson, L.F., Boyapati, A., Miao, Y., Wang, Y., Chen, I.-M., Chen, Z., Rowley, J.D., Willman, C.L., et al. (2006). A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat. Med. *12*, 945–949.
- Yang, G., Khalaf, W., van de Locht, L., Jansen, J.H., Gao, M., Thompson, M.A., van der Reijden, B.A., Gutmann, D.H., Delwel, R., Clapp, D.W., et al. (2005). Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol. Cell. Biol. *25*, 5869–5879.
- Yang, X.-J., Ogryzko, V. V., Nishikawa, J., Howard, B.H., and Nakatani, Y. (1996). A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324.
- Yeh, J.-R.J., Munson, K.M., Elagib, K.E., Goldfarb, A.N., Sweetser, D.A., and Peterson, R.T. (2009). Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat. Chem. Biol. *5*, 236–243.
- Yergeau, D.A., Hetherington, C.J., Wang, Q., Zhang, P., Sharpe, A.H., Binder, M., Marín-Padilla, M., Tenen, D.G., Speck, N.A., and Zhang, D.E. (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat. Genet. *15*, 303–306.
- Ying, J., Srivastava, G., Hsieh, W.-S., Gao, Z., Murray, P., Liao, S.-K., Ambinder, R., and Tao, Q. (2005). The Stress-Responsive Gene GADD45G Is a Functional Tumor Suppressor, with Its Response to Environmental Stresses Frequently Disrupted Epigenetically in Multiple Tumors. Clin. Cancer Res. *11*, 6442–6449.
- Yokomizo, T., Ogawa, M., Osato, M., Kanno, T., Yoshida, H., Fujimoto, T., Fraser, S., Nishikawa, S., Okada, H., Satake, M., et al. (2001). Requirement of Runx1/AML1/PEBP2alfaB for the generation of haematopoietic cells from endothelial cells. Genes Cells *6*, 13–23.
- Yu, P., Pan, G., Yu, J., and Thomson, J.A. (2011). FGF2 Sustains NANOG and Switches the Outcome of BMP4-Induced Human Embryonic Stem Cell Differentiation. Cell Stem Cell 8, 326–334.
- Yuan, Y., Zhou, L., Miyamoto, T., Iwasaki, H., Harakawa, N., Hetherington, C.J., Burel, S. a, Lagasse, E., Weissman, I.L., Akashi, K., et al. (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc. Natl. Acad. Sci. U. S. A. 98, 10398–10403.
- Zaidi, S.K., Dowdy, C.R., Wijnen, A.J. Van, Lian, J.B., Stein, J.L., Croce, C.M., and Stein, G.S. (2009). Altered Runx1 Subnuclear Targeting Enhances Myeloid Cell Proliferation and Blocks Differentiation by activating a miR-24/ MKP-7/MAP Kinase Network. Cancer Res. *69*, 8249–8255.
- Zaret, K.S., and Carroll, J.S. (2011). Pioneer transcription factors: Establishing competence for gene expression. Genes Dev. 25, 2227–2241.
- Zeng, C., McNeil, S., Pockwinse, S., Nickerson, J., Shopland, L., Lawrence, J.B., Penman, S., Hiebert, S., Lian, J.B., van Wijnen, A.J., et al. (1998). Intranuclear targeting of AML/CBFalpha regulatory factors to nuclear matrix-associated transcriptional domains. Proc. Natl. Acad. Sci. U. S. A. 95, 1585–1589.
- Zeng, H., Yücel, R., Kosan, C., Klein-Hitpass, L., and Möröy, T. (2004). Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J. 23, 4116–4125.
- Zhang, M.Q. (1998). Identification of human gene core promoters in silico. Genome Res. 8, 319–326.
- Zhang, D.E., Zhang, P., Wang, N.D., Hetherington, C.J., Darlington, G.J., and Tenen, D.G. (1997). Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc. Natl. Acad. Sci. U. S. A. *94*, 569–574.

- Zhang, H., Alberich-Jorda, M., Amabile, G., Yang, H., Staber, P.B., Di Ruscio, A., Diruscio, A., Welner, R.S., Ebralidze, A., Zhang, J., et al. (2013a). Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia. Cancer Cell *24*, 575–588.
- Zhang, H., Ye, M., Welner, R.S., and Tenen, D.G. (2014). Sox4 Is Required for the Formation and Maintenance of Multipotent Progenitors. Blood *124*.
- Zhang, J., Hug, B.A., Huang, E.Y., Chen, C.W., Gelmetti, V., Maccarana, M., Minucci, S., Pelicci, P.G., and Lazar, M.A. (2001). Oligomerization of ETO is obligatory for corepressor interaction. Mol. Cell. Biol. *21*, 156–163.
- Zhang, J., Kalkum, M., Yamamura, S., Chait, B.T., and Roeder, R.G. (2004a). E Protein Silencing by the Leukemogenic AML1-ETO Fusion Protein. Science (80-.). 305, 1286–1289.
- Zhang, J., Wu, Z., Savin, A., Yang, M., Hsu, Y.-H.R., Jantuan, E., Bacani, J.T.C., and Ingham, R.J. (2018). The c-Jun and JunB transcription factors facilitate the transit of classical Hodgkin lymphoma tumour cells through G1. Sci. Rep. *8*, 16019.
- Zhang, K., Tang, H., Huang, L., Blankenship, J.W., Jones, P.R., Xiang, F., Yau, P.M., and Burlingame, A.L. (2002a). Identification of Acetylation and Methylation Sites of Histone H3 from Chicken Erythrocytes by High-Accuracy Matrix-Assisted Laser Desorption Ionization—Time-of-Flight, Matrix-Assisted Laser Desorption Ionization—Postsource Decay, and Nanoelectrospray Ionization Tandem Mass Spectrometry. Anal. Biochem. *306*, 259–269.
- Zhang, L., Fried, F.B., Guo, H., and Friedman, A.D. (2008a). Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation. Blood 111, 1193–1200.
- Zhang, P., Iwasaki-Arai, J., Iwasaki, H., Fenyus, M.L., Dayaram, T., Owens, B.M., Shigematsu, H., Levantini, E., Huettner, C.S., Lekstrom-Himes, J. a., et al. (2004b). Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity *21*, 853–863.
- Zhang, Y., Strissel, P., Strick, R., Chen, J., Nucifora, G., Le Beau, M.M., Larson, R.A., and Rowley, J.D. (2002b). Genomic DNA breakpoints in AML1/RUNX1 and ETO cluster with topoisomerase II DNA cleavage and DNase I hypersensitive sites in t(8;21) leukemia. Proc. Natl. Acad. Sci. U. S. A. 99, 3070–3075.
- Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nussbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008b). Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.
- Zhang, Y., Wang, J., Wheat, J., Chen, X., Jin, S., Sadrzadeh, H., Fathi, A.T., Peterson, R.T., Kung, A.L., Sweetser, D.A., et al. (2013b). AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway. Blood *121*, 4906–4916.
- Zhao, S., Zhang, Y., Sha, K., Tang, Q., Yang, X., Yu, C., Liu, Z., Sun, W., Cai, L., Xu, C., et al. (2014). KRAS (G12D) Cooperates with AML1/ETO to Initiate a Mouse Model Mimicking Human Acute Myeloid Leukemia. Cell. Physiol. Biochem. 33, 78–87.
- Zhao, X., Jankovic, V., Gural, A., Huang, G., Pardanani, A., Menendez, S., Zhang, J., Dunne, R., Xiao, A., Erdjument-Bromage, H., et al. (2008). Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev. 22, 640–653.
- Zhao, X.D., Han, X., Chew, J.L., Liu, J., Chiu, K.P., Choo, A., Orlov, Y.L., Sung, W., Shahab, A., Kuznetsov, V.A., et al. (2007). Whole-Genome Mapping of Histone H3Lys4 and 27 Trimethylations Reveals Distinct Genomic Compartments in Human Embryonic Stem Cells. Cell Stem Celll *1*, 286–298.
- Zhao, Y., Li, X., Zhao, W., Wang, J., Yu, J., Wan, Z., Gao, K., Yi, G., Wang, X., Fan, B., et al. (2019). Single-cell transcriptomic landscape of nucleated cells in umbilical cord blood. Gigascience 8.
- Zheng, X., Beissert, T., Kukoc-Zivojnov, N., Puccetti, E., Altschmied, J., Strolz, C., Boehrer, S., Gul, H., Schneider, O., Ottmann, O.G., et al. (2004). gamma-Catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal ofvery primitive

progenitor cells. Blood 93, 3167-3215.

Zhou, F., Li, X., Wang, W., Zhu, P., Zhou, J., He, W., Ding, M., Xiong, F., Zheng, X., Li, Z., et al. (2016). Tracing haematopoietic stem cell formation at single-cell resolution. Nature *533*.

Zhou, F., Liu, Y., Rohde, C., Pauli, C., Gerloff, D., Köhn, M., Misiak, D., Bäumer, N., Cui, C., Göllner, S., et al. (2017). AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat. Cell Biol. *19*, 844–855.

Zhou, Q., Li, T., and Price, D.H. (2012). RNA Polymerase II Elongation Control. Annu. Rev. Biochem. 81, 119–143.

Zhu, J., Adli, M., Zou, J.Y., Verstappen, G., Coyne, M., Zhang, X., Durham, T., Miri, M., Deshpande, V., Jager, P.L. De, et al. (2013). Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues. Cell *152*, 642–654.

Zovein, A.C., Hofmann, J.J., Lynch, M., French, W.J., Turlo, K. a., Yang, Y., Becker, M.S., Zanetta, L., Dejana, E., Gasson, J.C., et al. (2008). Fate Tracing Reveals the Endothelial Origin of Hematopoietic Stem Cells. Cell Stem Cell 3, 625–636.